/**************************************************************************\ * * * * * * * # # ##### * * # # # # # * * # # # # # # # * * # ### ### # # * * # # ### # # # ### # # ### ##### # ### ### ### * * # ## # # # ## # # # # # # ## # # # * * # # # # # # # # # ##### # # ##### # * * # # # # # # # # # # # # # # ## * * # # # # # # # # # ### # # ### ### ## * * * * * * Infinte Precision Production Version * * * \**************************************************************************/ // // RETAIL version of NUMOBJ math that uses Infinite Precision // #include "..\ratpak\ratpak.h" #define HNUMOBJ PRAT typedef HNUMOBJ * PHNUMOBJ; // // Memory Alloc functions // #define NumObjAllocMem( cb ) zmalloc( cb ) #define NumObjFreeMem( h ) zfree( h ),(h=NULL) // // Unary functions // void NumObjInvert( PHNUMOBJ phno ); #define NumObjNegate( phno ) ( ((PRAT)*phno)->pp->sign= -(((PRAT)*phno)->pp->sign) ) #define NumObjAbs( phno ) ( ((PRAT)*phno)->pp->sign=1, ((PRAT)*phno)->pq->sign=1 ) extern void NumObjSin( PHNUMOBJ phno ); extern void NumObjCos( PHNUMOBJ phno ); extern void NumObjTan( PHNUMOBJ phno ); extern void NumObjAntiLog10( PHNUMOBJ phno ); extern void NumObjNot( PHNUMOBJ phno ); // // Comparison functions // #define NumObjIsZero( hno ) zerrat( hno ) #define NumObjIsLess( hno1, hno2 ) rat_lt( hno1, hno2 ) #define NumObjIsLessEq( hno1, hno2 ) rat_le( hno1, hno2 ) #define NumObjIsGreaterEq( hno1, hno2 ) rat_ge( hno1, hno2 ) #define NumObjIsEq( hno1, hno2 ) rat_equ(hno1, hno2 ) // // Assignment operator. ('=' in C language) // #define NumObjAssign( phnol, hnor ) if (1) { DUPRAT( (*phnol), hnor ); } else // // Data type conversion functions // void NumObjSetIntValue( PHNUMOBJ phnol, LONG i ); // // NumObjMakeNumber // // HNUMOBJ NumObjMakeNumber( LPTSTR psz ); // // Converts psz to a number and returns it. Call NumObjDestroy() // when you are done using the returned NumObj. // #define NumObjMakeNumber( fMantNeg, pszMant, fExpNeg, pszExp ) inrat( fMantNeg, pszMant, fExpNeg, pszExp ) // // NumObjGetSzValue // // void NumObjGetSzValue( LPTSTR *ppszNum, int* pcchNum, HNUMOBJ hnoNum, INT nRadix, NUMOBJ_FMT gafmt ); // // Converts hnoNum to a string and places the pointer into *ppszNum. If *ppszNum already points // to a string, then that string is freed. // // NOTES: *ppszNum must either be NULL or point to a string previously returned by this function! // If you wish to free the string without replacing it. You MUST use the NumObjFreeMem() function! // void NumObjGetSzValue( LPTSTR *ppszNum, int* pcchNum, HNUMOBJ hnoNum, INT nRadix, NUMOBJ_FMT gafmt ); // // GetObjGetExp // // returns an int that equals the exponent of the NumObj // #define NumObjGetExp( hno ) LOGRATRADIX(hno) // // NumObjCvtEpsilonToZero // // if the input is < 1*10^(-nPrecision), then it gets set to zero // useful for special cases in ln, log, and sin, and cos // #define NumObjCvtEpsilonToZero( phno ) //#define NumObjCvtEpsilonToZero( phno ) if ( NumObjGetExp( *phno ) <= -nPrecision ) { NumObjAssign( phno, HNO_ZERO );} else // // NumObjAbortOperation( fAbort ) // // If called with fAbort==TRUE, it will cause RATPAK to abort the current calculation and to return // immeadiatly. // // It MUST be called again with fAbort=FALSE after ratpak has aborted to reset ratpak. // #define NumObjAbortOperation( fAbort ) (fhalt=fAbort) #define NumObjWasAborted() (fhalt) // // NumObjOK( hno ) // // returns TRUE if the HNUMOBJ is valid (ie created and initialized) // // Used to check the HNUMOBJ returned from NumObjMakeNumber and NumObjCreate // # define NumObjOK( hno ) ((hno) == NULL ? FALSE : TRUE) // // NumObjDestroy( hno ) // // call this when you nolonger need the NumObj. Failure to do so // will result in memory leaks. // # define NumObjDestroy( phno ) destroyrat( (*(phno)) ) // // DECLARE_HNUMOBJ( hno ) // // Use this macro when ever you want to declare a local variable. // # define DECLARE_HNUMOBJ( hno ) HNUMOBJ hno = NULL // // Useful Constants. These have to be recomputed after a base or precision change. // void BaseOrPrecisionChanged( void ); #define HNO_ZERO rat_zero #define HNO_ONE_OVER_TWO rat_half #define HNO_ONE rat_one #define HNO_TWO rat_two #define HNO_180_OVER_PI rad_to_deg #define HNO_200_OVER_PI rad_to_grad #define HNO_2PI two_pi #define HNO_PI pi #define HNO_PI_OVER_TWO pi_over_two #define HNO_THREE_PI_OVER_TWO one_pt_five_pi