Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1632 lines
38 KiB

/*++
Copyright (c) 1990 Microsoft Corporation
Module Name:
Monitor.c
Abstract:
This module is the user mode portion of the x86 monitor
Author:
Dave Hastings (daveh) 16 Mar 1991
Environment:
User mode only
Revision History:
Sudeep Bharati (sudeepb) 31-Dec-1991
Converted all register manipulation interfaces to functions
from macros. This is to make ntvdm an exe as well as a dll,
and these register oriented routines are exported from ntvdm
for WOW32 and other installable VDDs.
Dave Hastings (daveh) 18-Apr-1992
Split into multiple files. Track current monitor thread by
Teb pointer. Register initial thread.
Sudeep Bharati (sudeepb) 22-Sep-1992
Added Page Fault Handling For installable VDD support
--*/
#include "monitorp.h"
#include "dbgsvc.h"
//
// Internal functions
//
VOID
EventVdmIo(
VOID
);
VOID
EventVdmStringIo(
VOID
);
VOID
EventVdmMemAccess(
VOID
);
VOID
EventVdmIntAck(
VOID
);
VOID
EventVdmBop(
VOID
);
VOID
EventVdmError(
VOID
);
VOID
EventVdmIrq13(
VOID
);
VOID
EventVdmHandShakeAck(
VOID
);
VOID
CreateProfile(
VOID
);
VOID
StartProfile(
VOID
);
VOID
StopProfile(
VOID
);
VOID
AnalyzeProfile(
VOID
);
VOID
CheckScreenSwitchRequest(
HANDLE handle
);
// [LATER] how do you prevent a struct from straddling a page boundary?
ULONG IntelBase; // base memory address
ULONG VdmSize; // Size of memory in VDM
ULONG VdmDebugLevel; // used to control debugging
PVOID CurrentMonitorTeb; // thread that is currently executing instructions.
ULONG InitialBreakpoint = FALSE; // if set, breakpoint at end of cpu_init
ULONG InitialVdmTibFlags = INITIAL_VDM_TIB_FLAGS; // VdmTib flags picked up from here
CONTEXT InitialContext; // Initial context for all threads
BOOLEAN DebugContextActive = FALSE;
ULONG VdmFeatureBits = 0; // bit to indicate special features
BOOLEAN MainThreadInMonitor = TRUE;
extern PVOID NTVDMpLockPrefixTable;
extern BOOL HandshakeInProgress;
extern HANDLE hSuspend;
extern HANDLE hResume;
extern HANDLE hMainThreadSuspended;
extern PVOID __safe_se_handler_table[]; /* base of safe handler entry table */
extern BYTE __safe_se_handler_count; /* absolute symbol whose address is
the count of table entries */
IMAGE_LOAD_CONFIG_DIRECTORY _load_config_used = {
sizeof(_load_config_used), // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
0, // GlobalFlagsClear
0, // GlobalFlagsSet
0, // CriticalSectionTimeout (milliseconds)
0, // DeCommitFreeBlockThreshold
0, // DeCommitTotalFreeThreshold
(ULONG)&NTVDMpLockPrefixTable, // LockPrefixTable, defined in FASTPM.ASM
0, 0, 0, 0, 0, 0, 0, // Reserved
0, // & security_cookie
(ULONG)__safe_se_handler_table,
(ULONG)&__safe_se_handler_count
};
// Bop dispatch table
extern void (*BIOS[])();
//
// Event Dispatch table
//
VOID (*EventDispatch[VdmMaxEvent])(VOID) = {
EventVdmIo,
EventVdmStringIo,
EventVdmMemAccess,
EventVdmIntAck,
EventVdmBop,
EventVdmError,
EventVdmIrq13,
EventVdmHandShakeAck
};
#if DBG
BOOLEAN fBreakInDebugger = FALSE;
#endif
EXPORT
VOID
cpu_init(
)
/*++
Routine Description:
This routine is used to prepare the IEU for instruction simulation.
It will set the Intel registers to thier initial value, and perform
any implementation specific initialization necessary.
Arguments:
Return Value:
None.
--*/
{
NTSTATUS Status;
InitialVdmTibFlags |= RM_BIT_MASK;
//
// Find out if we are running with IOPL. We call the kernel
// rather than checking the registry ourselves, so that we can
// insure that both the kernel and ntvdm.exe agree. If they didn't,
// it would result in unnecssary trapping instructions. Whether or
// not Vdms run with IOPL only changes on reboot
//
Status = NtVdmControl(VdmFeatures, &VdmFeatureBits);
#if DBG
if (!NT_SUCCESS(Status)) {
DbgPrint(
"NTVDM: Could not find out whether to use IOPL, %lx\n",
Status
);
}
#endif
//
// If we have fast v86 mode IF emulation set the bit that tells
// the 16 bit IF macros they know.
//
if (VdmFeatureBits & V86_VIRTUAL_INT_EXTENSIONS) {
InitialVdmTibFlags |= RI_BIT_MASK;
}
*pNtVDMState = InitialVdmTibFlags;
// Switch the npx back to 80 bit mode. Win32 apps start with
// 64-bit precision for compatibility across platforms, but
// DOS and Win16 apps expect 80 bit precision.
//
_asm fninit;
//
// We setup the InitialContext structure with the correct floating
// point and debug register configuration, and cpu_createthread
// uses this context to configure each 16-bit thread's floating
// point and debug registers.
//
InitialContext.ContextFlags = CONTEXT_FLOATING_POINT | CONTEXT_DEBUG_REGISTERS;
Status = NtGetContextThread(
NtCurrentThread(),
&InitialContext
);
if (!NT_SUCCESS(Status)) {
#if DBG
DbgPrint("NtVdm terminating : Could not get float/debug context for\n"
" initial thread, status %lx\n", Status);
DbgBreakPoint();
#endif
TerminateVDM();
}
//
//
// Turn OFF em bit so that dos apps will work correctly.
//
// On machines without 387's the floating point flag will have been
// cleared.
//
InitialContext.ContextFlags = CONTEXT_FLOATING_POINT;
InitialContext.FloatSave.Cr0NpxState &= ~0x6; // CR0_EM | CR0_MP
//
// Do the rest of thread initialization
//
cpu_createthread( NtCurrentThread(), NULL );
InterruptInit();
if (InitialBreakpoint) {
DbgBreakPoint();
}
}
EXPORT
VOID
cpu_terminate(
)
/*++
Routine Description:
Arguments:
Return Value:
--*/
{
InterruptTerminate();
}
EXPORT
VOID
cpu_simulate(
)
/*++
Routine Description:
This routine causes the simulation of intel instructions to start.
Arguments:
Return Value:
None.
--*/
{
NTSTATUS Status;
PVDM_TIB VdmTib;
ULONG oldIntState = VDM_VIRTUAL_INTERRUPTS;
DBGTRACE(VDMTR_TYPE_MONITOR | MONITOR_CPU_SIMULATE, 0, 0);
CurrentMonitorTeb = NtCurrentTeb();
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->ContinueExecution = TRUE;
VdmTib->VdmContext.ContextFlags = CONTEXT_FULL;
while (VdmTib->ContinueExecution) {
//ASSERT(CurrentMonitorTeb == NtCurrentTeb());
ASSERT(InterlockedIncrement(&VdmTib->NumTasks) == 0);
if (*pNtVDMState & VDM_INTERRUPT_PENDING) {
DispatchInterrupts();
}
// translate MSW bits into EFLAGS
if ( getMSW() & MSW_PE ) {
if (!VDMForWOW && !getIF() && oldIntState == VDM_VIRTUAL_INTERRUPTS) {
//
// For PM apps, we need to set Cli time stamp if interrupts
// are disabled and the time stamp was not set already.
// This is because apps may use int31 to change interrupt
// state instead of using cli.
//
VDM_PM_CLI_DATA cliData;
cliData.Control = PM_CLI_CONTROL_SET;
NtVdmControl(VdmPMCliControl, &cliData);
}
VdmTib->VdmContext.EFlags &= ~EFLAGS_V86_MASK;
if (HandshakeInProgress) {
CheckScreenSwitchRequest(hMainThreadSuspended);
}
MainThreadInMonitor = FALSE;
Status = FastEnterPm();
} else {
VdmTib->VdmContext.EFlags |= EFLAGS_V86_MASK;
if (HandshakeInProgress) {
CheckScreenSwitchRequest(hMainThreadSuspended);
}
MainThreadInMonitor = FALSE;
Status = NtVdmControl(VdmStartExecution,NULL);
}
MainThreadInMonitor = TRUE;
if (HandshakeInProgress) {
CheckScreenSwitchRequest(hMainThreadSuspended);
}
if (!NT_SUCCESS(Status)) {
#if DBG
DbgPrint("NTVDM: Could not start execution\n");
#endif
return;
}
//
// Refresh VdmTib for the fact that wow32 thread never enters cpu_simulate
// but returns here to handle BOP
// Note, I think this needs only in FREE build.
//
CurrentMonitorTeb = NtCurrentTeb();
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
if (!VDMForWOW) {
oldIntState = getIF() ? VDM_VIRTUAL_INTERRUPTS : 0;
}
ASSERT(InterlockedDecrement(&VdmTib->NumTasks) < 0);
#if DBG
if (fBreakInDebugger) {
fBreakInDebugger = 0;
DbgBreakPoint();
}
#endif
// Translate Eflags value
ASSERT ((!((VdmTib->VdmContext.EFlags & EFLAGS_V86_MASK) &&
(getMSW() & MSW_PE))));
if ( VdmTib->VdmContext.EFlags & EFLAGS_V86_MASK ) {
VdmTib->VdmContext.EFlags &= ~EFLAGS_V86_MASK;
}
// bugbug does cs:eip wrap cause some kind of fault?
VdmTib->VdmContext.Eip += VdmTib->EventInfo.InstructionSize;
if (VdmTib->EventInfo.Event >= VdmMaxEvent) {
#if DBG
DbgPrint("NTVDM: Unknown event type\n");
DbgBreakPoint();
#endif
VdmTib->ContinueExecution = FALSE;
continue;
}
(*EventDispatch[VdmTib->EventInfo.Event])();
}
// set this back to true incase we are nested
VdmTib->ContinueExecution = TRUE;
//
// Restore the old Vdm tib info. This is necessary for the for the
// case where the application thread is suspended, and a host simulate is
// performed from another thread
//
DBGTRACE(VDMTR_TYPE_MONITOR | MONITOR_CPU_UNSIMULATE, 0, 0);
}
VOID
host_unsimulate(
)
/*++
Routine Description:
This routine causes execution of instructions in a VDM to stop.
Arguments:
Return Value:
None.
--*/
{
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->ContinueExecution = FALSE;
}
VOID
EventVdmIo(
VOID
)
/*++
Routine Description:
This function calls the appropriate io simulation routine.
Arguments:
Return Value:
None.
--*/
{
PVDM_TIB VdmTib;
EnableScreenSwitch(TRUE, hMainThreadSuspended); // only in FULLSCREEN
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
if (VdmTib->EventInfo.IoInfo.Size == 1) {
if (VdmTib->EventInfo.IoInfo.Read) {
inb(VdmTib->EventInfo.IoInfo.PortNumber,(half_word *)&(VdmTib->VdmContext.Eax));
} else {
outb(VdmTib->EventInfo.IoInfo.PortNumber,getAL());
}
} else if (VdmTib->EventInfo.IoInfo.Size == 2) {
if (VdmTib->EventInfo.IoInfo.Read) {
inw(VdmTib->EventInfo.IoInfo.PortNumber,(word *)&(VdmTib->VdmContext.Eax));
} else {
outw(VdmTib->EventInfo.IoInfo.PortNumber,getAX());
}
}
#if DBG
else {
DbgPrint(
"NtVdm: Unimplemented IO size %d\n",
VdmTib->EventInfo.IoInfo.Size
);
DbgBreakPoint();
}
#endif
DisableScreenSwitch(hMainThreadSuspended);
}
VOID
EventVdmStringIo(
VOID
)
/*++
Routine Description:
This function calls the appropriate io simulation routine.
Arguments:
Return Value:
None.
--*/
{
PVDMSTRINGIOINFO pvsio;
PUSHORT pIndexRegister;
USHORT Index;
PVDM_TIB VdmTib;
EnableScreenSwitch(TRUE, hMainThreadSuspended);
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
// WARNING no 32 bit address support
pvsio = &VdmTib->EventInfo.StringIoInfo;
if (pvsio->Size == 1) {
if (pvsio->Read) {
insb((io_addr)pvsio->PortNumber,
(half_word *)Sim32GetVDMPointer(pvsio->Address, 1, ISPESET),
(word)pvsio->Count
);
pIndexRegister = (PUSHORT)&VdmTib->VdmContext.Edi;
} else {
outsb((io_addr)pvsio->PortNumber,
(half_word *)Sim32GetVDMPointer(pvsio->Address,1,ISPESET),
(word)pvsio->Count
);
pIndexRegister = (PUSHORT)&VdmTib->VdmContext.Esi;
}
} else if (pvsio->Size == 2) {
if (pvsio->Read) {
insw((io_addr)pvsio->PortNumber,
(word *)Sim32GetVDMPointer(pvsio->Address,1,ISPESET),
(word)pvsio->Count
);
pIndexRegister = (PUSHORT)&VdmTib->VdmContext.Edi;
} else {
outsw((io_addr)pvsio->PortNumber,
(word *)Sim32GetVDMPointer(pvsio->Address,1,ISPESET),
(word)pvsio->Count
);
pIndexRegister = (PUSHORT)&VdmTib->VdmContext.Esi;
}
} else {
#if DBG
DbgPrint(
"NtVdm: Unimplemented IO size %d\n",
VdmTib->EventInfo.IoInfo.Size
);
DbgBreakPoint();
#endif
DisableScreenSwitch(hMainThreadSuspended);
return;
}
if (getDF()) {
Index = *pIndexRegister - (USHORT)(pvsio->Count * pvsio->Size);
}
else {
Index = *pIndexRegister + (USHORT)(pvsio->Count * pvsio->Size);
}
*pIndexRegister = Index;
if (pvsio->Rep) {
(USHORT)VdmTib->VdmContext.Ecx = 0;
}
DisableScreenSwitch(hMainThreadSuspended);
}
VOID
EventVdmIntAck(
VOID
)
/*++
Routine Description:
This routine is called each time we have returned to monitor context
to dispatch interrupts. Its function is to check for AutoEoi and call
the ica to do a nonspecific eoi, when the ica adapter is in AEOI mode.
Arguments:
Return Value:
None.
--*/
{
int line;
int adapter;
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
if (VdmTib->EventInfo.IntAckInfo) {
if (VdmTib->EventInfo.IntAckInfo & VDMINTACK_SLAVE)
adapter = 1;
else
adapter = 0;
line = -1;
host_ica_lock();
ica_eoi(adapter,
&line,
(int)(VdmTib->EventInfo.IntAckInfo & VDMINTACK_RAEOIMASK)
);
host_ica_unlock();
}
}
VOID
EventVdmBop(
VOID
)
/*++
Routine Description:
This routine dispatches to the appropriate bop handler
Arguments:
Return Value:
None.
--*/
{
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
if (VdmTib->EventInfo.BopNumber > MAX_BOP) {
#if DBG
DbgPrint(
"NtVdm: Invalid BOP %lx\n",
VdmTib->EventInfo.BopNumber
);
#endif
VdmTib->ContinueExecution = FALSE;
} else {
DBGTRACE(VDMTR_TYPE_MONITOR | MONITOR_EVENT_BOP,
(USHORT)VdmTib->EventInfo.BopNumber,
(ULONG)(*((UCHAR *)Sim32GetVDMPointer(
(VdmTib->VdmContext.SegCs << 16) | VdmTib->VdmContext.Eip,
1,
ISPESET)))
);
(*BIOS[VdmTib->EventInfo.BopNumber])();
CurrentMonitorTeb = NtCurrentTeb();
}
}
VOID
EventVdmError(
VOID
)
/*++
Routine Description:
This routine prints a message(debug only), and exits the vdm
Arguments:
Return Value:
None.
--*/
{
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
#if DBG
DbgPrint(
"NtVdm: Error code %lx\n",
VdmTib->EventInfo.ErrorStatus
);
DbgBreakPoint();
#endif
TerminateVDM();
VdmTib->ContinueExecution = FALSE;
}
VOID
EventVdmIrq13(
VOID
)
/*++
Routine Description:
This routine simulates an IRQ 13 to the vdm
Arguments:
Return Value:
None.
--*/
{
if (!IRQ13BeingHandled) {
IRQ13BeingHandled = TRUE;
ica_hw_interrupt(
ICA_SLAVE,
5,
1
);
}
}
VOID
EventVdmHandShakeAck(
VOID
)
/*++
Routine Description:
This routine does nothing.
Arguments:
Return Value:
None.
--*/
{
}
VOID
EventVdmMemAccess(
VOID
)
/*++
Routine Description:
This routine will call the page fault handler routine which
is common to both x86 and mips.
Arguments:
Return Value:
None.
--*/
{
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
// RWMode is 0 if read fault or 1 if write fault.
DispatchPageFault(
VdmTib->EventInfo.FaultInfo.FaultAddr,
VdmTib->EventInfo.FaultInfo.RWMode
);
CurrentMonitorTeb = NtCurrentTeb();
}
// Get and Set routines for intel registers.
ULONG getEAX (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return (VdmTib->VdmContext.Eax);
}
USHORT getAX (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((USHORT)(VdmTib->VdmContext.Eax));
}
UCHAR getAL (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((BYTE)(VdmTib->VdmContext.Eax));
}
UCHAR getAH (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((BYTE)(VdmTib->VdmContext.Eax >> 8));
}
ULONG getEBX (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return (VdmTib->VdmContext.Ebx);
}
USHORT getBX (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((USHORT)(VdmTib->VdmContext.Ebx));
}
UCHAR getBL (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((BYTE)(VdmTib->VdmContext.Ebx));
}
UCHAR getBH (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((BYTE)(VdmTib->VdmContext.Ebx >> 8));
}
ULONG getECX (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return (VdmTib->VdmContext.Ecx);
}
USHORT getCX (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((USHORT)(VdmTib->VdmContext.Ecx));
}
UCHAR getCL (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((BYTE)(VdmTib->VdmContext.Ecx));
}
UCHAR getCH (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((BYTE)(VdmTib->VdmContext.Ecx >> 8));
}
ULONG getEDX (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return (VdmTib->VdmContext.Edx);
}
USHORT getDX (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((USHORT)(VdmTib->VdmContext.Edx));
}
UCHAR getDL (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((BYTE)(VdmTib->VdmContext.Edx));
}
UCHAR getDH (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((BYTE)(VdmTib->VdmContext.Edx >> 8));
}
ULONG getESP (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return (VdmTib->VdmContext.Esp);
}
USHORT getSP (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((USHORT)VdmTib->VdmContext.Esp);
}
ULONG getEBP (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return (VdmTib->VdmContext.Ebp);
}
USHORT getBP (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((USHORT)VdmTib->VdmContext.Ebp);
}
ULONG getESI (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return (VdmTib->VdmContext.Esi);
}
USHORT getSI (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((USHORT)VdmTib->VdmContext.Esi);
}
ULONG getEDI (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return (VdmTib->VdmContext.Edi);
}
USHORT getDI (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((USHORT)VdmTib->VdmContext.Edi);
}
ULONG getEIP (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return (VdmTib->VdmContext.Eip);
}
USHORT getIP (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((USHORT)VdmTib->VdmContext.Eip);
}
USHORT getCS (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((USHORT)VdmTib->VdmContext.SegCs);
}
USHORT getSS (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((USHORT)VdmTib->VdmContext.SegSs);
}
USHORT getDS (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((USHORT)VdmTib->VdmContext.SegDs);
}
USHORT getES (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((USHORT)VdmTib->VdmContext.SegEs);
}
USHORT getFS (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((USHORT)VdmTib->VdmContext.SegFs);
}
USHORT getGS (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((USHORT)VdmTib->VdmContext.SegGs);
}
ULONG getCF (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((VdmTib->VdmContext.EFlags & FLG_CARRY) ? 1 : 0);
}
ULONG getPF (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((VdmTib->VdmContext.EFlags & FLG_PARITY) ? 1 : 0);
}
ULONG getAF (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((VdmTib->VdmContext.EFlags & FLG_AUXILIARY) ? 1 : 0);
}
ULONG getZF (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((VdmTib->VdmContext.EFlags & FLG_ZERO) ? 1 : 0);
}
ULONG getSF (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((VdmTib->VdmContext.EFlags & FLG_SIGN) ? 1 : 0);
}
ULONG getTF (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((VdmTib->VdmContext.EFlags & FLG_TRAP) ? 1 : 0);
}
ULONG getIF (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((VdmTib->VdmContext.EFlags & FLG_INTERRUPT) ? 1 : 0);
}
ULONG getDF (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((VdmTib->VdmContext.EFlags & FLG_DIRECTION) ? 1 : 0);
}
ULONG getOF (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((VdmTib->VdmContext.EFlags & FLG_OVERFLOW) ? 1 : 0);
}
USHORT getMSW (VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return ((USHORT)VdmTib->IntelMSW);
}
USHORT getSTATUS(VOID){
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return (USHORT)VdmTib->VdmContext.EFlags;
}
ULONG getEFLAGS(VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return VdmTib->VdmContext.EFlags;
}
USHORT getFLAGS(VOID) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return (USHORT)VdmTib->VdmContext.EFlags;
}
VOID setEAX (ULONG val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.Eax = val;
}
VOID setAX (USHORT val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.Eax = (VdmTib->VdmContext.Eax & 0xFFFF0000) |
((ULONG)val & 0x0000FFFF);
}
VOID setAH (UCHAR val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.Eax = (VdmTib->VdmContext.Eax & 0xFFFF00FF) |
((ULONG)(val << 8) & 0x0000FF00);
}
VOID setAL (UCHAR val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.Eax = (VdmTib->VdmContext.Eax & 0xFFFFFF00) |
((ULONG)val & 0x000000FF);
}
VOID setEBX (ULONG val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.Ebx = val ;
}
VOID setBX (USHORT val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.Ebx = (VdmTib->VdmContext.Ebx & 0xFFFF0000) |
((ULONG)val & 0x0000FFFF);
}
VOID setBH (UCHAR val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.Ebx = (VdmTib->VdmContext.Ebx & 0xFFFF00FF) |
((ULONG)(val << 8) & 0x0000FF00);
}
VOID setBL (UCHAR val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.Ebx = (VdmTib->VdmContext.Ebx & 0xFFFFFF00) |
((ULONG)val & 0x000000FF);
}
VOID setECX (ULONG val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.Ecx = val ;
}
VOID setCX (USHORT val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.Ecx = (VdmTib->VdmContext.Ecx & 0xFFFF0000) |
((ULONG)val & 0x0000FFFF);
}
VOID setCH (UCHAR val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.Ecx = (VdmTib->VdmContext.Ecx & 0xFFFF00FF) |
((ULONG)(val << 8) & 0x0000FF00);
}
VOID setCL (UCHAR val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.Ecx = (VdmTib->VdmContext.Ecx & 0xFFFFFF00) |
((ULONG)val & 0x000000FF);
}
VOID setEDX (ULONG val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.Edx = val ;
}
VOID setDX (USHORT val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.Edx = (VdmTib->VdmContext.Edx & 0xFFFF0000) |
((ULONG)val & 0x0000FFFF);
}
VOID setDH (UCHAR val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.Edx = (VdmTib->VdmContext.Edx & 0xFFFF00FF) |
((ULONG)(val << 8) & 0x0000FF00);
}
VOID setDL (UCHAR val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.Edx = (VdmTib->VdmContext.Edx & 0xFFFFFF00) |
((ULONG)val & 0x000000FF);
}
VOID setESP (ULONG val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.Esp = val ;
}
VOID setSP (USHORT val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.Esp = (VdmTib->VdmContext.Esp & 0xFFFF0000) |
((ULONG)val & 0x0000FFFF);
}
VOID setEBP (ULONG val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.Ebp = val;
}
VOID setBP (USHORT val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.Ebp = (VdmTib->VdmContext.Ebp & 0xFFFF0000) |
((ULONG)val & 0x0000FFFF);
}
VOID setESI (ULONG val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.Esi = val ;
}
VOID setSI (USHORT val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.Esi = (VdmTib->VdmContext.Esi & 0xFFFF0000) |
((ULONG)val & 0x0000FFFF);
}
VOID setEDI (ULONG val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.Edi = val ;
}
VOID setDI (USHORT val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.Edi = (VdmTib->VdmContext.Edi & 0xFFFF0000) |
((ULONG)val & 0x0000FFFF);
}
VOID setEIP (ULONG val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.Eip = val ;
}
VOID setIP (USHORT val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.Eip = (VdmTib->VdmContext.Eip & 0xFFFF0000) |
((ULONG)val & 0x0000FFFF);
}
VOID setCS (USHORT val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.SegCs = (ULONG) val & 0x0000FFFF ;
}
VOID setSS (USHORT val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.SegSs = (ULONG) val & 0x0000FFFF ;
}
VOID setDS (USHORT val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.SegDs = (ULONG) val & 0x0000FFFF ;
}
VOID setES (USHORT val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.SegEs = (ULONG) val & 0x0000FFFF ;
}
VOID setFS (USHORT val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.SegFs = (ULONG) val & 0x0000FFFF ;
}
VOID setGS (USHORT val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.SegGs = (ULONG) val & 0x0000FFFF ;
}
VOID setCF (ULONG val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.EFlags = (VdmTib->VdmContext.EFlags & ~FLG_CARRY) |
(((ULONG)val << FLG_CARRY_BIT) & FLG_CARRY);
}
VOID setPF (ULONG val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.EFlags = (VdmTib->VdmContext.EFlags & ~FLG_PARITY) |
(((ULONG)val << FLG_PARITY_BIT) & FLG_PARITY);
}
VOID setAF (ULONG val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.EFlags = (VdmTib->VdmContext.EFlags & ~FLG_AUXILIARY) |
(((ULONG)val << FLG_AUXILIARY_BIT) & FLG_AUXILIARY);
}
VOID setZF (ULONG val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.EFlags = (VdmTib->VdmContext.EFlags & ~FLG_ZERO) |
(((ULONG)val << FLG_ZERO_BIT) & FLG_ZERO);
}
VOID setSF (ULONG val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.EFlags = (VdmTib->VdmContext.EFlags & ~FLG_SIGN) |
(((ULONG)val << FLG_SIGN_BIT) & FLG_SIGN);
}
VOID setIF (ULONG val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.EFlags = (VdmTib->VdmContext.EFlags & ~FLG_INTERRUPT) |
(((ULONG)val << FLG_INTERRUPT_BIT) & FLG_INTERRUPT);
}
VOID setDF (ULONG val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.EFlags = (VdmTib->VdmContext.EFlags & ~FLG_DIRECTION) |
(((ULONG)val << FLG_DIRECTION_BIT) & FLG_DIRECTION);
}
VOID setOF (ULONG val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.EFlags = (VdmTib->VdmContext.EFlags & ~FLG_OVERFLOW) |
(((ULONG)val << FLG_OVERFLOW_BIT) & FLG_OVERFLOW);
}
VOID setMSW (USHORT val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->IntelMSW = val ;
}
VOID setSTATUS(USHORT val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.EFlags = (VdmTib->VdmContext.EFlags & 0xFFFF0000) | val;
}
VOID setEFLAGS(ULONG val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.EFlags = val;
}
VOID setFLAGS(USHORT val) {
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
VdmTib->VdmContext.EFlags = (VdmTib->VdmContext.EFlags & 0xFFFF0000) | val;
}
//
// The following is a private register function
//
ULONG getPE(){
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return((VdmTib->IntelMSW & MSW_PE) ? 1 : 0);
}
PX86CONTEXT
getIntelRegistersPointer(
VOID
)
/*++
Routine Description:
Return Address on Intel Registers for WOW Fast Access
Arguments:
None
Return Value:
Pointer to Intel Registers x86 Context Record
--*/
{
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
return &(VdmTib->VdmContext);
}
BOOLEAN MonitorInitializePrinterInfo(
WORD Ports,
PWORD PortTable,
PUCHAR State,
PUCHAR Control,
PUCHAR Status,
PUCHAR HostState)
{
UCHAR adapter;
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
ASSERT (Ports == 3);
ASSERT (Status != NULL);
// only do this if the structure has not been initialized -- meaning
// the pointers can be set once.
if (NULL == VdmTib->PrinterInfo.prt_Status) {
VdmTib->PrinterInfo.prt_PortAddr[0] = PortTable[0];
VdmTib->PrinterInfo.prt_PortAddr[1] = PortTable[1];
VdmTib->PrinterInfo.prt_PortAddr[2] = PortTable[2];
VdmTib->PrinterInfo.prt_Handle[0] =
VdmTib->PrinterInfo.prt_Handle[1] =
VdmTib->PrinterInfo.prt_Handle[2] = NULL;
// default mode is kernel simulating status port read
// mode will be changed if
// (1). A vdd is hooking printer ports.
// (2). Dongle mode is detected
VdmTib->PrinterInfo.prt_Mode[0] =
VdmTib->PrinterInfo.prt_Mode[1] =
VdmTib->PrinterInfo.prt_Mode[2] = PRT_MODE_SIMULATE_STATUS_PORT;
// primarily for dongle
VdmTib->PrinterInfo.prt_BytesInBuffer[0] =
VdmTib->PrinterInfo.prt_BytesInBuffer[1] =
VdmTib->PrinterInfo.prt_BytesInBuffer[2] = 0;
// primarily for simulating printer status read in kernel
VdmTib->PrinterInfo.prt_State = State;
VdmTib->PrinterInfo.prt_Control = Control;
VdmTib->PrinterInfo.prt_Status = Status;
VdmTib->PrinterInfo.prt_HostState = HostState;
//
// Give the kernel printer emulation an opportunity to cache the
// pointers
//
if (!NT_SUCCESS(NtVdmControl(VdmPrinterInitialize,NULL))) {
return FALSE;
}
return TRUE;
} else {
return FALSE;
}
}
BOOLEAN MonitorEnablePrinterDirectAccess(WORD adapter, HANDLE handle, BOOLEAN Enable)
{
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
ASSERT(VDM_NUMBER_OF_LPT > adapter);
if (Enable) {
// if the adapter has been allocated by a third party VDD,
// can't do direct io.
if (PRT_MODE_VDD_CONNECTED != VdmTib->PrinterInfo.prt_Mode[adapter]) {
VdmTib->PrinterInfo.prt_Mode[adapter] = PRT_MODE_DIRECT_IO;
VdmTib->PrinterInfo.prt_Handle[adapter] = handle;
// NtVdmControl(VdmPrinterDirectIoOpen, &adapter);
return TRUE;
}
else
return FALSE;
}
else {
// disabling direct i/o. reset it back to status port simulation
if (VdmTib->PrinterInfo.prt_Handle[adapter] == handle) {
NtVdmControl(VdmPrinterDirectIoClose, &adapter);
VdmTib->PrinterInfo.prt_Mode[adapter] = PRT_MODE_SIMULATE_STATUS_PORT;
VdmTib->PrinterInfo.prt_Handle[adapter] = NULL;
VdmTib->PrinterInfo.prt_BytesInBuffer[adapter] = 0;
return TRUE;
}
else
return FALSE;
}
}
BOOLEAN MonitorVddConnectPrinter(WORD Adapter, HANDLE hVdd, BOOLEAN Connect)
{
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
if (VDM_NUMBER_OF_LPT <= Adapter)
return FALSE;
if (Connect) {
VdmTib->PrinterInfo.prt_Mode[Adapter] = PRT_MODE_VDD_CONNECTED;
VdmTib->PrinterInfo.prt_Handle[Adapter] = hVdd;
return TRUE;
}
else {
if (hVdd == VdmTib->PrinterInfo.prt_Handle[Adapter]) {
VdmTib->PrinterInfo.prt_Mode[Adapter] = PRT_MODE_SIMULATE_STATUS_PORT;
VdmTib->PrinterInfo.prt_Handle[Adapter] = NULL;
return TRUE;
}
else return FALSE;
}
}
BOOLEAN MonitorPrinterWriteData(WORD Adapter, BYTE Value)
{
USHORT BytesInBuffer;
PVDM_TIB VdmTib;
VdmTib = (PVDM_TIB)NtCurrentTeb()->Vdm;
ASSERT(VDM_NUMBER_OF_LPT > Adapter);
BytesInBuffer = VdmTib->PrinterInfo.prt_BytesInBuffer[Adapter];
VdmTib->PrinterInfo.prt_Buffer[Adapter][BytesInBuffer] = Value;
VdmTib->PrinterInfo.prt_BytesInBuffer[Adapter]++;
return TRUE;
}
/* CheckScreenSwitchRequest -
*
* This function checks if timer thread has asked us to stop such that it
* can handle the fullscreen and windowed switch.
* If yes, we will signal that we are stopped and wait for resume event.
*
*/
VOID CheckScreenSwitchRequest(HANDLE handle)
{
DWORD status;
//
// Check if Suspen is requested. If yes, we will signal that we are going to
// the wait state and wait for the resume event
// Since 'handle' event is a manual event, it is important that
// we check-and-wait in a loop such that timer thread will not pick up the
// 'handle' event between the wait-for-resume and the ResetEvent(handle).
//
while (TRUE) {
status = WaitForSingleObject(hSuspend, 0);
if (status == 0) {
SetEvent(handle);
WaitForSingleObject(hResume, INFINITE);
ResetEvent(handle);
} else {
//
// Make sure event is reset before leaving this function
//
ResetEvent(handle);
return;
}
}
}