/*++ Copyright (c) Microsoft Corporation. All rights reserved. Module Name: deadlock.c Abstract: This module implements the debug extension for the deadlock verification package for critical section operations. Environment: User Mode Author: Silviu Calinoiu (SilviuC) 6-Feb-2002 Revision History: --*/ #include "precomp.h" #pragma hdrstop // // This has to be in sync with the definition from // base\win32\vrifier\deadlock.c // #define AVRF_DEADLOCK_HASH_BINS 0x1F #if 0 typedef enum _AVRF_DEADLOCK_RESOURCE_TYPE { AVrfpDeadlockTypeUnknown = 0, AVrfpDeadlockTypeCriticalSection = 1, AVrfpDeadlockTypeMaximum = 2 } AVRF_DEADLOCK_RESOURCE_TYPE, *PAVRF_DEADLOCK_RESOURCE_TYPE; #endif PUCHAR ResourceTypes[] = { "Unknown", "Critical Section", }; #define RESOURCE_TYPE_MAXIMUM 5 #define DEADLOCK_EXT_FLAG_DUMP_STACKS 1 #define DEADLOCK_EXT_FLAG_DUMP_NODES 2 #define DEADLOCK_EXT_FLAG_ANALYZE 4 extern VOID DumpSymbolicAddress( ULONG64 Address, PUCHAR Buffer, BOOL AlwaysShowHex ); #define MAX_DEADLOCK_PARTICIPANTS 32 #define VI_MAX_STACK_DEPTH 8 typedef struct _DEADLOCK_VECTOR { ULONG64 Thread; ULONG64 Node; ULONG64 ResourceAddress; ULONG64 StackAddress; ULONG64 ParentStackAddress; ULONG64 ThreadEntry; ULONG Type; BOOLEAN TryAcquire; } DEADLOCK_VECTOR, *PDEADLOCK_VECTOR; // // Functions from `verifier.c' // extern ULONG64 ReadPVOID ( ULONG64 Address ); extern ULONG ReadULONG( ULONG64 Address ); #define ReadPvoid ReadPVOID #define ReadUlong ReadULONG // // Forward declarations for local functions // VOID PrintGlobalStatistics ( ULONG64 GlobalsAddress ); BOOLEAN SearchForResource ( ULONG64 GlobalsAddress, ULONG64 ResourceAddress ); BOOLEAN SearchForThread ( ULONG64 GlobalsAddress, ULONG64 ThreadAddress ); BOOLEAN AnalyzeResource ( ULONG64 Resource, BOOLEAN Verbose ); BOOLEAN AnalyzeResources ( ULONG64 GlobalsAddress ); ///////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////// Deadlocks ///////////////////////////////////////////////////////////////////// // // Defines copied from nt\base\ntos\verifier\vfdeadlock.c . // #define AVRF_DEADLOCK_ISSUE_SELF_DEADLOCK 0x1000 #define AVRF_DEADLOCK_ISSUE_DEADLOCK_DETECTED 0x1001 #define AVRF_DEADLOCK_ISSUE_UNINITIALIZED_RESOURCE 0x1002 #define AVRF_DEADLOCK_ISSUE_UNEXPECTED_RELEASE 0x1003 #define AVRF_DEADLOCK_ISSUE_UNEXPECTED_THREAD 0x1004 #define AVRF_DEADLOCK_ISSUE_MULTIPLE_INITIALIZATION 0x1005 #define AVRF_DEADLOCK_ISSUE_THREAD_HOLDS_RESOURCES 0x1006 #define AVRF_DEADLOCK_ISSUE_UNACQUIRED_RESOURCE 0x1007 #define DUMP_FIELD(Name) dprintf ("%-20s %I64u \n", #Name, ReadField (Name)) DECLARE_API( udeadlock ) /*++ Routine Description: Verifier deadlock detection module extension. Arguments: arg - not used for now. Return Value: None. --*/ { ULONG64 GlobalsPointer; ULONG64 GlobalsAddress; ULONG64 InitializedAddress; ULONG64 EnabledAddress; ULONG64 InstigatorAddress; ULONG64 ParticipantAddress; ULONG64 LastResourceAddress; ULONG64 RootAddress; ULONG64 CurrentResourceAddress; ULONG64 CurrentThread; ULONG64 ThreadForChain; ULONG64 CurrentStack; ULONG64 NextStack; ULONG64 SymbolOffset; ULONG StackTraceSize; ULONG Processor=0; ULONG ParticipantOffset; ULONG StackOffset; ULONG ParentStackOffset; ULONG InitializedValue; ULONG EnabledValue; ULONG NumberOfParticipants; ULONG NumberOfResources; ULONG NumberOfThreads; ULONG ThreadNumber; ULONG ResourceNumber; ULONG ResourceType; ULONG TryAcquireUsed; ULONG PtrSize; ULONG J, I; BOOLEAN DumpStacks = FALSE; BOOLEAN DumpNodes = FALSE; BOOLEAN Analyze = FALSE; ULONG64 Flags; UCHAR SymbolName[512]; HANDLE CurrentThreadHandle = NULL; DEADLOCK_VECTOR Participants[MAX_DEADLOCK_PARTICIPANTS+1]; ULONG64 Issue[4]; ULONG64 SearchAddress = 0; INIT_API(); // // Check if help requested // if (strstr (args, "?")) { dprintf ("\n"); dprintf ("!deadlock Statistics and deadlock layout \n"); dprintf ("!deadlock 3 Detailed deadlock layout \n"); dprintf ("!deadlock ADDRESS Search for ADDRESS among deadlock verifier data \n"); dprintf ("\n"); Status = S_OK; goto Exit; } Flags = GetExpression(args); if (Flags > 0x10000000) { SearchAddress = Flags; } else { if (Flags & DEADLOCK_EXT_FLAG_DUMP_STACKS) { DumpStacks = TRUE; } if (Flags & DEADLOCK_EXT_FLAG_DUMP_NODES) { DumpNodes = TRUE; } if (Flags & DEADLOCK_EXT_FLAG_ANALYZE) { Analyze = TRUE; } } GlobalsPointer = (ULONG64) GetExpression ("verifier!AVrfpDeadlockGlobals"); EnabledAddress = (ULONG64) GetExpression ("verifier!AVrfpDeadlockDetectionEnabled"); if (GlobalsPointer == 0 || EnabledAddress == 0) { dprintf ("Error: incorrect symbols for kernel \n"); Status = E_INVALIDARG; goto Exit; } GlobalsAddress = 0; ReadPointer (GlobalsPointer, &GlobalsAddress); EnabledValue = ReadUlong (EnabledAddress); if (GlobalsAddress == 0) { dprintf ("Deadlock detection not initialized \n"); Status = E_INVALIDARG; goto Exit; } InitializedValue = 1; if (EnabledValue == 0) { dprintf ("Deadlock detection not enabled \n"); Status = E_INVALIDARG; goto Exit; } // // Do a search if this is requested. // if (SearchAddress) { BOOLEAN FoundSomething = FALSE; dprintf ("Searching for %p ... \n", SearchAddress); if (FoundSomething == FALSE) { FoundSomething = SearchForResource (GlobalsAddress, SearchAddress); } if (FoundSomething == FALSE) { FoundSomething = SearchForThread (GlobalsAddress, SearchAddress); } Status = S_OK; goto Exit; } // // Analyze if this is needed. // if (Analyze) { AnalyzeResources (GlobalsAddress); Status = S_OK; goto Exit; } // // Get the AVrfpDeadlockIssue[0..3] vector. // { ULONG ValueSize; ULONG64 IssueAddress; ValueSize = IsPtr64()? 8: 4; IssueAddress = GetExpression ("verifier!AVrfpDeadlockIssue"); for (I = 0; I < 4; I += 1) { ReadPointer (IssueAddress + I * ValueSize, &(Issue[I])); } if (Issue[0] == 0) { dprintf ("\n"); PrintGlobalStatistics (GlobalsAddress); dprintf ("\nNo deadlock verifier issues. \n"); Status = S_OK; goto Exit; } else { if (ValueSize == 4) { dprintf ("issue: %08X %08X %08X %08X \n", Issue[0], Issue[1], Issue[2], Issue[3]); } else { dprintf ("issue: %I64X %I64X %I64X %I64X \n", Issue[0], Issue[1], Issue[2], Issue[3]); } } switch (Issue[0]) { case AVRF_DEADLOCK_ISSUE_SELF_DEADLOCK: dprintf ("Resource %I64X is acquired recursively. \n", Issue[1]); Status = S_OK; goto Exit; case AVRF_DEADLOCK_ISSUE_DEADLOCK_DETECTED: break; case AVRF_DEADLOCK_ISSUE_UNINITIALIZED_RESOURCE: dprintf ("Resource %I64X is used before being initialized. \n", Issue[1]); Status = S_OK; goto Exit; case AVRF_DEADLOCK_ISSUE_UNEXPECTED_RELEASE: dprintf ("Resource %I64X is released out of order. \n", Issue[2]); Status = S_OK; goto Exit; case AVRF_DEADLOCK_ISSUE_UNEXPECTED_THREAD: dprintf ("Current thread is releasing resource %I64X which was acquired in thread %I64X. \n", Issue[1], Issue[2]); Status = S_OK; goto Exit; case AVRF_DEADLOCK_ISSUE_MULTIPLE_INITIALIZATION: dprintf ("Resource %I64X has already been initialized. \n", Issue[1]); Status = S_OK; goto Exit; case AVRF_DEADLOCK_ISSUE_THREAD_HOLDS_RESOURCES: if (Issue[3] == 0) { dprintf ("Deleting thread %I64X (descriptor %I64X) " "which still holds resources. \n", Issue[1], Issue[2]); } else { dprintf ("Deleting thread %I64X which still holds resource %I64X " "(descriptor %I64X). \n", Issue[2], Issue[1], Issue[3]); } Status = S_OK; goto Exit; case AVRF_DEADLOCK_ISSUE_UNACQUIRED_RESOURCE: dprintf ("Releasing resource %I64X that was never acquired. \n", Issue[1]); Status = S_OK; goto Exit; default: dprintf ("Unrecognized issue code %I64X ! \n", Issue[0]); Status = S_OK; goto Exit; } } // // Figure out how big a pointer is // PtrSize = IsPtr64()? 8: 4; if (PtrSize == 0) { dprintf ("Cannot get size of PVOID \n"); Status = E_INVALIDARG; goto Exit; } // // Dump the globals structure // InitTypeRead (GlobalsAddress, verifier!_AVRF_DEADLOCK_GLOBALS); // // Find out the address of the resource that causes the deadlock // InstigatorAddress = ReadField(Instigator); NumberOfParticipants = (ULONG) ReadField(NumberOfParticipants); if (NumberOfParticipants > MAX_DEADLOCK_PARTICIPANTS) { dprintf("\nCannot have %x participants in a deadlock!\n",NumberOfParticipants); Status = E_INVALIDARG; goto Exit; } if (0 == NumberOfParticipants) { dprintf("\nNo deadlock detected\n"); Status = S_OK; goto Exit; } GetFieldOffset("verifier!_AVRF_DEADLOCK_GLOBALS", "Participant", &ParticipantOffset ); ParticipantAddress = GlobalsAddress + ParticipantOffset; // // Read the vector of AVRF_DEADLOCK_NODEs that // participate in the deadlock. // // for (J = 0; J < NumberOfParticipants; J++) { Participants[J].Node = ReadPvoid(ParticipantAddress + J * PtrSize); // dprintf("Participant %c: %08x\n", 'A' + J, Participants[J].Node); } // // Gather the information we'll need to print out exact // context for the deadlock. // GetFieldOffset("verifier!_AVRF_DEADLOCK_NODE", "StackTrace", &StackOffset ); GetFieldOffset("verifier!_AVRF_DEADLOCK_NODE", "ParentStackTrace", &ParentStackOffset ); // // The stack trace size is 1 on free builds and 6 (or bigger) on // checked builds. We assume that the ParentStackTrace field comes // immediately after StackTrace field in the NODE structure. // StackTraceSize = (ParentStackOffset - StackOffset) / PtrSize; for (J = 0; J < NumberOfParticipants; J++) { InitTypeRead (Participants[J].Node, verifier!_AVRF_DEADLOCK_NODE); RootAddress = ReadField(Root); GetFieldValue(RootAddress, "verifier!_AVRF_DEADLOCK_RESOURCE", "ResourceAddress" , Participants[J].ResourceAddress ); GetFieldValue(RootAddress, "verifier!_AVRF_DEADLOCK_RESOURCE", "Type", Participants[J].Type ); if (Participants[J].Type > RESOURCE_TYPE_MAXIMUM) { Participants[J].Type = 0; } Participants[J].ThreadEntry = ReadField(ThreadEntry); Participants[J].StackAddress = Participants[J].Node + StackOffset; Participants[J].ParentStackAddress = Participants[J].Node + ParentStackOffset; Participants[J].TryAcquire = (BOOLEAN) ReadField(OnlyTryAcquireUsed); GetFieldValue(Participants[J].ThreadEntry, "verifier!_AVRF_DEADLOCK_THREAD", "Thread", Participants[J].Thread ); } if (Participants[0].ResourceAddress != InstigatorAddress) { dprintf("\nDeadlock Improperly formed participant list\n"); Status = E_INVALIDARG; goto Exit; } // // The last participant is the Instigator of the deadlock // Participants[NumberOfParticipants].Thread = 0; Participants[NumberOfParticipants].Node = 0; Participants[NumberOfParticipants].ResourceAddress = InstigatorAddress; Participants[NumberOfParticipants].StackAddress = 0; Participants[NumberOfParticipants].ParentStackAddress = Participants[NumberOfParticipants-1].StackAddress; Participants[NumberOfParticipants].Type = Participants[0].Type; Participants[NumberOfParticipants].TryAcquire = FALSE; // can't cause a deadlock with try Participants[NumberOfParticipants].ThreadEntry = 0; // // At this point we have all of the raw data we need. // We have to munge it up a bit so that we have the most // recent data. For instance, take the simple deadlock AB-BA. // The stack for A in the AB context may be wrong because // another thread may have come and taken A at a different point. // This is why we have the parent stack address. // // So the rules we have to adhere to are as follows: // Where we have a chain, (eg ABC meaning A taken then B then C), // the thread used will always be the thread for the last resource taken, // and the stacks used will be the the childs parent stack where // applicable. // // For example, if C was taken by thread 1, A & B would be munged // to use thread 1. Since in order to get to C, A and B must have // been taken by thread 1 at some point, even if the thread they // have saved now is a different one. C would use its own stack, // B would use C's parent stack, since that was the stack that // B had been acquired with when C was taken, and A will use // B's parent stack. // // We can identify the start of a chain when the same resource // is on the participant list twice in a row. // LastResourceAddress = InstigatorAddress; NumberOfResources = 0; NumberOfThreads = 0; for (J = 0; J <= NumberOfParticipants; J++) { I = NumberOfParticipants - J; CurrentResourceAddress = Participants[I].ResourceAddress; if (CurrentResourceAddress == LastResourceAddress) { // // This is the beginning of a chain. Use the current // stack and the current thread, and set the chain // thread to ours // ThreadForChain = Participants[I].Thread; CurrentStack = Participants[I].StackAddress; NumberOfThreads++; } else { // // This is a resource we haven't seen before // NumberOfResources++; } NextStack = Participants[I].ParentStackAddress; Participants[I].StackAddress = CurrentStack; Participants[I].Thread = ThreadForChain; // // Parent stack isn't used any more -- nullify it. // Participants[I].ParentStackAddress = 0; CurrentStack = NextStack; LastResourceAddress = CurrentResourceAddress; } // // Now that we've munged the vectors, we can go ahead and print out the // deadlock information. // dprintf("\nDeadlock detected (%d resources in %d threads):\n\n",NumberOfResources, NumberOfThreads); if (! DumpStacks ) { // // Print out the 'short' form // Example: // // !dealock detected: // Thread 1: A B // Thread 2: B C // Thread 3: C A // // Thread 1 =
// Thread 2 =
// Thread 3 =
// // Lock A =
(spinlock) // Lock B =
(mutex) // Lock C =
(spinlock) // ThreadNumber = 0; ResourceNumber = 0; J=0; // // Dump out the deadlock topology // while (J <= NumberOfParticipants) { ThreadForChain = Participants[J].Thread; dprintf("Thread %d: ",ThreadNumber); do { if (J == NumberOfParticipants) { ResourceNumber = 0; } dprintf("%c ", 'A' + ResourceNumber ); J++; ResourceNumber++; } while( J <= NumberOfParticipants && Participants[J].ResourceAddress != Participants[J-1].ResourceAddress); dprintf("\n"); ThreadNumber++; ResourceNumber--; } dprintf("\nWhere:\n"); // // Dump out the thread addresses // ThreadNumber = 0; ResourceNumber = 0; J=0; while (J <= NumberOfParticipants) { ThreadForChain = Participants[J].Thread; dprintf("Thread %d = %08x\n",ThreadNumber, ThreadForChain); do { if (J == NumberOfParticipants) { ResourceNumber = 0; } J++; ResourceNumber++; } while( J <= NumberOfParticipants && Participants[J].ResourceAddress != Participants[J-1].ResourceAddress); ThreadNumber++; ResourceNumber--; } // // Dump out the resource addresses // ThreadNumber = 0; ResourceNumber = 0; J=0; #if 1 while (J < NumberOfParticipants) { while(J < NumberOfParticipants && Participants[J].ResourceAddress != Participants[J+1].ResourceAddress) { if (Participants[J].ResourceAddress != Participants[J+1].ResourceAddress) { CHAR Buffer[0xFF]; ULONG64 Displacement = 0; GetSymbol(Participants[J].ResourceAddress, Buffer, &Displacement); dprintf("Lock %c = %s", 'A' + ResourceNumber, Buffer ); if (Displacement != 0) { dprintf("%s%x", (Displacement < 0xFFF)?"+0x":"",Displacement); } dprintf(" Type '%s' ",ResourceTypes[Participants[J].Type]); dprintf("\n"); ResourceNumber++; } J++; } J++; } #endif } else { // // Dump out verbose deadlock information -- with stacks // Here is an exapmle: // // Deadlock detected (3 resources in 3 threads): // //Thread 0 (829785B0) took locks in the following order: // // Lock A (Spinlock) @ bfc7c254 // Node: 82887F88 // Stack: NDIS!ndisNotifyMiniports+0xC1 // NDIS!ndisPowerStateCallback+0x6E // ntkrnlmp!ExNotifyCallback+0x72 // ntkrnlmp!PopDispatchCallback+0x13 // ntkrnlmp!PopPolicyWorkerNotify+0x8F // ntkrnlmp!PopPolicyWorkerThread+0x10F // ntkrnlmp!ExpWorkerThread+0x294 // ntkrnlmp!PspSystemThreadStartup+0x4B // // Lock B (Spinlock) @ 8283b87c // Node: 82879148 // Stack: NDIS!ndisDereferenceRef+0x10F // NDIS!ndisDereferenceDriver+0x3A // NDIS!ndisNotifyMiniports+0xD1 // NDIS!ndisPowerStateCallback+0x6E // ntkrnlmp!ExNotifyCallback+0x72 // ntkrnlmp!PopDispatchCallback+0x13 // ntkrnlmp!PopPolicyWorkerNotify+0x8F // ntkrnlmp!PopPolicyWorkerThread+0x10F // //Thread 1 (829785B0) took locks in the following order: // // Lock B (Spinlock) @ 8283b87c // Node: 82879008 // Stack: NDIS!ndisReferenceNextUnprocessedMiniport+0x3E // NDIS!ndisNotifyMiniports+0xB3 // NDIS!ndisPowerStateCallback+0x6E // ntkrnlmp!ExNotifyCallback+0x72 // ntkrnlmp!PopDispatchCallback+0x13 // ntkrnlmp!PopPolicyWorkerNotify+0x8F // ntkrnlmp!PopPolicyWorkerThread+0x10F // ntkrnlmp!ExpWorkerThread+0x294 // // Lock C (Spinlock) @ 82862b48 // Node: 8288D008 // Stack: NDIS!ndisReferenceRef+0x10F // NDIS!ndisReferenceMiniport+0x4A // NDIS!ndisReferenceNextUnprocessedMiniport+0x70 // NDIS!ndisNotifyMiniports+0xB3 // NDIS!ndisPowerStateCallback+0x6E // ntkrnlmp!ExNotifyCallback+0x72 // ntkrnlmp!PopDispatchCallback+0x13 // ntkrnlmp!PopPolicyWorkerNotify+0x8F // //Thread 2 (82978310) took locks in the following order: // // Lock C (Spinlock) @ 82862b48 // Node: 82904708 // Stack: NDIS!ndisPnPRemoveDevice+0x20B // NDIS!ndisPnPDispatch+0x319 // ntkrnlmp!IopfCallDriver+0x62 // ntkrnlmp!IovCallDriver+0x9D // ntkrnlmp!IopSynchronousCall+0xFA // ntkrnlmp!IopRemoveDevice+0x11E // ntkrnlmp!IopDeleteLockedDeviceNode+0x3AF // ntkrnlmp!IopDeleteLockedDeviceNodes+0xF5 // // Lock A (Spinlock) @ bfc7c254 // Stack: << Current stack >> // ThreadNumber = 0; ResourceNumber = 0; J=0; while (J <= NumberOfParticipants) { ThreadForChain = Participants[J].Thread; dprintf("Thread %d: %08X",ThreadNumber, ThreadForChain); if (DumpNodes && Participants[J].ThreadEntry) { dprintf(" (ThreadEntry = %X)\n ", (ULONG) Participants[J].ThreadEntry); } dprintf(" took locks in the following order:\n\n"); // // This is a do .. while so that we can never get an infinite loop. // do { UINT64 CurrentStackAddress; UINT64 StackFrame; CHAR Buffer[0xFF]; ULONG64 Displacement = 0; if (J == NumberOfParticipants) { ResourceNumber = 0; } GetSymbol(Participants[J].ResourceAddress, Buffer, &Displacement); dprintf(" Lock %c -- %s", 'A' + ResourceNumber, Buffer ); if (Displacement != 0) { dprintf("%s%x", (Displacement < 0xFFF)?"+0x":"",Displacement); } dprintf(" (%s)\n",ResourceTypes[Participants[J].Type]); if (DumpNodes && Participants[J].Node) dprintf(" Node: %X\n", (ULONG) Participants[J].Node); dprintf(" Stack: "); CurrentStackAddress = Participants[J].StackAddress; if (CurrentStackAddress == 0) { dprintf ("<< Current stack >>\n"); } else { for (I = 0; I < StackTraceSize; I++) { ULONG SourceLine; SymbolName[0] = '\0'; StackFrame = ReadPvoid(CurrentStackAddress); if (0 == StackFrame) break; GetSymbol(StackFrame, SymbolName, &SymbolOffset); if (I) { dprintf(" "); } if ((LONG64) SymbolOffset > 0 ) { dprintf ("%s+0x%X", SymbolName, (ULONG) SymbolOffset); } else { dprintf ("%X", (ULONG) StackFrame); } if (SUCCEEDED(g_ExtSymbols->lpVtbl->GetLineByOffset (g_ExtSymbols, StackFrame, &SourceLine, SymbolName, sizeof(SymbolName), NULL, &Displacement))) { dprintf (" [%s @ %d]", SymbolName, SourceLine); } dprintf ("\n"); CurrentStackAddress += PtrSize; } } dprintf("\n"); J++; ResourceNumber++; } while( J <= NumberOfParticipants && Participants[J].ResourceAddress != Participants[J-1].ResourceAddress); ThreadNumber++; ResourceNumber--; } } Status = S_OK; Exit: EXIT_API(); return Status; } VOID PrintGlobalStatistics ( ULONG64 GlobalsAddress ) { ULONG AllocationFailures; ULONG64 MemoryUsed; ULONG NodesTrimmed; ULONG MaxNodesSearched; ULONG SequenceNumber; // // Dump the globals structure // InitTypeRead (GlobalsAddress, verifier!_AVRF_DEADLOCK_GLOBALS); // // Print some simple statistics // dprintf ("Resources: %u\n", (ULONG) ReadField (Resources[0])); dprintf ("Nodes: %u\n", (ULONG) ReadField (Nodes[0])); dprintf ("Threads: %u\n", (ULONG) ReadField (Threads[0])); dprintf ("\n"); MemoryUsed = ReadField (BytesAllocated); if (MemoryUsed > 1024 * 1024) { dprintf ("%I64u bytes of kernel pool used.\n", MemoryUsed); } AllocationFailures = (ULONG) ReadField (AllocationFailures); if (AllocationFailures > 0) { dprintf ("Allocation failures encountered (%u).\n", AllocationFailures); } NodesTrimmed = (ULONG) ReadField (NodesTrimmedBasedOnAge); dprintf ("Nodes trimmed based on age %u.\n", NodesTrimmed); NodesTrimmed = (ULONG) ReadField (NodesTrimmedBasedOnCount); dprintf ("Nodes trimmed based on count %u.\n", NodesTrimmed); dprintf ("Analyze calls %u.\n", (ULONG) ReadField (SequenceNumber)); dprintf ("Maximum nodes searched %u.\n", (ULONG) ReadField (MaxNodesSearched)); } BOOLEAN SearchForResource ( ULONG64 GlobalsAddress, ULONG64 ResourceAddress ) { ULONG I; ULONG64 Bucket; ULONG64 SizeOfBucket; BOOLEAN ResourceFound = FALSE; ULONG64 SizeOfResource; ULONG FlinkOffset = 0; ULONG64 Current; ULONG64 CurrentResource; ULONG Magic; SizeOfBucket = GetTypeSize("LIST_ENTRY"); SizeOfResource = GetTypeSize("verifier!_AVRF_DEADLOCK_RESOURCE"); GetFieldOffset("verifier!_AVRF_DEADLOCK_RESOURCE", "HashChainList", &FlinkOffset); if (SizeOfBucket == 0 || SizeOfResource == 0 || FlinkOffset == 0) { dprintf ("Error: cannot get size for verifier types. \n"); return FALSE; } InitTypeRead (GlobalsAddress, verifier!_AVRF_DEADLOCK_GLOBALS); Bucket = ReadField (ResourceDatabase); if (Bucket == 0) { dprintf ("Error: cannot get resource database address. \n"); return FALSE; } for (I = 0; I < AVRF_DEADLOCK_HASH_BINS; I += 1) { // traverse it ... Current = ReadPvoid(Bucket); while (Current != Bucket) { InitTypeRead (Current - FlinkOffset, verifier!_AVRF_DEADLOCK_RESOURCE); CurrentResource = ReadField (ResourceAddress); if (CurrentResource == ResourceAddress || ResourceAddress == Current - FlinkOffset) { CurrentResource = Current - FlinkOffset; ResourceFound = TRUE; break; } Current = ReadPvoid(Current); if (CheckControlC()) { dprintf ("\nSearch interrupted ... \n"); return TRUE; } } if (ResourceFound) { break; } dprintf ("."); Bucket += SizeOfBucket; } dprintf ("\n"); if (ResourceFound == FALSE) { dprintf ("No resource correspoding to %p has been found. \n", ResourceAddress); } else { dprintf ("Found a deadlock verifier resource descriptor @ %p \n", CurrentResource); } return ResourceFound; } BOOLEAN SearchForThread ( ULONG64 GlobalsAddress, ULONG64 ThreadAddress ) { ULONG I; ULONG64 Bucket; ULONG64 SizeOfBucket; BOOLEAN ThreadFound = FALSE; ULONG64 SizeOfThread; ULONG FlinkOffset = 0; ULONG64 Current; ULONG64 CurrentThread; SizeOfBucket = GetTypeSize("LIST_ENTRY"); SizeOfThread = GetTypeSize("verifier!_AVRF_DEADLOCK_THREAD"); GetFieldOffset("verifier!_AVRF_DEADLOCK_THREAD", "ListEntry", &FlinkOffset); if (SizeOfBucket == 0 || SizeOfThread == 0 || FlinkOffset == 0) { dprintf ("Error: cannot get size for verifier types. \n"); return FALSE; } InitTypeRead (GlobalsAddress, verifier!_AVRF_DEADLOCK_GLOBALS); Bucket = ReadField (ThreadDatabase); if (Bucket == 0) { dprintf ("Error: cannot get thread database address. \n"); return FALSE; } for (I = 0; I < AVRF_DEADLOCK_HASH_BINS; I += 1) { // traverse it ... Current = ReadPvoid(Bucket); while (Current != Bucket) { InitTypeRead (Current - FlinkOffset, verifier!_AVRF_DEADLOCK_THREAD); CurrentThread = ReadField (ThreadAddress); if (CurrentThread == ThreadAddress || ThreadAddress == Current - FlinkOffset) { CurrentThread = Current - FlinkOffset; ThreadFound = TRUE; break; } Current = ReadPvoid(Current); if (CheckControlC()) { dprintf ("\nSearch interrupted ... \n"); return TRUE; } } if (ThreadFound) { break; } dprintf ("."); Bucket += SizeOfBucket; } dprintf ("\n"); if (ThreadFound == FALSE) { dprintf ("No thread correspoding to %p has been found. \n", ThreadAddress); } else { dprintf ("Found a deadlock verifier thread descriptor @ %p \n", CurrentThread); } return ThreadFound; } VOID DumpResourceStructure ( ) { } ULONG GetNodeLevel ( ULONG64 Node ) { ULONG Level = 0; while (Node != 0) { Level += 1; if (Level > 12) { dprintf ("Level > 12 !!! \n"); break; } InitTypeRead (Node, verifier!_AVRF_DEADLOCK_NODE); Node = ReadField (Parent); } return Level; } BOOLEAN AnalyzeResource ( ULONG64 Resource, BOOLEAN Verbose ) { ULONG64 Start; ULONG64 Current; ULONG64 Node; ULONG64 Parent; ULONG FlinkOffset; ULONG RootsCount = 0; ULONG NodesCount = 0; ULONG Levels[8]; ULONG ResourceFlinkOffset; ULONG I; ULONG Level; ULONG NodeCounter = 0; ZeroMemory (Levels, sizeof Levels); GetFieldOffset("verifier!_AVRF_DEADLOCK_NODE", "ResourceList", &FlinkOffset); GetFieldOffset("verifier!_AVRF_DEADLOCK_RESOURCE", "ResourceList", &ResourceFlinkOffset); InitTypeRead (Resource, verifier!_AVRF_DEADLOCK_RESOURCE); if (! Verbose) { if (ReadField(NodeCount) < 4) { return TRUE; } dprintf ("Resource (%p) : %I64u %I64u %I64u ", Resource, ReadField(Type), ReadField(NodeCount), ReadField(RecursionCount)); } Start = Resource + ResourceFlinkOffset; Current = ReadPvoid (Start); while (Start != Current) { Node = Current - FlinkOffset; Level = (GetNodeLevel(Node) - 1) % 8; Levels[Level] += 1; NodesCount += 1; if (NodesCount && NodesCount % 1000 == 0) { dprintf ("."); } Current = ReadPvoid (Current); if (CheckControlC()) { return FALSE; } } dprintf ("["); for (I = 0; I < 8; I += 1) { dprintf ("%u ", Levels[I]); } dprintf ("]\n"); return TRUE; } BOOLEAN AnalyzeResources ( ULONG64 GlobalsAddress ) /*++ This routine analyzes all resource to make sure we do not have zombie nodes laying around. --*/ { ULONG I; ULONG64 Bucket; ULONG64 SizeOfBucket; ULONG64 SizeOfResource; ULONG FlinkOffset = 0; ULONG64 Current; ULONG64 CurrentResource; ULONG Magic; BOOLEAN Finished; ULONG ResourceCount = 0; dprintf ("Analyzing resources (%p) ... \n", GlobalsAddress); SizeOfBucket = GetTypeSize("LIST_ENTRY"); SizeOfResource = GetTypeSize("verifier!_AVRF_DEADLOCK_RESOURCE"); GetFieldOffset("verifier!_AVRF_DEADLOCK_RESOURCE", "HashChainList", &FlinkOffset); if (SizeOfBucket == 0 || SizeOfResource == 0 || FlinkOffset == 0) { dprintf ("Error: cannot get size for verifier types. \n"); return FALSE; } InitTypeRead (GlobalsAddress, verifier!_AVRF_DEADLOCK_GLOBALS); Bucket = ReadField (ResourceDatabase); if (Bucket == 0) { dprintf ("Error: cannot get resource database address. \n"); return FALSE; } for (I = 0; I < AVRF_DEADLOCK_HASH_BINS; I += 1) { // traverse it ... Current = ReadPvoid(Bucket); while (Current != Bucket) { Finished = AnalyzeResource (Current - FlinkOffset, FALSE); ResourceCount += 1; if (ResourceCount % 256 == 0) { dprintf (".\n"); } Current = ReadPvoid(Current); if (CheckControlC() || !Finished) { dprintf ("\nSearch interrupted ... \n"); return TRUE; } } Bucket += SizeOfBucket; } return TRUE; }