// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil -*- (for GNU Emacs) // // Copyright (c) 1985-2000 Microsoft Corporation // // This file is part of the Microsoft Research IPv6 Network Protocol Stack. // You should have received a copy of the Microsoft End-User License Agreement // for this software along with this release; see the file "license.txt". // If not, please see http://www.research.microsoft.com/msripv6/license.htm, // or write to Microsoft Research, One Microsoft Way, Redmond, WA 98052-6399. // // Abstract: // // Debugging code. // #pragma warning(disable:4115) // named type definition in parentheses #pragma warning(disable:4127) // conditional expression is constant #include #undef ExAllocatePoolWithTag #undef ExFreePool // // This is copied from ntos\inc\ex.h // #if !defined(POOL_TAGGING) #define ExAllocatePoolWithTag(a,b,c) ExAllocatePool(a,b) #endif // !POOL_TAGGING #ifndef COUNTING_MALLOC #define COUNTING_MALLOC DBG #endif #if COUNTING_MALLOC // // This enumerated type is used as the function return // value of the function that is used to search the tree // for a key. SisFoundNode indicates that the function found // the key. SisInsertAsLeft indicates that the key was not found // and the node should be inserted as the left child of the // parent. SisInsertAsRight indicates that the key was not found // and the node should be inserted as the right child of the // parent. // typedef enum _SIS_SEARCH_RESULT{ SisEmptyTree, SisFoundNode, SisInsertAsLeft, SisInsertAsRight } SIS_SEARCH_RESULT; typedef LONG (NTAPI *PSIS_TREE_COMPARE_ROUTINE) ( PVOID Key, PVOID Node ); typedef struct _SIS_TREE { PRTL_SPLAY_LINKS TreeRoot; PSIS_TREE_COMPARE_ROUTINE CompareRoutine; } SIS_TREE, *PSIS_TREE; static SIS_SEARCH_RESULT FindNodeOrParent( IN PSIS_TREE Tree, IN PVOID Key, OUT PRTL_SPLAY_LINKS *NodeOrParent ) /*++ Routine Description: This routine is private to the tree package and will find and return (via the NodeOrParent parameter) the node with the given key, or if that node is not in the tree it will return (via the NodeOrParent parameter) a pointer to the parent. Arguments: Tree - The tree to search for the key. Key - Pointer to a buffer holding the key. The tree package doesn't examine the key itself. It leaves this up to the user supplied compare routine. NodeOrParent - Will be set to point to the node containing the the key or what should be the parent of the node if it were in the tree. Note that this will *NOT* be set if the search result is SisEmptyTree. Return Value: SIS_SEARCH_RESULT - SisEmptyTree: The tree was empty. NodeOrParent is *not* altered. SisFoundNode: A node with the key is in the tree. NodeOrParent points to that node. SisInsertAsLeft: Node with key was not found. NodeOrParent points to what would be parent. The node would be the left child. SisInsertAsRight: Node with key was not found. NodeOrParent points to what would be parent. The node would be the right child. --*/ { if (Tree->TreeRoot == NULL) { return SisEmptyTree; } else { // // Used as the iteration variable while stepping through // the tree. // PRTL_SPLAY_LINKS NodeToExamine = Tree->TreeRoot; // // Just a temporary. Hopefully a good compiler will get // rid of it. // PRTL_SPLAY_LINKS Child; // // Holds the value of the comparasion. // int Result; while (TRUE) { // // Compare the buffer with the key in the tree element. // Result = Tree->CompareRoutine( Key, NodeToExamine ); if (Result < 0) { if ((Child = RtlLeftChild(NodeToExamine)) != NULL) { NodeToExamine = Child; } else { // // Node is not in the tree. Set the output // parameter to point to what would be its // parent and return which child it would be. // *NodeOrParent = NodeToExamine; return SisInsertAsLeft; } } else if (Result > 0) { if ((Child = RtlRightChild(NodeToExamine)) != NULL) { NodeToExamine = Child; } else { // // Node is not in the tree. Set the output // parameter to point to what would be its // parent and return which child it would be. // *NodeOrParent = NodeToExamine; return SisInsertAsRight; } } else { // // Node is in the tree (or it better be because of the // assert). Set the output parameter to point to // the node and tell the caller that we found the node. // ASSERT(Result == 0); *NodeOrParent = NodeToExamine; return SisFoundNode; } } } } VOID SipInitializeTree ( IN PSIS_TREE Tree, IN PSIS_TREE_COMPARE_ROUTINE CompareRoutine ) /*++ Routine Description: The procedure InitializeTree prepares a tree for use. This must be called for every individual tree variable before it can be used. Arguments: Tree - Pointer to the tree to be initialized. CompareRoutine - User routine to be used to compare to keys in the tree. Return Value: None. --*/ { Tree->TreeRoot = NULL; Tree->CompareRoutine = CompareRoutine; } PVOID SipInsertElementTree ( IN PSIS_TREE Tree, IN PVOID Node, IN PVOID Key ) /*++ Routine Description: The function SipInsertElementTree will insert a new element in a tree. If an element with the same key already exists in the tree the return value is a pointer to the old element. Otherwise, the return value is a pointer to the new element. Note that this differs from the Rtl generic table package in that the actual node passed in is inserted in the tree, whereas the table package inserts a copy of the node. Arguments: Tree - Pointer to the tree in which to (possibly) insert the node. Node - Pointer to the node to insert in the tree. Will not be inserted if a node with a matching key is found. Key - Passed to the user comparasion routine. Return Value: PVOID - Pointer to the new node or the existing node if one exists. --*/ { // // Holds a pointer to the node in the tree or what would be the // parent of the node. // PRTL_SPLAY_LINKS NodeOrParent; // // Holds the result of the tree lookup. // SIS_SEARCH_RESULT Lookup; // // Node will point to the splay links of what // will be returned to the user. // PRTL_SPLAY_LINKS NodeToReturn = (PRTL_SPLAY_LINKS) Node; Lookup = FindNodeOrParent( Tree, Key, &NodeOrParent ); if (Lookup != SisFoundNode) { RtlInitializeSplayLinks(NodeToReturn); // // Insert the new node in the tree. // if (Lookup == SisEmptyTree) { Tree->TreeRoot = NodeToReturn; } else { if (Lookup == SisInsertAsLeft) { RtlInsertAsLeftChild( NodeOrParent, NodeToReturn ); } else { RtlInsertAsRightChild( NodeOrParent, NodeToReturn ); } } } else { NodeToReturn = NodeOrParent; } // // Always splay the (possibly) new node. // Tree->TreeRoot = RtlSplay(NodeToReturn); return NodeToReturn; } VOID SipDeleteElementTree ( IN PSIS_TREE Tree, IN PVOID Node ) /*++ Routine Description: The function SipDeleteElementTree will remove an element from a tree. Note that the memory associated with the node is not actually freed. Arguments: Tree - Pointer to the tree in which to remove the specified node. Node - Node of tree to remove. Return Value: None. --*/ { PRTL_SPLAY_LINKS NodeToDelete = (PRTL_SPLAY_LINKS) Node; // // Delete the node from the tree. Note that RtlDelete // will splay the tree. // Tree->TreeRoot = RtlDelete(NodeToDelete); } PVOID SipLookupElementTree ( IN PSIS_TREE Tree, IN PVOID Key ) /*++ Routine Description: The function SipLookupElementTree will find an element in a tree. If the element is located the return value is a pointer to the element, otherwise if the element is not located the return value is NULL. Arguments: Tree - Pointer to the users tree to search for the key. Key - Used for the comparasion. Return Value: PVOID - returns a pointer to the user data. --*/ { // // Holds a pointer to the node in the tree or what would be the // parent of the node. // PRTL_SPLAY_LINKS NodeOrParent; // // Holds the result of the tree lookup. // SIS_SEARCH_RESULT Lookup; Lookup = FindNodeOrParent( Tree, Key, &NodeOrParent ); if (Lookup == SisEmptyTree) { return NULL; } else { // // Splay the tree with this node. Note that we do this irregardless // of whether the node was found. // Tree->TreeRoot = RtlSplay(NodeOrParent); // // Return a pointer to the user data. // if (Lookup == SisFoundNode) { return NodeOrParent; } else { return NULL; } } } VOID SipDeleteTree ( IN PSIS_TREE Tree ) /*++ Routine Description: Deletes and frees all elements in a tree. Does not free the tree structure itself. Arguments: Tree - Pointer to the tree to be deleted. Return Value: None. --*/ { PVOID Node; while ((Node = Tree->TreeRoot) != NULL) { SipDeleteElementTree(Tree, Node); ExFreePool(Node); } } typedef struct _SIS_COUNTING_MALLOC_CLASS_KEY { POOL_TYPE poolType; ULONG tag; PCHAR file; ULONG line; } SIS_COUNTING_MALLOC_CLASS_KEY, *PSIS_COUNTING_MALLOC_CLASS_KEY; typedef struct _SIS_COUNTING_MALLOC_CLASS_ENTRY { RTL_SPLAY_LINKS; SIS_COUNTING_MALLOC_CLASS_KEY; ULONG numberOutstanding; ULONG bytesOutstanding; ULONG numberEverAllocated; LONGLONG bytesEverAllocated; struct _SIS_COUNTING_MALLOC_CLASS_ENTRY *prev, *next; } SIS_COUNTING_MALLOC_CLASS_ENTRY, *PSIS_COUNTING_MALLOC_CLASS_ENTRY; typedef struct _SIS_COUNTING_MALLOC_KEY { PVOID p; } SIS_COUNTING_MALLOC_KEY, *PSIS_COUNTING_MALLOC_KEY; typedef struct _SIS_COUNTING_MALLOC_ENTRY { RTL_SPLAY_LINKS; SIS_COUNTING_MALLOC_KEY; PSIS_COUNTING_MALLOC_CLASS_ENTRY classEntry; ULONG byteCount; } SIS_COUNTING_MALLOC_ENTRY, *PSIS_COUNTING_MALLOC_ENTRY; KSPIN_LOCK CountingMallocLock[1]; BOOLEAN CountingMallocInternalFailure = FALSE; SIS_COUNTING_MALLOC_CLASS_ENTRY CountingMallocClassListHead[1]; SIS_TREE CountingMallocClassTree[1]; SIS_TREE CountingMallocTree[1]; LONG NTAPI CountingMallocClassCompareRoutine( PVOID Key, PVOID Node) { PSIS_COUNTING_MALLOC_CLASS_KEY key = Key; PSIS_COUNTING_MALLOC_CLASS_ENTRY entry = Node; if (key->poolType > entry->poolType) return 1; if (key->poolType < entry->poolType) return -1; ASSERT(key->poolType == entry->poolType); if (key->tag > entry->tag) return 1; if (key->tag < entry->tag) return -1; ASSERT(key->tag == entry->tag); if (key->file > entry->file) return 1; if (key->file < entry->file) return -1; ASSERT(key->file == entry->file); if (key->line > entry->line) return 1; if (key->line < entry->line) return -1; ASSERT(key->line == entry->line); return 0; } LONG NTAPI CountingMallocCompareRoutine( PVOID Key, PVOID Node) { PSIS_COUNTING_MALLOC_KEY key = Key; PSIS_COUNTING_MALLOC_ENTRY entry = Node; if (key->p < entry->p) return 1; if (key->p > entry->p) return -1; ASSERT(key->p == entry->p); return 0; } VOID * CountingExAllocatePoolWithTag( IN POOL_TYPE PoolType, IN ULONG NumberOfBytes, IN ULONG Tag, IN PCHAR File, IN ULONG Line) { PVOID memoryFromExAllocate; KIRQL OldIrql; SIS_COUNTING_MALLOC_CLASS_KEY classKey[1]; PSIS_COUNTING_MALLOC_CLASS_ENTRY classEntry; SIS_COUNTING_MALLOC_KEY key[1]; PSIS_COUNTING_MALLOC_ENTRY entry; // // First do the actual malloc. // memoryFromExAllocate = ExAllocatePoolWithTag(PoolType, NumberOfBytes, Tag); if (NULL == memoryFromExAllocate) { // // We're out of memory. Punt. // return NULL; } KeAcquireSpinLock(CountingMallocLock, &OldIrql); // // See if we already have a class entry for this tag/poolType pair. // classKey->tag = Tag; classKey->poolType = PoolType; classKey->file = File; classKey->line = Line; classEntry = SipLookupElementTree(CountingMallocClassTree, classKey); if (NULL == classEntry) { // // This is the first time we've seen a malloc of this class. // classEntry = ExAllocatePoolWithTag( NonPagedPool, sizeof(SIS_COUNTING_MALLOC_CLASS_ENTRY), ' siS'); if (NULL == classEntry) { CountingMallocInternalFailure = TRUE; KeReleaseSpinLock(CountingMallocLock, OldIrql); return memoryFromExAllocate; } // // Fill in the new class entry. // classEntry->tag = Tag; classEntry->poolType = PoolType; classEntry->file = File; classEntry->line = Line; classEntry->numberOutstanding = 0; classEntry->bytesOutstanding = 0; classEntry->numberEverAllocated = 0; classEntry->bytesEverAllocated = 0; // // Put it in the tree of classes. // SipInsertElementTree(CountingMallocClassTree, classEntry, classKey); // // And put it in the list of classes. // classEntry->prev = CountingMallocClassListHead; classEntry->next = CountingMallocClassListHead->next; classEntry->prev->next = classEntry->next->prev = classEntry; } // // Roll up an entry for the pointer. // entry = ExAllocatePoolWithTag(NonPagedPool, sizeof(SIS_COUNTING_MALLOC_ENTRY), ' siS'); if (NULL == entry) { CountingMallocInternalFailure = TRUE; KeReleaseSpinLock(CountingMallocLock, OldIrql); return memoryFromExAllocate; } // // Update the stats in the class. // classEntry->numberOutstanding++; classEntry->bytesOutstanding += NumberOfBytes; classEntry->numberEverAllocated++; classEntry->bytesEverAllocated += NumberOfBytes; // // Fill in the pointer entry. // entry->p = memoryFromExAllocate; entry->classEntry = classEntry; entry->byteCount = NumberOfBytes; // // Stick it in the tree. // key->p = memoryFromExAllocate; SipInsertElementTree(CountingMallocTree, entry, key); KeReleaseSpinLock(CountingMallocLock, OldIrql); return memoryFromExAllocate; } VOID CountingExFreePool( PVOID p) { SIS_COUNTING_MALLOC_KEY key[1]; PSIS_COUNTING_MALLOC_ENTRY entry; KIRQL OldIrql; key->p = p; KeAcquireSpinLock(CountingMallocLock, &OldIrql); entry = SipLookupElementTree(CountingMallocTree, key); if (NULL == entry) { // // We may have failed to allocate the entry because of an // internal failure in the counting package, or else we're // freeing memory that was allocated by another system // component, like the SystemBuffer in an irp. // } else { // // Update the stats in the class. // ASSERT(entry->classEntry->numberOutstanding > 0); entry->classEntry->numberOutstanding--; ASSERT(entry->classEntry->bytesOutstanding >= entry->byteCount); entry->classEntry->bytesOutstanding -= entry->byteCount; // // Remove the entry from the tree. // SipDeleteElementTree(CountingMallocTree, entry); // // And free it. // ExFreePool(entry); } KeReleaseSpinLock(CountingMallocLock, OldIrql); // // Free the caller's memory. // ExFreePool(p); } VOID InitCountingMalloc(void) { KeInitializeSpinLock(CountingMallocLock); CountingMallocClassListHead->next = CountingMallocClassListHead->prev = CountingMallocClassListHead; SipInitializeTree(CountingMallocClassTree, CountingMallocClassCompareRoutine); SipInitializeTree(CountingMallocTree, CountingMallocCompareRoutine); } VOID UnloadCountingMalloc(void) { SipDeleteTree(CountingMallocTree); SipDeleteTree(CountingMallocClassTree); } VOID DumpCountingMallocStats(void) { PSIS_COUNTING_MALLOC_CLASS_ENTRY classEntry; ULONG totalAllocated = 0; ULONG totalEverAllocated = 0; ULONG totalBytesAllocated = 0; ULONG totalBytesEverAllocated = 0; // // Note that this function does NOT acquire CountingMallocLock, // so there can be no concurrent allocations/frees happening. // CountingMallocLock would raise to DPC irql, // and the filename strings might be pageable. // KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_INFO_LEVEL, "Tag\tFile\tLine\tPoolType\tCountOutstanding\tBytesOutstanding" "\tTotalEverAllocated\tTotalBytesAllocated\n")); for (classEntry = CountingMallocClassListHead->next; classEntry != CountingMallocClassListHead; classEntry = classEntry->next) { KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_INFO_LEVEL, "%c%c%c%c\t%s\t%d\t%s\t%d\t%d\t%d\t%d\n", (CHAR)(classEntry->tag >> 24), (CHAR)(classEntry->tag >> 16), (CHAR)(classEntry->tag >> 8), (CHAR)(classEntry->tag), classEntry->file, classEntry->line, (classEntry->poolType == NonPagedPool) ? "NonPagedPool" : ((classEntry->poolType == PagedPool) ? "PagedPool" : "Other"), classEntry->numberOutstanding, classEntry->bytesOutstanding, classEntry->numberEverAllocated, (ULONG)classEntry->bytesEverAllocated)); totalAllocated += classEntry->numberOutstanding; totalEverAllocated += classEntry->numberEverAllocated; totalBytesAllocated += classEntry->bytesOutstanding; totalBytesEverAllocated += (ULONG)classEntry->bytesEverAllocated; } KdPrintEx((DPFLTR_TCPIP6_ID, DPFLTR_INFO_LEVEL, "%d objects, %d bytes currently allocated. " "%d objects, %d bytes ever allocated.\n", totalAllocated, totalBytesAllocated, totalEverAllocated, totalBytesEverAllocated)); } #endif // COUNTING_MALLOC