Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

622 lines
19 KiB

// xstring internal header (from <string>)
#ifndef _XSTRING_
#define _XSTRING_
#include <xmemory>
#ifdef _MSC_VER
#pragma pack(push,8)
#endif /* _MSC_VER */
#include <xutility>
_STD_BEGIN
_CRTIMP void __cdecl _Xlen();
_CRTIMP void __cdecl _Xran();
// TEMPLATE CLASS basic_string
template<class _E,
class _Tr = char_traits<_E>,
class _A = allocator<_E> >
class basic_string {
public:
typedef basic_string<_E, _Tr, _A> _Myt;
typedef typename _A::size_type size_type;
typedef typename _A::difference_type difference_type;
typedef typename _A::pointer pointer;
typedef typename _A::const_pointer const_pointer;
typedef typename _A::reference reference;
typedef typename _A::const_reference const_reference;
typedef typename _A::value_type value_type;
typedef typename _A::pointer iterator;
typedef typename _A::const_pointer const_iterator;
typedef reverse_iterator<const_iterator, value_type,
const_reference, const_pointer, difference_type>
const_reverse_iterator;
typedef reverse_iterator<iterator, value_type,
reference, pointer, difference_type>
reverse_iterator;
explicit basic_string(const _A& _Al = _A())
: allocator(_Al) {_Tidy(); }
basic_string(const _Myt& _X)
: allocator(_X.allocator)
{_Tidy(), assign(_X, 0, npos); }
basic_string(const _Myt& _X, size_type _P, size_type _M,
const _A& _Al = _A())
: allocator(_Al) {_Tidy(), assign(_X, _P, _M); }
basic_string(const _E *_S, size_type _N,
const _A& _Al = _A())
: allocator(_Al) {_Tidy(), assign(_S, _N); }
basic_string(const _E *_S, const _A& _Al = _A())
: allocator(_Al) {_Tidy(), assign(_S); }
basic_string(size_type _N, _E _C, const _A& _Al = _A())
: allocator(_Al) {_Tidy(), assign(_N, _C); }
typedef const_iterator _It;
basic_string(_It _F, _It _L, const _A& _Al = _A())
: allocator(_Al) {_Tidy(); assign(_F, _L); }
~basic_string()
{_Tidy(true); }
typedef _Tr traits_type;
typedef _A allocator_type;
enum _Mref {_FROZEN = 255};
static const size_type npos;
_Myt& operator=(const _Myt& _X)
{return (assign(_X)); }
_Myt& operator=(const _E *_S)
{return (assign(_S)); }
_Myt& operator=(_E _C)
{return (assign(1, _C)); }
_Myt& operator+=(const _Myt& _X)
{return (append(_X)); }
_Myt& operator+=(const _E *_S)
{return (append(_S)); }
_Myt& operator+=(_E _C)
{return (append(1, _C)); }
_Myt& append(const _Myt& _X)
{return (append(_X, 0, npos)); }
_Myt& append(const _Myt& _X, size_type _P, size_type _M)
{if (_X.size() < _P)
_Xran();
size_type _N = _X.size() - _P;
if (_N < _M)
_M = _N;
if (npos - _Len <= _M)
_Xlen();
if (0 < _M && _Grow(_N = _Len + _M))
{_Tr::copy(_Ptr + _Len, &_X.c_str()[_P], _M);
_Eos(_N); }
return (*this); }
_Myt& append(const _E *_S, size_type _M)
{if (npos - _Len <= _M)
_Xlen();
size_type _N;
if (0 < _M && _Grow(_N = _Len + _M))
{_Tr::copy(_Ptr + _Len, _S, _M);
_Eos(_N); }
return (*this); }
_Myt& append(const _E *_S)
{return (append(_S, _Tr::length(_S))); }
_Myt& append(size_type _M, _E _C)
{if (npos - _Len <= _M)
_Xlen();
size_type _N;
if (0 < _M && _Grow(_N = _Len + _M))
{_Tr::assign(_Ptr + _Len, _M, _C);
_Eos(_N); }
return (*this); }
_Myt& append(_It _F, _It _L)
{return (replace(end(), end(), _F, _L)); }
_Myt& assign(const _Myt& _X)
{return (assign(_X, 0, npos)); }
_Myt& assign(const _Myt& _X, size_type _P, size_type _M)
{if (_X.size() < _P)
_Xran();
size_type _N = _X.size() - _P;
if (_M < _N)
_N = _M;
if (this == &_X)
erase((size_type)(_P + _N)), erase(0, _P);
else if (0 < _N && _N == _X.size()
&& _Refcnt(_X.c_str()) < _FROZEN - 1
&& allocator == _X.allocator)
{_Tidy(true);
_Ptr = (_E *)_X.c_str();
_Len = _X.size();
_Res = _X.capacity();
++_Refcnt(_Ptr); }
else if (_Grow(_N, true))
{_Tr::copy(_Ptr, &_X.c_str()[_P], _N);
_Eos(_N); }
return (*this); }
_Myt& assign(const _E *_S, size_type _N)
{if (_Grow(_N, true))
{_Tr::copy(_Ptr, _S, _N);
_Eos(_N); }
return (*this); }
_Myt& assign(const _E *_S)
{return (assign(_S, _Tr::length(_S))); }
_Myt& assign(size_type _N, _E _C)
{if (_N == npos)
_Xlen();
if (_Grow(_N, true))
{_Tr::assign(_Ptr, _N, _C);
_Eos(_N); }
return (*this); }
_Myt& assign(_It _F, _It _L)
{return (replace(begin(), end(), _F, _L)); }
_Myt& insert(size_type _P0, const _Myt& _X)
{return (insert(_P0, _X, 0, npos)); }
_Myt& insert(size_type _P0, const _Myt& _X, size_type _P,
size_type _M)
{if (_Len < _P0 || _X.size() < _P)
_Xran();
size_type _N = _X.size() - _P;
if (_N < _M)
_M = _N;
if (npos - _Len <= _M)
_Xlen();
if (0 < _M && _Grow(_N = _Len + _M))
{_Tr::move(_Ptr + _P0 + _M, _Ptr + _P0, _Len - _P0);
_Tr::copy(_Ptr + _P0, &_X.c_str()[_P], _M);
_Eos(_N); }
return (*this); }
_Myt& insert(size_type _P0, const _E *_S, size_type _M)
{if (_Len < _P0)
_Xran();
if (npos - _Len <= _M)
_Xlen();
size_type _N;
if (0 < _M && _Grow(_N = _Len + _M))
{_Tr::move(_Ptr + _P0 + _M, _Ptr + _P0, _Len - _P0);
_Tr::copy(_Ptr + _P0, _S, _M);
_Eos(_N); }
return (*this); }
_Myt& insert(size_type _P0, const _E *_S)
{return (insert(_P0, _S, _Tr::length(_S))); }
_Myt& insert(size_type _P0, size_type _M, _E _C)
{if (_Len < _P0)
_Xran();
if (npos - _Len <= _M)
_Xlen();
size_type _N;
if (0 < _M && _Grow(_N = _Len + _M))
{_Tr::move(_Ptr + _P0 + _M, _Ptr + _P0, _Len - _P0);
_Tr::assign(_Ptr + _P0, _M, _C);
_Eos(_N); }
return (*this); }
iterator insert(iterator _P, _E _C)
{size_type _P0 = _Pdif(_P, begin());
insert(_P0, 1, _C);
return (begin() + _P0); }
void insert(iterator _P, size_type _M, _E _C)
{size_type _P0 = _Pdif(_P, begin());
insert(_P0, _M, _C); }
void insert(iterator _P, _It _F, _It _L)
{replace(_P, _P, _F, _L); }
_Myt& erase(size_type _P0 = 0, size_type _M = npos)
{if (_Len < _P0)
_Xran();
_Split();
if (_Len - _P0 < _M)
_M = _Len - _P0;
if (0 < _M)
{_Tr::move(_Ptr + _P0, _Ptr + _P0 + _M,
_Len - _P0 - _M);
size_type _N = _Len - _M;
if (_Grow(_N))
_Eos(_N); }
return (*this); }
iterator erase(iterator _P)
{size_t _M = _Pdif(_P, begin());
erase(_M, 1);
return (_Psum(_Ptr, _M)); }
iterator erase(iterator _F, iterator _L)
{size_t _M = _Pdif(_F, begin());
erase(_M, _Pdif(_L, _F));
return (_Psum(_Ptr, _M)); }
_Myt& replace(size_type _P0, size_type _N0, const _Myt& _X)
{return (replace(_P0, _N0, _X, 0, npos)); }
_Myt& replace(size_type _P0, size_type _N0, const _Myt& _X,
size_type _P, size_type _M)
{if (_Len < _P0 || _X.size() < _P)
_Xran();
if (_Len - _P0 < _N0)
_N0 = _Len - _P0;
size_type _N = _X.size() - _P;
if (_N < _M)
_M = _N;
if (npos - _M <= _Len - _N0)
_Xlen();
_Split();
size_type _Nm = _Len - _N0 - _P0;
if (_M < _N0)
_Tr::move(_Ptr + _P0 + _M, _Ptr + _P0 + _N0, _Nm);
if ((0 < _M || 0 < _N0) && _Grow(_N = _Len + _M - _N0))
{if (_N0 < _M)
_Tr::move(_Ptr + _P0 + _M, _Ptr + _P0 + _N0, _Nm);
_Tr::copy(_Ptr + _P0, &_X.c_str()[_P], _M);
_Eos(_N); }
return (*this); }
_Myt& replace(size_type _P0, size_type _N0, const _E *_S,
size_type _M)
{if (_Len < _P0)
_Xran();
if (_Len - _P0 < _N0)
_N0 = _Len - _P0;
if (npos - _M <= _Len - _N0)
_Xlen();
_Split();
size_type _Nm = _Len - _N0 - _P0;
if (_M < _N0)
_Tr::move(_Ptr + _P0 + _M, _Ptr + _P0 + _N0, _Nm);
size_type _N;
if ((0 < _M || 0 < _N0) && _Grow(_N = _Len + _M - _N0))
{if (_N0 < _M)
_Tr::move(_Ptr + _P0 + _M, _Ptr + _P0 + _N0, _Nm);
_Tr::copy(_Ptr + _P0, _S, _M);
_Eos(_N); }
return (*this); }
_Myt& replace(size_type _P0, size_type _N0, const _E *_S)
{return (replace(_P0, _N0, _S, _Tr::length(_S))); }
_Myt& replace(size_type _P0, size_type _N0,
size_type _M, _E _C)
{if (_Len < _P0)
_Xran();
if (_Len - _P0 < _N0)
_N0 = _Len - _P0;
if (npos - _M <= _Len - _N0)
_Xlen();
_Split();
size_type _Nm = _Len - _N0 - _P0;
if (_M < _N0)
_Tr::move(_Ptr + _P0 + _M, _Ptr + _P0 + _N0, _Nm);
size_type _N;
if ((0 < _M || 0 < _N0) && _Grow(_N = _Len + _M - _N0))
{if (_N0 < _M)
_Tr::move(_Ptr + _P0 + _M, _Ptr + _P0 + _N0,
_Nm);
_Tr::assign(_Ptr + _P0, _M, _C);
_Eos(_N); }
return (*this); }
_Myt& replace(iterator _F, iterator _L, const _Myt& _X)
{return (replace(
_Pdif(_F, begin()), _Pdif(_L, _F), _X)); }
_Myt& replace(iterator _F, iterator _L, const _E *_S,
size_type _M)
{return (replace(
_Pdif(_F, begin()), _Pdif(_L, _F), _S, _M)); }
_Myt& replace(iterator _F, iterator _L, const _E *_S)
{return (replace(
_Pdif(_F, begin()), _Pdif(_L, _F), _S)); }
_Myt& replace(iterator _F, iterator _L, size_type _M, _E _C)
{return (replace(
_Pdif(_F, begin()), _Pdif(_L, _F), _M, _C)); }
_Myt& replace(iterator _F1, iterator _L1,
_It _F2, _It _L2)
{size_type _P0 = _Pdif(_F1, begin());
size_type _M = 0;
_Distance(_F2, _L2, _M);
replace(_P0, _Pdif(_L1, _F1), _M, _E(0));
for (_F1 = begin() + _P0; 0 < _M; ++_F1, ++_F2, --_M)
*_F1 = *_F2;
return (*this); }
iterator begin()
{_Freeze();
return (_Ptr); }
const_iterator begin() const
{return (_Ptr); }
iterator end()
{_Freeze();
return ((iterator)_Psum(_Ptr, _Len)); }
const_iterator end() const
{return ((const_iterator)_Psum(_Ptr, _Len)); }
reverse_iterator rbegin()
{return (reverse_iterator(end())); }
const_reverse_iterator rbegin() const
{return (const_reverse_iterator(end())); }
reverse_iterator rend()
{return (reverse_iterator(begin())); }
const_reverse_iterator rend() const
{return (const_reverse_iterator(begin())); }
reference at(size_type _P0)
{if (_Len <= _P0)
_Xran();
_Freeze();
return (_Ptr[_P0]); }
const_reference at(size_type _P0) const
{if (_Len <= _P0)
_Xran();
return (_Ptr[_P0]); }
reference operator[](size_type _P0)
{if (_Len < _P0 || _Ptr == 0)
return ((reference)*_Nullstr());
_Freeze();
return (_Ptr[_P0]); }
const_reference operator[](size_type _P0) const
{if (_Ptr == 0)
return (*_Nullstr());
else
return (_Ptr[_P0]); }
const _E *c_str() const
{return (_Ptr == 0 ? _Nullstr() : _Ptr); }
const _E *data() const
{return (c_str()); }
size_type length() const
{return (_Len); }
size_type size() const
{return (_Len); }
size_type max_size() const
{size_type _N = allocator.max_size();
return (_N <= 2 ? 1 : _N - 2); }
void resize(size_type _N, _E _C)
{_N <= _Len ? erase(_N) : append(_N - _Len, _C); }
void resize(size_type _N)
{_N <= _Len ? erase(_N) : append(_N - _Len, _E(0)); }
size_type capacity() const
{return (_Res); }
void reserve(size_type _N = 0)
{if (_Res < _N)
_Grow(_N); }
bool empty() const
{return (_Len == 0); }
size_type copy(_E *_S, size_type _N, size_type _P0 = 0) const
{if (_Len < _P0)
_Xran();
if (_Len - _P0 < _N)
_N = _Len - _P0;
if (0 < _N)
_Tr::copy(_S, _Ptr + _P0, _N);
return (_N); }
void swap(_Myt& _X)
{if (allocator == _X.allocator)
{std::swap(_Ptr, _X._Ptr);
std::swap(_Len, _X._Len);
std::swap(_Res, _X._Res); }
else
{_Myt _Ts = *this; *this = _X, _X = _Ts; }}
friend void swap(_Myt& _X, _Myt& _Y)
{_X.swap(_Y); }
size_type find(const _Myt& _X, size_type _P = 0) const
{return (find(_X.c_str(), _P, _X.size())); }
size_type find(const _E *_S, size_type _P,
size_type _N) const
{if (_N == 0 && _P <= _Len)
return (_P);
size_type _Nm;
if (_P < _Len && _N <= (_Nm = _Len - _P))
{const _E *_U, *_V;
for (_Nm -= _N - 1, _V = _Ptr + _P;
(_U = _Tr::find(_V, _Nm, *_S)) != 0;
_Nm -= (size_type) (_U - _V + 1), _V = _U + 1)
if (_Tr::compare(_U, _S, _N) == 0)
return (_U - _Ptr); }
return (npos); }
size_type find(const _E *_S, size_type _P = 0) const
{return (find(_S, _P, _Tr::length(_S))); }
size_type find(_E _C, size_type _P = 0) const
{return (find((const _E *)&_C, _P, 1)); }
size_type rfind(const _Myt& _X, size_type _P = npos) const
{return (rfind(_X.c_str(), _P, _X.size())); }
size_type rfind(const _E *_S, size_type _P,
size_type _N) const
{if (_N == 0)
return (_P < _Len ? _P : _Len);
if (_N <= _Len)
for (const _E *_U = _Ptr +
+ (_P < _Len - _N ? _P : _Len - _N); ; --_U)
if (_Tr::eq(*_U, *_S)
&& _Tr::compare(_U, _S, _N) == 0)
return (_U - _Ptr);
else if (_U == _Ptr)
break;
return (npos); }
size_type rfind(const _E *_S, size_type _P = npos) const
{return (rfind(_S, _P, _Tr::length(_S))); }
size_type rfind(_E _C, size_type _P = npos) const
{return (rfind((const _E *)&_C, _P, 1)); }
size_type find_first_of(const _Myt& _X,
size_type _P = 0) const
{return (find_first_of(_X.c_str(), _P, _X.size())); }
size_type find_first_of(const _E *_S, size_type _P,
size_type _N) const
{if (0 < _N && _P < _Len)
{const _E *const _V = _Ptr + _Len;
for (const _E *_U = _Ptr + _P; _U < _V; ++_U)
if (_Tr::find(_S, _N, *_U) != 0)
return (_U - _Ptr); }
return (npos); }
size_type find_first_of(const _E *_S, size_type _P = 0) const
{return (find_first_of(_S, _P, _Tr::length(_S))); }
size_type find_first_of(_E _C, size_type _P = 0) const
{return (find((const _E *)&_C, _P, 1)); }
size_type find_last_of(const _Myt& _X,
size_type _P = npos) const
{return (find_last_of(_X.c_str(), _P, _X.size())); }
size_type find_last_of(const _E *_S, size_type _P,
size_type _N) const
{if (0 < _N && 0 < _Len)
for (const _E *_U = _Ptr
+ (_P < _Len ? _P : _Len - 1); ; --_U)
if (_Tr::find(_S, _N, *_U) != 0)
return (_U - _Ptr);
else if (_U == _Ptr)
break;
return (npos); }
size_type find_last_of(const _E *_S,
size_type _P = npos) const
{return (find_last_of(_S, _P, _Tr::length(_S))); }
size_type find_last_of(_E _C, size_type _P = npos) const
{return (rfind((const _E *)&_C, _P, 1)); }
size_type find_first_not_of(const _Myt& _X,
size_type _P = 0) const
{return (find_first_not_of(_X.c_str(), _P,
_X.size())); }
size_type find_first_not_of(const _E *_S, size_type _P,
size_type _N) const
{if (_P < _Len)
{const _E *const _V = _Ptr + _Len;
for (const _E *_U = _Ptr + _P; _U < _V; ++_U)
if (_Tr::find(_S, _N, *_U) == 0)
return (_U - _Ptr); }
return (npos); }
size_type find_first_not_of(const _E *_S,
size_type _P = 0) const
{return (find_first_not_of(_S, _P, _Tr::length(_S))); }
size_type find_first_not_of(_E _C, size_type _P = 0) const
{return (find_first_not_of((const _E *)&_C, _P, 1)); }
size_type find_last_not_of(const _Myt& _X,
size_type _P = npos) const
{return (find_last_not_of(_X.c_str(), _P, _X.size())); }
size_type find_last_not_of(const _E *_S, size_type _P,
size_type _N) const
{if (0 < _Len)
for (const _E *_U = _Ptr
+ (_P < _Len ? _P : _Len - 1); ; --_U)
if (_Tr::find(_S, _N, *_U) == 0)
return (_U - _Ptr);
else if (_U == _Ptr)
break;
return (npos); }
size_type find_last_not_of(const _E *_S,
size_type _P = npos) const
{return (find_last_not_of(_S, _P, _Tr::length(_S))); }
size_type find_last_not_of(_E _C, size_type _P = npos) const
{return (find_last_not_of((const _E *)&_C, _P, 1)); }
_Myt substr(size_type _P = 0, size_type _M = npos) const
{return (_Myt(*this, _P, _M)); }
int compare(const _Myt& _X) const
{return (compare(0, _Len, _X.c_str(), _X.size())); }
int compare(size_type _P0, size_type _N0,
const _Myt& _X) const
{return (compare(_P0, _N0, _X, 0, npos)); }
int compare(size_type _P0, size_type _N0, const _Myt& _X,
size_type _P, size_type _M) const
{if (_X.size() < _P)
_Xran();
if (_X._Len - _P < _M)
_M = _X._Len - _P;
return (compare(_P0, _N0, _X.c_str() + _P, _M)); }
int compare(const _E *_S) const
{return (compare(0, _Len, _S, _Tr::length(_S))); }
int compare(size_type _P0, size_type _N0, const _E *_S) const
{return (compare(_P0, _N0, _S, _Tr::length(_S))); }
int compare(size_type _P0, size_type _N0, const _E *_S,
size_type _M) const
{if (_Len < _P0)
_Xran();
if (_Len - _P0 < _N0)
_N0 = _Len - _P0;
size_type _Ans = _Tr::compare(_Psum(_Ptr, _P0), _S,
_N0 < _M ? _N0 : _M);
return (int)(_Ans != 0 ? _Ans : _N0 < _M ? -1
: _N0 == _M ? 0 : +1); }
_A get_allocator() const
{return (allocator); }
protected:
_A allocator;
private:
enum {_MIN_SIZE = sizeof (_E) <= 32 ? 31 : 7};
void _Copy(size_type _N)
{size_type _Ns = _N | _MIN_SIZE;
if (max_size() < _Ns)
_Ns = _N;
_E *_S;
_TRY_BEGIN
_S = allocator.allocate(_Ns + 2, (void *)0);
_CATCH_ALL
_Ns = _N;
_S = allocator.allocate(_Ns + 2, (void *)0);
_CATCH_END
if (0 < _Len)
_Tr::copy(_S + 1, _Ptr,_Len>_Ns?_Ns:_Len);
size_type _Olen = _Len;
_Tidy(true);
_Ptr = _S + 1;
_Refcnt(_Ptr) = 0;
_Res = _Ns;
_Eos(_Olen>_Ns?_Ns:_Olen); }
void _Eos(size_type _N)
{_Tr::assign(_Ptr[_Len = _N], _E(0)); }
void _Freeze()
{if (_Ptr != 0
&& _Refcnt(_Ptr) != 0 && _Refcnt(_Ptr) != _FROZEN)
_Grow(_Len);
if (_Ptr != 0)
_Refcnt(_Ptr) = _FROZEN; }
bool _Grow(size_type _N, bool _Trim = false)
{if (max_size() < _N)
_Xlen();
if (_Ptr != 0
&& _Refcnt(_Ptr) != 0 && _Refcnt(_Ptr) != _FROZEN)
if (_N == 0)
{--_Refcnt(_Ptr), _Tidy();
return (false); }
else
{_Copy(_N);
return (true); }
if (_N == 0)
{if (_Trim)
_Tidy(true);
else if (_Ptr != 0)
_Eos(0);
return (false); }
else
{if (_Trim && (_MIN_SIZE < _Res || _Res < _N))
{_Tidy(true);
_Copy(_N); }
else if (!_Trim && _Res < _N)
_Copy(_N);
return (true); }}
static const _E * __cdecl _Nullstr()
{static const _E _C = _E(0);
return (&_C); }
static size_type __cdecl _Pdif(const_pointer _P2, const_pointer _P1)
{return (_P2 == 0 ? 0 : _P2 - _P1); }
static const_pointer __cdecl _Psum(const_pointer _P, size_type _N)
{return (_P == 0 ? 0 : _P + _N); }
static pointer __cdecl _Psum(pointer _P, size_type _N)
{return (_P == 0 ? 0 : _P + _N); }
unsigned char& _Refcnt(const _E *_U)
{return (((unsigned char *)_U)[-1]); }
void _Split()
{if (_Ptr != 0 && _Refcnt(_Ptr) != 0 && _Refcnt(_Ptr) != _FROZEN)
{_E *_Temp = _Ptr;
_Tidy(true);
assign(_Temp); }}
void _Tidy(bool _Built = false)
{if (!_Built || _Ptr == 0)
;
else if (_Refcnt(_Ptr) == 0 || _Refcnt(_Ptr) == _FROZEN)
allocator.deallocate(_Ptr - 1, _Res + 2);
else
--_Refcnt(_Ptr);
_Ptr = 0, _Len = 0, _Res = 0; }
_E *_Ptr;
size_type _Len, _Res;
};
template<class _E, class _Tr, class _A>
const typename basic_string<_E, _Tr, _A>::size_type
basic_string<_E, _Tr, _A>::npos = (size_type)-1;
#ifdef _DLL
#pragma warning(disable:4231) /* the extern before template is a non-standard extension */
extern template class _CRTIMP basic_string<char, char_traits<char>, allocator<char> >;
extern template class _CRTIMP basic_string<wchar_t, char_traits<wchar_t>, allocator<wchar_t> >;
#pragma warning(default:4231) /* restore previous warning */
#endif // _DLL
typedef basic_string<char, char_traits<char>, allocator<char> >
string;
typedef basic_string<wchar_t, char_traits<wchar_t>,
allocator<wchar_t> > wstring;
_STD_END
#ifdef _MSC_VER
#pragma pack(pop)
#endif /* _MSC_VER */
#endif /* _XSTRING */
/*
* Copyright (c) 1995 by P.J. Plauger. ALL RIGHTS RESERVED.
* Consult your license regarding permissions and restrictions.
*/