//*************************************************************************** // // Copyright © Microsoft Corporation. All rights reserved. // // chptrarr.cpp // // Purpose: Non-MFC CPtrArray class implementation // //*************************************************************************** //================================================================= // NOTE: we allocate an array of 'm_nMaxSize' elements, but only // the current size 'm_nSize' contains properly constructed // objects. //=============================================================== #include "precomp.h" #pragma warning( disable : 4290 ) #include #include #include CHPtrArray::CHPtrArray () : m_pData ( NULL ) , m_nSize ( 0 ) , m_nMaxSize ( 0 ) , m_nGrowBy ( 0 ) { } CHPtrArray::~CHPtrArray() { if ( m_pData ) { delete [] (BYTE*) m_pData ; } } void CHPtrArray::SetSize(int nNewSize, int nGrowBy) { ASSERT_BREAK(nNewSize >= 0) ; if (nGrowBy != -1) { m_nGrowBy = nGrowBy ; // set new size } if (nNewSize == 0) { // shrink to nothing delete[] (BYTE*)m_pData ; m_pData = NULL ; m_nSize = m_nMaxSize = 0 ; } else if (m_pData == NULL) { // create one with exact size m_pData = (void**) new BYTE[nNewSize * sizeof(void*)] ; if ( m_pData ) { memset(m_pData, 0, nNewSize * sizeof(void*)) ; // zero fill m_nSize = m_nMaxSize = nNewSize ; } else { throw CHeap_Exception ( CHeap_Exception :: E_ALLOCATION_ERROR ) ; } } else if (nNewSize <= m_nMaxSize) { // it fits if (nNewSize > m_nSize) { // initialize the new elements memset(&m_pData[m_nSize], 0, (nNewSize-m_nSize) * sizeof(void*)) ; } m_nSize = nNewSize ; } else { // otherwise, grow array int nGrowBy = m_nGrowBy ; if (nGrowBy == 0) { // heuristically determine growth when nGrowBy == 0 // (this avoids heap fragmentation in many situations) nGrowBy = min(1024, max(4, m_nSize / 8)) ; } int nNewMax ; if (nNewSize < m_nMaxSize + nGrowBy) { nNewMax = m_nMaxSize + nGrowBy ; // granularity } else { nNewMax = nNewSize ; // no slush } ASSERT_BREAK(nNewMax >= m_nMaxSize) ; // no wrap around void** pNewData = (void**) new BYTE[nNewMax * sizeof(void*)] ; if ( pNewData ) { // copy new data from old memcpy(pNewData, m_pData, m_nSize * sizeof(void*)) ; // construct remaining elements ASSERT_BREAK(nNewSize > m_nSize) ; memset(&pNewData[m_nSize], 0, (nNewSize-m_nSize) * sizeof(void*)) ; // get rid of old stuff (note: no destructors called) delete[] (BYTE*)m_pData ; m_pData = pNewData ; m_nSize = nNewSize ; m_nMaxSize = nNewMax ; } else { throw CHeap_Exception ( CHeap_Exception :: E_ALLOCATION_ERROR ) ; } } } int CHPtrArray::Append(const CHPtrArray& src) { ASSERT_BREAK(this != &src) ; // cannot append to itself int nOldSize = m_nSize ; SetSize(m_nSize + src.m_nSize) ; memcpy(m_pData + nOldSize, src.m_pData, src.m_nSize * sizeof(void*)) ; return nOldSize ; } void CHPtrArray::Copy(const CHPtrArray& src) { ASSERT_BREAK(this != &src) ; // cannot append to itself SetSize(src.m_nSize) ; memcpy(m_pData, src.m_pData, src.m_nSize * sizeof(void*)) ; } void CHPtrArray::FreeExtra() { if (m_nSize != m_nMaxSize) { // shrink to desired size void** pNewData = NULL ; if (m_nSize != 0) { pNewData = (void**) new BYTE[m_nSize * sizeof(void*)] ; if ( pNewData ) { // copy new data from old memcpy(pNewData, m_pData, m_nSize * sizeof(void*)) ; } else { throw CHeap_Exception ( CHeap_Exception :: E_ALLOCATION_ERROR ) ; } } // get rid of old stuff (note: no destructors called) delete[] (BYTE*)m_pData ; m_pData = pNewData ; m_nMaxSize = m_nSize ; } } ///////////////////////////////////////////////////////////////////////////// void CHPtrArray::SetAtGrow(int nIndex, void* newElement) { ASSERT_BREAK(nIndex >= 0) ; if (nIndex >= m_nSize) { SetSize(nIndex+1) ; } m_pData[nIndex] = newElement ; } void CHPtrArray::InsertAt(int nIndex, void* newElement, int nCount) { ASSERT_BREAK(nIndex >= 0) ; // will expand to meet need ASSERT_BREAK(nCount > 0) ; // zero or negative size not allowed if (nIndex >= m_nSize) { // adding after the end of the array SetSize(nIndex + nCount) ; // grow so nIndex is valid } else { // inserting in the middle of the array int nOldSize = m_nSize ; SetSize(m_nSize + nCount) ; // grow it to new size // shift old data up to fill gap memmove(&m_pData[nIndex+nCount], &m_pData[nIndex], (nOldSize-nIndex) * sizeof(void*)) ; // re-init slots we copied from memset(&m_pData[nIndex], 0, nCount * sizeof(void*)) ; } // insert new value in the gap ASSERT_BREAK(nIndex + nCount <= m_nSize) ; while (nCount--) { m_pData[nIndex++] = newElement ; } } void CHPtrArray::RemoveAt(int nIndex, int nCount) { ASSERT_BREAK(nIndex >= 0) ; ASSERT_BREAK(nCount >= 0) ; ASSERT_BREAK(nIndex + nCount <= m_nSize) ; // just remove a range int nMoveCount = m_nSize - (nIndex + nCount) ; if (nMoveCount) { memcpy(&m_pData[nIndex], &m_pData[nIndex + nCount], nMoveCount * sizeof(void*)) ; } m_nSize -= nCount ; } void CHPtrArray::InsertAt(int nStartIndex, CHPtrArray* pNewArray) { ASSERT_BREAK(pNewArray != NULL) ; ASSERT_BREAK(nStartIndex >= 0) ; if (pNewArray->GetSize() > 0) { InsertAt(nStartIndex, pNewArray->GetAt(0), pNewArray->GetSize()) ; for (int i = 0 ; i < pNewArray->GetSize() ; i++) { SetAt(nStartIndex + i, pNewArray->GetAt(i)) ; } } } // Inline functions (from CArray) //=============================== inline int CHPtrArray::GetSize() const { return m_nSize ; } inline int CHPtrArray::GetUpperBound() const { return m_nSize-1 ; } inline void CHPtrArray::RemoveAll() { SetSize(0, -1) ; return ; } inline void *CHPtrArray::GetAt(int nIndex) const { ASSERT_BREAK(nIndex >= 0 && nIndex < m_nSize) ; return m_pData[nIndex] ; } inline void CHPtrArray::SetAt(int nIndex, void * newElement) { ASSERT_BREAK(nIndex >= 0 && nIndex < m_nSize) ; m_pData[nIndex] = newElement ; return ; } inline void *&CHPtrArray::ElementAt(int nIndex) { ASSERT_BREAK(nIndex >= 0 && nIndex < m_nSize) ; return m_pData[nIndex] ; } inline const void **CHPtrArray::GetData() const { return (const void **) m_pData ; } inline void **CHPtrArray::GetData() { return (void **) m_pData ; } inline int CHPtrArray::Add(void *newElement) { int nIndex = m_nSize ; SetAtGrow(nIndex, newElement) ; return nIndex ; } inline void *CHPtrArray::operator[](int nIndex) const { return GetAt(nIndex) ; } inline void *&CHPtrArray::operator[](int nIndex) { return ElementAt(nIndex) ; } // Diagnostics //============ #ifdef _DEBUG void CHPtrArray::AssertValid() const { if (m_pData == NULL) { ASSERT_BREAK(m_nSize == 0) ; ASSERT_BREAK(m_nMaxSize == 0) ; } else { ASSERT_BREAK(m_nSize >= 0) ; ASSERT_BREAK(m_nMaxSize >= 0) ; ASSERT_BREAK(m_nSize <= m_nMaxSize) ; } } #endif //_DEBUG