Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1092 lines
27 KiB

// complex standard header
#pragma once
#ifndef _COMPLEX_
#define _COMPLEX_
#include <ymath.h>
#include <cmath>
#include <sstream>
#pragma pack(push,8)
#pragma warning(push,3)
#pragma warning(disable: 4244)
_STD_BEGIN
#define __STD_COMPLEX /* signal presence of complex classes */
// TEMPLATE CLASS _Ctraits
template<class _Ty>
class _Ctraits
{ // complex traits for _Ty
public:
static _Ty __cdecl _Cosh(_Ty _Left, _Ty _Right)
{ // return cosh(_Left) * _Right
return (::_Cosh((double)_Left, (double)_Right));
}
static short __cdecl _Exp(_Ty *_Pleft, _Ty _Right, short _Exponent)
{ // compute exp(*_Pleft) * _Right * 2 ^ _Exponent
double _Tmp = (double)*_Pleft;
short _Ans = ::_Exp(&_Tmp, (double)_Right, _Exponent);
*_Pleft = (_Ty)_Tmp;
return (_Ans);
}
static _Ty __cdecl _Infv(_Ty)
{ // return infinity
return (::_Inf._Double);
}
static bool __cdecl _Isinf(_Ty _Left)
{ // test for infinity
double _Tmp = (double)_Left;
return (::_Dtest(&_Tmp) == _INFCODE);
}
static bool __cdecl _Isnan(_Ty _Left)
{ // test for NaN
double _Tmp = (double)_Left;
return (::_Dtest(&_Tmp) == _NANCODE);
}
static _Ty __cdecl _Nanv(_Ty)
{ // return NaN
return (::_Nan._Double);
}
static _Ty __cdecl _Sinh(_Ty _Left, _Ty _Right)
{ // return sinh(_Left) * _Right
return (::_Sinh((double)_Left, (double)_Right));
}
static _Ty __cdecl atan2(_Ty _Yval, _Ty _Xval)
{ // return atan(_Yval / _Xval)
return (::atan2((double)_Yval, (double)_Xval));
}
static _Ty __cdecl cos(_Ty _Left)
{ // return cos(_Left)
return (::cos((double)_Left));
}
static _Ty __cdecl exp(_Ty _Left)
{ // return exp(_Left)
return (::exp((double)_Left));
}
static _Ty __cdecl ldexp(_Ty _Left, int _Exponent)
{ // return _Left * 2 ^ _Exponent
return (::ldexp((double)_Left, _Exponent));
}
static _Ty __cdecl log(_Ty _Left)
{ // return log(_Left)
return (::log((double)_Left));
}
static _Ty __cdecl pow(_Ty _Left, _Ty _Right)
{ // return _Left ^ _Right
return (::pow((double)_Left, (double)_Right));
}
static _Ty __cdecl sin(_Ty _Left)
{ // return sin(_Left)
return (::sin((double)_Left));
}
static _Ty __cdecl sqrt(_Ty _Left)
{ // return sqrt(_Left)
return (::sqrt((double)_Left));
}
static _Ty __cdecl tan(_Ty _Left)
{ // return tan(_Left)
return (::tan((double)_Left));
}
};
// CLASS _Ctraits<long double>
template<> class _CRTIMP2 _Ctraits<long double>
{ // complex traits for long double
public:
typedef long double _Ty;
static _Ty __cdecl _Cosh(_Ty _Left, _Ty _Right)
{ // return cosh(_Left) * _Right
return (::_LCosh(_Left, _Right));
}
static short __cdecl _Exp(_Ty *_Pleft, _Ty _Right, short _Exponent)
{ // compute exp(*_Pleft) * _Right * 2 ^ _Exponent
return (::_LExp(_Pleft, _Right, _Exponent));
}
static _Ty __cdecl _Infv(_Ty)
{ // return infinity
return (::_LInf._Long_double);
}
static bool __cdecl _Isinf(_Ty _Left)
{ // test for infinity
return (::_LDtest(&_Left) == _INFCODE);
}
static bool __cdecl _Isnan(_Ty _Left)
{ // test for NaN
return (::_LDtest(&_Left) == _NANCODE);
}
static _Ty __cdecl _Nanv(_Ty)
{ // return NaN
return (::_LNan._Long_double);
}
static _Ty __cdecl _Sinh(_Ty _Left, _Ty _Right)
{ // return sinh(_Left) * _Right
return (::_LSinh(_Left, _Right));
}
static _Ty __cdecl atan2(_Ty _Yval, _Ty _Xval)
{ // return atan(_Yval / _Xval)
return (::atan2l(_Yval, _Xval));
}
static _Ty __cdecl cos(_Ty _Left)
{ // return cos(_Left)
return (::cosl(_Left));
}
static _Ty __cdecl exp(_Ty _Left)
{ // return exp(_Left)
return (::expl(_Left));
}
static _Ty __cdecl ldexp(_Ty _Left, int _Exponent)
{ // return _Left * 2 ^ _Exponent
return (::ldexpl(_Left, _Exponent));
}
static _Ty __cdecl log(_Ty _Left)
{ // return log(_Left)
return (::logl(_Left));
}
static _Ty __cdecl pow(_Ty _Left, _Ty _Right)
{ // return _Left ^ _Right
return (::powl(_Left, _Right));
}
static _Ty __cdecl sin(_Ty _Left)
{ // return sin(_Left)
return (::sinl(_Left));
}
static _Ty __cdecl sqrt(_Ty _Left)
{ // return sqrt(_Left)
return (::sqrtl(_Left));
}
static _Ty __cdecl tan(_Ty _Left)
{ // return tan(_Left)
return (::tanl(_Left));
}
};
// CLASS _Ctraits<double>
template<> class _CRTIMP2 _Ctraits<double>
{ // complex traits for double
public:
typedef double _Ty;
static _Ty __cdecl _Cosh(_Ty _Left, _Ty _Right)
{ // return cosh(_Left) * _Right
return (::_Cosh(_Left, _Right));
}
static short __cdecl _Exp(_Ty *_Pleft, _Ty _Right, short _Exponent)
{ // compute exp(*_Pleft) * _Right * 2 ^ _Exponent
return (::_Exp(_Pleft, _Right, _Exponent));
}
static _Ty __cdecl _Infv(_Ty)
{ // return infinity
return (::_Inf._Double);
}
static bool __cdecl _Isinf(_Ty _Left)
{ // test for infinity
return (::_Dtest(&_Left) == _INFCODE);
}
static bool __cdecl _Isnan(_Ty _Left)
{ // test for NaN
return (::_Dtest(&_Left) == _NANCODE);
}
static _Ty __cdecl _Nanv(_Ty)
{ // return NaN
return (::_Nan._Double);
}
static _Ty __cdecl _Sinh(_Ty _Left, _Ty _Right)
{ // return sinh(_Left) * _Right
return (::_Sinh(_Left, _Right));
}
static _Ty __cdecl atan2(_Ty _Yval, _Ty _Xval)
{ // return atan(_Yval / _Xval)
return (::atan2(_Yval, _Xval));
}
static _Ty __cdecl cos(_Ty _Left)
{ // return cos(_Left)
return (::cos(_Left));
}
static _Ty __cdecl exp(_Ty _Left)
{ // return exp(_Left)
return (::exp(_Left));
}
static _Ty __cdecl ldexp(_Ty _Left, int _Exponent)
{ // return _Left * 2 ^ _Exponent
return (::ldexp(_Left, _Exponent));
}
static _Ty __cdecl log(_Ty _Left)
{ // return log(_Left)
return (::log(_Left));
}
static _Ty __cdecl pow(_Ty _Left, _Ty _Right)
{ // return _Left ^ _Right
return (::pow(_Left, _Right));
}
static _Ty __cdecl sin(_Ty _Left)
{ // return sin(_Left)
return (::sin(_Left));
}
static _Ty __cdecl sqrt(_Ty _Left)
{ // return sqrt(_Left)
return (::sqrt(_Left));
}
static _Ty __cdecl tan(_Ty _Left)
{ // return tan(_Left)
return (::tan(_Left));
}
};
// CLASS _Ctraits<float>
template<> class _CRTIMP2 _Ctraits<float>
{ // complex traits for float
public:
typedef float _Ty;
static _Ty __cdecl _Cosh(_Ty _Left, _Ty _Right)
{ // return cosh(_Left) * _Right
return (::_FCosh(_Left, _Right));
}
static short __cdecl _Exp(_Ty *_Pleft, _Ty _Right, short _Exponent)
{ // compute exp(*_Pleft) * _Right * 2 ^ _Exponent
return (::_FExp(_Pleft, _Right, _Exponent));
}
static _Ty __cdecl _Infv(_Ty)
{ // return infinity
return (::_FInf._Float);
}
static bool __cdecl _Isinf(_Ty _Left)
{ // test for infinity
return (::_FDtest(&_Left) == _INFCODE);
}
static bool __cdecl _Isnan(_Ty _Left)
{ // test for NaN
return (::_FDtest(&_Left) == _NANCODE);
}
static _Ty __cdecl _Nanv(_Ty)
{ // return NaN
return (::_FNan._Float);
}
static _Ty __cdecl _Sinh(_Ty _Left, _Ty _Right)
{ // return sinh(_Left) * _Right
return (::_FSinh(_Left, _Right));
}
static _Ty __cdecl atan2(_Ty _Yval, _Ty _Xval)
{ // return atan(_Yval / _Xval)
return (::atan2f(_Yval, _Xval));
}
static _Ty __cdecl cos(_Ty _Left)
{ // return cos(_Left)
return (::cosf(_Left));
}
static _Ty __cdecl exp(_Ty _Left)
{ // return exp(_Left)
return (::expf(_Left));
}
static _Ty __cdecl ldexp(_Ty _Left, int _Exponent)
{ // return _Left * 2 ^ _Exponent
return (::ldexpf(_Left, _Exponent));
}
static _Ty __cdecl log(_Ty _Left)
{ // return log(_Left)
return (::logf(_Left));
}
static _Ty __cdecl pow(_Ty _Left, _Ty _Right)
{ // return _Left ^ _Right
return (::powf(_Left, _Right));
}
static _Ty __cdecl sin(_Ty _Left)
{ // return sin(_Left)
return (::sinf(_Left));
}
static _Ty __cdecl sqrt(_Ty _Left)
{ // return sqrt(_Left)
return (::sqrtf(_Left));
}
static _Ty __cdecl tan(_Ty _Left)
{ // return tan(_Left)
return (::tanf(_Left));
}
};
template<class _Ty>
class complex;
template<> class _CRTIMP2 complex<float>;
template<> class _CRTIMP2 complex<double>;
template<> class _CRTIMP2 complex<long double>;
// TEMPLATE CLASS _Complex_base
template<class _Ty>
class _Complex_base
{ // base for all complex types
public:
typedef _Ctraits<_Ty> _Myctraits;
typedef _Complex_base<_Ty> _Myt;
typedef _Ty value_type;
_Complex_base(const _Ty& _Realval, const _Ty& _Imagval)
: _Real(_Realval), _Imag(_Imagval)
{ // construct from components of same type
}
_Ty real(const _Ty& _Right)
{ // set real component
return (_Real = _Right);
}
_Ty imag(const _Ty& _Right)
{ // set imaginary component
return (_Imag = _Right);
}
_Ty real() const
{ // return real component
return (_Real);
}
_Ty imag() const
{ // return imaginary component
return (_Imag);
}
protected:
template<class _Other> inline
void _Add(const complex<_Other>& _Right)
{ // add other complex
_Real = _Real + (_Ty)_Right.real();
_Imag = _Imag + (_Ty)_Right.imag();
}
template<class _Other> inline
void _Sub(const complex<_Other>& _Right)
{ // subtract other complex
_Real = _Real - (_Ty)_Right.real();
_Imag = _Imag - (_Ty)_Right.imag();
}
template<class _Other> inline
void _Mul(const complex<_Other>& _Right)
{ // multiply by other complex
_Ty _Rightreal = (_Ty)_Right.real();
_Ty _Rightimag = (_Ty)_Right.imag();
_Ty _Tmp = _Real * _Rightreal - _Imag * _Rightimag;
_Imag = _Real * _Rightimag + _Imag * _Rightreal;
_Real = _Tmp;
}
template<class _Other> inline
void _Div(const complex<_Other>& _Right)
{ // divide by other complex
typedef _Ctraits<_Ty> _Myctraits;
_Ty _Rightreal = (_Ty)_Right.real();
_Ty _Rightimag = (_Ty)_Right.imag();
if (_Myctraits::_Isnan(_Rightreal) || _Myctraits::_Isnan(_Rightimag))
{ // set NaN result
_Real = _Myctraits::_Nanv(_Rightreal);
_Imag = _Real;
}
else if ((_Rightimag < 0 ? -_Rightimag : +_Rightimag)
< (_Rightreal < 0 ? -_Rightreal : +_Rightreal))
{ // |_Right.imag()| < |_Right.real()|
_Ty _Wr = _Rightimag / _Rightreal;
_Ty _Wd = _Rightreal + _Wr * _Rightimag;
if (_Myctraits::_Isnan(_Wd) || _Wd == 0)
{ // set NaN result
_Real = _Myctraits::_Nanv(_Rightreal);
_Imag = _Real;
}
else
{ // compute representable result
_Ty _Tmp = (_Real + _Imag * _Wr) / _Wd;
_Imag = (_Imag - _Real * _Wr) / _Wd;
_Real = _Tmp;
}
}
else if (_Rightimag == 0)
{ // set NaN result
_Real = _Myctraits::_Nanv(_Rightreal);
_Imag = _Real;
}
else
{ // 0 < |_Right.real()| <= |_Right.imag()|
_Ty _Wr = _Rightreal / _Rightimag;
_Ty _Wd = _Rightimag + _Wr * _Rightreal;
if (_Myctraits::_Isnan(_Wd) || _Wd == 0)
{ // set NaN result
_Real = _Myctraits::_Nanv(_Rightreal);
_Imag = _Real;
}
else
{ // compute representable result
_Ty _Tmp = (_Real * _Wr + _Imag) / _Wd;
_Imag = (_Imag * _Wr - _Real) / _Wd;
_Real = _Tmp;
}
}
}
_Ty _Real; // the real component
_Ty _Imag; // the imaginary component
};
// CLASS complex<float>
template<> class _CRTIMP2 complex<float>
: public _Complex_base<float>
{ // complex with float components
public:
typedef float _Ty;
typedef complex<_Ty> _Myt;
explicit complex(const complex<double>&); // defined below
explicit complex(const complex<long double>&); // defined below
complex(const _Ty& _Realval = 0, const _Ty& _Imagval = 0)
: _Complex_base<_Ty>(_Realval, _Imagval)
{ // construct from float components
}
complex<_Ty>& operator=(const _Ty& _Right)
{ // assign real
_Real = _Right;
_Imag = 0;
return (*this);
}
_Myt& operator+=(const _Ty& _Right)
{ // add real
_Real = _Real + _Right;
return (*this);
}
_Myt& operator-=(const _Ty& _Right)
{ // subtract real
_Real = _Real - _Right;
return (*this);
}
_Myt& operator*=(const _Ty& _Right)
{ // multiply by real
_Real = _Real * _Right;
_Imag = _Imag * _Right;
return (*this);
}
_Myt& operator/=(const _Ty& _Right)
{ // divide by real
_Real = _Real / _Right;
_Imag = _Imag / _Right;
return (*this);
}
_Myt& operator+=(const _Myt& _Right)
{ // add other complex
_Add(_Right);
return (*this);
}
_Myt& operator-=(const _Myt& _Right)
{ // subtract other complex
_Sub(_Right);
return (*this);
}
_Myt& operator*=(const _Myt& _Right)
{ // multiply by other complex
_Mul(_Right);
return (*this);
}
_Myt& operator/=(const _Myt& _Right)
{ // divide by other complex
_Div(_Right);
return (*this);
}
template<class _Other> inline
_Myt& operator+=(const complex<_Other>& _Right)
{ // add other complex
_Add(_Right);
return (*this);
}
template<class _Other> inline
_Myt& operator-=(const complex<_Other>& _Right)
{ // subtract other complex
_Sub(_Right);
return (*this);
}
template<class _Other> inline
_Myt& operator*=(const complex<_Other>& _Right)
{ // multiply by other complex
_Mul(_Right);
return (*this);
}
template<class _Other> inline
_Myt& operator/=(const complex<_Other>& _Right)
{ // divide by other complex
_Div(_Right);
return (*this);
}
};
// CLASS complex<double>
template<> class _CRTIMP2 complex<double>
: public _Complex_base<double>
{ // complex with double components
public:
typedef double _Ty;
typedef complex<_Ty> _Myt;
complex(const complex<float>&); // defined below
explicit complex(const complex<long double>&); // defined below
complex(const _Ty& _Realval = 0, const _Ty& _Imagval = 0)
: _Complex_base<_Ty>(_Realval, _Imagval)
{ // construct from double components
}
complex<_Ty>& operator=(const _Ty& _Right)
{ // assign real
_Real = _Right;
_Imag = 0;
return (*this);
}
_Myt& operator+=(const _Ty& _Right)
{ // add real
_Real = _Real + _Right;
return (*this);
}
_Myt& operator-=(const _Ty& _Right)
{ // subtract real
_Real = _Real - _Right;
return (*this);
}
_Myt& operator*=(const _Ty& _Right)
{ // multiply by real
_Real = _Real * _Right;
_Imag = _Imag * _Right;
return (*this);
}
_Myt& operator/=(const _Ty& _Right)
{ // divide by real
_Real = _Real / _Right;
_Imag = _Imag / _Right;
return (*this);
}
_Myt& operator+=(const _Myt& _Right)
{ // add other complex
_Add(_Right);
return (*this);
}
_Myt& operator-=(const _Myt& _Right)
{ // subtract other complex
_Sub(_Right);
return (*this);
}
_Myt& operator*=(const _Myt& _Right)
{ // multiply by other complex
_Mul(_Right);
return (*this);
}
_Myt& operator/=(const _Myt& _Right)
{ // divide by other complex
_Div(_Right);
return (*this);
}
template<class _Other> inline
_Myt& operator+=(const complex<_Other>& _Right)
{ // add other complex
_Add(_Right);
return (*this);
}
template<class _Other> inline
_Myt& operator-=(const complex<_Other>& _Right)
{ // subtract other complex
_Sub(_Right);
return (*this);
}
template<class _Other> inline
_Myt& operator*=(const complex<_Other>& _Right)
{ // multiply by other complex
_Mul(_Right);
return (*this);
}
template<class _Other> inline
_Myt& operator/=(const complex<_Other>& _Right)
{ // divide by other complex
_Div(_Right);
return (*this);
}
};
// CLASS complex<long double>
template<> class _CRTIMP2 complex<long double>
: public _Complex_base<long double>
{ // complex with long double components
public:
typedef long double _Ty;
typedef complex<_Ty> _Myt;
complex(const complex<float>&); // defined below
complex(const complex<double>&); // defined below
complex(const _Ty& _Realval = 0, const _Ty& _Imagval = 0)
: _Complex_base<_Ty>(_Realval, _Imagval)
{ // construct from long double components
}
complex<_Ty>& operator=(const _Ty& _Right)
{ // assign real
_Real = _Right;
_Imag = 0;
return (*this);
}
_Myt& operator+=(const _Ty& _Right)
{ // add real
_Real = _Real + _Right;
return (*this);
}
_Myt& operator-=(const _Ty& _Right)
{ // subtract real
_Real = _Real - _Right;
return (*this);
}
_Myt& operator*=(const _Ty& _Right)
{ // multiply by real
_Real = _Real * _Right;
_Imag = _Imag * _Right;
return (*this);
}
_Myt& operator/=(const _Ty& _Right)
{ // divide by real
_Real = _Real / _Right;
_Imag = _Imag / _Right;
return (*this);
}
_Myt& operator+=(const _Myt& _Right)
{ // add other complex
_Add(_Right);
return (*this);
}
_Myt& operator-=(const _Myt& _Right)
{ // subtract other complex
_Sub(_Right);
return (*this);
}
_Myt& operator*=(const _Myt& _Right)
{ // multiply by other complex
_Mul(_Right);
return (*this);
}
_Myt& operator/=(const _Myt& _Right)
{ // divide by other complex
_Div(_Right);
return (*this);
}
template<class _Other> inline
_Myt& operator+=(const complex<_Other>& _Right)
{ // add other complex
_Add(_Right);
return (*this);
}
template<class _Other> inline
_Myt& operator-=(const complex<_Other>& _Right)
{ // subtract other complex
_Sub(_Right);
return (*this);
}
template<class _Other> inline
_Myt& operator*=(const complex<_Other>& _Right)
{ // multiply by other complex
_Mul(_Right);
return (*this);
}
template<class _Other> inline
_Myt& operator/=(const complex<_Other>& _Right)
{ // divide by other complex
_Div(_Right);
return (*this);
}
};
// CONSTRUCTORS FOR complex SPECIALIZATIONS
_TEMPLATE_STAT inline
complex<float>::complex(const complex<double>& _Right)
: _Complex_base<float>((_Ty)_Right.real(), (_Ty)_Right.imag())
{ // construct complex<float> from complex<double>
}
_TEMPLATE_STAT inline
complex<float>::complex(const complex<long double>& _Right)
: _Complex_base<float>((_Ty)_Right.real(), (_Ty)_Right.imag())
{ // construct complex<float> from complex<long double>
}
_TEMPLATE_STAT inline
complex<double>::complex(const complex<float>& _Right)
: _Complex_base<double>((_Ty)_Right.real(), (_Ty)_Right.imag())
{ // construct complex<double> from complex<float>
}
_TEMPLATE_STAT inline
complex<double>::complex(const complex<long double>& _Right)
: _Complex_base<double>((_Ty)_Right.real(), (_Ty)_Right.imag())
{ // construct complex<double> from complex<long double>
}
_TEMPLATE_STAT inline
complex<long double>::complex(const complex<float>& _Right)
: _Complex_base<long double>((_Ty)_Right.real(), (_Ty)_Right.imag())
{ // construct complex<long double> from complex<float>
}
_TEMPLATE_STAT inline
complex<long double>::complex(const complex<double>& _Right)
: _Complex_base<long double>((_Ty)_Right.real(), (_Ty)_Right.imag())
{ // construct complex<long double> from complex<double>
}
// TEMPLATE CLASS complex
template<class _Ty>
class complex
: public _Complex_base<_Ty>
{ // complex with _Ty components
public:
typedef complex<_Ty> _Myt;
typedef _Complex_base<_Ty> _Mybase;
complex(const _Ty& _Realval = 0, const _Ty& _Imagval = 0)
: _Mybase(_Realval, _Imagval)
{ // construct from components of same type
}
_Myt& operator=(const _Ty& _Right)
{ // assign real
this->_Real = _Right;
this->_Imag = 0;
return (*this);
}
template<class _Other>
complex(const complex<_Other>& _Right)
: _Mybase((_Ty)_Right.real(), (_Ty)_Right.imag())
{ // construct from other complex type
}
template<class _Other>
_Myt& operator=(const complex<_Other>& _Right)
{ // assign other complex type
this->_Real = (_Ty)_Right.real();
this->_Imag = (_Ty)_Right.imag();
return (*this);
}
_Myt& operator+=(const _Ty& _Right)
{ // add real
this->_Real = this->_Real + _Right;
return (*this);
}
_Myt& operator-=(const _Ty& _Right)
{ // subtract real
this->_Real = this->_Real - _Right;
return (*this);
}
_Myt& operator*=(const _Ty& _Right)
{ // multiply by real
this->_Real = this->_Real * _Right;
this->_Imag = this->_Imag * _Right;
return (*this);
}
_Myt& operator/=(const _Ty& _Right)
{ // divide by real
this->_Real = this->_Real / _Right;
this->_Imag = this->_Imag / _Right;
return (*this);
}
_Myt& operator+=(const _Myt& _Right)
{ // add other complex
_Add(_Right);
return (*this);
}
_Myt& operator-=(const _Myt& _Right)
{ // subtract other complex
_Sub(_Right);
return (*this);
}
_Myt& operator*=(const _Myt& _Right)
{ // multiply by other complex
_Mul(_Right);
return (*this);
}
_Myt& operator/=(const _Myt& _Right)
{ // divide by other complex
_Div(_Right);
return (*this);
}
template<class _Other> inline
_Myt& operator+=(const complex<_Other>& _Right)
{ // add other complex
this->_Add(_Right);
return (*this);
}
template<class _Other> inline
_Myt& operator-=(const complex<_Other>& _Right)
{ // subtract other complex
this->_Sub(_Right);
return (*this);
}
template<class _Other> inline
_Myt& operator*=(const complex<_Other>& _Right)
{ // multiply by other complex
this->_Mul(_Right);
return (*this);
}
template<class _Other> inline
_Myt& operator/=(const complex<_Other>& _Right)
{ // divide by other complex
this->_Div(_Right);
return (*this);
}
};
#define _CMPLX(T) complex<T >
#define _CTR(T) _Ctraits<T >
#define _TMPLT(T) template<class T >
#include <xcomplex> /* define all complex template functions */
// TEMPLATE FUNCTION operator>>
template<class _Ty,
class _Elem,
class _Tr> inline
basic_istream<_Elem, _Tr>& __cdecl operator>>(
basic_istream<_Elem, _Tr>& _Istr, complex<_Ty>& _Right)
{ // extract a complex<_Ty>
typedef complex<_Ty> _Myt;
_Elem _Ch;
long double _Real, _Imag = 0;
if (_Istr >> _Ch && _Ch != '(')
{ // no leading '(', treat as real only
_Istr.putback(_Ch);
_Istr >> _Real;
_Imag = 0;
}
else if (_Istr >> _Real >> _Ch && _Ch != ',')
if (_Ch == ')')
_Imag = 0; // (real)
else
{ // no trailing ')' after real, treat as bad field
_Istr.putback(_Ch);
_Istr.setstate(ios_base::failbit);
}
else if (_Istr >> _Imag >> _Ch && _Ch != ')')
{ // no imag or trailing ')', treat as bad field
_Istr.putback(_Ch);
_Istr.setstate(ios_base::failbit);
}
if (!_Istr.fail())
{ // store valid result
_Ty _Tyreal((_Ty)_Real), _Tyimag((_Ty)_Imag);
_Right = _Myt(_Tyreal, _Tyimag);
}
return (_Istr);
}
// TEMPLATE FUNCTION operator<<
template<class _Ty,
class _Elem,
class _Tr> inline
basic_ostream<_Elem, _Tr>& __cdecl operator<<(
basic_ostream<_Elem, _Tr>& _Ostr, const complex<_Ty>& _Right)
{ // insert a complex<_Ty>
basic_ostringstream<_Elem, _Tr, allocator<_Elem> > _Sstr;
_Sstr.flags(_Ostr.flags());
_Sstr.imbue(_Ostr.getloc());
_Sstr.precision(_Ostr.precision());
_Sstr << '(' << real(_Right) << ',' << imag(_Right) << ')';
basic_string<_Elem, _Tr, allocator<_Elem> > _Str = _Sstr.str();
return (_Ostr << _Str.c_str());
}
#ifdef _DLL_CPPLIB
#ifndef CRTDLL2
template _CRTIMP2 basic_istream<char, char_traits<char> >&
__cdecl operator>>(basic_istream<char, char_traits<char> >&,
complex<float>&);
template _CRTIMP2 basic_ostream<char, char_traits<char> >&
__cdecl operator<<(basic_ostream<char, char_traits<char> >&,
const complex<float>&);
template _CRTIMP2 basic_istream<wchar_t, char_traits<wchar_t> >&
__cdecl operator>>(basic_istream<wchar_t, char_traits<wchar_t> >&,
complex<float>&);
template _CRTIMP2 basic_ostream<wchar_t, char_traits<wchar_t> >&
__cdecl operator<<(basic_ostream<wchar_t, char_traits<wchar_t> >&,
const complex<float>&);
#ifdef _CRTBLD_NATIVE_WCHAR_T
template _CRTIMP2 basic_istream<unsigned short, char_traits<unsigned short> >&
__cdecl operator>>(basic_istream<unsigned short, char_traits<unsigned short> >&,
complex<float>&);
template _CRTIMP2 basic_ostream<unsigned short, char_traits<unsigned short> >&
__cdecl operator<<(basic_ostream<unsigned short, char_traits<unsigned short> >&,
const complex<float>&);
#endif
template _CRTIMP2 basic_istream<char, char_traits<char> >&
__cdecl operator>>(basic_istream<char, char_traits<char> >&,
complex<double>&);
template _CRTIMP2 basic_ostream<char, char_traits<char> >&
__cdecl operator<<(basic_ostream<char, char_traits<char> >&,
const complex<double>&);
template _CRTIMP2 basic_istream<wchar_t, char_traits<wchar_t> >&
__cdecl operator>>(basic_istream<wchar_t, char_traits<wchar_t> >&,
complex<double>&);
template _CRTIMP2 basic_ostream<wchar_t, char_traits<wchar_t> >&
__cdecl operator<<(basic_ostream<wchar_t, char_traits<wchar_t> >&,
const complex<double>&);
#ifdef _CRTBLD_NATIVE_WCHAR_T
template _CRTIMP2 basic_istream<unsigned short, char_traits<unsigned short> >&
__cdecl operator>>(basic_istream<unsigned short, char_traits<unsigned short> >&,
complex<double>&);
template _CRTIMP2 basic_ostream<unsigned short, char_traits<unsigned short> >&
__cdecl operator<<(basic_ostream<unsigned short, char_traits<unsigned short> >&,
const complex<double>&);
#endif
template _CRTIMP2 basic_istream<char, char_traits<char> >&
__cdecl operator>>(basic_istream<char, char_traits<char> >&,
complex<long double>&);
template _CRTIMP2 basic_ostream<char, char_traits<char> >&
__cdecl operator<<(basic_ostream<char, char_traits<char> >&,
const complex<long double>&);
template _CRTIMP2 basic_istream<wchar_t, char_traits<wchar_t> >&
__cdecl operator>>(basic_istream<wchar_t, char_traits<wchar_t> >&,
complex<long double>&);
template _CRTIMP2 basic_ostream<wchar_t, char_traits<wchar_t> >&
__cdecl operator<<(basic_ostream<wchar_t, char_traits<wchar_t> >&,
const complex<long double>&);
#ifdef _CRTBLD_NATIVE_WCHAR_T
template _CRTIMP2 basic_istream<unsigned short, char_traits<unsigned short> >&
__cdecl operator>>(basic_istream<unsigned short, char_traits<unsigned short> >&,
complex<long double>&);
template _CRTIMP2 basic_ostream<unsigned short, char_traits<unsigned short> >&
__cdecl operator<<(basic_ostream<unsigned short, char_traits<unsigned short> >&,
const complex<long double>&);
#endif
#endif // CRTDLL2
#endif // _DLL_CPPLIB
_STD_END
#pragma warning(default: 4244)
#pragma warning(pop)
#pragma pack(pop)
#endif /* _COMPLEX_ */
/*
* Copyright (c) 1992-2001 by P.J. Plauger. ALL RIGHTS RESERVED.
* Consult your license regarding permissions and restrictions.
V3.10:0009 */