/******************************Module*Header*******************************\ * * ************************** * * DirectDraw SAMPLE CODE * * ************************** * * Module Name: ddraw.c * * Implements all the DirectDraw components for the driver. * * Copyright (c) 1995-1998 Microsoft Corporation \**************************************************************************/ #include "precomp.h" // Defines we'll use in the surface's 'dwReserved1' field: #define DD_RESERVED_DIFFERENTPIXELFORMAT 0x0001 // Worst-case possible number of FIFO entries we'll have to wait for in // DdBlt for any operation: #define DDBLT_FIFO_COUNT 9 // NT is kind enough to pre-calculate the 2-d surface offset as a 'hint' so // that we don't have to do the following, which would be 6 DIVs per blt: // // y += (offset / pitch) // x += (offset % pitch) / bytes_per_pixel #define convertToGlobalCord(x, y, surf) \ { \ y += surf->yHint; \ x += surf->xHint; \ } /******************************Public*Routine******************************\ * VOID vFixMissingPixels * * Trio64V+ work-around. * * On 1024x768x8 and 800x600x8 modes, switching from K2 to stream processor * results in 1 character clock pixels on the right handed side of the screen * missing. This problem can be worked-around by adjusting CR2 register. * \**************************************************************************/ VOID vFixMissingPixels( PDEV* ppdev) { BYTE* pjIoBase; BYTE jVerticalRetraceEnd; ASSERTDD(ppdev->flCaps & CAPS_STREAMS_CAPABLE, "Must be streams capable"); pjIoBase = ppdev->pjIoBase; // Unlock CRTC control registers: OUTP(pjIoBase, CRTC_INDEX, 0x11); jVerticalRetraceEnd = INP(pjIoBase, CRTC_DATA); OUTP(pjIoBase, CRTC_DATA, jVerticalRetraceEnd & 0x7f); // Add one character clock: OUTP(pjIoBase, CRTC_INDEX, 0x2); ppdev->jSavedCR2 = INP(pjIoBase, CRTC_DATA); OUTP(pjIoBase, CRTC_DATA, ppdev->jSavedCR2 + 1); // Lock CRTC control registers again: OUTP(pjIoBase, CRTC_INDEX, 0x11); OUTP(pjIoBase, CRTC_DATA, jVerticalRetraceEnd | 0x80); } /******************************Public*Routine******************************\ * VOID vUnfixMissingPixels * * Trio64V+ work-around. * \**************************************************************************/ VOID vUnfixMissingPixels( PDEV* ppdev) { BYTE* pjIoBase; BYTE jVerticalRetraceEnd; pjIoBase = ppdev->pjIoBase; // Unlock CRTC control registers: OUTP(pjIoBase, CRTC_INDEX, 0x11); jVerticalRetraceEnd = INP(pjIoBase, CRTC_DATA); OUTP(pjIoBase, CRTC_DATA, jVerticalRetraceEnd & 0x7f); // Restore original register value: OUTP(pjIoBase, CRTC_INDEX, 0x2); OUTP(pjIoBase, CRTC_DATA, ppdev->jSavedCR2); // Lock CRTC control registers again: OUTP(pjIoBase, CRTC_INDEX, 0x11); OUTP(pjIoBase, CRTC_DATA, jVerticalRetraceEnd | 0x80); } /******************************Public*Routine******************************\ * VOID vStreamsDelay() * * This tries to work around a hardware timing bug. Supposedly, consecutive * writes to the streams processor in fast CPUs such as P120 and P133's * have problems. I haven't seen this problem, but this work-around exists * in the Windows 95 driver, and at this point don't want to chance not * having it. Note that writes to the streams processor are not performance * critical, so this is not a performance hit. * \**************************************************************************/ VOID vStreamsDelay() { volatile LONG i; for (i = 32; i != 0; i--) ; } /******************************Public*Routine******************************\ * VOID vTurnOnStreamsProcessorMode * \**************************************************************************/ VOID vTurnOnStreamsProcessorMode( PDEV* ppdev) { BYTE* pjMmBase; BYTE* pjIoBase; BYTE jStreamsProcessorModeSelect; DWORD dwPFormat; ASSERTDD(ppdev->flCaps & CAPS_STREAMS_CAPABLE, "Must be streams capable"); ACQUIRE_CRTC_CRITICAL_SECTION(ppdev); pjMmBase = ppdev->pjMmBase; pjIoBase = ppdev->pjIoBase; NW_GP_WAIT(ppdev, pjMmBase); while (!(VBLANK_IS_ACTIVE(pjIoBase))) ; // Full streams processor operation: OUTP(pjIoBase, CRTC_INDEX, 0x67); jStreamsProcessorModeSelect = INP(pjIoBase, CRTC_DATA); OUTP(pjIoBase, CRTC_DATA, jStreamsProcessorModeSelect | 0x0c); if (ppdev->iBitmapFormat == BMF_8BPP) { vFixMissingPixels(ppdev); } switch(ppdev->iBitmapFormat) { case BMF_8BPP: dwPFormat = P_RGB8; break; case BMF_16BPP: if (IS_RGB15_R(ppdev->flRed)) dwPFormat = P_RGB15; else dwPFormat = P_RGB16; break; case BMF_32BPP: dwPFormat = P_RGB32; break; default: dwPFormat = -1; RIP("Unexpected bitmap format"); } WRITE_STREAM_D(pjMmBase, P_CONTROL, dwPFormat ); WRITE_STREAM_D(pjMmBase, FIFO_CONTROL, ((0xcL << FifoAlloc_Shift)| (4L << P_FifoThresh_Shift) | (4L << S_FifoThresh_Shift))); WRITE_STREAM_D(pjMmBase, P_0, 0); WRITE_STREAM_D(pjMmBase, P_STRIDE, ppdev->lDelta); WRITE_STREAM_D(pjMmBase, P_XY, 0x010001L); WRITE_STREAM_D(pjMmBase, P_WH, WH(ppdev->cxScreen, ppdev->cyScreen)); WRITE_STREAM_D(pjMmBase, S_WH, WH(10, 2)); WRITE_STREAM_D(pjMmBase, CKEY_LOW, ppdev->ulColorKey | CompareBits0t7 | KeyFromCompare); WRITE_STREAM_D(pjMmBase, CKEY_HI, ppdev->ulColorKey); WRITE_STREAM_D(pjMmBase, BLEND_CONTROL, POnS); WRITE_STREAM_D(pjMmBase, OPAQUE_CONTROL, 0); WRITE_STREAM_D(pjMmBase, FIFO_CONTROL, ppdev->ulFifoValue); RELEASE_CRTC_CRITICAL_SECTION(ppdev); } /******************************Public*Routine******************************\ * VOID vTurnOffStreamsProcessorMode * \**************************************************************************/ VOID vTurnOffStreamsProcessorMode( PDEV* ppdev) { BYTE* pjMmBase; BYTE* pjIoBase; BYTE jStreamsProcessorModeSelect; ACQUIRE_CRTC_CRITICAL_SECTION(ppdev); pjMmBase = ppdev->pjMmBase; pjIoBase = ppdev->pjIoBase; NW_GP_WAIT(ppdev, pjMmBase); while (!(VBLANK_IS_ACTIVE(pjIoBase))) ; WRITE_STREAM_D(pjMmBase, FIFO_CONTROL, 0x3000L); OUTP(pjIoBase, CRTC_INDEX, 0x67); jStreamsProcessorModeSelect = INP(pjIoBase, CRTC_DATA); OUTP(pjIoBase, CRTC_DATA, jStreamsProcessorModeSelect & ~0x0C); if (ppdev->iBitmapFormat == BMF_8BPP) { vUnfixMissingPixels(ppdev); } RELEASE_CRTC_CRITICAL_SECTION(ppdev); } /******************************Public*Routine******************************\ * DWORD dwGetPaletteEntry * \**************************************************************************/ DWORD dwGetPaletteEntry( PDEV* ppdev, DWORD iIndex) { BYTE* pjIoBase; DWORD dwRed; DWORD dwGreen; DWORD dwBlue; pjIoBase = ppdev->pjIoBase; OUTP(pjIoBase, 0x3c7, iIndex); dwRed = INP(pjIoBase, 0x3c9) << 2; dwGreen = INP(pjIoBase, 0x3c9) << 2; dwBlue = INP(pjIoBase, 0x3c9) << 2; return((dwRed << 16) | (dwGreen << 8) | (dwBlue)); } /******************************Public*Routine******************************\ * VOID vGetDisplayDuration * * Get the length, in EngQueryPerformanceCounter() ticks, of a refresh cycle. * * If we could trust the miniport to return back and accurate value for * the refresh rate, we could use that. Unfortunately, our miniport doesn't * ensure that it's an accurate value. * \**************************************************************************/ #define NUM_VBLANKS_TO_MEASURE 1 #define NUM_MEASUREMENTS_TO_TAKE 8 VOID vGetDisplayDuration( PDEV* ppdev) { BYTE* pjIoBase; LONG i; LONG j; LONGLONG li; LONGLONG liFrequency; LONGLONG liMin; LONGLONG aliMeasurement[NUM_MEASUREMENTS_TO_TAKE + 1]; pjIoBase = ppdev->pjIoBase; memset(&ppdev->flipRecord, 0, sizeof(ppdev->flipRecord)); // Warm up EngQUeryPerformanceCounter to make sure it's in the working // set: EngQueryPerformanceCounter(&li); // Unfortunately, since NT is a proper multitasking system, we can't // just disable interrupts to take an accurate reading. We also can't // do anything so goofy as dynamically change our thread's priority to // real-time. // // So we just do a bunch of short measurements and take the minimum. // // It would be 'okay' if we got a result that's longer than the actual // VBlank cycle time -- nothing bad would happen except that the app // would run a little slower. We don't want to get a result that's // shorter than the actual VBlank cycle time -- that could cause us // to start drawing over a frame before the Flip has occured. // // Skip a couple of vertical blanks to allow the hardware to settle // down after the mode change, to make our readings accurate: for (i = 2; i != 0; i--) { while (VBLANK_IS_ACTIVE(pjIoBase)) ; while (!(VBLANK_IS_ACTIVE(pjIoBase))) ; } for (i = 0; i < NUM_MEASUREMENTS_TO_TAKE; i++) { // We're at the start of the VBlank active cycle! EngQueryPerformanceCounter(&aliMeasurement[i]); // Okay, so life in a multi-tasking environment isn't all that // simple. What if we had taken a context switch just before // the above EngQueryPerformanceCounter call, and now were half // way through the VBlank inactive cycle? Then we would measure // only half a VBlank cycle, which is obviously bad. The worst // thing we can do is get a time shorter than the actual VBlank // cycle time. // // So we solve this by making sure we're in the VBlank active // time before and after we query the time. If it's not, we'll // sync up to the next VBlank (it's okay to measure this period -- // it will be guaranteed to be longer than the VBlank cycle and // will likely be thrown out when we select the minimum sample). // There's a chance that we'll take a context switch and return // just before the end of the active VBlank time -- meaning that // the actual measured time would be less than the true amount -- // but since the VBlank is active less than 1% of the time, this // means that we would have a maximum of 1% error approximately // 1% of the times we take a context switch. An acceptable risk. // // This next line will cause us wait if we're no longer in the // VBlank active cycle as we should be at this point: while (!(VBLANK_IS_ACTIVE(pjIoBase))) ; for (j = 0; j < NUM_VBLANKS_TO_MEASURE; j++) { while (VBLANK_IS_ACTIVE(pjIoBase)) ; while (!(VBLANK_IS_ACTIVE(pjIoBase))) ; } } EngQueryPerformanceCounter(&aliMeasurement[NUM_MEASUREMENTS_TO_TAKE]); // Use the minimum: liMin = aliMeasurement[1] - aliMeasurement[0]; DISPDBG((1, "Refresh count: %li - %li", 1, (ULONG) liMin)); for (i = 2; i <= NUM_MEASUREMENTS_TO_TAKE; i++) { li = aliMeasurement[i] - aliMeasurement[i - 1]; DISPDBG((1, " %li - %li", i, (ULONG) li)); if (li < liMin) liMin = li; } // Round the result: ppdev->flipRecord.liFlipDuration = (DWORD) (liMin + (NUM_VBLANKS_TO_MEASURE / 2)) / NUM_VBLANKS_TO_MEASURE; ppdev->flipRecord.bFlipFlag = FALSE; ppdev->flipRecord.fpFlipFrom = 0; // We need the refresh rate in Hz to query the S3 miniport about the // streams parameters: EngQueryPerformanceFrequency(&liFrequency); ppdev->ulRefreshRate = (ULONG) ((liFrequency + (ppdev->flipRecord.liFlipDuration / 2)) / ppdev->flipRecord.liFlipDuration); DISPDBG((1, "Frequency: %li Hz", ppdev->ulRefreshRate)); } /******************************Public*Routine******************************\ * HRESULT ddrvalUpdateFlipStatus * * Checks and sees if the most recent flip has occurred. * * Unfortunately, the hardware has no ability to tell us whether a vertical * retrace has occured since the flip command was given other than by * sampling the vertical-blank-active and display-active status bits. * \**************************************************************************/ HRESULT ddrvalUpdateFlipStatus( PDEV* ppdev, FLATPTR fpVidMem) { BYTE* pjIoBase; LONGLONG liTime; pjIoBase = ppdev->pjIoBase; if ((ppdev->flipRecord.bFlipFlag) && ((fpVidMem == (FLATPTR) -1) || (fpVidMem == ppdev->flipRecord.fpFlipFrom))) { if (VBLANK_IS_ACTIVE(pjIoBase)) { if (ppdev->flipRecord.bWasEverInDisplay) { ppdev->flipRecord.bHaveEverCrossedVBlank = TRUE; } } else if (DISPLAY_IS_ACTIVE(pjIoBase)) { if (ppdev->flipRecord.bHaveEverCrossedVBlank) { ppdev->flipRecord.bFlipFlag = FALSE; return(DD_OK); } ppdev->flipRecord.bWasEverInDisplay = TRUE; } // It's pretty unlikely that we'll happen to sample the vertical- // blank-active at the first vertical blank after the flip command // has been given. So to provide better results, we also check the // time elapsed since the flip. If it's more than the duration of // one entire refresh of the display, then we know for sure it has // happened: EngQueryPerformanceCounter(&liTime); if (liTime - ppdev->flipRecord.liFlipTime <= ppdev->flipRecord.liFlipDuration) { return(DDERR_WASSTILLDRAWING); } ppdev->flipRecord.bFlipFlag = FALSE; } return(DD_OK); } /******************************Public*Routine******************************\ * DWORD DdBlt * \**************************************************************************/ DWORD DdBlt( PDD_BLTDATA lpBlt) { PDD_SURFACE_GLOBAL srcSurf; PDD_SURFACE_LOCAL dstSurfx; PDD_SURFACE_GLOBAL dstSurf; PDEV* ppdev; BYTE* pjMmBase; HRESULT ddrval; DWORD dstX; DWORD dstY; DWORD dwFlags; DWORD dstWidth; DWORD dstHeight; DWORD srcWidth; DWORD srcHeight; DWORD dwError; LONG dstPitch; LONG srcPitch; DWORD srcX; DWORD srcY; ULONG ulBltCmd; DWORD dwVEctrl; DWORD dwVEdda; DWORD dwVEcrop; DWORD dwVEdstAddr; DWORD dwVEsrcAddr; DWORD dwDstByteCount; DWORD dwSrcByteCount; DWORD dwSrcBytes; DWORD dwCropSkip; LONG i; FLATPTR fp; ppdev = (PDEV*) lpBlt->lpDD->dhpdev; pjMmBase = ppdev->pjMmBase; dstSurfx = lpBlt->lpDDDestSurface; dstSurf = dstSurfx->lpGbl; // Is a flip in progress? ddrval = ddrvalUpdateFlipStatus(ppdev, dstSurf->fpVidMem); if (ddrval != DD_OK) { lpBlt->ddRVal = ddrval; return(DDHAL_DRIVER_HANDLED); } dwFlags = lpBlt->dwFlags; if (dwFlags & DDBLT_ASYNC) { // If async, then only work if we won't have to wait on the // accelerator to start the command. // // The FIFO wait should account for the worst-case possible // blt that we would do: if (MM_FIFO_BUSY(ppdev, pjMmBase, DDBLT_FIFO_COUNT)) { lpBlt->ddRVal = DDERR_WASSTILLDRAWING; return(DDHAL_DRIVER_HANDLED); } } // Copy src/dst rects: dstX = lpBlt->rDest.left; dstY = lpBlt->rDest.top; dstWidth = lpBlt->rDest.right - lpBlt->rDest.left; dstHeight = lpBlt->rDest.bottom - lpBlt->rDest.top; if (dwFlags & DDBLT_COLORFILL) { // The S3 can't easily do colour fills for off-screen surfaces that // are a different pixel format than that of the primary display: if (dstSurf->dwReserved1 & DD_RESERVED_DIFFERENTPIXELFORMAT) { DISPDBG((0, "Can't do colorfill to odd pixel format")); return(DDHAL_DRIVER_NOTHANDLED); } else { convertToGlobalCord(dstX, dstY, dstSurf); NW_FIFO_WAIT(ppdev, pjMmBase, 6); NW_PIX_CNTL(ppdev, pjMmBase, ALL_ONES); NW_ALT_MIX(ppdev, pjMmBase, FOREGROUND_COLOR | OVERPAINT, 0); NW_FRGD_COLOR(ppdev, pjMmBase, lpBlt->bltFX.dwFillColor); NW_ABS_CURXY_FAST(ppdev, pjMmBase, dstX, dstY); NW_ALT_PCNT(ppdev, pjMmBase, dstWidth - 1, dstHeight - 1); NW_ALT_CMD(ppdev, pjMmBase, RECTANGLE_FILL | DRAWING_DIR_TBLRXM | DRAW | DIR_TYPE_XY | LAST_PIXEL_ON | MULTIPLE_PIXELS | WRITE); lpBlt->ddRVal = DD_OK; return(DDHAL_DRIVER_HANDLED); } } // We specified with Our ddCaps.dwCaps that we handle a limited number // of commands, and by this point in our routine we've handled everything // except DDBLT_ROP. DirectDraw and GDI shouldn't pass us anything // else; we'll assert on debug builds to prove this: ASSERTDD((dwFlags & DDBLT_ROP) && (lpBlt->lpDDSrcSurface), "Expected dwFlags commands of only DDBLT_ASYNC and DDBLT_COLORFILL"); // Get offset, dstWidth, and dstHeight for source: srcSurf = lpBlt->lpDDSrcSurface->lpGbl; srcX = lpBlt->rSrc.left; srcY = lpBlt->rSrc.top; srcWidth = lpBlt->rSrc.right - lpBlt->rSrc.left; srcHeight = lpBlt->rSrc.bottom - lpBlt->rSrc.top; // If a stretch or a funky pixel format blt are involved, we'll have to // defer to the overlay or pixel formatter routines: if ((srcWidth == dstWidth) && (srcHeight == dstHeight) && !(srcSurf->dwReserved1 & DD_RESERVED_DIFFERENTPIXELFORMAT) && !(dstSurf->dwReserved1 & DD_RESERVED_DIFFERENTPIXELFORMAT)) { // Assume we can do the blt top-to-bottom, left-to-right: ulBltCmd = BITBLT | DRAW | DIR_TYPE_XY | WRITE | DRAWING_DIR_TBLRXM; if ((dstSurf == srcSurf) && (srcX + dstWidth > dstX) && (srcY + dstHeight > dstY) && (dstX + dstWidth > srcX) && (dstY + dstHeight > srcY) && (((srcY == dstY) && (dstX > srcX) ) || ((srcY != dstY) && (dstY > srcY)))) { // Okay, we have to do the blt bottom-to-top, right-to-left: ulBltCmd = BITBLT | DRAW | DIR_TYPE_XY | WRITE | DRAWING_DIR_BTRLXM; srcX = lpBlt->rSrc.right - 1; srcY = lpBlt->rSrc.bottom - 1; dstX = lpBlt->rDest.right - 1; dstY = lpBlt->rDest.bottom - 1; } // NT only ever gives us SRCCOPY rops, so don't even both checking // for anything else. convertToGlobalCord(srcX, srcY, srcSurf); convertToGlobalCord(dstX, dstY, dstSurf); if (dwFlags & DDBLT_KEYSRCOVERRIDE) { NW_FIFO_WAIT(ppdev, pjMmBase, 9); NW_MULT_MISC_READ_SEL(ppdev, pjMmBase, ppdev->ulMiscState | MULT_MISC_COLOR_COMPARE, 0); NW_COLOR_CMP(ppdev, pjMmBase, lpBlt->bltFX.ddckSrcColorkey.dwColorSpaceLowValue); NW_ALT_MIX(ppdev, pjMmBase, SRC_DISPLAY_MEMORY | OVERPAINT, 0); NW_PIX_CNTL(ppdev, pjMmBase, ALL_ONES); NW_ABS_CURXY_FAST(ppdev, pjMmBase, srcX, srcY); NW_ABS_DESTXY_FAST(ppdev, pjMmBase, dstX, dstY); NW_ALT_PCNT(ppdev, pjMmBase, dstWidth - 1, dstHeight - 1); NW_ALT_CMD(ppdev, pjMmBase, ulBltCmd); NW_MULT_MISC_READ_SEL(ppdev, pjMmBase, ppdev->ulMiscState, 0); } else { NW_FIFO_WAIT(ppdev, pjMmBase, 6); NW_ALT_MIX(ppdev, pjMmBase, SRC_DISPLAY_MEMORY | OVERPAINT, 0); NW_PIX_CNTL(ppdev, pjMmBase, ALL_ONES); NW_ABS_CURXY_FAST(ppdev, pjMmBase, srcX, srcY); NW_ABS_DESTXY_FAST(ppdev, pjMmBase, dstX, dstY); NW_ALT_PCNT(ppdev, pjMmBase, dstWidth - 1, dstHeight - 1); NW_ALT_CMD(ppdev, pjMmBase, ulBltCmd); } } ////////////////////////////////////////////////////////////////////// // Pixel Formatter Blts // // We can do stretches or funky pixel format blts only if a pixel // formatter is present. Plus, we set our 'ddCaps' such that we // shouldn't have to handle any shrinks. // // (We check to make sure we weren't asked to do a shrink, because we // would probably hang if the application ignored what we told them // and asked for a shrink): else if ((ppdev->flCaps & CAPS_PIXEL_FORMATTER) && (srcWidth <= dstWidth) && (srcHeight <= dstHeight)) { if ((dwFlags & DDBLT_KEYSRCOVERRIDE) || (dstWidth >= 4 * srcWidth)) { // Contrary to what we're indicating in our capabilities, we // can't colour key on stretches or pixel format conversions. // The S3 hardware also can't do stretches of four times or // more. return(DDHAL_DRIVER_NOTHANDLED); } dwVEctrl = ~dstWidth & 0x00000FFF; // Initial accumulator dwVEdda = 0x10000000 // Some reserved bit? | (STRETCH | SCREEN) // Scale from video memory | (srcWidth << 16) // K1 | ((srcWidth - dstWidth) & 0x7FF); // K2 // We'll be doing the vertical stretching in software, so calculate // the DDA terms here. We have the luxury of not worrying about // overflow because DirectDraw limits our coordinate space to 15 // bits. // // Note that dwRGBBitCount is overloaded with dwYUVBitCount: dwSrcByteCount = srcSurf->ddpfSurface.dwRGBBitCount >> 3; if (srcSurf->ddpfSurface.dwFlags & DDPF_FOURCC) { dwVEctrl |= INPUT_YCrCb422 | CSCENABLE; // Not INPUT_YUV422! } else if (srcSurf->ddpfSurface.dwFlags & DDPF_RGB) { switch (dwSrcByteCount) { case 1: dwVEctrl |= INPUT_RGB8; break; case 2: if (IS_RGB15_R(srcSurf->ddpfSurface.dwRBitMask)) dwVEctrl |= INPUT_RGB15; else dwVEctrl |= INPUT_RGB16; break; default: dwVEctrl |= INPUT_RGB32; break; } } dwDstByteCount = dstSurf->ddpfSurface.dwRGBBitCount >> 3; switch (dwDstByteCount) { case 1: dwVEctrl |= OUTPUT_RGB8; break; case 2: if (IS_RGB15_R(dstSurf->ddpfSurface.dwRBitMask)) dwVEctrl |= OUTPUT_RGB15; else dwVEctrl |= OUTPUT_RGB16; break; default: dwVEctrl |=OUTPUT_RGB32; break; } if (dwDstByteCount > 1) { dwVEctrl |= FILTERENABLE; if (dstWidth > 2 * srcWidth) dwVEdda |= LINEAR12221; // linear, 1-2-2-2-1, >2X stretch else if (dstWidth > srcWidth) dwVEdda |= LINEAR02420; // linear, 0-2-4-2-0, 1-2X stretch else dwVEdda |= BILINEAR; // bi-linear, <1X stretch } dwVEsrcAddr = (DWORD)(srcSurf->fpVidMem + (srcY * srcSurf->lPitch) + (srcX * dwSrcByteCount)); dwVEdstAddr = (DWORD)(dstSurf->fpVidMem + (dstY * dstSurf->lPitch) + (dstX * dwDstByteCount)); srcPitch = srcSurf->lPitch; dstPitch = dstSurf->lPitch; // The S3's source alignment within the dword must be done using the // crop register: dwVEcrop = dstWidth; if (dwVEsrcAddr & 3) { dwSrcBytes = (srcWidth * dwSrcByteCount); // Transform the number of source pixels to the number of // corresponding destination pixels, and round the result: dwCropSkip = ((dwVEsrcAddr & 3) * dstWidth + (dwSrcBytes >> 1)) / dwSrcBytes; dwVEcrop += (dwCropSkip << 16); dwVEsrcAddr &= ~3; } // We have to run the vertical DDA ourselves: dwError = srcHeight >> 1; i = dstHeight; // Watch out for a hardware bug the destination will be 32 pixels // or less: // // We'll use 40 as our minimum width to guarantee we shouldn't // crash. if (dstWidth >= 40) { // The S3 will sometimes hang when using the video engine with // certain end-byte alignments. We'll simply lengthen the blt in // this case and hope that no-one notices: if (((dwVEdstAddr + (dstWidth * dwDstByteCount)) & 7) == 4) { dwVEcrop++; } // We have to execute a graphics engine NOP before using the // pixel formatter video engine: NW_FIFO_WAIT(ppdev, pjMmBase, 1); NW_ALT_CMD(ppdev, pjMmBase, 0); NW_GP_WAIT(ppdev, pjMmBase); // Set up some non-variant registers: NW_FIFO_WAIT(ppdev, pjMmBase, 4); WRITE_FORMATTER_D(pjMmBase, PF_CONTROL, dwVEctrl); WRITE_FORMATTER_D(pjMmBase, PF_DDA, dwVEdda); WRITE_FORMATTER_D(pjMmBase, PF_STEP, ppdev->dwVEstep); WRITE_FORMATTER_D(pjMmBase, PF_CROP, dwVEcrop); do { NW_FIFO_WAIT(ppdev, pjMmBase, 3); WRITE_FORMATTER_D(pjMmBase, PF_SRCADDR, dwVEsrcAddr); WRITE_FORMATTER_D(pjMmBase, PF_DSTADDR, dwVEdstAddr); WRITE_FORMATTER_D(pjMmBase, PF_NOP, 0); NW_FORMATTER_WAIT(ppdev, pjMmBase); dwVEdstAddr += dstPitch; dwError += srcHeight; if (dwError >= dstHeight) { dwError -= dstHeight; dwVEsrcAddr += srcPitch; } } while (--i != 0); } else if (dwDstByteCount != (DWORD) ppdev->cjPelSize) { // Because for narrow video engine blts we have to copy the // result using the normal graphics accelerator on a pixel // basis, we can't handle funky destination colour depths. // I expect zero applications to ask for narrow blts that // hit this case, so we will simply fail the call should it // ever actually occur: return(DDHAL_DRIVER_NOTHANDLED); } else { // The S3 will hang if we blt less than 32 pixels via the // pixel formatter. Unfortunately, we can't simply return // DDHAL_DRIVER_NOTHANDLED for this case. We said we'd do // hardware stretches, so we have to handle all hardware // stretches. // // We work around the problem by doing a 32 pixel stretch to // a piece of off-screen memory, then blting the appropriate // subset to the correct position on the screen. // // 32 isn't big enough. We still hang. Lets make it 40. dwVEcrop = 32 + 8; convertToGlobalCord(dstX, dstY, dstSurf); srcX = ppdev->pdsurfVideoEngineScratch->x; srcY = ppdev->pdsurfVideoEngineScratch->y; dwVEdstAddr = (srcY * ppdev->lDelta) + (srcX * ppdev->cjPelSize); ASSERTDD(((dwVEdstAddr + (dwVEcrop * dwDstByteCount)) & 7) != 4, "Must account for S3 end-alignment bug"); do { // Use the pixel formatter to blt to our scratch area: NW_FIFO_WAIT(ppdev, pjMmBase, 1); NW_ALT_CMD(ppdev, pjMmBase, 0); NW_GP_WAIT(ppdev, pjMmBase); NW_FIFO_WAIT(ppdev, pjMmBase, 7); WRITE_FORMATTER_D(pjMmBase, PF_CONTROL, dwVEctrl); WRITE_FORMATTER_D(pjMmBase, PF_DDA, dwVEdda); WRITE_FORMATTER_D(pjMmBase, PF_STEP, ppdev->dwVEstep); WRITE_FORMATTER_D(pjMmBase, PF_CROP, dwVEcrop); WRITE_FORMATTER_D(pjMmBase, PF_SRCADDR, dwVEsrcAddr); WRITE_FORMATTER_D(pjMmBase, PF_DSTADDR, dwVEdstAddr); WRITE_FORMATTER_D(pjMmBase, PF_NOP, 0); NW_FORMATTER_WAIT(ppdev, pjMmBase); dwError += srcHeight; if (dwError >= dstHeight) { dwError -= dstHeight; dwVEsrcAddr += srcPitch; } // Now copy from the scratch area to the final destination: NW_FIFO_WAIT(ppdev, pjMmBase, 6); NW_ALT_MIX(ppdev, pjMmBase, SRC_DISPLAY_MEMORY | OVERPAINT, 0); NW_PIX_CNTL(ppdev, pjMmBase, ALL_ONES); NW_ABS_CURXY_FAST(ppdev, pjMmBase, srcX, srcY); NW_ABS_DESTXY_FAST(ppdev, pjMmBase, dstX, dstY); NW_ALT_PCNT(ppdev, pjMmBase, dstWidth - 1, 0); NW_ALT_CMD(ppdev, pjMmBase, BITBLT | DRAW | DIR_TYPE_XY | WRITE | DRAWING_DIR_TBLRXM); dstY++; } while (--i != 0); } } else { ////////////////////////////////////////////////////////////////////// // Overlay Blts // // Here we have to take care of cases where the destination is a // funky pixel format. // In order to make ActiveMovie and DirectVideo work, we have // to support blting between funky pixel format surfaces of the // same type. This is used to copy the current frame to the // next overlay surface in line. // // Unfortunately, it's not easy to switch the S3 graphics // processor out of its current pixel depth, so we'll only support // the minimal functionality required: if (!(dwFlags & DDBLT_ROP) || (srcX != 0) || (srcY != 0) || (dstX != 0) || (dstY != 0) || (dstWidth != dstSurf->wWidth) || (dstHeight != dstSurf->wHeight) || (dstSurf->lPitch != srcSurf->lPitch) || (dstSurf->ddpfSurface.dwRGBBitCount != srcSurf->ddpfSurface.dwRGBBitCount)) { DISPDBG((0, "Sorry, we do only full-surface blts between same-type")); DISPDBG((0, "surfaces that have a funky pixel format.")); return(DDHAL_DRIVER_NOTHANDLED); } else { // Convert the dimensions to the current pixel format. This // is pretty easy because we created the bitmap linearly, so // it takes the entire width of the screen: dstWidth = ppdev->cxMemory; dstHeight = dstSurf->dwBlockSizeY; convertToGlobalCord(dstX, dstY, dstSurf); convertToGlobalCord(srcX, srcY, srcSurf); NW_FIFO_WAIT(ppdev, pjMmBase, 6); NW_ALT_MIX(ppdev, pjMmBase, SRC_DISPLAY_MEMORY | OVERPAINT, 0); NW_PIX_CNTL(ppdev, pjMmBase, ALL_ONES); NW_ABS_CURXY_FAST(ppdev, pjMmBase, srcX, srcY); NW_ABS_DESTXY_FAST(ppdev, pjMmBase, dstX, dstY); NW_ALT_PCNT(ppdev, pjMmBase, dstWidth - 1, dstHeight - 1); NW_ALT_CMD(ppdev, pjMmBase, BITBLT | DRAW | DIR_TYPE_XY | WRITE | DRAWING_DIR_TBLRXM); } } lpBlt->ddRVal = DD_OK; return(DDHAL_DRIVER_HANDLED); } /******************************Public*Routine******************************\ * DWORD DdFlip * * Note that lpSurfCurr may not necessarily be valid. * \**************************************************************************/ DWORD DdFlip( PDD_FLIPDATA lpFlip) { PDEV* ppdev; BYTE* pjIoBase; BYTE* pjMmBase; HRESULT ddrval; ULONG ulMemoryOffset; ULONG ulLowOffset; ULONG ulMiddleOffset; ULONG ulHighOffset; ppdev = (PDEV*) lpFlip->lpDD->dhpdev; pjIoBase = ppdev->pjIoBase; pjMmBase = ppdev->pjMmBase; // Is the current flip still in progress? // // Don't want a flip to work until after the last flip is done, // so we ask for the general flip status and ignore the vmem. ddrval = ddrvalUpdateFlipStatus(ppdev, (FLATPTR) -1); if ((ddrval != DD_OK) || (NW_GP_BUSY(ppdev, pjMmBase))) { lpFlip->ddRVal = DDERR_WASSTILLDRAWING; return(DDHAL_DRIVER_HANDLED); } ulMemoryOffset = (ULONG)(lpFlip->lpSurfTarg->lpGbl->fpVidMem); // Make sure that the border/blanking period isn't active; wait if // it is. We could return DDERR_WASSTILLDRAWING in this case, but // that will increase the odds that we can't flip the next time: while (!(DISPLAY_IS_ACTIVE(pjIoBase))) ; if (ppdev->flStatus & STAT_STREAMS_ENABLED) { // When using the streams processor, we have to do the flip via the // streams registers: if (lpFlip->lpSurfCurr->ddsCaps.dwCaps & DDSCAPS_PRIMARYSURFACE) { WRITE_STREAM_D(pjMmBase, P_0, ulMemoryOffset); } else if (lpFlip->lpSurfCurr->ddsCaps.dwCaps & DDSCAPS_OVERLAY) { // Make sure that the overlay surface we're flipping from is // currently visible. If you don't do this check, you'll get // really weird results when someone starts up two ActiveMovie // or DirectVideo movies simultaneously! if (lpFlip->lpSurfCurr->lpGbl->fpVidMem == ppdev->fpVisibleOverlay) { ppdev->fpVisibleOverlay = ulMemoryOffset; WRITE_STREAM_D(pjMmBase, S_0, ulMemoryOffset + ppdev->dwOverlayFlipOffset); } } } else { // Do the old way, via the CRTC registers: ulMemoryOffset >>= 2; ulLowOffset = 0x0d | ((ulMemoryOffset & 0x0000ff) << 8); ulMiddleOffset = 0x0c | ((ulMemoryOffset & 0x00ff00)); ulHighOffset = 0x69 | ((ulMemoryOffset & 0x1f0000) >> 8) | ppdev->ulExtendedSystemControl3Register_69; // Don't let the cursor thread touch the CRT registers while we're // using them: ACQUIRE_CRTC_CRITICAL_SECTION(ppdev); // Too bad that the S3's flip can't be done in a single atomic register // write; as it is, we stand a small chance of being context-switched // out and exactly hitting the vertical blank in the middle of doing // these outs, possibly causing the screen to momentarily jump. // // There are some hoops we could jump through to minimize the chances // of this happening; we could try to align the flip buffer such that // the minor registers are ensured to be identical for either flip // position, and so that only the high address need be written, an // obviously atomic operation. // // However, I'm simply not going to worry about it. OUTPW(pjIoBase, CRTC_INDEX, ulLowOffset); OUTPW(pjIoBase, CRTC_INDEX, ulMiddleOffset); OUTPW(pjIoBase, CRTC_INDEX, ulHighOffset); RELEASE_CRTC_CRITICAL_SECTION(ppdev); } // Remember where and when we were when we did the flip: EngQueryPerformanceCounter(&ppdev->flipRecord.liFlipTime); ppdev->flipRecord.bFlipFlag = TRUE; ppdev->flipRecord.bHaveEverCrossedVBlank = FALSE; ppdev->flipRecord.bWasEverInDisplay = FALSE; ppdev->flipRecord.fpFlipFrom = lpFlip->lpSurfCurr->lpGbl->fpVidMem; lpFlip->ddRVal = DD_OK; return(DDHAL_DRIVER_HANDLED); } /******************************Public*Routine******************************\ * DWORD DdLock * \**************************************************************************/ DWORD DdLock( PDD_LOCKDATA lpLock) { PDEV* ppdev; BYTE* pjMmBase; HRESULT ddrval; ppdev = (PDEV*) lpLock->lpDD->dhpdev; pjMmBase = ppdev->pjMmBase; // Check to see if any pending physical flip has occurred. Don't allow // a lock if a blt is in progress: ddrval = ddrvalUpdateFlipStatus(ppdev, lpLock->lpDDSurface->lpGbl->fpVidMem); if (ddrval != DD_OK) { lpLock->ddRVal = DDERR_WASSTILLDRAWING; return(DDHAL_DRIVER_HANDLED); } // Here's one of the places where the Windows 95 and Windows NT DirectDraw // implementations differ: on Windows NT, you should watch for // DDLOCK_WAIT and loop in the driver while the accelerator is busy. // On Windows 95, it doesn't really matter. // // (The reason is that Windows NT allows applications to draw directly // to the frame buffer even while the accelerator is running, and does // not synchronize everything on the Win16Lock. Note that on Windows NT, // it is even possible for multiple threads to be holding different // DirectDraw surface locks at the same time.) if (lpLock->dwFlags & DDLOCK_WAIT) { NW_GP_WAIT(ppdev, pjMmBase); } else if (NW_GP_BUSY(ppdev, pjMmBase)) { lpLock->ddRVal = DDERR_WASSTILLDRAWING; return(DDHAL_DRIVER_HANDLED); } return(DDHAL_DRIVER_NOTHANDLED); } /******************************Public*Routine******************************\ * DWORD DdGetBltStatus * * Doesn't currently really care what surface is specified, just checks * and goes. * \**************************************************************************/ DWORD DdGetBltStatus( PDD_GETBLTSTATUSDATA lpGetBltStatus) { PDEV* ppdev; BYTE* pjMmBase; HRESULT ddRVal; ppdev = (PDEV*) lpGetBltStatus->lpDD->dhpdev; pjMmBase = ppdev->pjMmBase; ddRVal = DD_OK; if (lpGetBltStatus->dwFlags == DDGBS_CANBLT) { // DDGBS_CANBLT case: can we add a blt? ddRVal = ddrvalUpdateFlipStatus(ppdev, lpGetBltStatus->lpDDSurface->lpGbl->fpVidMem); if (ddRVal == DD_OK) { // There was no flip going on, so is there room in the FIFO // to add a blt? if (MM_FIFO_BUSY(ppdev, pjMmBase, DDBLT_FIFO_COUNT)) { ddRVal = DDERR_WASSTILLDRAWING; } } } else { // DDGBS_ISBLTDONE case: is a blt in progress? if (NW_GP_BUSY(ppdev, pjMmBase)) { ddRVal = DDERR_WASSTILLDRAWING; } } lpGetBltStatus->ddRVal = ddRVal; return(DDHAL_DRIVER_HANDLED); } /******************************Public*Routine******************************\ * DWORD DdMapMemory * * This is a new DDI call specific to Windows NT that is used to map * or unmap all the application modifiable portions of the frame buffer * into the specified process's address space. * \**************************************************************************/ DWORD DdMapMemory( PDD_MAPMEMORYDATA lpMapMemory) { PDEV* ppdev; VIDEO_SHARE_MEMORY ShareMemory; VIDEO_SHARE_MEMORY_INFORMATION ShareMemoryInformation; DWORD ReturnedDataLength; ppdev = (PDEV*) lpMapMemory->lpDD->dhpdev; if (lpMapMemory->bMap) { ShareMemory.ProcessHandle = lpMapMemory->hProcess; // 'RequestedVirtualAddress' isn't actually used for the SHARE IOCTL: ShareMemory.RequestedVirtualAddress = 0; // We map in starting at the top of the frame buffer: ShareMemory.ViewOffset = 0; // We map down to the end of the frame buffer. // // Note: There is a 64k granularity on the mapping (meaning that // we have to round up to 64k). // // Note: If there is any portion of the frame buffer that must // not be modified by an application, that portion of memory // MUST NOT be mapped in by this call. This would include // any data that, if modified by a malicious application, // would cause the driver to crash. This could include, for // example, any DSP code that is kept in off-screen memory. ShareMemory.ViewSize = ROUND_UP_TO_64K(ppdev->cyMemory * ppdev->lDelta); if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_SHARE_VIDEO_MEMORY, &ShareMemory, sizeof(VIDEO_SHARE_MEMORY), &ShareMemoryInformation, sizeof(VIDEO_SHARE_MEMORY_INFORMATION), &ReturnedDataLength)) { DISPDBG((0, "Failed IOCTL_VIDEO_SHARE_MEMORY")); lpMapMemory->ddRVal = DDERR_GENERIC; return(DDHAL_DRIVER_HANDLED); } lpMapMemory->fpProcess = (FLATPTR)ShareMemoryInformation.VirtualAddress; } else { ShareMemory.ProcessHandle = lpMapMemory->hProcess; ShareMemory.ViewOffset = 0; ShareMemory.ViewSize = 0; ShareMemory.RequestedVirtualAddress = (VOID*) lpMapMemory->fpProcess; if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_UNSHARE_VIDEO_MEMORY, &ShareMemory, sizeof(VIDEO_SHARE_MEMORY), NULL, 0, &ReturnedDataLength)) { RIP("Failed IOCTL_VIDEO_UNSHARE_MEMORY"); } } lpMapMemory->ddRVal = DD_OK; return(DDHAL_DRIVER_HANDLED); } /******************************Public*Routine******************************\ * DWORD DdGetFlipStatus * * If the display has gone through one refresh cycle since the flip * occurred, we return DD_OK. If it has not gone through one refresh * cycle we return DDERR_WASSTILLDRAWING to indicate that this surface * is still busy "drawing" the flipped page. We also return * DDERR_WASSTILLDRAWING if the bltter is busy and the caller wanted * to know if they could flip yet. * \**************************************************************************/ DWORD DdGetFlipStatus( PDD_GETFLIPSTATUSDATA lpGetFlipStatus) { PDEV* ppdev; BYTE* pjMmBase; ppdev = (PDEV*) lpGetFlipStatus->lpDD->dhpdev; pjMmBase = ppdev->pjMmBase; // We don't want a flip to work until after the last flip is done, // so we ask for the general flip status and ignore the vmem: lpGetFlipStatus->ddRVal = ddrvalUpdateFlipStatus(ppdev, (FLATPTR) -1); // Check if the bltter is busy if someone wants to know if they can // flip: if (lpGetFlipStatus->dwFlags == DDGFS_CANFLIP) { if ((lpGetFlipStatus->ddRVal == DD_OK) && (NW_GP_BUSY(ppdev, pjMmBase))) { lpGetFlipStatus->ddRVal = DDERR_WASSTILLDRAWING; } } return(DDHAL_DRIVER_HANDLED); } /******************************Public*Routine******************************\ * DWORD DdWaitForVerticalBlank * \**************************************************************************/ DWORD DdWaitForVerticalBlank( PDD_WAITFORVERTICALBLANKDATA lpWaitForVerticalBlank) { PDEV* ppdev; BYTE* pjIoBase; ppdev = (PDEV*) lpWaitForVerticalBlank->lpDD->dhpdev; pjIoBase = ppdev->pjIoBase; switch (lpWaitForVerticalBlank->dwFlags) { case DDWAITVB_I_TESTVB: // If TESTVB, it's just a request for the current vertical blank // status: if (VBLANK_IS_ACTIVE(pjIoBase)) lpWaitForVerticalBlank->bIsInVB = TRUE; else lpWaitForVerticalBlank->bIsInVB = FALSE; lpWaitForVerticalBlank->ddRVal = DD_OK; return(DDHAL_DRIVER_HANDLED); case DDWAITVB_BLOCKBEGIN: // If BLOCKBEGIN is requested, we wait until the vertical blank // is over, and then wait for the display period to end: while (VBLANK_IS_ACTIVE(pjIoBase)) ; while (!(VBLANK_IS_ACTIVE(pjIoBase))) ; lpWaitForVerticalBlank->ddRVal = DD_OK; return(DDHAL_DRIVER_HANDLED); case DDWAITVB_BLOCKEND: // If BLOCKEND is requested, we wait for the vblank interval to end: while (!(VBLANK_IS_ACTIVE(pjIoBase))) ; while (VBLANK_IS_ACTIVE(pjIoBase)) ; lpWaitForVerticalBlank->ddRVal = DD_OK; return(DDHAL_DRIVER_HANDLED); } return(DDHAL_DRIVER_NOTHANDLED); } /******************************Public*Routine******************************\ * DWORD DdCanCreateSurface * \**************************************************************************/ DWORD DdCanCreateSurface( PDD_CANCREATESURFACEDATA lpCanCreateSurface) { PDEV* ppdev; DWORD dwRet; LPDDSURFACEDESC lpSurfaceDesc; ppdev = (PDEV*) lpCanCreateSurface->lpDD->dhpdev; lpSurfaceDesc = lpCanCreateSurface->lpDDSurfaceDesc; dwRet = DDHAL_DRIVER_NOTHANDLED; if (!lpCanCreateSurface->bIsDifferentPixelFormat) { // It's trivially easy to create plain surfaces that are the same // type as the primary surface: dwRet = DDHAL_DRIVER_HANDLED; } // If the streams processor is capable, we can handle overlays: else if (ppdev->flCaps & CAPS_STREAMS_CAPABLE) { // When using the Streams processor, we handle only overlays of // different pixel formats -- not any off-screen memory: if (lpSurfaceDesc->ddsCaps.dwCaps & DDSCAPS_OVERLAY) { // We handle two types of YUV overlay surfaces: if (lpSurfaceDesc->ddpfPixelFormat.dwFlags & DDPF_FOURCC) { // Check first for a supported YUV type: if (lpSurfaceDesc->ddpfPixelFormat.dwFourCC == FOURCC_YUY2) { lpSurfaceDesc->ddpfPixelFormat.dwYUVBitCount = 16; dwRet = DDHAL_DRIVER_HANDLED; } } // We handle 16bpp and 32bpp RGB overlay surfaces: else if ((lpSurfaceDesc->ddpfPixelFormat.dwFlags & DDPF_RGB) && !(lpSurfaceDesc->ddpfPixelFormat.dwFlags & DDPF_PALETTEINDEXED8)) { if (lpSurfaceDesc->ddpfPixelFormat.dwRGBBitCount == 16) { if (IS_RGB15(&lpSurfaceDesc->ddpfPixelFormat) || IS_RGB16(&lpSurfaceDesc->ddpfPixelFormat)) { dwRet = DDHAL_DRIVER_HANDLED; } } // We don't handle 24bpp overlay surfaces because they are // undocumented and don't seem to work on the Trio64V+. // // We don't handle 32bpp overlay surfaces because our streams // minimum-stretch-ratio tables were obviously created for // 16bpp overlay surfaces; 32bpp overlay surfaces create a lot // of noise when close to the minimum stretch ratio. } } } // If the pixel formatter is enabled, we can handle funky format off- // screen surfaces, but not at 8bpp because of palette issues: else if ((ppdev->flCaps & CAPS_PIXEL_FORMATTER) && (ppdev->iBitmapFormat > BMF_8BPP)) { if (lpSurfaceDesc->ddpfPixelFormat.dwFlags & DDPF_FOURCC) { if (lpSurfaceDesc->ddpfPixelFormat.dwFourCC == FOURCC_YUY2) { lpSurfaceDesc->ddpfPixelFormat.dwYUVBitCount = 16; dwRet = DDHAL_DRIVER_HANDLED; } } // We handle 16bpp and 32bpp RGB off-screen surfaces: else if ((lpSurfaceDesc->ddpfPixelFormat.dwFlags & DDPF_RGB) && !(lpSurfaceDesc->ddpfPixelFormat.dwFlags & DDPF_PALETTEINDEXED8)) { if (lpSurfaceDesc->ddpfPixelFormat.dwRGBBitCount == 16) { if (IS_RGB15(&lpSurfaceDesc->ddpfPixelFormat) || IS_RGB16(&lpSurfaceDesc->ddpfPixelFormat)) { dwRet = DDHAL_DRIVER_HANDLED; } } else if (lpSurfaceDesc->ddpfPixelFormat.dwRGBBitCount == 32) { if (IS_RGB32(&lpSurfaceDesc->ddpfPixelFormat)) { dwRet = DDHAL_DRIVER_HANDLED; } } } } // Print some spew if this was a surface we refused to create: if (dwRet == DDHAL_DRIVER_NOTHANDLED) { if (lpSurfaceDesc->ddpfPixelFormat.dwFlags & DDPF_RGB) { DISPDBG((0, "Failed creation of %libpp RGB surface %lx %lx %lx", lpSurfaceDesc->ddpfPixelFormat.dwRGBBitCount, lpSurfaceDesc->ddpfPixelFormat.dwRBitMask, lpSurfaceDesc->ddpfPixelFormat.dwGBitMask, lpSurfaceDesc->ddpfPixelFormat.dwBBitMask)); } else { DISPDBG((0, "Failed creation of type 0x%lx YUV 0x%lx surface", lpSurfaceDesc->ddpfPixelFormat.dwFlags, lpSurfaceDesc->ddpfPixelFormat.dwFourCC)); } } lpCanCreateSurface->ddRVal = DD_OK; return(dwRet); } /******************************Public*Routine******************************\ * DWORD DdCreateSurface * \**************************************************************************/ DWORD DdCreateSurface( PDD_CREATESURFACEDATA lpCreateSurface) { PDEV* ppdev; DD_SURFACE_LOCAL* lpSurfaceLocal; DD_SURFACE_GLOBAL* lpSurfaceGlobal; LPDDSURFACEDESC lpSurfaceDesc; DWORD dwByteCount; LONG lLinearPitch; DWORD dwHeight; ppdev = (PDEV*) lpCreateSurface->lpDD->dhpdev; // On Windows NT, dwSCnt will always be 1, so there will only ever // be one entry in the 'lplpSList' array: lpSurfaceLocal = lpCreateSurface->lplpSList[0]; lpSurfaceGlobal = lpSurfaceLocal->lpGbl; lpSurfaceDesc = lpCreateSurface->lpDDSurfaceDesc; // We repeat the same checks we did in 'DdCanCreateSurface' because // it's possible that an application doesn't call 'DdCanCreateSurface' // before calling 'DdCreateSurface'. ASSERTDD(lpSurfaceGlobal->ddpfSurface.dwSize == sizeof(DDPIXELFORMAT), "NT is supposed to guarantee that ddpfSurface.dwSize is valid"); // DdCanCreateSurface already validated whether the hardware supports // the surface, so we don't need to do any validation here. We'll // just go ahead and allocate it. // // Note that we don't do anything special for RGB surfaces that are // the same pixel format as the display -- by returning DDHAL_DRIVER_ // NOTHANDLED, DirectDraw will automatically handle the allocation // for us. // // Also, since we'll be making linear surfaces, make sure the width // isn't unreasonably large. // // Note that on NT, an overlay can be created only if the driver // okay's it here in this routine. Under Win95, the overlay will be // created automatically if it's the same pixel format as the primary // display. if ((lpSurfaceLocal->ddsCaps.dwCaps & DDSCAPS_OVERLAY) || (lpSurfaceGlobal->ddpfSurface.dwFlags & DDPF_FOURCC) || (lpSurfaceGlobal->ddpfSurface.dwYUVBitCount != (DWORD) 8 * ppdev->cjPelSize) || (lpSurfaceGlobal->ddpfSurface.dwRBitMask != ppdev->flRed)) { if (lpSurfaceGlobal->wWidth <= (DWORD) ppdev->cxMemory) { // The S3 cannot easily draw to YUV surfaces or surfaces that are // a different RGB format than the display. So we'll make them // linear surfaces to save some space: if (lpSurfaceGlobal->ddpfSurface.dwFlags & DDPF_FOURCC) { ASSERTDD((lpSurfaceGlobal->ddpfSurface.dwFourCC == FOURCC_YUY2), "Expected our DdCanCreateSurface to allow only YUY2 or Y211"); dwByteCount = (lpSurfaceGlobal->ddpfSurface.dwFourCC == FOURCC_YUY2) ? 2 : 1; // We have to fill in the bit-count for FourCC surfaces: lpSurfaceGlobal->ddpfSurface.dwYUVBitCount = 8 * dwByteCount; DISPDBG((0, "Created YUV: %li x %li", lpSurfaceGlobal->wWidth, lpSurfaceGlobal->wHeight)); } else { dwByteCount = lpSurfaceGlobal->ddpfSurface.dwRGBBitCount >> 3; DISPDBG((0, "Created RGB %libpp: %li x %li Red: %lx", 8 * dwByteCount, lpSurfaceGlobal->wWidth, lpSurfaceGlobal->wHeight, lpSurfaceGlobal->ddpfSurface.dwRBitMask)); // The S3 can't handle palettized or 32bpp overlays. Note that // we sometimes don't get a chance to say no to these surfaces // in CanCreateSurface, because DirectDraw won't call // CanCreateSurface if the surface to be created is the same // pixel format as the primary display: if ((dwByteCount != 2) && (lpSurfaceLocal->ddsCaps.dwCaps & DDSCAPS_OVERLAY)) { lpCreateSurface->ddRVal = DDERR_INVALIDPIXELFORMAT; return(DDHAL_DRIVER_HANDLED); } } // We want to allocate a linear surface to store the FourCC // surface, but DirectDraw is using a 2-D heap-manager because // the rest of our surfaces have to be 2-D. So here we have to // convert the linear size to a 2-D size. // // The stride has to be a dword multiple: lLinearPitch = (lpSurfaceGlobal->wWidth * dwByteCount + 3) & ~3; dwHeight = (lpSurfaceGlobal->wHeight * lLinearPitch + ppdev->lDelta - 1) / ppdev->lDelta; // Now fill in enough stuff to have the DirectDraw heap-manager // do the allocation for us: lpSurfaceGlobal->fpVidMem = DDHAL_PLEASEALLOC_BLOCKSIZE; lpSurfaceGlobal->dwBlockSizeX = ppdev->lDelta; // Specified in bytes lpSurfaceGlobal->dwBlockSizeY = dwHeight; lpSurfaceGlobal->lPitch = lLinearPitch; lpSurfaceGlobal->dwReserved1 = DD_RESERVED_DIFFERENTPIXELFORMAT; lpSurfaceDesc->lPitch = lLinearPitch; lpSurfaceDesc->dwFlags |= DDSD_PITCH; } else { DISPDBG((0, "Refused to create surface with large width")); } } return(DDHAL_DRIVER_NOTHANDLED); } /******************************Public*Routine******************************\ * DWORD DdFreeDriverMemory * * This function called by DirectDraw when it's running low on memory in * our heap. You only need to implement this function if you use the * DirectDraw 'HeapVidMemAllocAligned' function in your driver, and you * can boot those allocations out of memory to make room for DirectDraw. * * We implement this function in the S3 driver because we have DirectDraw * entirely manage our off-screen heap, and we use HeapVidMemAllocAligned * to put GDI device-bitmaps in off-screen memory. DirectDraw applications * have a higher priority for getting stuff into video memory, though, and * so this function is used to boot those GDI surfaces out of memory in * order to make room for DirectDraw. * \**************************************************************************/ DWORD DdFreeDriverMemory( PDD_FREEDRIVERMEMORYDATA lpFreeDriverMemory) { PDEV* ppdev; ppdev = (PDEV*) lpFreeDriverMemory->lpDD->dhpdev; lpFreeDriverMemory->ddRVal = DDERR_OUTOFMEMORY; // If we successfully freed up some memory, set the return value to // 'DD_OK'. DirectDraw will try again to do its allocation, and // will call us again if there's still not enough room. (It will // call us until either there's enough room for its alocation to // succeed, or until we return something other than DD_OK.) if (bMoveOldestOffscreenDfbToDib(ppdev)) { lpFreeDriverMemory->ddRVal = DD_OK; } return(DDHAL_DRIVER_HANDLED); } /******************************Public*Routine******************************\ * DWORD DdSetColorKey * \**************************************************************************/ DWORD DdSetColorKey( PDD_SETCOLORKEYDATA lpSetColorKey) { PDEV* ppdev; BYTE* pjIoBase; BYTE* pjMmBase; DD_SURFACE_GLOBAL* lpSurface; DWORD dwKeyLow; DWORD dwKeyHigh; ppdev = (PDEV*) lpSetColorKey->lpDD->dhpdev; ASSERTDD(ppdev->flCaps & CAPS_STREAMS_CAPABLE, "Shouldn't have hooked call"); pjIoBase = ppdev->pjIoBase; pjMmBase = ppdev->pjMmBase; lpSurface = lpSetColorKey->lpDDSurface->lpGbl; // We don't have to do anything for normal blt source colour keys: if (lpSetColorKey->dwFlags & DDCKEY_SRCBLT) { lpSetColorKey->ddRVal = DD_OK; return(DDHAL_DRIVER_HANDLED); } else if (lpSetColorKey->dwFlags & DDCKEY_DESTOVERLAY) { dwKeyLow = lpSetColorKey->ckNew.dwColorSpaceLowValue; if (lpSurface->ddpfSurface.dwFlags & DDPF_PALETTEINDEXED8) { dwKeyLow = dwGetPaletteEntry(ppdev, dwKeyLow); } else { ASSERTDD(lpSurface->ddpfSurface.dwFlags & DDPF_RGB, "Expected only RGB cases here"); // We have to transform the colour key from its native format // to 8-8-8: if (lpSurface->ddpfSurface.dwRGBBitCount == 16) { if (IS_RGB15_R(lpSurface->ddpfSurface.dwRBitMask)) dwKeyLow = RGB15to32(dwKeyLow); else dwKeyLow = RGB16to32(dwKeyLow); } else { ASSERTDD((lpSurface->ddpfSurface.dwRGBBitCount == 32), "Expected the primary surface to be either 8, 16, or 32bpp"); } } dwKeyHigh = dwKeyLow; dwKeyLow |= CompareBits0t7 | KeyFromCompare; // Check for stream processor enabled before setting registers if(ppdev->flStatus & STAT_STREAMS_ENABLED) { WAIT_FOR_VBLANK(pjIoBase); WRITE_STREAM_D(pjMmBase, CKEY_LOW, dwKeyLow); WRITE_STREAM_D(pjMmBase, CKEY_HI, dwKeyHigh); } else { // Save away the color key to be set when streams // processor is turned on. ppdev->ulColorKey = dwKeyHigh; } lpSetColorKey->ddRVal = DD_OK; return(DDHAL_DRIVER_HANDLED); } DISPDBG((0, "DdSetColorKey: Invalid command")); return(DDHAL_DRIVER_NOTHANDLED); } /******************************Public*Routine******************************\ * DWORD DdUpdateOverlay * \**************************************************************************/ DWORD DdUpdateOverlay( PDD_UPDATEOVERLAYDATA lpUpdateOverlay) { PDEV* ppdev; BYTE* pjIoBase; BYTE* pjMmBase; DD_SURFACE_GLOBAL* lpSource; DD_SURFACE_GLOBAL* lpDestination; DWORD dwStride; LONG srcWidth; LONG srcHeight; LONG dstWidth; LONG dstHeight; DWORD dwBitCount; DWORD dwStart; DWORD dwTmp; BOOL bColorKey; DWORD dwKeyLow; DWORD dwKeyHigh; DWORD dwBytesPerPixel; DWORD dwSecCtrl; DWORD dwBlendCtrl; ppdev = (PDEV*) lpUpdateOverlay->lpDD->dhpdev; ASSERTDD(ppdev->flCaps & CAPS_STREAMS_CAPABLE, "Shouldn't have hooked call"); pjIoBase = ppdev->pjIoBase; pjMmBase = ppdev->pjMmBase; // 'Source' is the overlay surface, 'destination' is the surface to // be overlayed: lpSource = lpUpdateOverlay->lpDDSrcSurface->lpGbl; if (lpUpdateOverlay->dwFlags & DDOVER_HIDE) { if (lpSource->fpVidMem == ppdev->fpVisibleOverlay) { WAIT_FOR_VBLANK(pjIoBase); WRITE_STREAM_D(pjMmBase, BLEND_CONTROL, POnS); WRITE_STREAM_D(pjMmBase, S_WH, WH(10, 2)); // Set to 10x2 rectangle WRITE_STREAM_D(pjMmBase, OPAQUE_CONTROL, 0);// Disable opaque control ppdev->fpVisibleOverlay = 0; ASSERTDD(ppdev->flStatus & STAT_STREAMS_ENABLED, "Expected streams to be enabled"); ppdev->flStatus &= ~STAT_STREAMS_ENABLED; vTurnOffStreamsProcessorMode(ppdev); } lpUpdateOverlay->ddRVal = DD_OK; return(DDHAL_DRIVER_HANDLED); } // Dereference 'lpDDDestSurface' only after checking for the DDOVER_HIDE // case: lpDestination = lpUpdateOverlay->lpDDDestSurface->lpGbl; if (lpSource->fpVidMem != ppdev->fpVisibleOverlay) { if (lpUpdateOverlay->dwFlags & DDOVER_SHOW) { if (ppdev->fpVisibleOverlay != 0) { // Some other overlay is already visible: DISPDBG((0, "DdUpdateOverlay: An overlay is already visible")); lpUpdateOverlay->ddRVal = DDERR_OUTOFCAPS; return(DDHAL_DRIVER_HANDLED); } else { // We're going to make the overlay visible, so mark it as // such: ppdev->fpVisibleOverlay = lpSource->fpVidMem; } } else { // The overlay isn't visible, and we haven't been asked to make // it visible, so this call is trivially easy: lpUpdateOverlay->ddRVal = DD_OK; return(DDHAL_DRIVER_HANDLED); } } if (!(ppdev->flStatus & STAT_STREAMS_ENABLED)) { ppdev->flStatus |= STAT_STREAMS_ENABLED; vTurnOnStreamsProcessorMode(ppdev); } dwStride = lpSource->lPitch; srcWidth = lpUpdateOverlay->rSrc.right - lpUpdateOverlay->rSrc.left; srcHeight = lpUpdateOverlay->rSrc.bottom - lpUpdateOverlay->rSrc.top; dstWidth = lpUpdateOverlay->rDest.right - lpUpdateOverlay->rDest.left; dstHeight = lpUpdateOverlay->rDest.bottom - lpUpdateOverlay->rDest.top; // Calculate DDA horizonal accumulator initial value: dwSecCtrl = HDDA(srcWidth, dstWidth); // Overlay input data format: if (lpSource->ddpfSurface.dwFlags & DDPF_FOURCC) { dwBitCount = lpSource->ddpfSurface.dwYUVBitCount; switch (lpSource->ddpfSurface.dwFourCC) { case FOURCC_YUY2: dwSecCtrl |= S_YCrCb422; // Not S_YUV422! Dunno why... break; default: RIP("Unexpected FourCC"); } } else { ASSERTDD(lpSource->ddpfSurface.dwFlags & DDPF_RGB, "Expected us to have created only RGB or YUV overlays"); // The overlay surface is in RGB format: dwBitCount = lpSource->ddpfSurface.dwRGBBitCount; ASSERTDD(dwBitCount == 16, "Expected us to have created 16bpp RGB surfaces only"); if (IS_RGB15_R(lpSource->ddpfSurface.dwRBitMask)) dwSecCtrl |= S_RGB15; else dwSecCtrl |= S_RGB16; } // Calculate start of video memory in QWORD boundary dwBytesPerPixel = dwBitCount >> 3; dwStart = (lpUpdateOverlay->rSrc.top * dwStride) + (lpUpdateOverlay->rSrc.left * dwBytesPerPixel); // Note that since we're shifting the source's edge to the left, we // should really increase the source width to compensate. However, // doing so when running at 1 to 1 would cause us to request a // shrinking overlay -- something the S3 can't do. dwStart = dwStart - (dwStart & 0x7); ppdev->dwOverlayFlipOffset = dwStart; // Save for flip dwStart += (DWORD)lpSource->fpVidMem; // Set overlay filter characteristics: if ((dstWidth != srcWidth) || (dstHeight != srcHeight)) { if (dstWidth >= (srcWidth << 2)) { dwSecCtrl |= S_Beyond4x; // Linear, 1-2-2-2-1, for >4X stretch } else if (dstWidth >= (srcWidth << 1)) { dwSecCtrl |= S_2xTo4x; // Bi-linear, for 2X to 4X stretch } else { dwSecCtrl |= S_Upto2x; // Linear, 0-2-4-2-0, for X stretch } } // Extract colour key: bColorKey = FALSE; dwBlendCtrl = 0; if (lpUpdateOverlay->dwFlags & DDOVER_KEYDEST) { bColorKey = TRUE; dwKeyLow = lpUpdateOverlay->lpDDDestSurface->ddckCKDestOverlay.dwColorSpaceLowValue; dwBlendCtrl |= KeyOnP; } else if (lpUpdateOverlay->dwFlags & DDOVER_KEYDESTOVERRIDE) { bColorKey = TRUE; dwKeyLow = lpUpdateOverlay->overlayFX.dckDestColorkey.dwColorSpaceLowValue; dwBlendCtrl |= KeyOnP; } if (bColorKey) { // We support only destination colour keys: if (lpDestination->ddpfSurface.dwFlags & DDPF_PALETTEINDEXED8) { dwKeyLow = dwGetPaletteEntry(ppdev, dwKeyLow); } else if (lpDestination->ddpfSurface.dwFlags & DDPF_RGB) { ASSERTDD(lpDestination->ddpfSurface.dwFlags & DDPF_RGB, "Expected only RGB cases here"); // We have to transform the colour key from its native format // to 8-8-8: if (lpDestination->ddpfSurface.dwRGBBitCount == 16) { if (IS_RGB15_R(lpDestination->ddpfSurface.dwRBitMask)) dwKeyLow = RGB15to32(dwKeyLow); else dwKeyLow = RGB16to32(dwKeyLow); } else { ASSERTDD((lpDestination->ddpfSurface.dwRGBBitCount == 32), "Expected the primary surface to be either 8, 16, or 32bpp"); } } dwKeyHigh = dwKeyLow; dwKeyLow |= CompareBits0t7 | KeyFromCompare; } // Update and show: NW_GP_WAIT(ppdev, pjMmBase); WAIT_FOR_VBLANK(pjIoBase); WRITE_STREAM_D(pjMmBase, S_0, dwStart); WRITE_STREAM_D(pjMmBase, S_XY, XY(lpUpdateOverlay->rDest.left, lpUpdateOverlay->rDest.top)); WRITE_STREAM_D(pjMmBase, S_WH, WH(dstWidth, dstHeight)); WRITE_STREAM_D(pjMmBase, S_STRIDE, dwStride); WRITE_STREAM_D(pjMmBase, S_CONTROL, dwSecCtrl); WRITE_STREAM_D(pjMmBase, S_HK1K2, HK1K2(srcWidth, dstWidth)); WRITE_STREAM_D(pjMmBase, S_VK1, VK1(srcHeight)); WRITE_STREAM_D(pjMmBase, S_VK2, VK2(srcHeight, dstHeight)); WRITE_STREAM_D(pjMmBase, S_VDDA, VDDA(dstHeight)); if (bColorKey) { WRITE_STREAM_D(pjMmBase, CKEY_LOW, dwKeyLow); WRITE_STREAM_D(pjMmBase, CKEY_HI, dwKeyHigh); } WRITE_STREAM_D(pjMmBase, BLEND_CONTROL, dwBlendCtrl); WRITE_STREAM_D(pjMmBase, FIFO_CONTROL, ppdev->ulFifoValue); lpUpdateOverlay->ddRVal = DD_OK; return(DDHAL_DRIVER_HANDLED); } /******************************Public*Routine******************************\ * DWORD DdSetOverlayPosition * \**************************************************************************/ DWORD DdSetOverlayPosition( PDD_SETOVERLAYPOSITIONDATA lpSetOverlayPosition) { PDEV* ppdev; BYTE* pjIoBase; BYTE* pjMmBase; ppdev = (PDEV*) lpSetOverlayPosition->lpDD->dhpdev; pjIoBase = ppdev->pjIoBase; pjMmBase = ppdev->pjMmBase; ASSERTDD(ppdev->flCaps & CAPS_STREAMS_CAPABLE, "Shouldn't have hooked call"); // Check that streams processor is enabled before settting registers if(ppdev->flStatus & STAT_STREAMS_ENABLED) { WAIT_FOR_VBLANK(pjIoBase); WRITE_STREAM_D(pjMmBase, S_XY, XY(lpSetOverlayPosition->lXPos, lpSetOverlayPosition->lYPos)); } lpSetOverlayPosition->ddRVal = DD_OK; return(DDHAL_DRIVER_HANDLED); } /******************************Public*Routine******************************\ * DWORD DdGetDriverInfo * * This function is an extensible method for returning DirectDraw * capabilities and methods. * \**************************************************************************/ DWORD DdGetDriverInfo( PDD_GETDRIVERINFODATA lpGetDriverInfo) { DWORD dwSize; lpGetDriverInfo->ddRVal = DDERR_CURRENTLYNOTAVAIL; if (IsEqualIID(&lpGetDriverInfo->guidInfo, &GUID_NTCallbacks)) { DD_NTCALLBACKS NtCallbacks; memset(&NtCallbacks, 0, sizeof(NtCallbacks)); dwSize = min(lpGetDriverInfo->dwExpectedSize, sizeof(DD_NTCALLBACKS)); NtCallbacks.dwSize = dwSize; NtCallbacks.dwFlags = DDHAL_NTCB32_FREEDRIVERMEMORY; NtCallbacks.FreeDriverMemory = DdFreeDriverMemory; memcpy(lpGetDriverInfo->lpvData, &NtCallbacks, dwSize); lpGetDriverInfo->ddRVal = DD_OK; } return(DDHAL_DRIVER_HANDLED); } /******************************Public*Routine******************************\ * VOID vAssertModeDirectDraw * * This function is called by enable.c when entering or leaving the * DOS full-screen character mode. * \**************************************************************************/ VOID vAssertModeDirectDraw( PDEV* ppdev, BOOL bEnable) { } /******************************Public*Routine******************************\ * BOOL bEnableDirectDraw * * This function is called by enable.c when the mode is first initialized, * right after the miniport does the mode-set. * \**************************************************************************/ BOOL bEnableDirectDraw( PDEV* ppdev) { BYTE* pjIoBase; VIDEO_QUERY_STREAMS_MODE VideoQueryStreamsMode; VIDEO_QUERY_STREAMS_PARAMETERS VideoQueryStreamsParameters; DWORD ReturnedDataLength; BOOL bDDrawEnabled=TRUE; // We're not going to bother to support accelerated DirectDraw on // those S3s that can't support memory-mapped I/O, simply because // they're old cards and it's not worth the effort. We also // require DIRECT_ACCESS to the frame buffer. // // We also don't support 864/964 cards because writing to the frame // buffer can hang the entire system if an accelerated operation is // going on at the same time. // // The 765 (Trio64V+) has a bug such that writing to the frame // buffer during an accelerator operation may cause a hang if // you do the write soon enough after starting the blt. (There is // a small window of opportunity.) On UP machines, the context // switch time seems to be enough to avoid the problem. However, // on MP machines, we'll have to disable direct draw. // // NOTE: We can identify the 765 since it is the only chip with // the CAPS_STREAMS_CAPABLE flag. if (ppdev->flCaps & CAPS_STREAMS_CAPABLE) { DWORD numProcessors; if (EngQuerySystemAttribute(EngNumberOfProcessors, &numProcessors)) { if (numProcessors != 1) { DISPDBG((1, "Disabling DDraw for MP 765 box.\n")); bDDrawEnabled = FALSE; } } else { DISPDBG((1, "Can't determine number of processors, so play it " "safe and disable DDraw for 765.\n")); bDDrawEnabled = FALSE; } } // The stretch and YUV bltter capabilities of the S3 868 and 968 were // disabled to account for bug 135541. ppdev->flCaps &= ~CAPS_PIXEL_FORMATTER; if ((ppdev->flCaps & CAPS_NEW_MMIO) && !(ppdev->flCaps & CAPS_NO_DIRECT_ACCESS) && (bDDrawEnabled)) { pjIoBase = ppdev->pjIoBase; // We have to preserve the contents of register 0x69 on the S3's page // flip: ACQUIRE_CRTC_CRITICAL_SECTION(ppdev); OUTP(pjIoBase, CRTC_INDEX, 0x69); ppdev->ulExtendedSystemControl3Register_69 = (INP(pjIoBase, CRTC_DATA) & 0xe0) << 8; RELEASE_CRTC_CRITICAL_SECTION(ppdev); // Accurately measure the refresh rate for later: vGetDisplayDuration(ppdev); if (ppdev->flCaps & CAPS_STREAMS_CAPABLE) { // Query the miniport to get the correct streams parameters // for this mode: VideoQueryStreamsMode.ScreenWidth = ppdev->cxScreen; VideoQueryStreamsMode.BitsPerPel = ppdev->cBitsPerPel; VideoQueryStreamsMode.RefreshRate = ppdev->ulRefreshRate; if (EngDeviceIoControl(ppdev->hDriver, IOCTL_VIDEO_S3_QUERY_STREAMS_PARAMETERS, &VideoQueryStreamsMode, sizeof(VideoQueryStreamsMode), &VideoQueryStreamsParameters, sizeof(VideoQueryStreamsParameters), &ReturnedDataLength)) { DISPDBG((0, "Miniport reported no streams parameters")); ppdev->flCaps &= ~CAPS_STREAMS_CAPABLE; } else { ppdev->ulMinOverlayStretch = VideoQueryStreamsParameters.MinOverlayStretch; ppdev->ulFifoValue = VideoQueryStreamsParameters.FifoValue; DISPDBG((0, "Refresh rate: %li Minimum overlay stretch: %li.%03li Fifo value: %lx", ppdev->ulRefreshRate, ppdev->ulMinOverlayStretch / 1000, ppdev->ulMinOverlayStretch % 1000, ppdev->ulFifoValue)); } } else if (ppdev->flCaps & CAPS_PIXEL_FORMATTER) { // The pixel formatter doesn't work at 24bpp: if (ppdev->iBitmapFormat != BMF_24BPP) { // We'll need a pixel-high scratch area to work around a // hardware bug for thin stretches: ppdev->pdsurfVideoEngineScratch = pVidMemAllocate(ppdev, ppdev->cxMemory, 1); if (ppdev->pdsurfVideoEngineScratch) { if (ppdev->cyMemory * ppdev->lDelta <= 0x100000) ppdev->dwVEstep = 0x00040004; // If 1MB, 4 bytes/write else ppdev->dwVEstep = 0x00080008; // If 2MB, 8 bytes/write ppdev->flCaps |= CAPS_PIXEL_FORMATTER; } } } } return(TRUE); } /******************************Public*Routine******************************\ * VOID vDisableDirectDraw * * This function is called by enable.c when the driver is shutting down. * \**************************************************************************/ VOID vDisableDirectDraw( PDEV* ppdev) { if (ppdev->pdsurfVideoEngineScratch) { vVidMemFree(ppdev->pdsurfVideoEngineScratch); } }