/*++ Copyright (c) 1989-2001 Microsoft Corporation Module Name: sysinfo.c Abstract: This module implements the NT set and query system information services. Author: Steve Wood (stevewo) 21-Aug-1989 Environment: Kernel mode only. Revision History: --*/ #include "exp.h" #pragma hdrstop #include "stdlib.h" #include "string.h" #include "vdmntos.h" #include #include "pool.h" #include "stktrace.h" #include "align.h" #if defined(_WIN64) #include #endif extern ULONG MmAvailablePages; extern ULONG MmSystemCodePage; extern ULONG MmSystemCachePage; extern ULONG MmPagedPoolPage; extern ULONG MmSystemDriverPage; extern ULONG MmTotalSystemCodePages; extern ULONG MmTotalSystemDriverPages; extern ULONG MmStandbyRePurposed; extern RTL_TIME_ZONE_INFORMATION ExpTimeZoneInformation; // // For SystemDpcBehaviorInformation // extern ULONG KiMaximumDpcQueueDepth; extern ULONG KiMinimumDpcRate; extern ULONG KiAdjustDpcThreshold; extern ULONG KiIdealDpcRate; extern LIST_ENTRY MmLoadedUserImageList; extern MMSUPPORT MmSystemCacheWs; extern PFN_NUMBER MmTransitionSharedPages; extern PFN_NUMBER MmTransitionSharedPagesPeak; #define ROUND_UP(VALUE,ROUND) ((ULONG)(((ULONG)VALUE + \ ((ULONG)ROUND - 1L)) & (~((ULONG)ROUND - 1L)))) // // For referencing a user-supplied event handle // extern POBJECT_TYPE ExEventObjectType; // // Watchdog Handler // PWD_HANDLER ExpWdHandler = NULL; PVOID ExpWdHandlerContext = NULL; // // COM+ Package Install Status // const static UNICODE_STRING KeyName = RTL_CONSTANT_STRING (COMPLUS_PACKAGE_KEYPATH); static UNICODE_STRING KeyValueName = RTL_CONSTANT_STRING (COMPLUS_PACKAGE_ENABLE64BIT); NTSTATUS ExpValidateLocale( IN LCID LocaleId ); BOOLEAN ExpIsValidUILanguage( IN WCHAR *pLangId ); NTSTATUS ExpGetCurrentUserUILanguage( IN WCHAR *ValueName, OUT LANGID *CurrentUserUILanguageId, IN BOOLEAN bCheckGP ); NTSTATUS ExpSetCurrentUserUILanguage( IN WCHAR *ValueName, IN LANGID DefaultUILanguageId ); NTSTATUS ExpGetUILanguagePolicy( IN HANDLE CurrentUserKey, OUT LANGID *PolicyUILanguageId ); NTSTATUS ExpGetProcessInformation ( OUT PVOID SystemInformation, IN ULONG SystemInformationLength, OUT PULONG Length, IN PULONG SessionId OPTIONAL, IN BOOLEAN ExtendedInformation ); NTSTATUS ExGetSessionPoolTagInformation ( OUT PVOID SystemInformation, IN ULONG SystemInformationLength, OUT PULONG Length, IN PULONG SessionId ); VOID ExpGetProcessorIdleInformation ( OUT PVOID SystemInformation, IN ULONG SystemInformationLength, OUT PULONG Length ); VOID ExpGetProcessorPowerInformation ( OUT PVOID SystemInformation, IN ULONG SystemInformationLength, OUT PULONG Length ); VOID ExpCopyProcessInfo ( IN PSYSTEM_PROCESS_INFORMATION ProcessInfo, IN PEPROCESS Process, IN BOOLEAN ExtendedInformation ); VOID ExpCopyThreadInfo ( IN PVOID ThreadInfoBuffer, IN PETHREAD Thread, IN BOOLEAN ExtendedInformation ); #if i386 NTSTATUS ExpGetStackTraceInformation ( OUT PVOID SystemInformation, IN ULONG SystemInformationLength, OUT PULONG Length ); #endif // i386 NTSTATUS ExpGetLockInformation ( OUT PVOID SystemInformation, IN ULONG SystemInformationLength, OUT PULONG Length ); NTSTATUS ExpGetLookasideInformation ( OUT PVOID Buffer, IN ULONG BufferLength, OUT PULONG Length ); NTSTATUS ExpGetHandleInformation( OUT PVOID SystemInformation, IN ULONG SystemInformationLength, OUT PULONG Length ); NTSTATUS ExpGetHandleInformationEx( OUT PVOID SystemInformation, IN ULONG SystemInformationLength, OUT PULONG Length ); NTSTATUS ExpGetObjectInformation( OUT PVOID SystemInformation, IN ULONG SystemInformationLength, OUT PULONG Length ); NTSTATUS ExpGetInstemulInformation( OUT PSYSTEM_VDM_INSTEMUL_INFO Info ); NTSTATUS ExGetPoolTagInfo ( IN PVOID SystemInformation, IN ULONG SystemInformationLength, IN OUT PULONG ReturnLength OPTIONAL ); NTSTATUS ExGetSessionPoolTagInfo ( IN PVOID SystemInformation, IN ULONG SystemInformationLength, IN OUT PULONG ReturnedEntries, IN OUT PULONG ActualEntries ); NTSTATUS ExGetBigPoolInfo ( IN PVOID SystemInformation, IN ULONG SystemInformationLength, IN OUT PULONG ReturnLength OPTIONAL ); NTSTATUS ExpQueryModuleInformation( IN PLIST_ENTRY LoadOrderListHead, IN PLIST_ENTRY UserModeLoadOrderListHead, OUT PRTL_PROCESS_MODULES ModuleInformation, IN ULONG ModuleInformationLength, OUT PULONG ReturnLength OPTIONAL ); NTSTATUS ExpQueryLegacyDriverInformation( IN PSYSTEM_LEGACY_DRIVER_INFORMATION LegacyInfo, IN PULONG Length ); NTSTATUS ExpQueryNumaProcessorMap( OUT PVOID SystemInformation, IN ULONG SystemInformationLength, OUT PULONG ReturnedLength ); NTSTATUS ExpQueryNumaAvailableMemory( OUT PVOID SystemInformation, IN ULONG SystemInformationLength, OUT PULONG ReturnedLength ); #if defined(ALLOC_PRAGMA) #pragma alloc_text(PAGE, NtQueryDefaultLocale) #pragma alloc_text(PAGE, NtSetDefaultLocale) #pragma alloc_text(PAGE, NtQueryInstallUILanguage) #pragma alloc_text(PAGE, NtQueryDefaultUILanguage) #pragma alloc_text(PAGE, ExpGetCurrentUserUILanguage) #pragma alloc_text(PAGE, NtSetDefaultUILanguage) #pragma alloc_text(PAGE, ExpSetCurrentUserUILanguage) #pragma alloc_text(PAGE, ExpValidateLocale) #pragma alloc_text(PAGE, ExpGetUILanguagePolicy) #pragma alloc_text(PAGE, NtQuerySystemInformation) #pragma alloc_text(PAGE, NtSetSystemInformation) #pragma alloc_text(PAGE, ExpGetHandleInformation) #pragma alloc_text(PAGE, ExpGetHandleInformationEx) #pragma alloc_text(PAGE, ExpGetObjectInformation) #pragma alloc_text(PAGE, ExpQueryModuleInformation) #pragma alloc_text(PAGE, ExpCopyProcessInfo) #pragma alloc_text(PAGE, ExpQueryLegacyDriverInformation) #pragma alloc_text(PAGE, ExLockUserBuffer) #pragma alloc_text(PAGE, ExpQueryNumaAvailableMemory) #pragma alloc_text(PAGE, ExpQueryNumaProcessorMap) #pragma alloc_text(PAGE, ExpReadComPlusPackage) #pragma alloc_text(PAGE, ExpUpdateComPlusPackage) #pragma alloc_text(PAGE, ExGetSessionPoolTagInformation) #pragma alloc_text(PAGELK, ExpGetLockInformation) #pragma alloc_text(PAGELK, ExpGetProcessorPowerInformation) #pragma alloc_text(PAGELK, ExpGetProcessorIdleInformation) #pragma alloc_text(PAGE, ExpIsValidUILanguage) #endif NTSTATUS ExpReadComPlusPackage( VOID ) /*++ Routine Description: This function reads the status of the 64-bit COM+ package from the registry and stick it inside the shared page. Arguments: None. Return Value: NTSTATUS. --*/ { NTSTATUS Status; static OBJECT_ATTRIBUTES ObjectAttributes = RTL_CONSTANT_OBJECT_ATTRIBUTES (&KeyName, OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE); CHAR KeyValueBuffer[sizeof(KEY_VALUE_PARTIAL_INFORMATION) + sizeof(ULONG)]; PKEY_VALUE_PARTIAL_INFORMATION KeyValueInformation; ULONG ResultLength; HANDLE Key; Status = ZwOpenKey (&Key, GENERIC_READ, &ObjectAttributes); if (NT_SUCCESS (Status)) { KeyValueInformation = (PKEY_VALUE_PARTIAL_INFORMATION)KeyValueBuffer; Status = ZwQueryValueKey (Key, &KeyValueName, KeyValuePartialInformation, KeyValueInformation, sizeof (KeyValueBuffer), &ResultLength); if (NT_SUCCESS (Status)) { if ((KeyValueInformation->Type == REG_DWORD) && (KeyValueInformation->DataLength == sizeof(ULONG))) { SharedUserData->ComPlusPackage = *(PULONG)KeyValueInformation->Data; } } ZwClose (Key); } return Status; } NTSTATUS ExpUpdateComPlusPackage( IN ULONG ComPlusPackageStatus ) /*++ Routine Description: This function updates the COM+ runtime package status on the system. The package status indicates whether the 64-bit or the 32-bit runtime should be used when executing IL_ONLY COM+ images. Arguments: ComPlusPackageStatus - COM+ Runtime package status on the system Return Value: NTSTATUS --*/ { NTSTATUS Status; static OBJECT_ATTRIBUTES ObjectAttributes = RTL_CONSTANT_OBJECT_ATTRIBUTES (&KeyName, OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE | OBJ_FORCE_ACCESS_CHECK); ULONG Disposition; HANDLE Key; Status = ZwOpenKey (&Key, GENERIC_WRITE, &ObjectAttributes ); if (Status == STATUS_OBJECT_NAME_NOT_FOUND) { Status = ZwCreateKey (&Key, GENERIC_WRITE, &ObjectAttributes, 0, NULL, REG_OPTION_NON_VOLATILE, &Disposition ); } if (NT_SUCCESS (Status)) { Status = ZwSetValueKey (Key, &KeyValueName, 0, REG_DWORD, &ComPlusPackageStatus, sizeof(ULONG)); ZwClose (Key); } return Status; } NTSTATUS NtQueryDefaultLocale ( IN BOOLEAN UserProfile, OUT PLCID DefaultLocaleId ) { KPROCESSOR_MODE PreviousMode; NTSTATUS Status; PAGED_CODE(); Status = STATUS_SUCCESS; try { // // Get previous processor mode and probe output argument if necessary. // PreviousMode = KeGetPreviousMode(); if (PreviousMode != KernelMode) { ProbeForWriteUlong ((PULONG)DefaultLocaleId); } if (UserProfile) { *DefaultLocaleId = MmGetSessionLocaleId (); } else { *DefaultLocaleId = PsDefaultSystemLocaleId; } } except (EXCEPTION_EXECUTE_HANDLER) { Status = GetExceptionCode(); } return Status; } NTSTATUS NtSetDefaultLocale ( IN BOOLEAN UserProfile, IN LCID DefaultLocaleId ) { NTSTATUS Status; OBJECT_ATTRIBUTES ObjectAttributes; UNICODE_STRING KeyPath, KeyValueName; HANDLE CurrentUserKey, Key; WCHAR KeyValueBuffer[ 128 ]; PKEY_VALUE_PARTIAL_INFORMATION KeyValueInformation; ULONG ResultLength; PWSTR s; ULONG n, i, Digit; WCHAR c; ULONG Flags; PAGED_CODE(); if (DefaultLocaleId & 0xFFFF0000) { return STATUS_INVALID_PARAMETER; } KeyValueInformation = (PKEY_VALUE_PARTIAL_INFORMATION)KeyValueBuffer; if (UserProfile) { Status = RtlOpenCurrentUser( KEY_ENUMERATE_SUB_KEYS, &CurrentUserKey ); if (!NT_SUCCESS( Status )) { return Status; } RtlInitUnicodeString( &KeyValueName, L"Locale" ); RtlInitUnicodeString( &KeyPath, L"Control Panel\\International" ); Flags = OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE | OBJ_FORCE_ACCESS_CHECK; } else { RtlInitUnicodeString( &KeyValueName, L"Default" ); RtlInitUnicodeString( &KeyPath, L"\\Registry\\Machine\\System\\CurrentControlSet\\Control\\Nls\\Language" ); CurrentUserKey = NULL; Flags = OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE; } InitializeObjectAttributes (&ObjectAttributes, &KeyPath, Flags, CurrentUserKey, NULL); if (DefaultLocaleId == 0) { Status = ZwOpenKey (&Key, GENERIC_READ, &ObjectAttributes); if (NT_SUCCESS( Status )) { Status = ZwQueryValueKey( Key, &KeyValueName, KeyValuePartialInformation, KeyValueInformation, sizeof( KeyValueBuffer ), &ResultLength ); if (NT_SUCCESS( Status )) { if (KeyValueInformation->Type == REG_SZ) { s = (PWSTR)KeyValueInformation->Data; for (i=0; iDataLength; i += sizeof( WCHAR )) { c = *s++; if (c >= L'0' && c <= L'9') { Digit = c - L'0'; } else if (c >= L'A' && c <= L'F') { Digit = c - L'A' + 10; } else if (c >= L'a' && c <= L'f') { Digit = c - L'a' + 10; } else { break; } if (Digit >= 16) { break; } DefaultLocaleId = (DefaultLocaleId << 4) | Digit; } } else { if (KeyValueInformation->Type == REG_DWORD && KeyValueInformation->DataLength == sizeof( ULONG )) { DefaultLocaleId = *(PLCID)KeyValueInformation->Data; } else { Status = STATUS_UNSUCCESSFUL; } } } ZwClose( Key ); } } else { Status = ExpValidateLocale( DefaultLocaleId ); if (NT_SUCCESS(Status)) { Status = ZwOpenKey( &Key, GENERIC_WRITE, &ObjectAttributes ); if (NT_SUCCESS( Status )) { if (UserProfile) { n = 8; } else { n = 4; } s = &KeyValueBuffer[ n ]; *s-- = UNICODE_NULL; i = (ULONG)DefaultLocaleId; while (s >= KeyValueBuffer) { Digit = i & 0x0000000F; if (Digit <= 9) { *s-- = (WCHAR)(Digit + L'0'); } else { *s-- = (WCHAR)((Digit - 10) + L'A'); } i = i >> 4; } Status = ZwSetValueKey( Key, &KeyValueName, 0, REG_SZ, KeyValueBuffer, (n+1) * sizeof( WCHAR ) ); ZwClose( Key ); } } } ZwClose( CurrentUserKey ); if (NT_SUCCESS( Status )) { if (UserProfile) { MmSetSessionLocaleId (DefaultLocaleId); } else { PsDefaultSystemLocaleId = DefaultLocaleId; } } return Status; } NTSTATUS NtQueryInstallUILanguage( OUT LANGID *InstallUILanguageId ) { KPROCESSOR_MODE PreviousMode; NTSTATUS Status; PAGED_CODE(); Status = STATUS_SUCCESS; try { // // Get previous processor mode and probe output argument if necessary. // PreviousMode = KeGetPreviousMode(); if (PreviousMode != KernelMode) { ProbeForWriteUshort( (USHORT *)InstallUILanguageId ); } *InstallUILanguageId = PsInstallUILanguageId; } except (EXCEPTION_EXECUTE_HANDLER) { Status = GetExceptionCode(); } return Status; } NTSTATUS NtQueryDefaultUILanguage( OUT LANGID *DefaultUILanguageId ) { KPROCESSOR_MODE PreviousMode; NTSTATUS Status; PAGED_CODE(); Status = STATUS_SUCCESS; try { // // Get previous processor mode and probe output argument if necessary. // PreviousMode = KeGetPreviousMode(); if (PreviousMode != KernelMode) { ProbeForWriteUshort( (USHORT *)DefaultUILanguageId ); } // // Read the UI language from the current security context. // if (!NT_SUCCESS(ExpGetCurrentUserUILanguage( L"MultiUILanguageId", DefaultUILanguageId, TRUE))) { *DefaultUILanguageId = PsInstallUILanguageId; } } except (EXCEPTION_EXECUTE_HANDLER) { Status = GetExceptionCode(); } return Status; } NTSTATUS ExpGetUILanguagePolicy( IN HANDLE CurrentUserKey, OUT LANGID *PolicyUILanguageId ) { NTSTATUS Status; OBJECT_ATTRIBUTES ObjectAttributes; UNICODE_STRING KeyPath, KeyValueName; HANDLE Key; WCHAR KeyValueBuffer[ 128 ]; PKEY_VALUE_PARTIAL_INFORMATION KeyValueInformation; ULONG ResultLength; ULONG Language; PAGED_CODE(); KeyValueInformation = (PKEY_VALUE_PARTIAL_INFORMATION)KeyValueBuffer; RtlInitUnicodeString( &KeyValueName, L"MultiUILanguageId" ); RtlInitUnicodeString( &KeyPath, L"Software\\Policies\\Microsoft\\Control Panel\\Desktop" ); InitializeObjectAttributes( &ObjectAttributes, &KeyPath, (OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE), CurrentUserKey, NULL ); // // Check if there is a Policy key // Status = ZwOpenKey( &Key, GENERIC_READ, &ObjectAttributes ); if (NT_SUCCESS( Status )) { Status = ZwQueryValueKey( Key, &KeyValueName, KeyValuePartialInformation, KeyValueInformation, sizeof( KeyValueBuffer ), &ResultLength ); if (NT_SUCCESS( Status )) { if ((KeyValueInformation->DataLength > 2) && (KeyValueInformation->Type == REG_SZ) && ExpIsValidUILanguage((PWSTR) KeyValueInformation->Data)) { RtlInitUnicodeString( &KeyValueName, (PWSTR) KeyValueInformation->Data ); Status = RtlUnicodeStringToInteger( &KeyValueName, (ULONG)16, &Language ); // // Final check to make sure this is an MUI system // if (NT_SUCCESS( Status )) { *PolicyUILanguageId = (LANGID)Language; } } else { Status = STATUS_UNSUCCESSFUL; } } ZwClose( Key ); } return Status; } NTSTATUS ExpSetCurrentUserUILanguage( IN WCHAR *ValueName, IN LANGID CurrentUserUILanguage ) { NTSTATUS Status; OBJECT_ATTRIBUTES ObjectAttributes; UNICODE_STRING KeyPath, KeyValueName; HANDLE CurrentUserKey, Key; WCHAR KeyValueBuffer[ 128 ]; PKEY_VALUE_PARTIAL_INFORMATION KeyValueInformation; PWSTR s; ULONG i, Digit; PAGED_CODE(); if (CurrentUserUILanguage & 0xFFFF0000) { return STATUS_INVALID_PARAMETER; } KeyValueInformation = (PKEY_VALUE_PARTIAL_INFORMATION)KeyValueBuffer; Status = RtlOpenCurrentUser( KEY_ENUMERATE_SUB_KEYS, &CurrentUserKey ); if (!NT_SUCCESS( Status )) { return Status; } RtlInitUnicodeString( &KeyValueName, ValueName ); RtlInitUnicodeString( &KeyPath, L"Control Panel\\Desktop" ); InitializeObjectAttributes( &ObjectAttributes, &KeyPath, (OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE | OBJ_FORCE_ACCESS_CHECK), CurrentUserKey, NULL ); Status = ExpValidateLocale( MAKELCID( CurrentUserUILanguage, SORT_DEFAULT ) ); if (NT_SUCCESS(Status)) { Status = ZwOpenKey( &Key, GENERIC_WRITE, &ObjectAttributes ); if (NT_SUCCESS( Status )) { s = &KeyValueBuffer[ 8 ]; *s-- = UNICODE_NULL; i = (ULONG)CurrentUserUILanguage; while (s >= KeyValueBuffer) { Digit = i & 0x0000000F; if (Digit <= 9) { *s-- = (WCHAR)(Digit + L'0'); } else { *s-- = (WCHAR)((Digit - 10) + L'A'); } i = i >> 4; } Status = ZwSetValueKey( Key, &KeyValueName, 0, REG_SZ, KeyValueBuffer, 9 * sizeof( WCHAR ) ); ZwClose( Key ); } } ZwClose( CurrentUserKey ); return Status; } NTSTATUS ExpGetCurrentUserUILanguage( IN WCHAR *ValueName, OUT LANGID *CurrentUserUILanguageId, IN BOOLEAN bCheckGP ) { NTSTATUS Status; OBJECT_ATTRIBUTES ObjectAttributes; UNICODE_STRING KeyPath, KeyValueName, UILanguage; HANDLE CurrentUserKey, Key; WCHAR KeyValueBuffer[ 128 ]; PKEY_VALUE_PARTIAL_INFORMATION KeyValueInformation; ULONG ResultLength; ULONG Digit; PAGED_CODE(); KeyValueInformation = (PKEY_VALUE_PARTIAL_INFORMATION)KeyValueBuffer; Status = RtlOpenCurrentUser( KEY_ENUMERATE_SUB_KEYS, &CurrentUserKey ); if (!NT_SUCCESS( Status )) { return Status; } RtlInitUnicodeString( &KeyValueName, ValueName ); RtlInitUnicodeString( &KeyPath, L"Control Panel\\Desktop" ); InitializeObjectAttributes( &ObjectAttributes, &KeyPath, (OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE | OBJ_FORCE_ACCESS_CHECK), CurrentUserKey, NULL ); // // Let's check if there is a policy installed for the UI language, // and if so, let's use it. // if (!bCheckGP || !NT_SUCCESS( ExpGetUILanguagePolicy( CurrentUserKey, CurrentUserUILanguageId ))) { Status = ZwOpenKey( &Key, GENERIC_READ, &ObjectAttributes ); if (NT_SUCCESS( Status )) { Status = ZwQueryValueKey( Key, &KeyValueName, KeyValuePartialInformation, KeyValueInformation, sizeof( KeyValueBuffer ), &ResultLength ); if (NT_SUCCESS( Status )) { if (KeyValueInformation->Type == REG_SZ && ExpIsValidUILanguage((PWSTR) KeyValueInformation->Data)) { RtlInitUnicodeString( &UILanguage, (PWSTR) KeyValueInformation->Data); Status = RtlUnicodeStringToInteger( &UILanguage, (ULONG) 16, &Digit ); if (NT_SUCCESS( Status )) { *CurrentUserUILanguageId = (LANGID) Digit; } } else { Status = STATUS_UNSUCCESSFUL; } } ZwClose( Key ); } } ZwClose( CurrentUserKey ); return Status; } NTSTATUS NtSetDefaultUILanguage( IN LANGID DefaultUILanguageId ) { NTSTATUS Status; LANGID LangId; // // if this is called during user logon, then we need to update the user's registry. // if (DefaultUILanguageId == 0) { Status = ExpGetCurrentUserUILanguage( L"MUILanguagePending" , &LangId, FALSE ); if (NT_SUCCESS( Status )) { Status = ExpSetCurrentUserUILanguage( L"MultiUILanguageId" , LangId ); } return Status; } return ExpSetCurrentUserUILanguage( L"MUILanguagePending", DefaultUILanguageId ); } NTSTATUS ExpValidateLocale( IN LCID LocaleId ) { NTSTATUS Status = STATUS_INVALID_PARAMETER, ReturnStatus; UNICODE_STRING LocaleName, KeyValueName; UNICODE_STRING NlsLocaleKeyPath, NlsSortKeyPath, NlsLangGroupKeyPath; WCHAR LocaleNameBuffer[ 32 ]; WCHAR KeyValueNameBuffer[ 32 ]; WCHAR KeyValueBuffer[ 128 ]; WCHAR *Ptr; HANDLE LocaleKey, SortKey, LangGroupKey; OBJECT_ATTRIBUTES NlsLocaleObjA, NlsSortObjA, NlsLangGroupObjA; PKEY_VALUE_PARTIAL_INFORMATION KeyValueInformation; ULONG i, ResultLength; // // Convert the LCID to the form %08x (e.g. 00000409) // LocaleName.Length = sizeof( LocaleNameBuffer ) / sizeof( WCHAR ); LocaleName.MaximumLength = LocaleName.Length; LocaleName.Buffer = LocaleNameBuffer; // // Convert LCID to a string // ReturnStatus = RtlIntegerToUnicodeString( LocaleId, 16, &LocaleName ); if (!NT_SUCCESS(ReturnStatus)) goto Failed1; Ptr = KeyValueNameBuffer; for (i = ((LocaleName.Length)/sizeof(WCHAR)); i < 8; i++, Ptr++) { *Ptr = L'0'; } *Ptr = UNICODE_NULL; RtlInitUnicodeString(&KeyValueName, KeyValueNameBuffer); KeyValueName.MaximumLength = sizeof( KeyValueNameBuffer ) / sizeof( WCHAR ); RtlAppendUnicodeToString(&KeyValueName, LocaleName.Buffer); // // Open Registry Keys : Locale, Sort and LanguageGroup // RtlInitUnicodeString(&NlsLocaleKeyPath, L"\\Registry\\Machine\\System\\CurrentControlSet\\Control\\Nls\\Locale"); InitializeObjectAttributes( &NlsLocaleObjA, &NlsLocaleKeyPath, (OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE), NULL, NULL ); ReturnStatus = ZwOpenKey( &LocaleKey, GENERIC_READ, &NlsLocaleObjA ); if (!NT_SUCCESS(ReturnStatus)) goto Failed1; RtlInitUnicodeString(&NlsSortKeyPath, L"\\Registry\\Machine\\System\\CurrentControlSet\\Control\\Nls\\Locale\\Alternate Sorts"); InitializeObjectAttributes( &NlsSortObjA, &NlsSortKeyPath, (OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE), NULL, NULL ); ReturnStatus = ZwOpenKey( &SortKey, GENERIC_READ, &NlsSortObjA ); if (!NT_SUCCESS(ReturnStatus)) goto Failed2; RtlInitUnicodeString(&NlsLangGroupKeyPath, L"\\Registry\\Machine\\System\\CurrentControlSet\\Control\\Nls\\Language Groups"); InitializeObjectAttributes( &NlsLangGroupObjA, &NlsLangGroupKeyPath, (OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE), NULL, NULL ); ReturnStatus = ZwOpenKey( &LangGroupKey, GENERIC_READ, &NlsLangGroupObjA ); if (!NT_SUCCESS(ReturnStatus)) goto Failed3; // // Validate Locale : Lookup the Locale's Language group, and make sure it is there. // KeyValueInformation = (PKEY_VALUE_PARTIAL_INFORMATION) KeyValueBuffer; ReturnStatus = ZwQueryValueKey( LocaleKey, &KeyValueName, KeyValuePartialInformation, KeyValueInformation, sizeof( KeyValueBuffer ), &ResultLength ); if (!NT_SUCCESS(ReturnStatus)) { ReturnStatus = ZwQueryValueKey( SortKey, &KeyValueName, KeyValuePartialInformation, KeyValueInformation, sizeof( KeyValueBuffer ), &ResultLength ); } if ((NT_SUCCESS(ReturnStatus)) && (KeyValueInformation->DataLength > 2) ) { RtlInitUnicodeString( &KeyValueName, (PWSTR) KeyValueInformation->Data ); ReturnStatus = ZwQueryValueKey( LangGroupKey, &KeyValueName, KeyValuePartialInformation, KeyValueInformation, sizeof( KeyValueBuffer ), &ResultLength ); if ((NT_SUCCESS(ReturnStatus)) && (KeyValueInformation->Type == REG_SZ) && (KeyValueInformation->DataLength > 2) ) { Ptr = (PWSTR) KeyValueInformation->Data; if (Ptr[0] == L'1' && Ptr[1] == UNICODE_NULL) { Status = STATUS_SUCCESS; } } } // // Close opened keys // ZwClose( LangGroupKey ); Failed3: ZwClose( SortKey ); Failed2: ZwClose( LocaleKey ); Failed1: // // If an error happens, let's record it. // if (!NT_SUCCESS(ReturnStatus)) { Status = ReturnStatus; } return Status; } NTSTATUS ExpQueryNumaProcessorMap( OUT PVOID SystemInformation, IN ULONG SystemInformationLength, OUT PULONG ReturnedLength ) { PSYSTEM_NUMA_INFORMATION Map; ULONG Length; ULONG ReturnCount; #if !defined(NT_UP) ULONG i; #endif Map = (PSYSTEM_NUMA_INFORMATION)SystemInformation; // // Must be able to return at least the number of nodes. // if (SystemInformationLength < sizeof(Map->HighestNodeNumber)) { return STATUS_INFO_LENGTH_MISMATCH; } Map->HighestNodeNumber = KeNumberNodes - 1; // // Return as many node masks as possible in the SystemInformation // buffer. // Length = FIELD_OFFSET(SYSTEM_NUMA_INFORMATION, ActiveProcessorsAffinityMask); ReturnCount = (SystemInformationLength - Length) / sizeof(Map->ActiveProcessorsAffinityMask[0]); if (ReturnCount > KeNumberNodes) { ReturnCount = KeNumberNodes; } if ((Length > SystemInformationLength) || (ReturnCount == 0)) { *ReturnedLength = sizeof(Map->HighestNodeNumber); return STATUS_SUCCESS; } *ReturnedLength = FIELD_OFFSET(SYSTEM_NUMA_INFORMATION, ActiveProcessorsAffinityMask[ReturnCount]); #if !defined(NT_UP) for (i = 0; i < ReturnCount; i++) { Map->ActiveProcessorsAffinityMask[i] = KeNodeBlock[i]->ProcessorMask; } #else if (ReturnCount) { Map->ActiveProcessorsAffinityMask[0] = 1; } #endif return STATUS_SUCCESS; } NTSTATUS ExpQueryNumaAvailableMemory( OUT PVOID SystemInformation, IN ULONG SystemInformationLength, OUT PULONG ReturnedLength ) { PSYSTEM_NUMA_INFORMATION Map; ULONG Length; ULONG ReturnCount; Map = (PSYSTEM_NUMA_INFORMATION)SystemInformation; // // Must be able to return at least the number of nodes. // if (SystemInformationLength < sizeof(Map->HighestNodeNumber)) { return STATUS_INFO_LENGTH_MISMATCH; } Map->HighestNodeNumber = KeNumberNodes - 1; // // Return as many node masks as possible in the SystemInformation // buffer. // Length = FIELD_OFFSET(SYSTEM_NUMA_INFORMATION, AvailableMemory); ReturnCount = (SystemInformationLength - Length) / sizeof(Map->AvailableMemory[0]); if (ReturnCount > KeNumberNodes) { ReturnCount = KeNumberNodes; } if ((Length > SystemInformationLength) || (ReturnCount == 0)) { *ReturnedLength = sizeof(Map->HighestNodeNumber); return STATUS_SUCCESS; } *ReturnedLength = FIELD_OFFSET(SYSTEM_NUMA_INFORMATION, AvailableMemory[ReturnCount]); // // Return the aproximate number of free bytes at this time. // (It's aproximate because no lock is taken and with respect // to any user mode application its only a sample. // #if !defined(NT_UP) if (KeNumberNodes > 1) { ULONG i; for (i = 0; i < ReturnCount; i++) { Map->AvailableMemory[i] = ((ULONGLONG)KeNodeBlock[i]->FreeCount[ZeroedPageList] + (ULONGLONG)KeNodeBlock[i]->FreeCount[FreePageList]) << PAGE_SHIFT; } } else #endif if (ReturnCount) { Map->AvailableMemory[0] = ((ULONGLONG)MmAvailablePages) << PAGE_SHIFT; } return STATUS_SUCCESS; } NTSTATUS ExpGetSystemBasicInformation ( OUT PSYSTEM_BASIC_INFORMATION BasicInfo ) { NTSTATUS NtStatus = STATUS_SUCCESS; try { BasicInfo->NumberOfProcessors = KeNumberProcessors; BasicInfo->ActiveProcessorsAffinityMask = (ULONG_PTR)KeActiveProcessors; BasicInfo->Reserved = 0; BasicInfo->TimerResolution = KeMaximumIncrement; BasicInfo->NumberOfPhysicalPages = MmNumberOfPhysicalPages; BasicInfo->LowestPhysicalPageNumber = (SYSINF_PAGE_COUNT)MmLowestPhysicalPage; BasicInfo->HighestPhysicalPageNumber = (SYSINF_PAGE_COUNT)MmHighestPhysicalPage; BasicInfo->PageSize = PAGE_SIZE; BasicInfo->AllocationGranularity = MM_ALLOCATION_GRANULARITY; BasicInfo->MinimumUserModeAddress = (ULONG_PTR)MM_LOWEST_USER_ADDRESS; BasicInfo->MaximumUserModeAddress = (ULONG_PTR)MM_HIGHEST_USER_ADDRESS; } except (EXCEPTION_EXECUTE_HANDLER) { NtStatus = GetExceptionCode(); } return NtStatus; } NTSTATUS ExpGetSystemProcessorInformation ( OUT PSYSTEM_PROCESSOR_INFORMATION ProcessorInformation ) { NTSTATUS NtStatus = STATUS_SUCCESS; try { ProcessorInformation->ProcessorArchitecture = KeProcessorArchitecture; ProcessorInformation->ProcessorLevel = KeProcessorLevel; ProcessorInformation->ProcessorRevision = KeProcessorRevision; ProcessorInformation->Reserved = 0; ProcessorInformation->ProcessorFeatureBits = KeFeatureBits; } except (EXCEPTION_EXECUTE_HANDLER) { NtStatus = GetExceptionCode(); } return NtStatus; } #if defined(_WIN64) NTSTATUS ExpGetSystemEmulationBasicInformation ( OUT PSYSTEM_BASIC_INFORMATION BasicInfo ) { NTSTATUS NtStatus = STATUS_SUCCESS; try { BasicInfo->NumberOfProcessors = min(32, KeNumberProcessors); BasicInfo->ActiveProcessorsAffinityMask = (ULONG_PTR) ((KeActiveProcessors & 0xFFFFFFFF) | ((KeActiveProcessors & (0xFFFFFFFF << 32) ) >> 32)); BasicInfo->Reserved = 0; BasicInfo->TimerResolution = KeMaximumIncrement; BasicInfo->NumberOfPhysicalPages = (MmNumberOfPhysicalPages * (PAGE_SIZE >> PAGE_SHIFT_X86NT)); BasicInfo->LowestPhysicalPageNumber = (SYSINF_PAGE_COUNT)MmLowestPhysicalPage; BasicInfo->HighestPhysicalPageNumber = (SYSINF_PAGE_COUNT)MmHighestPhysicalPage; BasicInfo->PageSize = PAGE_SIZE_X86NT; BasicInfo->AllocationGranularity = MM_ALLOCATION_GRANULARITY; BasicInfo->MinimumUserModeAddress = 0x00000000000010000UI64; // // NOTE: MmGetMaxWowAddress return the highest usermode address boundary, // thus we are subtracting one to get the maximum accessible usermode address // BasicInfo->MaximumUserModeAddress = ((ULONG_PTR)MmGetMaxWowAddress () - 1); } except (EXCEPTION_EXECUTE_HANDLER) { NtStatus = GetExceptionCode(); } return NtStatus; } #endif NTSTATUS NtQuerySystemInformation ( IN SYSTEM_INFORMATION_CLASS SystemInformationClass, OUT PVOID SystemInformation, IN ULONG SystemInformationLength, OUT PULONG ReturnLength OPTIONAL ) /*++ Routine Description: This function queries information about the system. Arguments: SystemInformationClass - The system information class about which to retrieve information. SystemInformation - A pointer to a buffer which receives the specified information. The format and content of the buffer depend on the specified system information class. SystemInformation Format by Information Class: SystemBasicInformation - Data type is SYSTEM_BASIC_INFORMATION SYSTEM_BASIC_INFORMATION Structure ULONG Reserved - Always zero. ULONG TimerResolutionInMicroSeconds - The resolution of the hardware time. All time values in NT are specified as 64-bit LARGE_INTEGER values in units of 100 nanoseconds. This field allows an application to understand how many of the low order bits of a system time value are insignificant. ULONG PageSize - The physical page size for virtual memory objects. Physical memory is committed in PageSize chunks. ULONG AllocationGranularity - The logical page size for virtual memory objects. Allocating 1 byte of virtual memory will actually allocate AllocationGranularity bytes of virtual memory. Storing into that byte will commit the first physical page of the virtual memory. ULONG MinimumUserModeAddress - The smallest valid user mode address. The first AllocationGranularity bytes of the virtual address space are reserved. This forces access violations for code the dereferences a zero pointer. ULONG MaximumUserModeAddress - The largest valid user mode address. The next AllocationGranularity bytes of the virtual address space are reserved. This allows system service routines to validate user mode pointer parameters quickly. KAFFINITY ActiveProcessorsAffinityMask - The affinity mask for the current hardware configuration. CCHAR NumberOfProcessors - The number of processors in the current hardware configuration. SystemProcessorInformation - Data type is SYSTEM_PROCESSOR_INFORMATION SYSTEM_PROCESSOR_INFORMATION Structure USHORT ProcessorArchitecture - The processor architecture: PROCESSOR_ARCHITECTURE_INTEL PROCESSOR_ARCHITECTURE_IA64 PROCESSOR_ARCHITECTURE_MIPS PROCESSOR_ARCHITECTURE_ALPHA PROCESSOR_ARCHITECTURE_PPC USHORT ProcessorLevel - architecture dependent processor level. This is the least common denominator for an MP system: For PROCESSOR_ARCHITECTURE_INTEL: 3 - 386 4 - 486 5 - 586 or Pentium For PROCESSOR_ARCHITECTURE_IA64: 7 - Itanium 31 - Itanium 2 For PROCESSOR_ARCHITECTURE_MIPS: 00xx - where xx is 8-bit implementation number (bits 8-15 of PRId register. 0004 - R4000 For PROCESSOR_ARCHITECTURE_ALPHA: xxxx - where xxxx is 16-bit processor version number (low order 16 bits of processor version number from firmware) 21064 - 21064 21066 - 21066 21164 - 21164 For PROCESSOR_ARCHITECTURE_PPC: xxxx - where xxxx is 16-bit processor version number (high order 16 bits of Processor Version Register). 1 - 601 3 - 603 4 - 604 6 - 603+ 9 - 604+ 20 - 620 USHORT ProcessorRevision - architecture dependent processor revision. This is the least common denominator for an MP system: For PROCESSOR_ARCHITECTURE_INTEL: For Old Intel 386 or 486: FFxx - where xx is displayed as a hexadecimal CPU stepping (e.g. FFD0 is D0 stepping) For Intel Pentium or Cyrix/NexGen 486 xxyy - where xx is model number and yy is stepping, so 0201 is Model 2, Stepping 1 For PROCESSOR_ARCHITECTURE_IA64: xxyy - where xx is model number and yy is stepping, so 0201 is Model 2, Stepping 1 For PROCESSOR_ARCHITECTURE_MIPS: 00xx is 8-bit revision number of processor (low order 8 bits of PRId Register For PROCESSOR_ARCHITECTURE_ALPHA: xxyy - where xxyy is 16-bit processor revision number (low order 16 bits of processor revision number from firmware). Displayed as Model 'A'+xx, Pass yy For PROCESSOR_ARCHITECTURE_PPC: xxyy - where xxyy is 16-bit processor revision number (low order 16 bits of Processor Version Register). Displayed as a fixed point number xx.yy USHORT Reserved - Always zero. ULONG ProcessorFeatureBits - architecture dependent processor feature bits. This is the least common denominator for an MP system. SystemPerformanceInformation - Data type is SYSTEM_PERFORMANCE_INFORMATION SYSTEM_PERFORMANCE_INFORMATION Structure LARGE_INTEGER IdleProcessTime - Returns the kernel time of the idle process. LARGE_INTEGER IoReadTransferCount; LARGE_INTEGER IoWriteTransferCount; LARGE_INTEGER IoOtherTransferCount; LARGE_INTEGER KernelTime; LARGE_INTEGER UserTime; ULONG IoReadOperationCount; ULONG IoWriteOperationCount; ULONG IoOtherOperationCount; ULONG AvailablePages; ULONG CommittedPages; ULONG PageFaultCount; ULONG CopyOnWriteCount; ULONG TransitionCount; ULONG CacheTransitionCount; ULONG DemandZeroCount; ULONG PageReadCount; ULONG PageReadIoCount; ULONG CacheReadCount; ULONG CacheIoCount; ULONG DirtyPagesWriteCount; ULONG DirtyWriteIoCount; ULONG MappedPagesWriteCount; ULONG MappedWriteIoCount; ULONG PagedPoolPages; ULONG NonPagedPoolPages; ULONG PagedPoolAllocs; ULONG PagedPoolFrees; ULONG NonPagedPoolAllocs; ULONG NonPagedPoolFrees; ULONG LpcThreadsWaitingInReceive; ULONG LpcThreadsWaitingForReply; SystemProcessInformation - Data type is SYSTEM_PROCESS_INFORMATION SYSTEM_PROCESS_INFORMATION Structure SystemDockInformation - Data type is SYSTEM_DOCK_INFORMATION SYSTEM_DOCK_INFORMATION Structure SYSTEM_DOCKED_STATE DockState - Ordinal specifying the current docking state. Possible values: SystemDockStateUnknown - The docking state of the system could not be determined. SystemUndocked - The system is undocked. SystemDocked - The system is docked. ULONG DockIdLength - Specifies the length in characters of the Dock ID string (not including terminating NULL). ULONG SerialNumberOffset - Specifies the character offset of the Serial Number within the DockId buffer. ULONG SerialNumberLength - Specifies the length in characters of the Serial Number string (not including terminating NULL). WCHAR DockId - Character buffer containing two null-terminated strings. The first string is a character representation of the dock ID number, starting at the beginning of the buffer. The second string is a character representation of the machine's serial number, starting at character offset SerialNumberOffset in the buffer. SystemPowerSettings - Data type is SYSTEM_POWER_SETTINGS SYSTEM_POWER_INFORMATION Structure BOOLEAN SystemSuspendSupported - Supplies a BOOLEAN as to whether the system suspend is enabled or not. BOOLEAN SystemHibernateSupported - Supplies a BOOLEAN as to whether the system hibernate is enabled or not. BOOLEAN ResumeTimerSupportsSuspend - Supplies a BOOLEAN as to whether the resuming from an external programmed timer from within a system suspend is enabled or not. BOOLEAN ResumeTimerSupportsHibernate - Supplies a BOOLEAN as to whether or resuming from an external programmed timer from within a system hibernate is enabled or not. BOOLEAN LidSupported - Supplies a BOOLEAN as to whether or not the suspending and resuming by Lid are enabled or not. BOOLEAN TurboSettingSupported - Supplies a BOOLEAN as to whether or not the system supports a turbo mode setting. BOOLEAN TurboMode - Supplies a BOOLEAN as to whether or not the system is in turbo mode. BOOLEAN SystemAcOrDc - Supplies a BOOLEAN as to whether or not the system is in AC mode. BOOLEAN DisablePowerDown - If TRUE, signifies that all requests to PoRequestPowerChange for a SET_POWER-PowerDown irp are to be ignored. LARGE_INTEGER SpindownDrives - If non-zero, signifies to the cache manager (or the IO subsystem) to optimize drive accesses based upon power saves, are that drives are to be spun down as appropriate. The value represents to user's requested disk spin down timeout. SystemProcessorSpeedInformation - Data type is SYSTEM_PROCESSOR_SPEED_INFORMATION SYSTEM_PROCESSOR_SPEED_INFORMATION Structure (same as HalProcessorSpeedInformation) ULONG MaximumProcessorSpeed - The maximum hertz the processor is capable of. This information is used by the UI to draw the appropriate scale. This field is read-only and cannot be set. ULONG CurrentAvailableSpeed - The hertz for which the processor runs at when not idle. This field is read-only and cannot be set. ULONG ConfiguredSpeedLimit - The hertz for which the processor is limited to due to the current configuration. UCHAR PowerState 0 - Normal 1 - The processor speed is being limited due to available power restrictions. This field id read-only by the system. UCHAR ThermalState 0 - Normal 1 - The processors speed is being limited due to thermal restrictions. This field is read-only by the system. UCHAR TurboState 0 - Normal 1 - The processors speed is being limited by the fact that the system turbo mode is currently disabled which is requested to obtain more processor speed. SystemInformationLength - Specifies the length in bytes of the system information buffer. ReturnLength - An optional pointer which, if specified, receives the number of bytes placed in the system information buffer. Return Value: Returns one of the following status codes: STATUS_SUCCESS - normal, successful completion. STATUS_INVALID_INFO_CLASS - The SystemInformationClass parameter did not specify a valid value. STATUS_INFO_LENGTH_MISMATCH - The value of the SystemInformationLength parameter did not match the length required for the information class requested by the SystemInformationClass parameter. STATUS_ACCESS_VIOLATION - Either the SystemInformation buffer pointer or the ReturnLength pointer value specified an invalid address. STATUS_WORKING_SET_QUOTA - The process does not have sufficient working set to lock the specified output structure in memory. STATUS_INSUFFICIENT_RESOURCES - Insufficient system resources exist for this request to complete. --*/ { KPROCESSOR_MODE PreviousMode; SYSTEM_TIMEOFDAY_INFORMATION LocalTimeOfDayInfo; SYSTEM_PERFORMANCE_INFORMATION LocalPerformanceInfo; PSYSTEM_PERFORMANCE_INFORMATION PerformanceInfo; PSYSTEM_PROCESSOR_PERFORMANCE_INFORMATION ProcessorPerformanceInfo; PSYSTEM_CALL_COUNT_INFORMATION CallCountInformation; PSYSTEM_DEVICE_INFORMATION DeviceInformation; PCONFIGURATION_INFORMATION ConfigInfo; PSYSTEM_EXCEPTION_INFORMATION ExceptionInformation; PSYSTEM_FILECACHE_INFORMATION FileCache; PSYSTEM_QUERY_TIME_ADJUST_INFORMATION TimeAdjustmentInformation; PSYSTEM_KERNEL_DEBUGGER_INFORMATION KernelDebuggerInformation; PSYSTEM_CONTEXT_SWITCH_INFORMATION ContextSwitchInformation; PSYSTEM_INTERRUPT_INFORMATION InterruptInformation; PSYSTEM_SESSION_PROCESS_INFORMATION SessionProcessInformation; PVOID ProcessInformation; ULONG ProcessInformationLength; PSYSTEM_SESSION_POOLTAG_INFORMATION SessionPoolTagInformation; PSYSTEM_SESSION_MAPPED_VIEW_INFORMATION SessionMappedViewInformation; ULONG SessionPoolTagInformationLength; NTSTATUS Status; PKPRCB Prcb; ULONG Length = 0; ULONG i; ULONG ContextSwitches; PULONG TableLimit, TableCounts; PKSERVICE_TABLE_DESCRIPTOR Table; ULONG SessionId; ULONG Alignment; PAGED_CODE(); // // Assume successful completion. // Status = STATUS_SUCCESS; try { // // Get previous processor mode and probe output argument if necessary. // PreviousMode = KeGetPreviousMode(); if (PreviousMode != KernelMode) { Alignment = sizeof(ULONG); if (SystemInformationClass == SystemKernelDebuggerInformation) { Alignment = sizeof(BOOLEAN); } else if (SystemInformationClass == SystemLocksInformation) { Alignment = sizeof(PVOID); } ProbeForWrite(SystemInformation, SystemInformationLength, Alignment); if (ARGUMENT_PRESENT(ReturnLength)) { ProbeForWriteUlong(ReturnLength); } } if (ARGUMENT_PRESENT(ReturnLength)) { *ReturnLength = 0; } switch (SystemInformationClass) { case SystemBasicInformation: if (SystemInformationLength != sizeof( SYSTEM_BASIC_INFORMATION )) { return STATUS_INFO_LENGTH_MISMATCH; } Status = ExpGetSystemBasicInformation ((PSYSTEM_BASIC_INFORMATION)SystemInformation); if (NT_SUCCESS (Status) && ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = sizeof( SYSTEM_BASIC_INFORMATION ); } break; case SystemEmulationBasicInformation: if (SystemInformationLength != sizeof( SYSTEM_BASIC_INFORMATION )) { return STATUS_INFO_LENGTH_MISMATCH; } #if defined(_WIN64) Status = ExpGetSystemEmulationBasicInformation ((PSYSTEM_BASIC_INFORMATION)SystemInformation); #else Status = ExpGetSystemBasicInformation ((PSYSTEM_BASIC_INFORMATION)SystemInformation); #endif if (NT_SUCCESS (Status) && ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = sizeof( SYSTEM_BASIC_INFORMATION ); } break; case SystemProcessorInformation: if (SystemInformationLength < sizeof( SYSTEM_PROCESSOR_INFORMATION )) { return STATUS_INFO_LENGTH_MISMATCH; } Status = ExpGetSystemProcessorInformation ((PSYSTEM_PROCESSOR_INFORMATION)SystemInformation); if (NT_SUCCESS (Status) && ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = sizeof( SYSTEM_PROCESSOR_INFORMATION ); } break; case SystemEmulationProcessorInformation: if (SystemInformationLength < sizeof( SYSTEM_PROCESSOR_INFORMATION )) { return STATUS_INFO_LENGTH_MISMATCH; } #if defined(_WIN64) Status = ExpGetSystemEmulationProcessorInformation ((PSYSTEM_PROCESSOR_INFORMATION)SystemInformation); #else Status = ExpGetSystemProcessorInformation ((PSYSTEM_PROCESSOR_INFORMATION)SystemInformation); #endif if (NT_SUCCESS (Status) && ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = sizeof( SYSTEM_PROCESSOR_INFORMATION ); } break; case SystemPerformanceInformation: if (SystemInformationLength < sizeof( SYSTEM_PERFORMANCE_INFORMATION )) { return STATUS_INFO_LENGTH_MISMATCH; } PerformanceInfo = (PSYSTEM_PERFORMANCE_INFORMATION)SystemInformation; // // Io information. // LocalPerformanceInfo.IoReadTransferCount = IoReadTransferCount; LocalPerformanceInfo.IoWriteTransferCount = IoWriteTransferCount; LocalPerformanceInfo.IoOtherTransferCount = IoOtherTransferCount; LocalPerformanceInfo.IoReadOperationCount = IoReadOperationCount; LocalPerformanceInfo.IoWriteOperationCount = IoWriteOperationCount; LocalPerformanceInfo.IoOtherOperationCount = IoOtherOperationCount; // // Ke information. // // These counters are kept on a per processor basis and must // be totaled. // { ULONG FirstLevelTbFills = 0; ULONG SecondLevelTbFills = 0; ULONG SystemCalls = 0; // ULONG InterruptCount = 0; ContextSwitches = 0; for (i = 0; i < (ULONG)KeNumberProcessors; i += 1) { Prcb = KiProcessorBlock[i]; if (Prcb != NULL) { ContextSwitches += KeGetContextSwitches(Prcb); FirstLevelTbFills += Prcb->KeFirstLevelTbFills; // InterruptCount += Prcb->KeInterruptCount; SecondLevelTbFills += Prcb->KeSecondLevelTbFills; SystemCalls += Prcb->KeSystemCalls; } } LocalPerformanceInfo.ContextSwitches = ContextSwitches; LocalPerformanceInfo.FirstLevelTbFills = FirstLevelTbFills; // LocalPerformanceInfo.InterruptCount = KeInterruptCount; LocalPerformanceInfo.SecondLevelTbFills = SecondLevelTbFills; LocalPerformanceInfo.SystemCalls = SystemCalls; } // // Mm information. // LocalPerformanceInfo.AvailablePages = MmAvailablePages; LocalPerformanceInfo.CommittedPages = (SYSINF_PAGE_COUNT)MmTotalCommittedPages; LocalPerformanceInfo.CommitLimit = (SYSINF_PAGE_COUNT)MmTotalCommitLimit; LocalPerformanceInfo.PeakCommitment = (SYSINF_PAGE_COUNT)MmPeakCommitment; LocalPerformanceInfo.PageFaultCount = MmInfoCounters.PageFaultCount; LocalPerformanceInfo.CopyOnWriteCount = MmInfoCounters.CopyOnWriteCount; LocalPerformanceInfo.TransitionCount = MmInfoCounters.TransitionCount; LocalPerformanceInfo.CacheTransitionCount = MmInfoCounters.CacheTransitionCount; LocalPerformanceInfo.DemandZeroCount = MmInfoCounters.DemandZeroCount; LocalPerformanceInfo.PageReadCount = MmInfoCounters.PageReadCount; LocalPerformanceInfo.PageReadIoCount = MmInfoCounters.PageReadIoCount; LocalPerformanceInfo.CacheReadCount = MmInfoCounters.CacheReadCount; LocalPerformanceInfo.CacheIoCount = MmInfoCounters.CacheIoCount; LocalPerformanceInfo.DirtyPagesWriteCount = MmInfoCounters.DirtyPagesWriteCount; LocalPerformanceInfo.DirtyWriteIoCount = MmInfoCounters.DirtyWriteIoCount; LocalPerformanceInfo.MappedPagesWriteCount = MmInfoCounters.MappedPagesWriteCount; LocalPerformanceInfo.MappedWriteIoCount = MmInfoCounters.MappedWriteIoCount; LocalPerformanceInfo.FreeSystemPtes = MmTotalFreeSystemPtes[0]; LocalPerformanceInfo.ResidentSystemCodePage = MmSystemCodePage; LocalPerformanceInfo.ResidentSystemCachePage = MmSystemCachePage; LocalPerformanceInfo.ResidentPagedPoolPage = MmPagedPoolPage; LocalPerformanceInfo.ResidentSystemDriverPage = MmSystemDriverPage; LocalPerformanceInfo.TotalSystemCodePages = MmTotalSystemCodePages; LocalPerformanceInfo.TotalSystemDriverPages = MmTotalSystemDriverPages; LocalPerformanceInfo.AvailablePagedPoolPages = (ULONG)MmAvailablePoolInPages (PagedPool); // // Process information. // LocalPerformanceInfo.IdleProcessTime.QuadPart = UInt32x32To64(PsIdleProcess->Pcb.KernelTime, KeMaximumIncrement); // // Pool information. // LocalPerformanceInfo.PagedPoolPages = 0; LocalPerformanceInfo.NonPagedPoolPages = 0; LocalPerformanceInfo.PagedPoolAllocs = 0; LocalPerformanceInfo.PagedPoolFrees = 0; LocalPerformanceInfo.PagedPoolLookasideHits = 0; LocalPerformanceInfo.NonPagedPoolAllocs = 0; LocalPerformanceInfo.NonPagedPoolFrees = 0; LocalPerformanceInfo.NonPagedPoolLookasideHits = 0; ExQueryPoolUsage( &LocalPerformanceInfo.PagedPoolPages, &LocalPerformanceInfo.NonPagedPoolPages, &LocalPerformanceInfo.PagedPoolAllocs, &LocalPerformanceInfo.PagedPoolFrees, &LocalPerformanceInfo.PagedPoolLookasideHits, &LocalPerformanceInfo.NonPagedPoolAllocs, &LocalPerformanceInfo.NonPagedPoolFrees, &LocalPerformanceInfo.NonPagedPoolLookasideHits ); // // Cache Manager information. // LocalPerformanceInfo.CcFastReadNoWait = CcFastReadNoWait; LocalPerformanceInfo.CcFastReadWait = CcFastReadWait; LocalPerformanceInfo.CcFastReadResourceMiss = CcFastReadResourceMiss; LocalPerformanceInfo.CcFastReadNotPossible = CcFastReadNotPossible; LocalPerformanceInfo.CcFastMdlReadNoWait = CcFastMdlReadNoWait; LocalPerformanceInfo.CcFastMdlReadWait = CcFastMdlReadWait; LocalPerformanceInfo.CcFastMdlReadResourceMiss = CcFastMdlReadResourceMiss; LocalPerformanceInfo.CcFastMdlReadNotPossible = CcFastMdlReadNotPossible; LocalPerformanceInfo.CcMapDataNoWait = CcMapDataNoWait; LocalPerformanceInfo.CcMapDataWait = CcMapDataWait; LocalPerformanceInfo.CcMapDataNoWaitMiss = CcMapDataNoWaitMiss; LocalPerformanceInfo.CcMapDataWaitMiss = CcMapDataWaitMiss; LocalPerformanceInfo.CcPinMappedDataCount = CcPinMappedDataCount; LocalPerformanceInfo.CcPinReadNoWait = CcPinReadNoWait; LocalPerformanceInfo.CcPinReadWait = CcPinReadWait; LocalPerformanceInfo.CcPinReadNoWaitMiss = CcPinReadNoWaitMiss; LocalPerformanceInfo.CcPinReadWaitMiss = CcPinReadWaitMiss; LocalPerformanceInfo.CcCopyReadNoWait = CcCopyReadNoWait; LocalPerformanceInfo.CcCopyReadWait = CcCopyReadWait; LocalPerformanceInfo.CcCopyReadNoWaitMiss = CcCopyReadNoWaitMiss; LocalPerformanceInfo.CcCopyReadWaitMiss = CcCopyReadWaitMiss; LocalPerformanceInfo.CcMdlReadNoWait = CcMdlReadNoWait; LocalPerformanceInfo.CcMdlReadWait = CcMdlReadWait; LocalPerformanceInfo.CcMdlReadNoWaitMiss = CcMdlReadNoWaitMiss; LocalPerformanceInfo.CcMdlReadWaitMiss = CcMdlReadWaitMiss; LocalPerformanceInfo.CcReadAheadIos = CcReadAheadIos; LocalPerformanceInfo.CcLazyWriteIos = CcLazyWriteIos; LocalPerformanceInfo.CcLazyWritePages = CcLazyWritePages; LocalPerformanceInfo.CcDataFlushes = CcDataFlushes; LocalPerformanceInfo.CcDataPages = CcDataPages; #if !defined(NT_UP) // // On an MP machines go sum up some other 'hot' cache manager // statistics. // for (i = 0; i < (ULONG)KeNumberProcessors; i++) { Prcb = KiProcessorBlock[i]; LocalPerformanceInfo.CcFastReadNoWait += Prcb->CcFastReadNoWait; LocalPerformanceInfo.CcFastReadWait += Prcb->CcFastReadWait; LocalPerformanceInfo.CcFastReadNotPossible += Prcb->CcFastReadNotPossible; LocalPerformanceInfo.CcCopyReadNoWait += Prcb->CcCopyReadNoWait; LocalPerformanceInfo.CcCopyReadWait += Prcb->CcCopyReadWait; LocalPerformanceInfo.CcCopyReadNoWaitMiss += Prcb->CcCopyReadNoWaitMiss; } #endif *PerformanceInfo = LocalPerformanceInfo; if (ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = sizeof(LocalPerformanceInfo); } break; case SystemProcessorPerformanceInformation: if (SystemInformationLength < sizeof( SYSTEM_PROCESSOR_PERFORMANCE_INFORMATION )) { return STATUS_INFO_LENGTH_MISMATCH; } ProcessorPerformanceInfo = (PSYSTEM_PROCESSOR_PERFORMANCE_INFORMATION) SystemInformation; Length = 0; for (i = 0; i < (ULONG)KeNumberProcessors; i++) { Prcb = KiProcessorBlock[i]; if (Prcb != NULL) { if (SystemInformationLength < Length + sizeof(SYSTEM_PROCESSOR_PERFORMANCE_INFORMATION)) break; Length += sizeof(SYSTEM_PROCESSOR_PERFORMANCE_INFORMATION); ProcessorPerformanceInfo->UserTime.QuadPart = UInt32x32To64(Prcb->UserTime, KeMaximumIncrement); ProcessorPerformanceInfo->KernelTime.QuadPart = UInt32x32To64(Prcb->KernelTime, KeMaximumIncrement); ProcessorPerformanceInfo->DpcTime.QuadPart = UInt32x32To64(Prcb->DpcTime, KeMaximumIncrement); ProcessorPerformanceInfo->InterruptTime.QuadPart = UInt32x32To64(Prcb->InterruptTime, KeMaximumIncrement); ProcessorPerformanceInfo->IdleTime.QuadPart = UInt32x32To64(Prcb->IdleThread->KernelTime, KeMaximumIncrement); ProcessorPerformanceInfo->InterruptCount = Prcb->InterruptCount; ProcessorPerformanceInfo++; } } if (ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = Length; } break; case SystemProcessorPowerInformation: if (SystemInformationLength < sizeof( SYSTEM_PROCESSOR_POWER_INFORMATION )) { return STATUS_INFO_LENGTH_MISMATCH; } ExpGetProcessorPowerInformation( SystemInformation, SystemInformationLength, &Length ); if (ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = Length; } break; case SystemProcessorIdleInformation: if (SystemInformationLength < sizeof( SYSTEM_PROCESSOR_IDLE_INFORMATION )) { return STATUS_INFO_LENGTH_MISMATCH; } ExpGetProcessorIdleInformation( SystemInformation, SystemInformationLength, &Length ); if (ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = Length; } break; case SystemTimeOfDayInformation: if (SystemInformationLength > sizeof (SYSTEM_TIMEOFDAY_INFORMATION)) { return STATUS_INFO_LENGTH_MISMATCH; } RtlZeroMemory (&LocalTimeOfDayInfo, sizeof(LocalTimeOfDayInfo)); KeQuerySystemTime(&LocalTimeOfDayInfo.CurrentTime); LocalTimeOfDayInfo.BootTime = KeBootTime; LocalTimeOfDayInfo.TimeZoneBias = ExpTimeZoneBias; LocalTimeOfDayInfo.TimeZoneId = ExpCurrentTimeZoneId; LocalTimeOfDayInfo.BootTimeBias = KeBootTimeBias; LocalTimeOfDayInfo.SleepTimeBias = KeInterruptTimeBias; try { RtlCopyMemory ( SystemInformation, &LocalTimeOfDayInfo, SystemInformationLength ); if (ARGUMENT_PRESENT(ReturnLength) ) { *ReturnLength = SystemInformationLength; } } except(EXCEPTION_EXECUTE_HANDLER) { return GetExceptionCode (); } break; // // Query system time adjustment information. // case SystemTimeAdjustmentInformation: if (SystemInformationLength != sizeof( SYSTEM_QUERY_TIME_ADJUST_INFORMATION )) { return STATUS_INFO_LENGTH_MISMATCH; } TimeAdjustmentInformation = (PSYSTEM_QUERY_TIME_ADJUST_INFORMATION)SystemInformation; TimeAdjustmentInformation->TimeAdjustment = KeTimeAdjustment; TimeAdjustmentInformation->TimeIncrement = KeMaximumIncrement; TimeAdjustmentInformation->Enable = KeTimeSynchronization; break; case SystemSummaryMemoryInformation: case SystemFullMemoryInformation: if (SystemInformationLength < sizeof( SYSTEM_MEMORY_INFORMATION )) { return STATUS_INFO_LENGTH_MISMATCH; } Status = MmMemoryUsage (SystemInformation, SystemInformationLength, (SystemInformationClass == SystemFullMemoryInformation) ? 0 : 1, &Length); if (NT_SUCCESS(Status) && ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = Length; } break; case SystemPathInformation: #if DBG DbgPrint( "EX: SystemPathInformation now available via SharedUserData\n" ); DbgBreakPoint(); #endif return STATUS_NOT_IMPLEMENTED; break; case SystemProcessInformation: case SystemExtendedProcessInformation: { BOOLEAN ExtendedInformation; if (SystemInformationClass == SystemProcessInformation ) { ExtendedInformation = FALSE; } else { ExtendedInformation = TRUE; } Status = ExpGetProcessInformation (SystemInformation, SystemInformationLength, &Length, NULL, ExtendedInformation); if (ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = Length; } } break; case SystemSessionProcessInformation: SessionProcessInformation = (PSYSTEM_SESSION_PROCESS_INFORMATION)SystemInformation; if (SystemInformationLength < sizeof( SYSTEM_SESSION_PROCESS_INFORMATION)) { return STATUS_INFO_LENGTH_MISMATCH; } // // The lower level locks the buffer specified below into memory using MmProbeAndLockPages. // We don't need to probe the buffers here. // SessionId = SessionProcessInformation->SessionId; ProcessInformation = SessionProcessInformation->Buffer; ProcessInformationLength = SessionProcessInformation->SizeOfBuf; if (!POINTER_IS_ALIGNED (ProcessInformation, sizeof (ULONG))) { return STATUS_DATATYPE_MISALIGNMENT; } Status = ExpGetProcessInformation (ProcessInformation, ProcessInformationLength, &Length, &SessionId, FALSE); if (ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = Length; } break; case SystemCallCountInformation: Length = sizeof(SYSTEM_CALL_COUNT_INFORMATION) + (NUMBER_SERVICE_TABLES * sizeof(ULONG)); Table = KeServiceDescriptorTableShadow; for (i = 0; i < NUMBER_SERVICE_TABLES; i += 1) { if ((Table->Limit != 0) && (Table->Count != NULL)) { Length += Table->Limit * sizeof(ULONG); } Table += 1; } if (ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = Length; } if (SystemInformationLength < Length) { return STATUS_INFO_LENGTH_MISMATCH; } CallCountInformation = (PSYSTEM_CALL_COUNT_INFORMATION)SystemInformation; CallCountInformation->Length = Length; CallCountInformation->NumberOfTables = NUMBER_SERVICE_TABLES; TableLimit = (PULONG)(CallCountInformation + 1); TableCounts = TableLimit + NUMBER_SERVICE_TABLES; Table = KeServiceDescriptorTableShadow; for (i = 0; i < NUMBER_SERVICE_TABLES; i += 1) { if ((Table->Limit == 0) || (Table->Count == NULL)) { *TableLimit++ = 0; } else { *TableLimit++ = Table->Limit; RtlCopyMemory((PVOID)TableCounts, (PVOID)Table->Count, Table->Limit * sizeof(ULONG)); TableCounts += Table->Limit; } Table += 1; } break; case SystemDeviceInformation: if (SystemInformationLength != sizeof( SYSTEM_DEVICE_INFORMATION )) { return STATUS_INFO_LENGTH_MISMATCH; } ConfigInfo = IoGetConfigurationInformation(); DeviceInformation = (PSYSTEM_DEVICE_INFORMATION)SystemInformation; DeviceInformation->NumberOfDisks = ConfigInfo->DiskCount; DeviceInformation->NumberOfFloppies = ConfigInfo->FloppyCount; DeviceInformation->NumberOfCdRoms = ConfigInfo->CdRomCount; DeviceInformation->NumberOfTapes = ConfigInfo->TapeCount; DeviceInformation->NumberOfSerialPorts = ConfigInfo->SerialCount; DeviceInformation->NumberOfParallelPorts = ConfigInfo->ParallelCount; if (ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = sizeof( SYSTEM_DEVICE_INFORMATION ); } break; case SystemFlagsInformation: if (SystemInformationLength != sizeof( SYSTEM_FLAGS_INFORMATION )) { return STATUS_INFO_LENGTH_MISMATCH; } ((PSYSTEM_FLAGS_INFORMATION)SystemInformation)->Flags = NtGlobalFlag; if (ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = sizeof( SYSTEM_FLAGS_INFORMATION ); } break; case SystemCallTimeInformation: return STATUS_NOT_IMPLEMENTED; case SystemModuleInformation: KeEnterCriticalRegion(); ExAcquireResourceExclusiveLite( &PsLoadedModuleResource, TRUE ); try { Status = ExpQueryModuleInformation( &PsLoadedModuleList, &MmLoadedUserImageList, (PRTL_PROCESS_MODULES)SystemInformation, SystemInformationLength, ReturnLength ); } except(EXCEPTION_EXECUTE_HANDLER) { Status = GetExceptionCode(); } ExReleaseResourceLite (&PsLoadedModuleResource); KeLeaveCriticalRegion(); break; case SystemLocksInformation: if (SystemInformationLength < sizeof( RTL_PROCESS_LOCKS )) { return STATUS_INFO_LENGTH_MISMATCH; } Status = ExpGetLockInformation (SystemInformation, SystemInformationLength, &Length); if (ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = Length; } break; case SystemStackTraceInformation: if (SystemInformationLength < sizeof( RTL_PROCESS_BACKTRACES )) { return STATUS_INFO_LENGTH_MISMATCH; } #if i386 Status = ExpGetStackTraceInformation (SystemInformation, SystemInformationLength, &Length); #else Status = STATUS_NOT_IMPLEMENTED; #endif // i386 if (ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = Length; } break; case SystemPagedPoolInformation: Status = STATUS_NOT_IMPLEMENTED; if (ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = 0; } break; case SystemNonPagedPoolInformation: Status = STATUS_NOT_IMPLEMENTED; if (ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = 0; } break; case SystemHandleInformation: if (SystemInformationLength < sizeof( SYSTEM_HANDLE_INFORMATION )) { return STATUS_INFO_LENGTH_MISMATCH; } if (!POINTER_IS_ALIGNED (SystemInformation, TYPE_ALIGNMENT (SYSTEM_HANDLE_INFORMATION))) { return STATUS_DATATYPE_MISALIGNMENT; } Status = ExpGetHandleInformation( SystemInformation, SystemInformationLength, &Length ); if (ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = Length; } break; case SystemExtendedHandleInformation: if (SystemInformationLength < sizeof( SYSTEM_HANDLE_INFORMATION_EX )) { return STATUS_INFO_LENGTH_MISMATCH; } if (!POINTER_IS_ALIGNED (SystemInformation, TYPE_ALIGNMENT (SYSTEM_HANDLE_INFORMATION_EX))) { return STATUS_DATATYPE_MISALIGNMENT; } Status = ExpGetHandleInformationEx( SystemInformation, SystemInformationLength, &Length ); if (ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = Length; } break; case SystemObjectInformation: if (SystemInformationLength < sizeof( SYSTEM_OBJECTTYPE_INFORMATION )) { return STATUS_INFO_LENGTH_MISMATCH; } Status = ExpGetObjectInformation( SystemInformation, SystemInformationLength, &Length ); if (ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = Length; } break; case SystemPageFileInformation: if (SystemInformationLength < sizeof( SYSTEM_PAGEFILE_INFORMATION )) { return STATUS_INFO_LENGTH_MISMATCH; } Status = MmGetPageFileInformation( SystemInformation, SystemInformationLength, &Length ); if (ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = Length; } break; case SystemFileCacheInformation: // // This structure was extended in NT 4.0 from 12 bytes. // Use the previous size of 12 bytes for versioning info. // if (SystemInformationLength < 12) { return STATUS_INFO_LENGTH_MISMATCH; } FileCache = (PSYSTEM_FILECACHE_INFORMATION)SystemInformation; FileCache->CurrentSize = ((SIZE_T)MmSystemCacheWs.WorkingSetSize) << PAGE_SHIFT; FileCache->PeakSize = ((SIZE_T)MmSystemCacheWs.PeakWorkingSetSize) << PAGE_SHIFT; FileCache->PageFaultCount = MmSystemCacheWs.PageFaultCount; i = 12; if (SystemInformationLength >= sizeof( SYSTEM_FILECACHE_INFORMATION )) { i = sizeof (SYSTEM_FILECACHE_INFORMATION); FileCache->MinimumWorkingSet = MmSystemCacheWs.MinimumWorkingSetSize; FileCache->MaximumWorkingSet = MmSystemCacheWs.MaximumWorkingSetSize; FileCache->CurrentSizeIncludingTransitionInPages = MmSystemCacheWs.WorkingSetSize + MmTransitionSharedPages; FileCache->PeakSizeIncludingTransitionInPages = MmTransitionSharedPagesPeak; FileCache->TransitionRePurposeCount = MmStandbyRePurposed; } if (ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = i; } break; case SystemSessionPoolTagInformation: SessionProcessInformation = (PSYSTEM_SESSION_PROCESS_INFORMATION)SystemInformation; if (SystemInformationLength < sizeof( SYSTEM_SESSION_PROCESS_INFORMATION)) { return STATUS_INFO_LENGTH_MISMATCH; } // // The lower level locks the buffer specified below into // memory using MmProbeAndLockPages. // We don't need to probe the buffers here. // SessionId = SessionProcessInformation->SessionId; SessionPoolTagInformation = SessionProcessInformation->Buffer; SessionPoolTagInformationLength = SessionProcessInformation->SizeOfBuf; if (!POINTER_IS_ALIGNED (SessionPoolTagInformation, sizeof (ULONGLONG))) { return STATUS_DATATYPE_MISALIGNMENT; } Status = ExGetSessionPoolTagInformation ( SessionPoolTagInformation, SessionPoolTagInformationLength, &Length, &SessionId); if (ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = Length; } break; case SystemPoolTagInformation: if (SystemInformationLength < sizeof( SYSTEM_POOLTAG_INFORMATION )) { return STATUS_INFO_LENGTH_MISMATCH; } Status = ExGetPoolTagInfo (SystemInformation, SystemInformationLength, ReturnLength); break; case SystemBigPoolInformation: if (SystemInformationLength < sizeof( SYSTEM_BIGPOOL_INFORMATION )) { return STATUS_INFO_LENGTH_MISMATCH; } Status = ExGetBigPoolInfo (SystemInformation, SystemInformationLength, ReturnLength); break; case SystemSessionMappedViewInformation: SessionMappedViewInformation = (PSYSTEM_SESSION_MAPPED_VIEW_INFORMATION)SystemInformation; if (SystemInformationLength < sizeof( SYSTEM_SESSION_MAPPED_VIEW_INFORMATION)) { return STATUS_INFO_LENGTH_MISMATCH; } // // The lower level locks the buffer specified below into // memory using MmProbeAndLockPages. // We don't need to probe the buffers here. // SessionId = SessionMappedViewInformation->SessionId; if (!POINTER_IS_ALIGNED (SessionMappedViewInformation, sizeof (ULONGLONG))) { return STATUS_DATATYPE_MISALIGNMENT; } Status = MmGetSessionMappedViewInformation ( SessionMappedViewInformation, SystemInformationLength, &Length, &SessionId); if (ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = Length; } break; case SystemVdmInstemulInformation: #ifdef i386 if (SystemInformationLength < sizeof( SYSTEM_VDM_INSTEMUL_INFO )) { return STATUS_INFO_LENGTH_MISMATCH; } Status = ExpGetInstemulInformation( (PSYSTEM_VDM_INSTEMUL_INFO)SystemInformation ); if (ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = sizeof(SYSTEM_VDM_INSTEMUL_INFO); } #else Status = STATUS_NOT_IMPLEMENTED; #endif break; // // Get system exception information which includes the number // of exceptions that have dispatched, the number of alignment // fixups, and the number of floating emulations that have been // performed. // case SystemExceptionInformation: if (SystemInformationLength < sizeof( SYSTEM_EXCEPTION_INFORMATION)) { return STATUS_INFO_LENGTH_MISMATCH; } if (ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = sizeof(SYSTEM_EXCEPTION_INFORMATION); } ExceptionInformation = (PSYSTEM_EXCEPTION_INFORMATION)SystemInformation; // // Ke information. // // These counters are kept on a per processor basis and must // be totaled. // { ULONG AlignmentFixupCount = 0; ULONG ExceptionDispatchCount = 0; ULONG FloatingEmulationCount = 0; ULONG ByteWordEmulationCount = 0; for (i = 0; i < (ULONG)KeNumberProcessors; i += 1) { Prcb = KiProcessorBlock[i]; if (Prcb != NULL) { AlignmentFixupCount += Prcb->KeAlignmentFixupCount; ExceptionDispatchCount += Prcb->KeExceptionDispatchCount; FloatingEmulationCount += Prcb->KeFloatingEmulationCount; } } ExceptionInformation->AlignmentFixupCount = AlignmentFixupCount; ExceptionInformation->ExceptionDispatchCount = ExceptionDispatchCount; ExceptionInformation->FloatingEmulationCount = FloatingEmulationCount; ExceptionInformation->ByteWordEmulationCount = ByteWordEmulationCount; } break; case SystemKernelDebuggerInformation: if (SystemInformationLength < sizeof( SYSTEM_KERNEL_DEBUGGER_INFORMATION)) { return STATUS_INFO_LENGTH_MISMATCH; } KernelDebuggerInformation = (PSYSTEM_KERNEL_DEBUGGER_INFORMATION)SystemInformation; KernelDebuggerInformation->KernelDebuggerEnabled = KdDebuggerEnabled; KernelDebuggerInformation->KernelDebuggerNotPresent = KdDebuggerNotPresent; if (ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = sizeof(SYSTEM_KERNEL_DEBUGGER_INFORMATION); } break; case SystemContextSwitchInformation: if (SystemInformationLength < sizeof( SYSTEM_CONTEXT_SWITCH_INFORMATION)) { return STATUS_INFO_LENGTH_MISMATCH; } ContextSwitchInformation = (PSYSTEM_CONTEXT_SWITCH_INFORMATION)SystemInformation; // // Compute the total number of context switches and fill in the // remainder of the context switch information. // ContextSwitches = 0; for (i = 0; i < (ULONG)KeNumberProcessors; i += 1) { Prcb = KiProcessorBlock[i]; if (Prcb != NULL) { ContextSwitches += KeGetContextSwitches(Prcb); } } ContextSwitchInformation->ContextSwitches = ContextSwitches; ContextSwitchInformation->FindAny = KeThreadSwitchCounters.FindAny; ContextSwitchInformation->FindLast = KeThreadSwitchCounters.FindLast; ContextSwitchInformation->FindIdeal = KeThreadSwitchCounters.FindIdeal; ContextSwitchInformation->IdleAny = KeThreadSwitchCounters.IdleAny; ContextSwitchInformation->IdleCurrent = KeThreadSwitchCounters.IdleCurrent; ContextSwitchInformation->IdleLast = KeThreadSwitchCounters.IdleLast; ContextSwitchInformation->IdleIdeal = KeThreadSwitchCounters.IdleIdeal; ContextSwitchInformation->PreemptAny = KeThreadSwitchCounters.PreemptAny; ContextSwitchInformation->PreemptCurrent = KeThreadSwitchCounters.PreemptCurrent; ContextSwitchInformation->PreemptLast = KeThreadSwitchCounters.PreemptLast; ContextSwitchInformation->SwitchToIdle = KeThreadSwitchCounters.SwitchToIdle; if (ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = sizeof(SYSTEM_CONTEXT_SWITCH_INFORMATION); } break; case SystemRegistryQuotaInformation: if (SystemInformationLength < sizeof( SYSTEM_REGISTRY_QUOTA_INFORMATION)) { return(STATUS_INFO_LENGTH_MISMATCH); } CmQueryRegistryQuotaInformation((PSYSTEM_REGISTRY_QUOTA_INFORMATION)SystemInformation); if (ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = sizeof(SYSTEM_REGISTRY_QUOTA_INFORMATION); } break; case SystemDpcBehaviorInformation: { PSYSTEM_DPC_BEHAVIOR_INFORMATION DpcInfo; // // If the system information buffer is not the correct length, // then return an error. // if (SystemInformationLength != sizeof(SYSTEM_DPC_BEHAVIOR_INFORMATION)) { return STATUS_INFO_LENGTH_MISMATCH; } DpcInfo = (PSYSTEM_DPC_BEHAVIOR_INFORMATION)SystemInformation; // // Exception handler for this routine will return the correct // error if any of these accesses fail. // // // Return the current DPC behavior variables // DpcInfo->DpcQueueDepth = KiMaximumDpcQueueDepth; DpcInfo->MinimumDpcRate = KiMinimumDpcRate; DpcInfo->AdjustDpcThreshold = KiAdjustDpcThreshold; DpcInfo->IdealDpcRate = KiIdealDpcRate; } break; case SystemInterruptInformation: if (SystemInformationLength < (sizeof(SYSTEM_INTERRUPT_INFORMATION) * KeNumberProcessors)) { return(STATUS_INFO_LENGTH_MISMATCH); } InterruptInformation = (PSYSTEM_INTERRUPT_INFORMATION)SystemInformation; for (i=0; i < (ULONG)KeNumberProcessors; i++) { Prcb = KiProcessorBlock[i]; InterruptInformation->ContextSwitches = KeGetContextSwitches(Prcb); InterruptInformation->DpcCount = Prcb->DpcData[DPC_NORMAL].DpcCount; InterruptInformation->DpcRate = Prcb->DpcRequestRate; InterruptInformation->TimeIncrement = KeTimeIncrement; InterruptInformation->DpcBypassCount = 0; InterruptInformation->ApcBypassCount = 0; ++InterruptInformation; } break; case SystemCurrentTimeZoneInformation: if (SystemInformationLength < sizeof( RTL_TIME_ZONE_INFORMATION )) { return STATUS_INFO_LENGTH_MISMATCH; } RtlCopyMemory(SystemInformation,&ExpTimeZoneInformation,sizeof(ExpTimeZoneInformation)); if (ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = sizeof( RTL_TIME_ZONE_INFORMATION ); } Status = STATUS_SUCCESS; break; // // Query pool lookaside list and general lookaside list // information. // case SystemLookasideInformation: Status = ExpGetLookasideInformation(SystemInformation, SystemInformationLength, &Length); if (ARGUMENT_PRESENT(ReturnLength)) { *ReturnLength = Length; } break; case SystemRangeStartInformation: if ( SystemInformationLength != sizeof(ULONG_PTR) ) { return STATUS_INFO_LENGTH_MISMATCH; } *(PULONG_PTR)SystemInformation = (ULONG_PTR)MmSystemRangeStart; if (ARGUMENT_PRESENT(ReturnLength) ) { *ReturnLength = sizeof(ULONG_PTR); } break; case SystemVerifierInformation: if (SystemInformationLength < sizeof( SYSTEM_VERIFIER_INFORMATION )) { return STATUS_INFO_LENGTH_MISMATCH; } Status = MmGetVerifierInformation( SystemInformation, SystemInformationLength, &Length ); if (ARGUMENT_PRESENT( ReturnLength )) { *ReturnLength = Length; } break; case SystemLegacyDriverInformation: if (SystemInformationLength < sizeof(SYSTEM_LEGACY_DRIVER_INFORMATION)) { return(STATUS_INFO_LENGTH_MISMATCH); } Length = SystemInformationLength; Status = ExpQueryLegacyDriverInformation((PSYSTEM_LEGACY_DRIVER_INFORMATION)SystemInformation, &Length); if (ARGUMENT_PRESENT(ReturnLength)) { *ReturnLength = Length; } break; case SystemPerformanceTraceInformation: #ifdef NTPERF Status = PerfInfoQueryPerformanceTraceInformation(SystemInformation, SystemInformationLength, &Length ); if (ARGUMENT_PRESENT(ReturnLength)) { *ReturnLength = Length; } #else Status = STATUS_INVALID_INFO_CLASS; #endif // NTPERF break; case SystemPrefetcherInformation: Status = CcPfQueryPrefetcherInformation(SystemInformationClass, SystemInformation, SystemInformationLength, PreviousMode, &Length ); if (ARGUMENT_PRESENT(ReturnLength)) { *ReturnLength = Length; } break; case SystemNumaProcessorMap: Status = ExpQueryNumaProcessorMap(SystemInformation, SystemInformationLength, &Length); if (ARGUMENT_PRESENT(ReturnLength)) { *ReturnLength = Length; } break; case SystemNumaAvailableMemory: Status = ExpQueryNumaAvailableMemory(SystemInformation, SystemInformationLength, &Length); if (ARGUMENT_PRESENT(ReturnLength)) { *ReturnLength = Length; } break; case SystemRecommendedSharedDataAlignment: if (SystemInformationLength < sizeof(ULONG)) { return(STATUS_INFO_LENGTH_MISMATCH); } // // Alignment is guaranteed by the ProbeForWrite above // so just store the value as a ULONG. // *(PULONG)SystemInformation = KeGetRecommendedSharedDataAlignment(); if (ARGUMENT_PRESENT(ReturnLength)) { *ReturnLength = sizeof(ULONG); } break; case SystemComPlusPackage: if (SystemInformationLength != sizeof(ULONG)) { return(STATUS_INFO_LENGTH_MISMATCH); } if (SharedUserData->ComPlusPackage == COMPLUS_PACKAGE_INVALID) { // // The initialization happens one time. // SharedUserData->ComPlusPackage = 0; ExpReadComPlusPackage (); } *(PULONG)SystemInformation = SharedUserData->ComPlusPackage; if (ARGUMENT_PRESENT(ReturnLength)) { *ReturnLength = sizeof(ULONG); } break; case SystemLostDelayedWriteInformation: if (SystemInformationLength < sizeof(ULONG)) { return(STATUS_INFO_LENGTH_MISMATCH); } *(PULONG)SystemInformation = CcLostDelayedWrites; if (ARGUMENT_PRESENT(ReturnLength)) { *ReturnLength = sizeof(ULONG); } break; case SystemObjectSecurityMode: if (SystemInformationLength != sizeof (ULONG)) { return STATUS_INFO_LENGTH_MISMATCH; } *(PULONG)SystemInformation = ObGetSecurityMode (); if (ARGUMENT_PRESENT (ReturnLength)) { *ReturnLength = sizeof (ULONG); } break; case SystemWatchdogTimerInformation: { PSYSTEM_WATCHDOG_TIMER_INFORMATION WdTimerInfo = (PSYSTEM_WATCHDOG_TIMER_INFORMATION) SystemInformation; // // Caller must be kernel mode with the proper parameters // if (PreviousMode != KernelMode || SystemInformation == NULL || SystemInformationLength != sizeof(SYSTEM_WATCHDOG_TIMER_INFORMATION)) { ExRaiseStatus (STATUS_INVALID_PARAMETER); } if (ExpWdHandler == NULL) { Status = STATUS_NOT_IMPLEMENTED; } else { switch (WdTimerInfo->WdInfoClass) { case WdInfoTimeoutValue: Status = ExpWdHandler( WdActionQueryTimeoutValue, ExpWdHandlerContext, &WdTimerInfo->DataValue, FALSE ); break; case WdInfoTriggerAction: Status = ExpWdHandler( WdActionQueryTriggerAction, ExpWdHandlerContext, &WdTimerInfo->DataValue, FALSE ); break; case WdInfoState: Status = ExpWdHandler( WdActionQueryState, ExpWdHandlerContext, &WdTimerInfo->DataValue, FALSE ); break; default: Status = STATUS_INVALID_PARAMETER; break; } } } break; case SystemLogicalProcessorInformation: Status = KeQueryLogicalProcessorInformation( SystemInformation, SystemInformationLength, &Length); if (ARGUMENT_PRESENT(ReturnLength)) { *ReturnLength = Length; } break; default: // // Invalid argument. // return STATUS_INVALID_INFO_CLASS; } } except (EXCEPTION_EXECUTE_HANDLER) { Status = GetExceptionCode(); } return Status; } NTSTATUS NTAPI NtSetSystemInformation ( IN SYSTEM_INFORMATION_CLASS SystemInformationClass, IN PVOID SystemInformation, IN ULONG SystemInformationLength ) /*++ Routine Description: This function set information about the system. Arguments: SystemInformationClass - The system information class which is to be modified. SystemInformation - A pointer to a buffer which contains the specified information. The format and content of the buffer depend on the specified system information class. SystemInformationLength - Specifies the length in bytes of the system information buffer. Return Value: Returns one of the following status codes: STATUS_SUCCESS - Normal, successful completion. STATUS_ACCESS_VIOLATION - The specified system information buffer is not accessible. STATUS_INVALID_INFO_CLASS - The SystemInformationClass parameter did not specify a valid value. STATUS_INFO_LENGTH_MISMATCH - The value of the SystemInformationLength parameter did not match the length required for the information class requested by the SystemInformationClass parameter. STATUS_PRIVILEGE_NOT_HELD is returned if the caller does not have the privilege to set the system time. --*/ { BOOLEAN Enable; KPROCESSOR_MODE PreviousMode; NTSTATUS Status; ULONG TimeAdjustment; PSYSTEM_SET_TIME_ADJUST_INFORMATION TimeAdjustmentInformation; HANDLE EventHandle; PVOID Event; ULONG LoadFlags = MM_LOAD_IMAGE_IN_SESSION; PAGED_CODE(); // // Establish an exception handle in case the system information buffer // is not accessible. // Status = STATUS_SUCCESS; try { // // Get the previous processor mode and probe the input buffer for // read access if necessary. // PreviousMode = KeGetPreviousMode(); if (PreviousMode != KernelMode) { ProbeForRead((PVOID)SystemInformation, SystemInformationLength, sizeof(ULONG)); } // // Dispatch on the system information class. // switch (SystemInformationClass) { case SystemFlagsInformation: if (SystemInformationLength != sizeof( SYSTEM_FLAGS_INFORMATION )) { return STATUS_INFO_LENGTH_MISMATCH; } if (!SeSinglePrivilegeCheck( SeDebugPrivilege, PreviousMode )) { return STATUS_ACCESS_DENIED; } else { ULONG Flags; Flags = ((PSYSTEM_FLAGS_INFORMATION)SystemInformation)->Flags & ~(FLG_KERNELMODE_VALID_BITS | FLG_BOOTONLY_VALID_BITS); Flags |= NtGlobalFlag & (FLG_KERNELMODE_VALID_BITS | FLG_BOOTONLY_VALID_BITS); NtGlobalFlag = Flags; ((PSYSTEM_FLAGS_INFORMATION)SystemInformation)->Flags = NtGlobalFlag; } break; // // Set system time adjustment information. // // N.B. The caller must have the SeSystemTime privilege. // case SystemTimeAdjustmentInformation: // // If the system information buffer is not the correct length, // then return an error. // if (SystemInformationLength != sizeof( SYSTEM_SET_TIME_ADJUST_INFORMATION )) { return STATUS_INFO_LENGTH_MISMATCH; } // // If the current thread does not have the privilege to set the // time adjustment variables, then return an error. // if ((PreviousMode != KernelMode) && (SeSinglePrivilegeCheck(SeSystemtimePrivilege, PreviousMode) == FALSE)) { return STATUS_PRIVILEGE_NOT_HELD; } // // Set system time adjustment parameters. // TimeAdjustmentInformation = (PSYSTEM_SET_TIME_ADJUST_INFORMATION)SystemInformation; Enable = TimeAdjustmentInformation->Enable; TimeAdjustment = TimeAdjustmentInformation->TimeAdjustment; if (Enable == TRUE) { KeTimeAdjustment = KeMaximumIncrement; } else { if (TimeAdjustment == 0) { return STATUS_INVALID_PARAMETER_2; } KeTimeAdjustment = TimeAdjustment; } KeTimeSynchronization = Enable; break; // // Set an event to signal when the clock interrupt has been // masked for too long, causing the time to slip. // The event will be referenced to prevent it from being // deleted. If the new event handle is valid or NULL, the // old event will be dereferenced and forgotten. If the // event handle is non-NULL but invalid, the old event will // be remembered and a failure status will be returned. // // N.B. The caller must have the SeSystemTime privilege. // case SystemTimeSlipNotification: if (SystemInformationLength != sizeof(HANDLE)) { return STATUS_INFO_LENGTH_MISMATCH; } // // If the current thread does not have the privilege to set the // time adjustment variables, then return an error. // if ((PreviousMode != KernelMode) && (SeSinglePrivilegeCheck(SeSystemtimePrivilege, PreviousMode) == FALSE)) { return STATUS_PRIVILEGE_NOT_HELD; } EventHandle = *(PHANDLE)SystemInformation; if (EventHandle == NULL) { // // Dereference the old event and don't signal anything // for time slips. // Event = NULL; Status = STATUS_SUCCESS; } else { Status = ObReferenceObjectByHandle(EventHandle, EVENT_MODIFY_STATE, ExEventObjectType, PreviousMode, &Event, NULL); } if (NT_SUCCESS(Status)) { KdUpdateTimeSlipEvent(Event); } break; // // Set registry quota limit. // // N.B. The caller must have SeIncreaseQuotaPrivilege // case SystemRegistryQuotaInformation: // // If the system information buffer is not the correct length, // then return an error. // if (SystemInformationLength != sizeof( SYSTEM_REGISTRY_QUOTA_INFORMATION )) { return STATUS_INFO_LENGTH_MISMATCH; } // // If the current thread does not have the privilege to create // a pagefile, then return an error. // if ((PreviousMode != KernelMode) && (SeSinglePrivilegeCheck(SeIncreaseQuotaPrivilege, PreviousMode) == FALSE)) { return STATUS_PRIVILEGE_NOT_HELD; } // // Set registry quota parameters. // CmSetRegistryQuotaInformation((PSYSTEM_REGISTRY_QUOTA_INFORMATION)SystemInformation); break; case SystemPrioritySeperation: { ULONG PrioritySeparation; // // If the system information buffer is not the correct length, // then return an error. // if (SystemInformationLength != sizeof (ULONG)) { return STATUS_INFO_LENGTH_MISMATCH; } if (!SeSinglePrivilegeCheck (SeTcbPrivilege, PreviousMode)) { return STATUS_PRIVILEGE_NOT_HELD; } try { PrioritySeparation = *(PULONG)SystemInformation; } except(EXCEPTION_EXECUTE_HANDLER) { return GetExceptionCode(); } PsChangeQuantumTable (TRUE, PrioritySeparation); Status = STATUS_SUCCESS; } break; case SystemExtendServiceTableInformation: { UNICODE_STRING Image; PWSTR Buffer; PVOID ImageBaseAddress; ULONG_PTR EntryPoint; PVOID SectionPointer; PIMAGE_NT_HEADERS NtHeaders; PDRIVER_INITIALIZE InitRoutine; DRIVER_OBJECT Win32KDevice; // // If the system information buffer is not the correct length, // then return an error. // if (SystemInformationLength != sizeof( UNICODE_STRING ) ) { return STATUS_INFO_LENGTH_MISMATCH; } if (PreviousMode != KernelMode) { // // The caller's access mode is not kernel so check to ensure // the caller has the privilege to load a driver. // if (!SeSinglePrivilegeCheck( SeLoadDriverPrivilege, PreviousMode )) { return STATUS_PRIVILEGE_NOT_HELD; } Buffer = NULL; try { Image = *(PUNICODE_STRING)SystemInformation; // // Guard against overflow. // if (Image.Length > Image.MaximumLength) { Image.Length = Image.MaximumLength; } if (Image.Length == 0) { return STATUS_NO_MEMORY; } ProbeForRead(Image.Buffer, Image.Length, sizeof(UCHAR)); Buffer = ExAllocatePoolWithTag(PagedPool, Image.Length, 'ofnI'); if ( !Buffer ) { return STATUS_NO_MEMORY; } RtlCopyMemory(Buffer, Image.Buffer, Image.Length); Image.Buffer = Buffer; Image.MaximumLength = Image.Length; } except(EXCEPTION_EXECUTE_HANDLER) { if ( Buffer ) { ExFreePool(Buffer); } return GetExceptionCode(); } // // Call MmLoadSystemImage with previous mode of kernel. // Status = ZwSetSystemInformation( SystemExtendServiceTableInformation, (PVOID)&Image, sizeof(Image) ); ExFreePool(Buffer); return Status; } Image = *(PUNICODE_STRING)SystemInformation; // // Now in kernelmode, so load the driver. // Status = MmLoadSystemImage (&Image, NULL, NULL, MM_LOAD_IMAGE_IN_SESSION, &SectionPointer, (PVOID *) &ImageBaseAddress); if (!NT_SUCCESS (Status)) { return Status; } NtHeaders = RtlImageNtHeader( ImageBaseAddress ); if (! NtHeaders) { MmUnloadSystemImage (SectionPointer); return STATUS_INVALID_IMAGE_FORMAT; } EntryPoint = NtHeaders->OptionalHeader.AddressOfEntryPoint; EntryPoint += (ULONG_PTR) ImageBaseAddress; InitRoutine = (PDRIVER_INITIALIZE) EntryPoint; RtlZeroMemory (&Win32KDevice, sizeof(Win32KDevice)); ASSERT (KeGetCurrentIrql() == 0); Win32KDevice.DriverStart = (PVOID)ImageBaseAddress; Status = (InitRoutine)(&Win32KDevice,NULL); ASSERT (KeGetCurrentIrql() == 0); if (!NT_SUCCESS (Status)) { MmUnloadSystemImage (SectionPointer); } else { // // Pass the driver object to memory management so the // session can be unloaded cleanly. // MmSessionSetUnloadAddress (&Win32KDevice); } } break; case SystemUnloadGdiDriverInformation: { if (SystemInformationLength != sizeof( PVOID ) ) { return STATUS_INFO_LENGTH_MISMATCH; } if (PreviousMode != KernelMode) { // // The caller's access mode is not kernel so fail. // Only GDI from the kernel can call this. // return STATUS_PRIVILEGE_NOT_HELD; } MmUnloadSystemImage( *((PVOID *)SystemInformation) ); Status = STATUS_SUCCESS; } break; case SystemLoadGdiDriverInSystemSpace: { LoadFlags &= ~MM_LOAD_IMAGE_IN_SESSION; // // Fall through // } case SystemLoadGdiDriverInformation: { UNICODE_STRING Image; PVOID ImageBaseAddress; ULONG_PTR EntryPoint; PVOID SectionPointer; PIMAGE_NT_HEADERS NtHeaders; // // If the system information buffer is not the correct length, // then return an error. // if (SystemInformationLength != sizeof( SYSTEM_GDI_DRIVER_INFORMATION ) ) { return STATUS_INFO_LENGTH_MISMATCH; } if (PreviousMode != KernelMode) { // // The caller's access mode is not kernel so fail. // Only GDI from the kernel can call this. // return STATUS_PRIVILEGE_NOT_HELD; } Image = ((PSYSTEM_GDI_DRIVER_INFORMATION)SystemInformation)->DriverName; Status = MmLoadSystemImage (&Image, NULL, NULL, LoadFlags, &SectionPointer, (PVOID *) &ImageBaseAddress); if ((NT_SUCCESS( Status ))) { PSYSTEM_GDI_DRIVER_INFORMATION GdiDriverInfo = (PSYSTEM_GDI_DRIVER_INFORMATION) SystemInformation; ULONG Size; GdiDriverInfo->ExportSectionPointer = RtlImageDirectoryEntryToData(ImageBaseAddress, TRUE, IMAGE_DIRECTORY_ENTRY_EXPORT, &Size); // // Capture the entry point. // NtHeaders = RtlImageNtHeader( ImageBaseAddress ); EntryPoint = NtHeaders->OptionalHeader.AddressOfEntryPoint; EntryPoint += (ULONG_PTR) ImageBaseAddress; GdiDriverInfo->ImageAddress = (PVOID) ImageBaseAddress; GdiDriverInfo->SectionPointer = SectionPointer; GdiDriverInfo->EntryPoint = (PVOID) EntryPoint; GdiDriverInfo->ImageLength = NtHeaders->OptionalHeader.SizeOfImage; } } break; case SystemFileCacheInformation: if (SystemInformationLength < sizeof( SYSTEM_FILECACHE_INFORMATION )) { return STATUS_INFO_LENGTH_MISMATCH; } if (!SeSinglePrivilegeCheck( SeIncreaseQuotaPrivilege, PreviousMode )) { return STATUS_ACCESS_DENIED; } return MmAdjustWorkingSetSize ( ((PSYSTEM_FILECACHE_INFORMATION)SystemInformation)->MinimumWorkingSet, ((PSYSTEM_FILECACHE_INFORMATION)SystemInformation)->MaximumWorkingSet, TRUE, TRUE); break; case SystemDpcBehaviorInformation: { SYSTEM_DPC_BEHAVIOR_INFORMATION DpcInfo; // // If the system information buffer is not the correct length, // then return an error. // if (SystemInformationLength != sizeof(SYSTEM_DPC_BEHAVIOR_INFORMATION)) { return STATUS_INFO_LENGTH_MISMATCH; } if (PreviousMode != KernelMode) { // // The caller's access mode is not kernel so check to ensure that // the caller has the privilege to load a driver. // if (!SeSinglePrivilegeCheck( SeLoadDriverPrivilege, PreviousMode )) { return STATUS_PRIVILEGE_NOT_HELD; } } // // Exception handler for this routine will return the correct // error if this access fails. // DpcInfo = *(PSYSTEM_DPC_BEHAVIOR_INFORMATION)SystemInformation; // // Set the new DPC behavior variables // KiMaximumDpcQueueDepth = DpcInfo.DpcQueueDepth; KiMinimumDpcRate = DpcInfo.MinimumDpcRate; KiAdjustDpcThreshold = DpcInfo.AdjustDpcThreshold; KiIdealDpcRate = DpcInfo.IdealDpcRate; } break; case SystemSessionCreate: { // // Creation of a session space. // ULONG SessionId; // // If the system information buffer is not the correct length, // then return an error. // if (SystemInformationLength != sizeof(ULONG)) { return STATUS_INFO_LENGTH_MISMATCH; } if (PreviousMode != KernelMode) { // // The caller's access mode is not kernel so check to // ensure that the caller has the privilege to load // a driver. // if (!SeSinglePrivilegeCheck (SeLoadDriverPrivilege, PreviousMode)) { return STATUS_PRIVILEGE_NOT_HELD; } try { ProbeForWriteUlong((PULONG)SystemInformation); } except (EXCEPTION_EXECUTE_HANDLER) { return GetExceptionCode(); } } // // Create a session space in the current process. // Status = MmSessionCreate (&SessionId); if (NT_SUCCESS(Status)) { if (PreviousMode != KernelMode) { try { *(PULONG)SystemInformation = SessionId; } except (EXCEPTION_EXECUTE_HANDLER) { return GetExceptionCode(); } } else { *(PULONG)SystemInformation = SessionId; } } return Status; } break; case SystemSessionDetach: { ULONG SessionId; // // If the system information buffer is not the correct length, // then return an error. // if (SystemInformationLength != sizeof(ULONG)) { return STATUS_INFO_LENGTH_MISMATCH; } if (PreviousMode != KernelMode) { // // The caller's access mode is not kernel so check to // ensure that the caller has the privilege to load // a driver. // if (!SeSinglePrivilegeCheck( SeLoadDriverPrivilege, PreviousMode )) { return STATUS_PRIVILEGE_NOT_HELD; } try { ProbeForRead ((PVOID)SystemInformation, sizeof(ULONG), sizeof(ULONG)); SessionId = *(PULONG)SystemInformation; } except (EXCEPTION_EXECUTE_HANDLER) { return GetExceptionCode(); } } else { SessionId = *(PULONG)SystemInformation; } // // Detach the current process from a session space // if it has one. // Status = MmSessionDelete (SessionId); return Status; } break; case SystemCrashDumpStateInformation: // // All this system information does when you set it is trigger a // reconfigurating of the current crashdump state based on the // registry. // Status = IoConfigureCrashDump(CrashDumpReconfigure); break; case SystemPerformanceTraceInformation: #ifdef NTPERF Status = PerfInfoSetPerformanceTraceInformation(SystemInformation, SystemInformationLength ); #else Status = STATUS_INVALID_INFO_CLASS; #endif // NTPERF break; case SystemVerifierThunkExtend: if (PreviousMode != KernelMode) { // // The caller's access mode is not kernel so fail. // Only device drivers can call this. // return STATUS_PRIVILEGE_NOT_HELD; } Status = MmAddVerifierThunks (SystemInformation, SystemInformationLength); break; case SystemVerifierInformation: if (!SeSinglePrivilegeCheck (SeDebugPrivilege, PreviousMode)) { return STATUS_ACCESS_DENIED; } Status = MmSetVerifierInformation (SystemInformation, SystemInformationLength); break; case SystemVerifierAddDriverInformation: case SystemVerifierRemoveDriverInformation: { UNICODE_STRING Image; PUNICODE_STRING ImagePointer; PWSTR Buffer; // // If the system information buffer is not the correct length, // then return an error. // if (SystemInformationLength != sizeof( UNICODE_STRING ) ) { return STATUS_INFO_LENGTH_MISMATCH; } Buffer = NULL; if (PreviousMode != KernelMode) { // // The caller's access mode is not kernel so check to ensure // the caller has the privilege to add a verifier entry. // if (!SeSinglePrivilegeCheck( SeDebugPrivilege, PreviousMode )) { return STATUS_PRIVILEGE_NOT_HELD; } try { Image = *(PUNICODE_STRING)SystemInformation; // // Guard against overflow. // if (Image.Length > Image.MaximumLength) { Image.Length = Image.MaximumLength; } if (Image.Length == 0) { return STATUS_NO_MEMORY; } ProbeForRead(Image.Buffer, Image.Length, sizeof(UCHAR)); Buffer = ExAllocatePoolWithTag(PagedPool, Image.Length, 'ofnI'); if ( !Buffer ) { return STATUS_NO_MEMORY; } RtlCopyMemory(Buffer, Image.Buffer, Image.Length); Image.Buffer = Buffer; Image.MaximumLength = Image.Length; } except(EXCEPTION_EXECUTE_HANDLER) { if ( Buffer ) { ExFreePool(Buffer); } return GetExceptionCode(); } ImagePointer = &Image; } else { ImagePointer = (PUNICODE_STRING)SystemInformation; } switch (SystemInformationClass) { case SystemVerifierAddDriverInformation: Status = MmAddVerifierEntry (ImagePointer); break; case SystemVerifierRemoveDriverInformation: Status = MmRemoveVerifierEntry (ImagePointer); break; default: Status = STATUS_INVALID_INFO_CLASS; break; } if (Buffer) { ExFreePool(Buffer); } } break; case SystemMirrorMemoryInformation: Status = MmCreateMirror (); break; case SystemPrefetcherInformation: Status = CcPfSetPrefetcherInformation(SystemInformationClass, SystemInformation, SystemInformationLength, PreviousMode ); break; case SystemComPlusPackage: if (SystemInformationLength != sizeof( ULONG ) ) { return STATUS_INFO_LENGTH_MISMATCH; } Status = ExpUpdateComPlusPackage (*(PULONG)SystemInformation); if (NT_SUCCESS (Status)) { SharedUserData->ComPlusPackage = *(PULONG)SystemInformation; } break; case SystemHotpatchInformation: #if defined(_X86_) Status = ExApplyCodePatch( SystemInformation, SystemInformationLength ); #else // // The platforms which no not support hotpatching yet // simple return the appropriate status // Status = STATUS_NOT_IMPLEMENTED; #endif break; case SystemWatchdogTimerHandler: { PSYSTEM_WATCHDOG_HANDLER_INFORMATION WdHandlerInfo = (PSYSTEM_WATCHDOG_HANDLER_INFORMATION) SystemInformation; // // Caller must be kernel mode with the proper parameters // if (PreviousMode != KernelMode || SystemInformation == NULL || SystemInformationLength != sizeof(SYSTEM_WATCHDOG_HANDLER_INFORMATION)) { ExRaiseStatus (STATUS_INVALID_PARAMETER); } ExpWdHandler = WdHandlerInfo->WdHandler; ExpWdHandlerContext = WdHandlerInfo->Context; } break; case SystemWatchdogTimerInformation: { PSYSTEM_WATCHDOG_TIMER_INFORMATION WdTimerInfo = (PSYSTEM_WATCHDOG_TIMER_INFORMATION) SystemInformation; // // Caller must be kernel mode with the proper parameters // if (PreviousMode != KernelMode || SystemInformation == NULL || SystemInformationLength != sizeof(SYSTEM_WATCHDOG_TIMER_INFORMATION)) { ExRaiseStatus (STATUS_INVALID_PARAMETER); } if (ExpWdHandler == NULL) { Status = STATUS_NOT_IMPLEMENTED; } else { switch (WdTimerInfo->WdInfoClass) { case WdInfoTimeoutValue: Status = ExpWdHandler( WdActionSetTimeoutValue, ExpWdHandlerContext, &WdTimerInfo->DataValue, FALSE ); break; case WdInfoResetTimer: Status = ExpWdHandler( WdActionResetTimer, ExpWdHandlerContext, NULL, FALSE ); break; case WdInfoStopTimer: Status = ExpWdHandler( WdActionStopTimer, ExpWdHandlerContext, NULL, FALSE ); break; case WdInfoStartTimer: Status = ExpWdHandler( WdActionStartTimer, ExpWdHandlerContext, NULL, FALSE ); break; case WdInfoTriggerAction: Status = ExpWdHandler( WdActionSetTriggerAction, ExpWdHandlerContext, &WdTimerInfo->DataValue, FALSE ); break; default: Status = STATUS_INVALID_PARAMETER; break; } } } break; default: //KeBugCheckEx(SystemInformationClass,KdPitchDebugger,0,0,0); Status = STATUS_INVALID_INFO_CLASS; break; } } except (EXCEPTION_EXECUTE_HANDLER) { Status = GetExceptionCode(); } return Status; } NTSTATUS ExLockUserBuffer ( IN PVOID Buffer, IN ULONG Length, IN KPROCESSOR_MODE ProbeMode, IN LOCK_OPERATION LockMode, OUT PVOID *LockedBuffer, OUT PVOID *LockVariable ) /*++ Routine Description: Wrapper for MmProbeAndLockPages. Creates an MDL and locks the specified buffer with that MDL. Arguments: Buffer - pointer to the buffer to be locked. Length - size of the buffer to be locked. ProbeMode - processor mode for doing the probe in MmProbeAndLockPages. LockMode - the mode the pages should be locked for. LockedBuffer - returns a pointer to the locked buffer for use by the caller. LockVariable - returns a context pointer. This must be passed into ExUnlockUserBuffer when complete so the MDL can be freed. Return Value: Returns one of the following status codes: STATUS_SUCCESS - Normal, successful completion. STATUS_ACCESS_VIOLATION - The buffer is not accessible with the specified LockMode. STATUS_INSUFFICIENT_RESOURCES - not enough memory to allocate the MDL. --*/ { PMDL Mdl; SIZE_T MdlSize; // // It is the caller's responsibility to ensure zero cannot be passed in. // ASSERT (Length != 0); *LockedBuffer = NULL; *LockVariable = NULL; // // Allocate an MDL to map the request. // MdlSize = MmSizeOfMdl( Buffer, Length ); Mdl = ExAllocatePoolWithQuotaTag (NonPagedPool | POOL_QUOTA_FAIL_INSTEAD_OF_RAISE, MdlSize, 'ofnI'); if (Mdl == NULL) { return STATUS_INSUFFICIENT_RESOURCES; } // // Initialize MDL for request. // MmInitializeMdl(Mdl, Buffer, Length); try { MmProbeAndLockPages (Mdl, ProbeMode, LockMode); } except (EXCEPTION_EXECUTE_HANDLER) { ExFreePool (Mdl); return GetExceptionCode(); } Mdl->MdlFlags |= MDL_MAPPING_CAN_FAIL; *LockedBuffer = MmGetSystemAddressForMdl (Mdl); if (*LockedBuffer == NULL) { ExUnlockUserBuffer (Mdl); return STATUS_INSUFFICIENT_RESOURCES; } *LockVariable = Mdl; return STATUS_SUCCESS; } VOID ExUnlockUserBuffer( IN PVOID LockVariable ) { MmUnlockPages ((PMDL)LockVariable); ExFreePool ((PMDL)LockVariable); return; } NTSTATUS ExpGetProcessInformation ( OUT PVOID SystemInformation, IN ULONG SystemInformationLength, OUT PULONG Length, IN PULONG SessionId OPTIONAL, IN BOOLEAN ExtendedInformation ) /*++ Routine Description: This function returns information about all the processes and threads in the system. Arguments: SystemInformation - A pointer to a buffer which receives the specified information. SystemInformationLength - Specifies the length in bytes of the system information buffer. Length - An optional pointer which, if specified, receives the number of bytes placed in the system information buffer. SessionId - Session Id. ExtendedInformation - TRUE if extended information (e.g., Process PDE) is needed. Environment: Kernel mode. This routine could be made PAGELK but it is a high frequency routine so it is actually better to keep it nonpaged to avoid bringing in the entire PAGELK section. Return Value: Returns one of the following status codes: STATUS_SUCCESS - normal, successful completion. STATUS_INVALID_INFO_CLASS - The SystemInformationClass parameter did not specify a valid value. STATUS_INFO_LENGTH_MISMATCH - The value of the SystemInformationLength parameter did not match the length required for the information class requested by the SystemInformationClass parameter. STATUS_ACCESS_VIOLATION - Either the SystemInformation buffer pointer or the Length pointer value specified an invalid address. STATUS_WORKING_SET_QUOTA - The process does not have sufficient working set to lock the specified output structure in memory. STATUS_INSUFFICIENT_RESOURCES - Insufficient system resources exist for this request to complete. --*/ { KLOCK_QUEUE_HANDLE LockHandle; PEPROCESS Process = NULL; PETHREAD Thread; PSYSTEM_PROCESS_INFORMATION ProcessInfo; PVOID ThreadInfo; ULONG ThreadInfoSize; PLIST_ENTRY NextThread; PVOID MappedAddress; PVOID LockVariable; ULONG ProcessSessionId; ULONG TotalSize = 0; ULONG NextEntryOffset = 0; PUCHAR Src; PWCHAR SrcW; PWSTR Dst; ULONG n, nc; NTSTATUS status = STATUS_SUCCESS, status1; PUNICODE_STRING pImageFileName; *Length = 0; if (SystemInformationLength > 0) { status1 = ExLockUserBuffer (SystemInformation, SystemInformationLength, KeGetPreviousMode(), IoWriteAccess, &MappedAddress, &LockVariable); if (!NT_SUCCESS(status1)) { return status1; } } else { // // This indicates the caller just wants to know the size of the // buffer to allocate but is not prepared to accept any data content // in this instance. // MappedAddress = NULL; LockVariable = NULL; } if (ExtendedInformation) { ThreadInfoSize = sizeof(SYSTEM_EXTENDED_THREAD_INFORMATION); } else { ThreadInfoSize = sizeof(SYSTEM_THREAD_INFORMATION); } ProcessInfo = (PSYSTEM_PROCESS_INFORMATION) MappedAddress; try { // // Do the idle process first then all the other processes. // for (Process = PsIdleProcess; Process != NULL; Process = PsGetNextProcess ((Process == PsIdleProcess) ? NULL : Process)) { // // Skip terminating processes // if (Process->Flags&PS_PROCESS_FLAGS_PROCESS_EXITING) { continue; } if (ARGUMENT_PRESENT(SessionId) && Process == PsIdleProcess) { continue; } ProcessSessionId = MmGetSessionId (Process); if ((ARGUMENT_PRESENT(SessionId)) && (ProcessSessionId != *SessionId)) { continue; } ProcessInfo = (PSYSTEM_PROCESS_INFORMATION) ((PUCHAR)MappedAddress + TotalSize); NextEntryOffset = sizeof(SYSTEM_PROCESS_INFORMATION); TotalSize += sizeof(SYSTEM_PROCESS_INFORMATION); if (TotalSize > SystemInformationLength) { status = STATUS_INFO_LENGTH_MISMATCH; } else { // // Get information for each process. // ExpCopyProcessInfo (ProcessInfo, Process, ExtendedInformation); ProcessInfo->NumberOfThreads = 0; // // Store the Remote Terminal SessionId // ProcessInfo->SessionId = ProcessSessionId; ProcessInfo->ImageName.Buffer = NULL; ProcessInfo->ImageName.Length = 0; ProcessInfo->ImageName.MaximumLength = 0; if (Process == PsIdleProcess) { // // Since Idle process and system process share the same // object table, zero out idle processes handle count to // reduce confusion // // Idle Process always has SessionId 0 // ProcessInfo->HandleCount = 0; ProcessInfo->SessionId = 0; } } // // Raise IRQL to SYNCH_LEVEL, acquire the kernel process lock, and // get information for each thread. // ThreadInfo = (PVOID)(ProcessInfo + 1); KeAcquireInStackQueuedSpinLockRaiseToSynch(&Process->Pcb.ProcessLock, &LockHandle); NextThread = Process->Pcb.ThreadListHead.Flink; while (NextThread != &Process->Pcb.ThreadListHead) { NextEntryOffset += ThreadInfoSize; TotalSize += ThreadInfoSize; if (TotalSize > SystemInformationLength) { status = STATUS_INFO_LENGTH_MISMATCH; } else { Thread = (PETHREAD)(CONTAINING_RECORD(NextThread, KTHREAD, ThreadListEntry)); // // Lock dispatcher database to get atomic view of thread // attributes. // KiLockDispatcherDatabaseAtSynchLevel(); ExpCopyThreadInfo (ThreadInfo, Thread, ExtendedInformation); KiUnlockDispatcherDatabaseFromSynchLevel(); ProcessInfo->NumberOfThreads += 1; ThreadInfo = (PCHAR) ThreadInfo + ThreadInfoSize; } NextThread = NextThread->Flink; } // // Unlock kernel process lock and lower IRQL to its previous value. // KeReleaseInStackQueuedSpinLock(&LockHandle); // // Get the image name. // if (Process != PsIdleProcess) { // // Try to use the real image name if we can that not limited to 16 characters // Dst = (PWSTR)(ThreadInfo); status1 = SeLocateProcessImageName (Process, &pImageFileName); if (NT_SUCCESS (status1)) { n = pImageFileName->Length; if (n == 0) { ExFreePool (pImageFileName); } } else { n = 0; } if (n) { SrcW = pImageFileName->Buffer + n / sizeof (WCHAR); while (SrcW != pImageFileName->Buffer) { if (*--SrcW == L'\\') { SrcW = SrcW + 1; break; } } nc = n - (ULONG)(SrcW - pImageFileName->Buffer) * sizeof (WCHAR); n = ROUND_UP (nc + 1, sizeof(LARGE_INTEGER)); TotalSize += n; NextEntryOffset += n; if (TotalSize > SystemInformationLength) { status = STATUS_INFO_LENGTH_MISMATCH; } else { RtlCopyMemory (Dst, SrcW, nc); Dst += nc / sizeof (WCHAR); *Dst++ = L'\0'; } ExFreePool (pImageFileName); } else { Src = Process->ImageFileName; n = (ULONG) strlen ((PCHAR)Src); if (n != 0) { n = ROUND_UP( ((n + 1) * sizeof( WCHAR )), sizeof(LARGE_INTEGER) ); TotalSize += n; NextEntryOffset += n; if (TotalSize > SystemInformationLength) { status = STATUS_INFO_LENGTH_MISMATCH; } else { WCHAR c; while (1) { c = (WCHAR)*Src++; *Dst++ = c; if (c == L'\0') { break; } } } } } if (NT_SUCCESS (status)) { ProcessInfo->ImageName.Length = (USHORT)((PCHAR)Dst - (PCHAR)ThreadInfo - sizeof( UNICODE_NULL )); ProcessInfo->ImageName.MaximumLength = (USHORT)n; // // Set the image name to point into the user's memory. // ProcessInfo->ImageName.Buffer = (PWSTR) ((PCHAR)SystemInformation + ((PCHAR)(ThreadInfo) - (PCHAR)MappedAddress)); } } // // Point to next process. // if (NT_SUCCESS (status)) { ProcessInfo->NextEntryOffset = NextEntryOffset; } } if (NT_SUCCESS (status)) { ProcessInfo->NextEntryOffset = 0; } *Length = TotalSize; } finally { if (MappedAddress != NULL) { ExUnlockUserBuffer (LockVariable); } } return status; } NTSTATUS ExGetSessionPoolTagInformation ( OUT PVOID SystemInformation, IN ULONG SystemInformationLength, OUT PULONG Length, IN PULONG SessionId OPTIONAL ) /*++ Routine Description: This function returns information about all the per-session pool tag information in the system. Arguments: SystemInformation - A pointer to a buffer which receives the specified information. SystemInformationLength - Specifies the length in bytes of the system information buffer. Length - Receives the number of bytes placed (or would have been placed) in the system information buffer. SessionId - Session Id (-1 indicates enumerate all sessions). Environment: Kernel mode. Return Value: Returns one of the following status codes: STATUS_SUCCESS - normal, successful completion. STATUS_INVALID_INFO_CLASS - The SystemInformationClass parameter did not specify a valid value. STATUS_INFO_LENGTH_MISMATCH - The value of the SystemInformationLength parameter did not match the length required for the information class requested by the SystemInformationClass parameter. STATUS_ACCESS_VIOLATION - Either the SystemInformation buffer pointer or the Length pointer value specified an invalid address. STATUS_WORKING_SET_QUOTA - The process does not have sufficient working set to lock the specified output structure in memory. STATUS_INSUFFICIENT_RESOURCES - Insufficient system resources exist for this request to complete. --*/ { KAPC_STATE ApcState; PVOID MappedAddress; PVOID OpaqueSession; PVOID LockVariable; ULONG TotalSize; ULONG NextEntryOffset; ULONG CurrentSessionId; ULONG Count; ULONG AbsoluteCount; NTSTATUS status; NTSTATUS status1; PSYSTEM_SESSION_POOLTAG_INFORMATION SessionPoolTagInfo; *Length = 0; TotalSize = 0; NextEntryOffset = 0; status = STATUS_SUCCESS; SessionPoolTagInfo = NULL; if (SystemInformationLength > 0) { status1 = ExLockUserBuffer (SystemInformation, SystemInformationLength, KeGetPreviousMode(), IoWriteAccess, &MappedAddress, &LockVariable); if (!NT_SUCCESS(status1)) { return status1; } } else { // // This indicates the caller just wants to know the size of the // buffer to allocate but is not prepared to accept any data content // in this instance. // MappedAddress = NULL; LockVariable = NULL; } for (OpaqueSession = MmGetNextSession (NULL); OpaqueSession != NULL; OpaqueSession = MmGetNextSession (OpaqueSession)) { SessionPoolTagInfo = (PSYSTEM_SESSION_POOLTAG_INFORMATION) ((PUCHAR)MappedAddress + TotalSize); // // If a specific session was requested, only extract that one. // CurrentSessionId = MmGetSessionId (OpaqueSession); if ((*SessionId == 0xFFFFFFFF) || (CurrentSessionId == *SessionId)) { // // Attach to session now to perform operations... // if (NT_SUCCESS (MmAttachSession (OpaqueSession, &ApcState))) { // // Session is still alive so include it. // NextEntryOffset = sizeof (SYSTEM_SESSION_POOLTAG_INFORMATION); TotalSize += sizeof (SYSTEM_SESSION_POOLTAG_INFORMATION); if (TotalSize > SystemInformationLength) { status = STATUS_INFO_LENGTH_MISMATCH; // // Get absolute size for this session, ignore status as // we must return the one above. // ExGetSessionPoolTagInfo (NULL, 0, &Count, &AbsoluteCount); } else { // // Get pool tagging information for each session. // status = ExGetSessionPoolTagInfo ( SessionPoolTagInfo->TagInfo, SystemInformationLength - TotalSize + sizeof (SYSTEM_POOLTAG), &Count, &AbsoluteCount); SessionPoolTagInfo->SessionId = CurrentSessionId; SessionPoolTagInfo->Count = Count; // // Point to next session. // if (NT_SUCCESS (status)) { NextEntryOffset += ((Count - 1) * sizeof (SYSTEM_POOLTAG)); SessionPoolTagInfo->NextEntryOffset = NextEntryOffset; } } TotalSize += ((AbsoluteCount - 1) * sizeof (SYSTEM_POOLTAG)); // // Detach from session. // MmDetachSession (OpaqueSession, &ApcState); } // // Bail if only this session was of interest. // if (*SessionId != 0xFFFFFFFF) { MmQuitNextSession (OpaqueSession); break; } } } if ((NT_SUCCESS (status)) && (SessionPoolTagInfo != NULL)) { SessionPoolTagInfo->NextEntryOffset = 0; } if (MappedAddress != NULL) { ExUnlockUserBuffer (LockVariable); } *Length = TotalSize; return status; } VOID ExpGetProcessorPowerInformation ( OUT PVOID SystemInformation, IN ULONG SystemInformationLength, OUT PULONG Length ) { KAFFINITY currentAffinity; KAFFINITY processors; KIRQL oldIrql; PKPRCB Prcb; PPROCESSOR_POWER_STATE PState; PPROCESSOR_PERF_STATE PerfStates; PSYSTEM_PROCESSOR_POWER_INFORMATION CallerPowerInfo; SYSTEM_PROCESSOR_POWER_INFORMATION ProcessorPowerInfo; // // We will walk this pointer to store the user data... // CallerPowerInfo = (PSYSTEM_PROCESSOR_POWER_INFORMATION) SystemInformation; *Length = 0; // // Lock everything down // MmLockPagableSectionByHandle (ExPageLockHandle); // // Walk the list of processors // processors = KeActiveProcessors; currentAffinity = 1; while (processors) { if (!(processors & currentAffinity)) { currentAffinity <<= 1; } // // Check to see if we have the space for this // if (SystemInformationLength < *Length + sizeof(SYSTEM_PROCESSOR_POWER_INFORMATION)) { break; } processors &= ~currentAffinity; KeSetSystemAffinityThread(currentAffinity); currentAffinity <<= 1; // // Raise to DPC level to synchronize access to the data structures // KeRaiseIrql(DISPATCH_LEVEL, &oldIrql ); // // Get the PRCB and PowerState information // Prcb = KeGetCurrentPrcb(); PState = &(Prcb->PowerState); PerfStates = PState->PerfStates; // // Grab the data that we care about // ProcessorPowerInfo.CurrentFrequency = PState->CurrentThrottle; ProcessorPowerInfo.LastBusyFrequency = PState->LastBusyPercentage; ProcessorPowerInfo.LastAdjustedBusyFrequency = PState->LastAdjustedBusyPercentage; ProcessorPowerInfo.LastC3Frequency = PState->LastC3Percentage; ProcessorPowerInfo.ProcessorMinThrottle = PState->ProcessorMinThrottle; ProcessorPowerInfo.ProcessorMaxThrottle = PState->ProcessorMaxThrottle; ProcessorPowerInfo.ErrorCount = PState->ErrorCount; ProcessorPowerInfo.RetryCount = PState->RetryCount; // // Do we have any kind of PerfStates? // if (PerfStates) { ProcessorPowerInfo.ThermalLimitFrequency = PerfStates[PState->ThermalThrottleIndex].PercentFrequency; ProcessorPowerInfo.ConstantThrottleFrequency = PerfStates[PState->KneeThrottleIndex].PercentFrequency; ProcessorPowerInfo.DegradedThrottleFrequency = PerfStates[PState->ThrottleLimitIndex].PercentFrequency; } else { ProcessorPowerInfo.ThermalLimitFrequency = 0; ProcessorPowerInfo.ConstantThrottleFrequency = 0; ProcessorPowerInfo.DegradedThrottleFrequency = 0; } ProcessorPowerInfo.CurrentFrequencyTime = UInt32x32To64( (Prcb->KernelTime + Prcb->UserTime - PState->PerfTickCount), KeMaximumIncrement ); ProcessorPowerInfo.CurrentProcessorTime = UInt32x32To64( Prcb->KernelTime + Prcb->UserTime, KeMaximumIncrement ); ProcessorPowerInfo.CurrentProcessorIdleTime = UInt32x32To64( Prcb->IdleThread->KernelTime, KeMaximumIncrement ); ProcessorPowerInfo.LastProcessorTime = UInt32x32To64( PState->PerfSystemTime, KeMaximumIncrement ); ProcessorPowerInfo.LastProcessorIdleTime = UInt32x32To64( PState->PerfIdleTime, KeMaximumIncrement ); ProcessorPowerInfo.PromotionCount = PState->PromotionCount; ProcessorPowerInfo.DemotionCount = PState->DemotionCount; ProcessorPowerInfo.NumberOfFrequencies = PState->PerfStatesCount; // // Return to the original level (should be IRQL 0) // KeLowerIrql( oldIrql ); // // Copy the data to the correct place // try { RtlCopyMemory( CallerPowerInfo, &ProcessorPowerInfo, sizeof(SYSTEM_PROCESSOR_POWER_INFORMATION) ); } except (EXCEPTION_EXECUTE_HANDLER) { MmUnlockPagableImageSection(ExPageLockHandle); ExRaiseStatus (GetExceptionCode ()); } // // Point to the next structure element // CallerPowerInfo++; *Length += sizeof(SYSTEM_PROCESSOR_POWER_INFORMATION); } // // Revert to the original affinity // KeRevertToUserAffinityThread(); // // Unlock everything MmUnlockPagableImageSection(ExPageLockHandle); } VOID ExpGetProcessorIdleInformation ( OUT PVOID SystemInformation, IN ULONG SystemInformationLength, OUT PULONG Length ) { KAFFINITY currentAffinity; KAFFINITY processors; KIRQL oldIrql; LARGE_INTEGER PerfFrequency; PKPRCB Prcb; PPROCESSOR_POWER_STATE PState; PSYSTEM_PROCESSOR_IDLE_INFORMATION CallerIdleInfo; SYSTEM_PROCESSOR_IDLE_INFORMATION ProcessorIdleInfo; // // We will walk this pointer to store the user data... // CallerIdleInfo = (PSYSTEM_PROCESSOR_IDLE_INFORMATION) SystemInformation; *Length = 0; // // We need to know what frequency the perf counters are running at // KeQueryPerformanceCounter(&PerfFrequency); // // Lock everything down // MmLockPagableSectionByHandle (ExPageLockHandle); // // Walk the list of processors // processors = KeActiveProcessors; currentAffinity = 1; while (processors) { if (!(processors & currentAffinity)) { currentAffinity <<= 1; } // // Check to see if we have the space for this // if (SystemInformationLength < *Length + sizeof(SYSTEM_PROCESSOR_IDLE_INFORMATION)) { break; } processors &= ~currentAffinity; KeSetSystemAffinityThread(currentAffinity); currentAffinity <<= 1; // // Raise to DPC level to synchronize access to the data structures // KeRaiseIrql(DISPATCH_LEVEL, &oldIrql ); // // Get the PRCB and PowerState information // Prcb = KeGetCurrentPrcb(); PState = &(Prcb->PowerState); // // Grab the data that we care about // ProcessorIdleInfo.IdleTime = UInt32x32To64(Prcb->IdleThread->KernelTime,KeMaximumIncrement); // // The Cx times are kept in units of the same frequency as KeQueryPerformanceCounter // This needs to be converted to standard 100ns units. // ProcessorIdleInfo.C1Time = (PState->TotalIdleStateTime[0]*1000)/(PerfFrequency.QuadPart/10000); ProcessorIdleInfo.C2Time = (PState->TotalIdleStateTime[1]*1000)/(PerfFrequency.QuadPart/10000); ProcessorIdleInfo.C3Time = (PState->TotalIdleStateTime[2]*1000)/(PerfFrequency.QuadPart/10000); ProcessorIdleInfo.C1Transitions = PState->TotalIdleTransitions[0]; ProcessorIdleInfo.C2Transitions = PState->TotalIdleTransitions[1]; ProcessorIdleInfo.C3Transitions = PState->TotalIdleTransitions[2]; // // Return to the original level (should be IRQL 0) // KeLowerIrql( oldIrql ); // // Copy the data to the correct place // try { RtlCopyMemory( CallerIdleInfo, &ProcessorIdleInfo, sizeof(SYSTEM_PROCESSOR_IDLE_INFORMATION) ); } except (EXCEPTION_EXECUTE_HANDLER) { MmUnlockPagableImageSection (ExPageLockHandle); ExRaiseStatus (GetExceptionCode ()); } // // Point to the next structure element // CallerIdleInfo++; *Length += sizeof(SYSTEM_PROCESSOR_IDLE_INFORMATION); } // // Revert to the original affinity // KeRevertToUserAffinityThread(); // // Unlock everything // MmUnlockPagableImageSection(ExPageLockHandle); } VOID ExpCopyProcessInfo ( IN PSYSTEM_PROCESS_INFORMATION ProcessInfo, IN PEPROCESS Process, IN BOOLEAN ExtendedInformation ) { PAGED_CODE(); ProcessInfo->HandleCount = ObGetProcessHandleCount (Process); ProcessInfo->CreateTime = Process->CreateTime; ProcessInfo->UserTime.QuadPart = UInt32x32To64(Process->Pcb.UserTime, KeMaximumIncrement); ProcessInfo->KernelTime.QuadPart = UInt32x32To64(Process->Pcb.KernelTime, KeMaximumIncrement); ProcessInfo->BasePriority = Process->Pcb.BasePriority; ProcessInfo->UniqueProcessId = Process->UniqueProcessId; ProcessInfo->InheritedFromUniqueProcessId = Process->InheritedFromUniqueProcessId; ProcessInfo->PeakVirtualSize = Process->PeakVirtualSize; ProcessInfo->VirtualSize = Process->VirtualSize; ProcessInfo->PageFaultCount = Process->Vm.PageFaultCount; ProcessInfo->PeakWorkingSetSize = ((SIZE_T)Process->Vm.PeakWorkingSetSize) << PAGE_SHIFT; ProcessInfo->WorkingSetSize = ((SIZE_T)Process->Vm.WorkingSetSize) << PAGE_SHIFT; ProcessInfo->QuotaPeakPagedPoolUsage = Process->QuotaPeak[PsPagedPool]; ProcessInfo->QuotaPagedPoolUsage = Process->QuotaUsage[PsPagedPool]; ProcessInfo->QuotaPeakNonPagedPoolUsage = Process->QuotaPeak[PsNonPagedPool]; ProcessInfo->QuotaNonPagedPoolUsage = Process->QuotaUsage[PsNonPagedPool]; ProcessInfo->PagefileUsage = Process->QuotaUsage[PsPageFile] << PAGE_SHIFT; ProcessInfo->PeakPagefileUsage = Process->QuotaPeak[PsPageFile] << PAGE_SHIFT; ProcessInfo->PrivatePageCount = Process->CommitCharge << PAGE_SHIFT; ProcessInfo->ReadOperationCount = Process->ReadOperationCount; ProcessInfo->WriteOperationCount = Process->WriteOperationCount; ProcessInfo->OtherOperationCount = Process->OtherOperationCount; ProcessInfo->ReadTransferCount = Process->ReadTransferCount; ProcessInfo->WriteTransferCount = Process->WriteTransferCount; ProcessInfo->OtherTransferCount = Process->OtherTransferCount; if (ExtendedInformation) { ProcessInfo->PageDirectoryBase = MmGetDirectoryFrameFromProcess(Process); } } VOID ExpCopyThreadInfo ( IN PVOID ThreadInfoBuffer, IN PETHREAD Thread, IN BOOLEAN ExtendedInformation ) /*++ Routine Description: This function returns information about the specified thread. Arguments: ThreadInfoBuffer - A pointer to a buffer which receives the specified information. Thread - Supplies a pointer to the desired thread. ExtendedInformation - TRUE if extended thread information is needed. Environment: Kernel mode. The dispatcher lock is held. This routine could be made PAGELK but it is a high frequency routine so it is actually better to keep it nonpaged to avoid bringing in the entire PAGELK section. Return Value: None. --*/ { PSYSTEM_THREAD_INFORMATION ThreadInfo; ThreadInfo = (PSYSTEM_THREAD_INFORMATION) ThreadInfoBuffer; ThreadInfo->KernelTime.QuadPart = UInt32x32To64(Thread->Tcb.KernelTime, KeMaximumIncrement); ThreadInfo->UserTime.QuadPart = UInt32x32To64(Thread->Tcb.UserTime, KeMaximumIncrement); ThreadInfo->CreateTime.QuadPart = PS_GET_THREAD_CREATE_TIME (Thread); ThreadInfo->WaitTime = Thread->Tcb.WaitTime; ThreadInfo->ClientId = Thread->Cid; ThreadInfo->ThreadState = Thread->Tcb.State; ThreadInfo->WaitReason = Thread->Tcb.WaitReason; ThreadInfo->Priority = Thread->Tcb.Priority; ThreadInfo->BasePriority = Thread->Tcb.BasePriority; ThreadInfo->ContextSwitches = Thread->Tcb.ContextSwitches; ThreadInfo->StartAddress = Thread->StartAddress; if (ExtendedInformation) { PSYSTEM_EXTENDED_THREAD_INFORMATION ExtendedThreadInfo; ExtendedThreadInfo = (PSYSTEM_EXTENDED_THREAD_INFORMATION) ThreadInfo; ExtendedThreadInfo->StackBase = Thread->Tcb.StackBase; ExtendedThreadInfo->StackLimit = Thread->Tcb.StackLimit; if (Thread->LpcReceivedMsgIdValid) { ExtendedThreadInfo->Win32StartAddress = 0; } else { ExtendedThreadInfo->Win32StartAddress = Thread->Win32StartAddress; } ExtendedThreadInfo->Reserved1 = 0; ExtendedThreadInfo->Reserved2 = 0; ExtendedThreadInfo->Reserved3 = 0; ExtendedThreadInfo->Reserved4 = 0; } } #if defined(_X86_) extern ULONG ExVdmOpcodeDispatchCounts[256]; extern ULONG VdmBopCount; extern ULONG ExVdmSegmentNotPresent; #if defined(ALLOC_PRAGMA) #pragma alloc_text(PAGE, ExpGetInstemulInformation) #endif NTSTATUS ExpGetInstemulInformation( OUT PSYSTEM_VDM_INSTEMUL_INFO Info ) { SYSTEM_VDM_INSTEMUL_INFO LocalInfo; LocalInfo.VdmOpcode0F = ExVdmOpcodeDispatchCounts[VDM_INDEX_0F]; LocalInfo.OpcodeESPrefix = ExVdmOpcodeDispatchCounts[VDM_INDEX_ESPrefix]; LocalInfo.OpcodeCSPrefix = ExVdmOpcodeDispatchCounts[VDM_INDEX_CSPrefix]; LocalInfo.OpcodeSSPrefix = ExVdmOpcodeDispatchCounts[VDM_INDEX_SSPrefix]; LocalInfo.OpcodeDSPrefix = ExVdmOpcodeDispatchCounts[VDM_INDEX_DSPrefix]; LocalInfo.OpcodeFSPrefix = ExVdmOpcodeDispatchCounts[VDM_INDEX_FSPrefix]; LocalInfo.OpcodeGSPrefix = ExVdmOpcodeDispatchCounts[VDM_INDEX_GSPrefix]; LocalInfo.OpcodeOPER32Prefix= ExVdmOpcodeDispatchCounts[VDM_INDEX_OPER32Prefix]; LocalInfo.OpcodeADDR32Prefix= ExVdmOpcodeDispatchCounts[VDM_INDEX_ADDR32Prefix]; LocalInfo.OpcodeINSB = ExVdmOpcodeDispatchCounts[VDM_INDEX_INSB]; LocalInfo.OpcodeINSW = ExVdmOpcodeDispatchCounts[VDM_INDEX_INSW]; LocalInfo.OpcodeOUTSB = ExVdmOpcodeDispatchCounts[VDM_INDEX_OUTSB]; LocalInfo.OpcodeOUTSW = ExVdmOpcodeDispatchCounts[VDM_INDEX_OUTSW]; LocalInfo.OpcodePUSHF = ExVdmOpcodeDispatchCounts[VDM_INDEX_PUSHF]; LocalInfo.OpcodePOPF = ExVdmOpcodeDispatchCounts[VDM_INDEX_POPF]; LocalInfo.OpcodeINTnn = ExVdmOpcodeDispatchCounts[VDM_INDEX_INTnn]; LocalInfo.OpcodeINTO = ExVdmOpcodeDispatchCounts[VDM_INDEX_INTO]; LocalInfo.OpcodeIRET = ExVdmOpcodeDispatchCounts[VDM_INDEX_IRET]; LocalInfo.OpcodeINBimm = ExVdmOpcodeDispatchCounts[VDM_INDEX_INBimm]; LocalInfo.OpcodeINWimm = ExVdmOpcodeDispatchCounts[VDM_INDEX_INWimm]; LocalInfo.OpcodeOUTBimm = ExVdmOpcodeDispatchCounts[VDM_INDEX_OUTBimm]; LocalInfo.OpcodeOUTWimm = ExVdmOpcodeDispatchCounts[VDM_INDEX_OUTWimm]; LocalInfo.OpcodeINB = ExVdmOpcodeDispatchCounts[VDM_INDEX_INB]; LocalInfo.OpcodeINW = ExVdmOpcodeDispatchCounts[VDM_INDEX_INW]; LocalInfo.OpcodeOUTB = ExVdmOpcodeDispatchCounts[VDM_INDEX_OUTB]; LocalInfo.OpcodeOUTW = ExVdmOpcodeDispatchCounts[VDM_INDEX_OUTW]; LocalInfo.OpcodeLOCKPrefix = ExVdmOpcodeDispatchCounts[VDM_INDEX_LOCKPrefix]; LocalInfo.OpcodeREPNEPrefix = ExVdmOpcodeDispatchCounts[VDM_INDEX_REPNEPrefix]; LocalInfo.OpcodeREPPrefix = ExVdmOpcodeDispatchCounts[VDM_INDEX_REPPrefix]; LocalInfo.OpcodeHLT = ExVdmOpcodeDispatchCounts[VDM_INDEX_HLT]; LocalInfo.OpcodeCLI = ExVdmOpcodeDispatchCounts[VDM_INDEX_CLI]; LocalInfo.OpcodeSTI = ExVdmOpcodeDispatchCounts[VDM_INDEX_STI]; LocalInfo.BopCount = VdmBopCount; LocalInfo.SegmentNotPresent = ExVdmSegmentNotPresent; RtlCopyMemory(Info,&LocalInfo,sizeof(LocalInfo)); return STATUS_SUCCESS; } #endif #if i386 NTSTATUS ExpGetStackTraceInformation ( OUT PVOID SystemInformation, IN ULONG SystemInformationLength, OUT PULONG ReturnLength OPTIONAL ) { NTSTATUS Status; PRTL_PROCESS_BACKTRACES BackTraceInformation; PRTL_PROCESS_BACKTRACE_INFORMATION BackTraceInfo; PSTACK_TRACE_DATABASE DataBase; PRTL_STACK_TRACE_ENTRY p, *pp; ULONG RequiredLength, n; DataBase = RtlpAcquireStackTraceDataBase(); if (DataBase == NULL) { return STATUS_UNSUCCESSFUL; } DataBase->DumpInProgress = TRUE; RtlpReleaseStackTraceDataBase(); n = 0; RequiredLength = 0; Status = STATUS_INFO_LENGTH_MISMATCH; BackTraceInformation = (PRTL_PROCESS_BACKTRACES) SystemInformation; RequiredLength = FIELD_OFFSET( RTL_PROCESS_BACKTRACES, BackTraces ); try { if (SystemInformationLength >= RequiredLength) { BackTraceInformation->CommittedMemory = (ULONG)DataBase->CurrentUpperCommitLimit - (ULONG)DataBase->CommitBase; BackTraceInformation->ReservedMemory = (ULONG)DataBase->EntryIndexArray - (ULONG)DataBase->CommitBase; BackTraceInformation->NumberOfBackTraceLookups = DataBase->NumberOfEntriesLookedUp; n = DataBase->NumberOfEntriesAdded; BackTraceInformation->NumberOfBackTraces = n; } RequiredLength += (sizeof( *BackTraceInfo ) * n); if (SystemInformationLength >= RequiredLength) { Status = STATUS_SUCCESS; BackTraceInfo = &BackTraceInformation->BackTraces[ 0 ]; pp = DataBase->EntryIndexArray; while (n--) { p = *--pp; BackTraceInfo->SymbolicBackTrace = NULL; BackTraceInfo->TraceCount = p->TraceCount; BackTraceInfo->Index = p->Index; BackTraceInfo->Depth = p->Depth; RtlCopyMemory( BackTraceInfo->BackTrace, p->BackTrace, p->Depth * sizeof( PVOID ) ); BackTraceInfo += 1; } } } finally { DataBase->DumpInProgress = FALSE; } if (ARGUMENT_PRESENT(ReturnLength)) { *ReturnLength = RequiredLength; } return Status; } #endif // i386 NTSTATUS ExpGetLockInformation ( OUT PVOID SystemInformation, IN ULONG SystemInformationLength, OUT PULONG Length ) /*++ Routine Description: This function returns information about all the ERESOURCE locks in the system. Arguments: SystemInformation - A pointer to a buffer which receives the specified information. SystemInformationLength - Specifies the length in bytes of the system information buffer. Length - An optional pointer which, if specified, receives the number of bytes placed in the system information buffer. Return Value: Returns one of the following status codes: STATUS_SUCCESS - normal, successful completion. STATUS_INVALID_INFO_CLASS - The SystemInformationClass parameter did not specify a valid value. STATUS_INFO_LENGTH_MISMATCH - The value of the SystemInformationLength parameter did not match the length required for the information class requested by the SystemInformationClass parameter. STATUS_ACCESS_VIOLATION - Either the SystemInformation buffer pointer or the Length pointer value specified an invalid address. STATUS_WORKING_SET_QUOTA - The process does not have sufficient working set to lock the specified output structure in memory. STATUS_INSUFFICIENT_RESOURCES - Insufficient system resources exist for this request to complete. --*/ { PRTL_PROCESS_LOCKS LockInfo; PVOID LockVariable; NTSTATUS Status; *Length = 0; Status = ExLockUserBuffer( SystemInformation, SystemInformationLength, KeGetPreviousMode(), IoWriteAccess, &LockInfo, &LockVariable ); if (!NT_SUCCESS(Status)) { return( Status ); } Status = STATUS_SUCCESS; MmLockPagableSectionByHandle (ExPageLockHandle); try { Status = ExQuerySystemLockInformation( LockInfo, SystemInformationLength, Length ); } finally { ExUnlockUserBuffer( LockVariable ); MmUnlockPagableImageSection(ExPageLockHandle); } return Status; } NTSTATUS ExpGetLookasideInformation ( OUT PVOID Buffer, IN ULONG BufferLength, OUT PULONG Length ) /*++ Routine Description: This function returns pool lookaside list and general lookaside list information. Arguments: Buffer - Supplies a pointer to the buffer which receives the lookaside list information. BufferLength - Supplies the length of the information buffer in bytes. Length - Supplies a pointer to a variable that receives the length of lookaside information returned. Environment: Kernel mode. This routine could be made PAGELK but it is a high frequency routine so it is actually better to keep it nonpaged to avoid bringing in the entire PAGELK section. Return Value: Returns one of the following status codes: STATUS_SUCCESS - Normal, successful completion. STATUS_ACCESS_VIOLATION - The buffer could not be locked in memory. --*/ { PVOID BufferLock; PLIST_ENTRY Entry; KIRQL OldIrql; ULONG Limit; PSYSTEM_LOOKASIDE_INFORMATION Lookaside; ULONG Number; PNPAGED_LOOKASIDE_LIST NPagedLookaside; PPAGED_LOOKASIDE_LIST PagedLookaside; PGENERAL_LOOKASIDE PoolLookaside; PGENERAL_LOOKASIDE SystemLookaside; PKSPIN_LOCK SpinLock; NTSTATUS Status; // // Compute the number of lookaside entries and set the return status to // success. // Limit = BufferLength / sizeof(SYSTEM_LOOKASIDE_INFORMATION); Number = 0; Status = STATUS_SUCCESS; // // If the number of lookaside entries to return is not zero, then collect // the lookaside information. // if (Limit != 0) { Status = ExLockUserBuffer(Buffer, BufferLength, KeGetPreviousMode(), IoWriteAccess, &Lookaside, &BufferLock); if (NT_SUCCESS(Status)) { Status = STATUS_SUCCESS; // // Copy nonpaged and paged pool lookaside information to // information buffer. // Entry = ExPoolLookasideListHead.Flink; while (Entry != &ExPoolLookasideListHead) { PoolLookaside = CONTAINING_RECORD(Entry, GENERAL_LOOKASIDE, ListEntry); Lookaside->CurrentDepth = ExQueryDepthSList(&PoolLookaside->ListHead); Lookaside->MaximumDepth = PoolLookaside->Depth; Lookaside->TotalAllocates = PoolLookaside->TotalAllocates; Lookaside->AllocateMisses = PoolLookaside->TotalAllocates - PoolLookaside->AllocateHits; Lookaside->TotalFrees = PoolLookaside->TotalFrees; Lookaside->FreeMisses = PoolLookaside->TotalFrees - PoolLookaside->FreeHits; Lookaside->Type = PoolLookaside->Type; Lookaside->Tag = PoolLookaside->Tag; Lookaside->Size = PoolLookaside->Size; Number += 1; if (Number == Limit) { goto Finish2; } Entry = Entry->Flink; Lookaside += 1; } // // Copy nonpaged and paged system lookaside information to // information buffer. // Entry = ExSystemLookasideListHead.Flink; while (Entry != &ExSystemLookasideListHead) { SystemLookaside = CONTAINING_RECORD(Entry, GENERAL_LOOKASIDE, ListEntry); Lookaside->CurrentDepth = ExQueryDepthSList(&SystemLookaside->ListHead); Lookaside->MaximumDepth = SystemLookaside->Depth; Lookaside->TotalAllocates = SystemLookaside->TotalAllocates; Lookaside->AllocateMisses = SystemLookaside->AllocateMisses; Lookaside->TotalFrees = SystemLookaside->TotalFrees; Lookaside->FreeMisses = SystemLookaside->FreeMisses; Lookaside->Type = SystemLookaside->Type; Lookaside->Tag = SystemLookaside->Tag; Lookaside->Size = SystemLookaside->Size; Number += 1; if (Number == Limit) { goto Finish2; } Entry = Entry->Flink; Lookaside += 1; } // // Copy nonpaged general lookaside information to buffer. // SpinLock = &ExNPagedLookasideLock; ExAcquireSpinLock(SpinLock, &OldIrql); Entry = ExNPagedLookasideListHead.Flink; while (Entry != &ExNPagedLookasideListHead) { NPagedLookaside = CONTAINING_RECORD(Entry, NPAGED_LOOKASIDE_LIST, L.ListEntry); Lookaside->CurrentDepth = ExQueryDepthSList(&NPagedLookaside->L.ListHead); Lookaside->MaximumDepth = NPagedLookaside->L.Depth; Lookaside->TotalAllocates = NPagedLookaside->L.TotalAllocates; Lookaside->AllocateMisses = NPagedLookaside->L.AllocateMisses; Lookaside->TotalFrees = NPagedLookaside->L.TotalFrees; Lookaside->FreeMisses = NPagedLookaside->L.FreeMisses; Lookaside->Type = 0; Lookaside->Tag = NPagedLookaside->L.Tag; Lookaside->Size = NPagedLookaside->L.Size; Number += 1; if (Number == Limit) { goto Finish1; } Entry = Entry->Flink; Lookaside += 1; } ExReleaseSpinLock(SpinLock, OldIrql); // // Copy paged general lookaside information to buffer. // SpinLock = &ExPagedLookasideLock; ExAcquireSpinLock(SpinLock, &OldIrql); Entry = ExPagedLookasideListHead.Flink; while (Entry != &ExPagedLookasideListHead) { PagedLookaside = CONTAINING_RECORD(Entry, PAGED_LOOKASIDE_LIST, L.ListEntry); Lookaside->CurrentDepth = ExQueryDepthSList(&PagedLookaside->L.ListHead); Lookaside->MaximumDepth = PagedLookaside->L.Depth; Lookaside->TotalAllocates = PagedLookaside->L.TotalAllocates; Lookaside->AllocateMisses = PagedLookaside->L.AllocateMisses; Lookaside->TotalFrees = PagedLookaside->L.TotalFrees; Lookaside->FreeMisses = PagedLookaside->L.FreeMisses; Lookaside->Type = 1; Lookaside->Tag = PagedLookaside->L.Tag; Lookaside->Size = PagedLookaside->L.Size; Number += 1; if (Number == Limit) { goto Finish1; } Entry = Entry->Flink; Lookaside += 1; } Finish1: ExReleaseSpinLock(SpinLock, OldIrql); Finish2: // // Unlock user buffer. // ExUnlockUserBuffer(BufferLock); } } *Length = Number * sizeof(SYSTEM_LOOKASIDE_INFORMATION); return Status; } NTSTATUS ExpGetHandleInformation( OUT PVOID SystemInformation, IN ULONG SystemInformationLength, OUT PULONG Length ) /*++ Routine Description: This function returns information about the open handles in the system. Arguments: SystemInformation - A pointer to a buffer which receives the specified information. SystemInformationLength - Specifies the length in bytes of the system information buffer. Length - An optional pointer which, if specified, receives the number of bytes placed in the system information buffer. Return Value: Returns one of the following status codes: STATUS_SUCCESS - normal, successful completion. STATUS_INVALID_INFO_CLASS - The SystemInformationClass parameter did not specify a valid value. STATUS_INFO_LENGTH_MISMATCH - The value of the SystemInformationLength parameter did not match the length required for the information class requested by the SystemInformationClass parameter. STATUS_ACCESS_VIOLATION - Either the SystemInformation buffer pointer or the Length pointer value specified an invalid address. STATUS_WORKING_SET_QUOTA - The process does not have sufficient working set to lock the specified output structure in memory. STATUS_INSUFFICIENT_RESOURCES - Insufficient system resources exist for this request to complete. --*/ { PSYSTEM_HANDLE_INFORMATION HandleInfo; PVOID LockVariable; NTSTATUS Status; PAGED_CODE(); *Length = 0; Status = ExLockUserBuffer( SystemInformation, SystemInformationLength, KeGetPreviousMode(), IoWriteAccess, &HandleInfo, &LockVariable ); if (!NT_SUCCESS(Status)) { return Status; } Status = STATUS_SUCCESS; try { Status = ObGetHandleInformation( HandleInfo, SystemInformationLength, Length ); } finally { ExUnlockUserBuffer( LockVariable ); } return Status; } NTSTATUS ExpGetHandleInformationEx( OUT PVOID SystemInformation, IN ULONG SystemInformationLength, OUT PULONG Length ) /*++ Routine Description: This function returns information about the open handles in the system. Arguments: SystemInformation - A pointer to a buffer which receives the specified information. SystemInformationLength - Specifies the length in bytes of the system information buffer. Length - An optional pointer which, if specified, receives the number of bytes placed in the system information buffer. Return Value: Returns one of the following status codes: STATUS_SUCCESS - normal, successful completion. STATUS_INVALID_INFO_CLASS - The SystemInformationClass parameter did not specify a valid value. STATUS_INFO_LENGTH_MISMATCH - The value of the SystemInformationLength parameter did not match the length required for the information class requested by the SystemInformationClass parameter. STATUS_ACCESS_VIOLATION - Either the SystemInformation buffer pointer or the Length pointer value specified an invalid address. STATUS_WORKING_SET_QUOTA - The process does not have sufficient working set to lock the specified output structure in memory. STATUS_INSUFFICIENT_RESOURCES - Insufficient system resources exist for this request to complete. --*/ { PSYSTEM_HANDLE_INFORMATION_EX HandleInfo; PVOID LockVariable; NTSTATUS Status; PAGED_CODE(); *Length = 0; Status = ExLockUserBuffer( SystemInformation, SystemInformationLength, KeGetPreviousMode(), IoWriteAccess, &HandleInfo, &LockVariable ); if (!NT_SUCCESS(Status)) { return Status; } Status = STATUS_SUCCESS; try { Status = ObGetHandleInformationEx( HandleInfo, SystemInformationLength, Length ); } finally { ExUnlockUserBuffer( LockVariable ); } return Status; } NTSTATUS ExpGetObjectInformation( OUT PVOID SystemInformation, IN ULONG SystemInformationLength, OUT PULONG Length ) /*++ Routine Description: This function returns information about the objects in the system. Arguments: SystemInformation - A pointer to a buffer which receives the specified information. SystemInformationLength - Specifies the length in bytes of the system information buffer. Length - An optional pointer which, if specified, receives the number of bytes placed in the system information buffer. Return Value: Returns one of the following status codes: STATUS_SUCCESS - normal, successful completion. STATUS_INVALID_INFO_CLASS - The SystemInformationClass parameter did not specify a valid value. STATUS_INFO_LENGTH_MISMATCH - The value of the SystemInformationLength parameter did not match the length required for the information class requested by the SystemInformationClass parameter. STATUS_ACCESS_VIOLATION - Either the SystemInformation buffer pointer or the Length pointer value specified an invalid address. STATUS_WORKING_SET_QUOTA - The process does not have sufficient working set to lock the specified output structure in memory. STATUS_INSUFFICIENT_RESOURCES - Insufficient system resources exist for this request to complete. --*/ { PSYSTEM_OBJECTTYPE_INFORMATION ObjectInfo; PVOID LockVariable; NTSTATUS Status; PAGED_CODE(); *Length = 0; Status = ExLockUserBuffer( SystemInformation, SystemInformationLength, KeGetPreviousMode(), IoWriteAccess, &ObjectInfo, &LockVariable ); if (!NT_SUCCESS(Status)) { return( Status ); } Status = STATUS_SUCCESS; try { Status = ObGetObjectInformation( SystemInformation, ObjectInfo, SystemInformationLength, Length ); } finally { ExUnlockUserBuffer( LockVariable ); } return Status; } NTSTATUS ExpQueryModuleInformation( IN PLIST_ENTRY LoadOrderListHead, IN PLIST_ENTRY UserModeLoadOrderListHead, OUT PRTL_PROCESS_MODULES ModuleInformation, IN ULONG ModuleInformationLength, OUT PULONG ReturnLength OPTIONAL ) { NTSTATUS Status; ULONG RequiredLength; PLIST_ENTRY Next; PRTL_PROCESS_MODULE_INFORMATION ModuleInfo; PKLDR_DATA_TABLE_ENTRY LdrDataTableEntry; ANSI_STRING AnsiString; PCHAR s; ULONG NumberOfModules; NumberOfModules = 0; Status = STATUS_SUCCESS; RequiredLength = FIELD_OFFSET( RTL_PROCESS_MODULES, Modules ); ModuleInfo = &ModuleInformation->Modules[ 0 ]; Next = LoadOrderListHead->Flink; while ( Next != LoadOrderListHead ) { LdrDataTableEntry = CONTAINING_RECORD( Next, KLDR_DATA_TABLE_ENTRY, InLoadOrderLinks ); RequiredLength += sizeof( RTL_PROCESS_MODULE_INFORMATION ); if (ModuleInformationLength < RequiredLength) { Status = STATUS_INFO_LENGTH_MISMATCH; } else { ModuleInfo->MappedBase = NULL; ModuleInfo->ImageBase = LdrDataTableEntry->DllBase; ModuleInfo->ImageSize = LdrDataTableEntry->SizeOfImage; ModuleInfo->Flags = LdrDataTableEntry->Flags; ModuleInfo->LoadCount = LdrDataTableEntry->LoadCount; ModuleInfo->LoadOrderIndex = (USHORT)(NumberOfModules); ModuleInfo->InitOrderIndex = 0; AnsiString.Buffer = (PCHAR) ModuleInfo->FullPathName; AnsiString.Length = 0; AnsiString.MaximumLength = sizeof( ModuleInfo->FullPathName ); RtlUnicodeStringToAnsiString( &AnsiString, &LdrDataTableEntry->FullDllName, FALSE ); s = AnsiString.Buffer + AnsiString.Length; while (s > AnsiString.Buffer && *--s) { if (*s == (UCHAR)OBJ_NAME_PATH_SEPARATOR) { s += 1; break; } } ModuleInfo->OffsetToFileName = (USHORT)(s - AnsiString.Buffer); ModuleInfo += 1; } NumberOfModules += 1; Next = Next->Flink; } if (ARGUMENT_PRESENT( UserModeLoadOrderListHead )) { Next = UserModeLoadOrderListHead->Flink; while ( Next != UserModeLoadOrderListHead ) { LdrDataTableEntry = CONTAINING_RECORD( Next, KLDR_DATA_TABLE_ENTRY, InLoadOrderLinks ); RequiredLength += sizeof( RTL_PROCESS_MODULE_INFORMATION ); if (ModuleInformationLength < RequiredLength) { Status = STATUS_INFO_LENGTH_MISMATCH; } else { ModuleInfo->MappedBase = NULL; ModuleInfo->ImageBase = LdrDataTableEntry->DllBase; ModuleInfo->ImageSize = LdrDataTableEntry->SizeOfImage; ModuleInfo->Flags = LdrDataTableEntry->Flags; ModuleInfo->LoadCount = LdrDataTableEntry->LoadCount; ModuleInfo->LoadOrderIndex = (USHORT)(NumberOfModules); ModuleInfo->InitOrderIndex = ModuleInfo->LoadOrderIndex; AnsiString.Buffer = (PCHAR) ModuleInfo->FullPathName; AnsiString.Length = 0; AnsiString.MaximumLength = sizeof( ModuleInfo->FullPathName ); RtlUnicodeStringToAnsiString( &AnsiString, &LdrDataTableEntry->FullDllName, FALSE ); s = AnsiString.Buffer + AnsiString.Length; while (s > AnsiString.Buffer && *--s) { if (*s == (UCHAR)OBJ_NAME_PATH_SEPARATOR) { s += 1; break; } } ModuleInfo->OffsetToFileName = (USHORT)(s - AnsiString.Buffer); ModuleInfo += 1; } NumberOfModules += 1; Next = Next->Flink; } } if (ARGUMENT_PRESENT(ReturnLength)) { *ReturnLength = RequiredLength; } if (ModuleInformationLength >= FIELD_OFFSET( RTL_PROCESS_MODULES, Modules )) { ModuleInformation->NumberOfModules = NumberOfModules; } else { Status = STATUS_INFO_LENGTH_MISMATCH; } return Status; } BOOLEAN ExIsProcessorFeaturePresent( ULONG ProcessorFeature ) { BOOLEAN rv; if ( ProcessorFeature < PROCESSOR_FEATURE_MAX ) { rv = SharedUserData->ProcessorFeatures[ProcessorFeature]; } else { rv = FALSE; } return rv; } NTSTATUS ExpQueryLegacyDriverInformation( IN PSYSTEM_LEGACY_DRIVER_INFORMATION LegacyInfo, IN PULONG Length ) /*++ Routine Description: Returns legacy driver information for figuring out why PNP/Power functionality is disabled. Arguments: LegacyInfo - Returns the legacy driver information Length - Supplies the length of the LegacyInfo buffer Returns the amount of data written Return Value: NTSTATUS --*/ { PNP_VETO_TYPE VetoType; PWSTR VetoList = NULL; NTSTATUS Status; UNICODE_STRING String; ULONG ReturnLength; Status = IoGetLegacyVetoList(&VetoList, &VetoType); if (!NT_SUCCESS(Status)) { return(Status); } RtlInitUnicodeString(&String, VetoList); ReturnLength = sizeof(SYSTEM_LEGACY_DRIVER_INFORMATION) + String.Length; try { if (ReturnLength > *Length) { Status = STATUS_BUFFER_OVERFLOW; } else { LegacyInfo->VetoType = VetoType; LegacyInfo->VetoList.Length = String.Length; LegacyInfo->VetoList.Buffer = (PWSTR)(LegacyInfo+1); RtlCopyMemory(LegacyInfo+1, String.Buffer, String.Length); } } finally { if (VetoList) { ExFreePool(VetoList); } } *Length = ReturnLength; return(Status); } VOID ExGetCurrentProcessorCpuUsage( OUT PULONG CpuUsage ) /*++ Routine Description: Returns an estimation of current cpu usage in percent. Arguments: CpuUsage - Returns the current cpu usage in percent. Return Value: Nothing --*/ { PKPRCB Prcb; Prcb = KeGetCurrentPrcb(); *CpuUsage = 100 - (ULONG)(UInt32x32To64(Prcb->IdleThread->KernelTime, 100) / (ULONGLONG)(Prcb->KernelTime + Prcb->UserTime)); } VOID ExGetCurrentProcessorCounts( OUT PULONG IdleCount, OUT PULONG KernelAndUser, OUT PULONG Index ) /*++ Routine Description: Returns information regarding idle time and kernel + user time for the current processor. Arguments: IdleCount - Returns the kernel time of the idle thread on the current processor. KernelAndUser - Returns the kernel pluse user on the current processor. Index - Returns the number identifiying the current processor. Return Value: Nothing --*/ { PKPRCB Prcb; Prcb = KeGetCurrentPrcb(); *IdleCount = Prcb->IdleThread->KernelTime; *KernelAndUser = Prcb->KernelTime + Prcb->UserTime; *Index = (ULONG)Prcb->Number; } BOOLEAN ExpIsValidUILanguage( IN WCHAR * pLangId ) /*++ Routine Description: Check if specified language ID is valid. Arguments: pLangId - language ID hex string. Return Value: TRUE: Valid FALSE: Invalid --*/ { NTSTATUS Status; UNICODE_STRING KeyPath, KeyValueName; HANDLE hKey; WCHAR KeyValueBuffer[ 128 ]; PKEY_VALUE_PARTIAL_INFORMATION KeyValueInformation; OBJECT_ATTRIBUTES ObjectAttributes; ULONG ResultLength; BOOLEAN bRet = FALSE; int iLen = 0; RtlInitUnicodeString(&KeyPath, L"\\Registry\\Machine\\System\\CurrentControlSet\\Control\\Nls\\MUILanguages"); // // pLangId is passed in as DWORD or WORD hex string // LangId string in MUILanguages is set as WORD hex string // while (pLangId[iLen]) { iLen++; } // // We need to validate both 4 digits and 8 digits LangId // RtlInitUnicodeString(&KeyValueName, iLen < 8? pLangId : &pLangId[4]); InitializeObjectAttributes (&ObjectAttributes, &KeyPath, OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE, NULL, NULL); if (NT_SUCCESS(ZwOpenKey( &hKey, GENERIC_READ, &ObjectAttributes))) { KeyValueInformation = (PKEY_VALUE_PARTIAL_INFORMATION)KeyValueBuffer; Status = ZwQueryValueKey( hKey, &KeyValueName, KeyValuePartialInformation, KeyValueInformation, sizeof( KeyValueBuffer ), &ResultLength ); if (NT_SUCCESS(Status)) { if (KeyValueInformation->Type == REG_SZ && *((PWSTR)(KeyValueInformation->Data)) == L'1') { bRet = TRUE; } } ZwClose(hKey); } return bRet; }