Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

397 lines
11 KiB

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
BOOL fShowScaling;
#define MAX_THREADS 32
//
// - hStartOfRace is a manual reset event that is signalled when
// all of the threads are supposed to cut loose and begin working
//
// - hEndOfRace is a manual reset event that is signalled once the end time
// has been retrieved and it is ok for the threads to exit
//
HANDLE hStartOfRace;
HANDLE hEndOfRace;
//
// - ThreadReadyDoneEvents are an array of autoclearing events. The threads
// initially signal these events once they have reached their start routines
// and are ready to being processing. Once they are done processing, they
// signal thier event to indicate that they are done processing.
//
// - ThreadHandles are an array of thread handles to the worker threads. The
// main thread waits on these to know when all of the threads have exited.
//
HANDLE ThreadReadyDoneEvents[MAX_THREADS];
HANDLE ThreadHandles[MAX_THREADS];
DWORD WorkerThread(PVOID ThreadIndex);
DWORD ThreadId;
DWORD StartTicks, EndTicks;
HANDLE IoHandle;
#define SIXTY_FOUR_K (64*1024)
#define SIXTEEN_K (16*1024)
unsigned int InitialBuffer[SIXTY_FOUR_K/sizeof(unsigned int)];
#define NUMBER_OF_WRITES ((1024*1024*8)/SIXTY_FOUR_K)
#define BUFFER_MAX (64*1024)
#define FILE_SIZE ((1024*1024*8)-BUFFER_MAX)
/*
// Each thread has a THREAD_WORK structure. This contains the address
// of the cells that this thread is responsible for, and the number of
// cells it is supposed to process.
*/
typedef struct _THREAD_WORK {
unsigned long *CellVector;
int NumberOfCells;
int RecalcResult;
BOOL GlobalMode;
} THREAD_WORK, *PTHREAD_WORK;
unsigned int GlobalData[MAX_THREADS];
THREAD_WORK ThreadWork[MAX_THREADS];
#define ONE_MB (1024*1024)
unsigned long Mb = 16;
unsigned long ExpectedRecalcValue;
unsigned long ActualRecalcValue;
unsigned long ContentionValue;
int fGlobalMode;
int WorkIndex;
int BufferSize;
unsigned long *CellVector;
DWORD
DoAnInteration(
int NumberOfThreads,
BOOL GlobalMode
)
{
int i;
int fShowUsage;
char c, *p, *whocares;
int NumberOfDwords;
int CNumberOfDwords;
int DwordsPerThread;
char *Answer;
unsigned long x;
fGlobalMode = 0;
BufferSize = 1024;
hStartOfRace = CreateEvent(NULL,TRUE,FALSE,NULL);
hEndOfRace = CreateEvent(NULL,TRUE,FALSE,NULL);
if ( !hStartOfRace || !hEndOfRace ) {
fprintf(stderr,"SMPSCALE Race Event Creation Failed\n");
ExitProcess(1);
}
/*
// Prepare the ready done events. These are auto clearing events
*/
for(i=0; i<NumberOfThreads; i++ ) {
ThreadReadyDoneEvents[i] = CreateEvent(NULL,FALSE,FALSE,NULL);
if ( !ThreadReadyDoneEvents[i] ) {
fprintf(stderr,"SMPSCALE Ready Done Event Creation Failed %d\n",GetLastError());
ExitProcess(1);
}
}
NumberOfDwords = (Mb*ONE_MB) / sizeof(unsigned long);
CNumberOfDwords = NumberOfDwords;
DwordsPerThread = NumberOfDwords / NumberOfThreads;
/*
// Initialize the Cell Vector
*/
for(i=0, ExpectedRecalcValue=0; i<NumberOfDwords; i++ ){
ExpectedRecalcValue += i;
CellVector[i] = i;
}
/*
// Partition the work to the worker threads
*/
for(i=0; i<NumberOfThreads; i++ ){
ThreadWork[i].CellVector = &CellVector[i*DwordsPerThread];
ThreadWork[i].NumberOfCells = DwordsPerThread;
NumberOfDwords -= DwordsPerThread;
/*
// If we have a remainder, give the remaining work to the last thread
*/
if ( NumberOfDwords < DwordsPerThread ) {
ThreadWork[i].NumberOfCells += NumberOfDwords;
}
}
/*
// Create the worker threads
*/
for(i=0; i<NumberOfThreads; i++ ) {
ThreadWork[i].RecalcResult = 0;
ThreadWork[i].GlobalMode = GlobalMode;
GlobalData[i] = 0;
ThreadHandles[i] = CreateThread(
NULL,
0,
WorkerThread,
(PVOID)i,
0,
&ThreadId
);
if ( !ThreadHandles[i] ) {
fprintf(stderr,"SMPSCALE Worker Thread Creation Failed %d\n",GetLastError());
ExitProcess(1);
}
CloseHandle(ThreadHandles[i]);
}
/*
// All of the worker threads will signal thier ready done event
// when they are idle and ready to proceed. Once all events have been
// set, then setting the hStartOfRaceEvent will begin the recalc
*/
i = WaitForMultipleObjects(
NumberOfThreads,
ThreadReadyDoneEvents,
TRUE,
INFINITE
);
if ( i == WAIT_FAILED ) {
fprintf(stderr,"SMPSCALE Wait for threads to stabalize Failed %d\n",GetLastError());
ExitProcess(1);
}
/*
// Everthing is set to begin the recalc operation
*/
StartTicks = GetTickCount();
if ( !SetEvent(hStartOfRace) ) {
fprintf(stderr,"SMPSCALE SetEvent(hStartOfRace) Failed %d\n",GetLastError());
ExitProcess(1);
}
/*
// Now just wait for the recalc to complete
*/
i = WaitForMultipleObjects(
NumberOfThreads,
ThreadReadyDoneEvents,
TRUE,
INFINITE
);
if ( i == WAIT_FAILED ) {
fprintf(stderr,"SMPSCALE Wait for threads to complete Failed %d\n",GetLastError());
ExitProcess(1);
}
/*
// Now pick up the individual recalc values
*/
for(i=0, ActualRecalcValue = 0; i<NumberOfThreads; i++ ){
ActualRecalcValue += ThreadWork[i].RecalcResult;
}
EndTicks = GetTickCount();
if ( ActualRecalcValue != ExpectedRecalcValue ) {
fprintf(stderr,"SMPSCALE Recalc Failuer !\n");
ExitProcess(1);
}
return (EndTicks - StartTicks);
}
int __cdecl
main(
int argc,
char *argv[],
char *envp[]
)
{
DWORD Time,GlobalModeTime;
DWORD BaseLine;
DWORD i;
SYSTEM_INFO SystemInfo;
/*
// Allocate and initialize the CellVector
*/
if ( argc > 1 ) {
fShowScaling = TRUE;
}
else {
fShowScaling = FALSE;
}
CellVector = (PDWORD)VirtualAlloc(NULL,Mb*ONE_MB,MEM_COMMIT,PAGE_READWRITE);
if ( !CellVector ) {
fprintf(stderr,"SMPSCALE Cell Vector Allocation Failed %d\n",GetLastError());
ExitProcess(1);
}
BaseLine = DoAnInteration(1,FALSE);
i = 0;
while(i++<10) {
Time = DoAnInteration(1,FALSE);
if ( Time == BaseLine ) {
break;
}
if ( abs(Time-BaseLine) < 2 ) {
break;
}
BaseLine = Time;
}
GetSystemInfo(&SystemInfo);
fprintf(stdout,"%d Processor System. Single Processor BaseLine %dms\n\n",
SystemInfo.dwNumberOfProcessors,
BaseLine
);
if ( !fShowScaling ) {
fprintf(stdout," Time Time with Cache Sloshing\n");
}
for ( i=0;i<SystemInfo.dwNumberOfProcessors;i++) {
Time = DoAnInteration(i+1,FALSE);
GlobalModeTime = DoAnInteration(i+1,TRUE);
if ( fShowScaling ) {
if ( i > 0 ) {
fprintf(stdout,"%1d Processors %4dms (%3d%%) %4dms (%3d%%) (with cache contention)\n",
i+1,Time,((BaseLine*100)/Time-100),GlobalModeTime,((BaseLine*100)/GlobalModeTime-100)
);
}
else {
fprintf(stdout,"%1d Processors %4dms %4dms (with cache contention)\n",
i+1,Time,GlobalModeTime
);
}
}
else {
fprintf(stdout,"%1d Processors %4dms vs %4dms\n",
i+1,Time,GlobalModeTime
);
}
}
ExitProcess(2);
}
/*
// The worker threads perform the recalc operation on their
// assigned cells. They begin by setting their ready done event
// to indicate that they are ready to begin the recalc. Then they
// wait until the hStartOfRace event is signaled. Once this occurs, they
// do their part of the recalc and when done they signal their ready done
// event and then wait on the hEndOfRaceEvent
*/
DWORD
WorkerThread(
PVOID ThreadIndex
)
{
unsigned long Me;
unsigned long *MyCellVectorBase;
unsigned long *CurrentCellVector;
unsigned long MyRecalcValue;
unsigned long MyNumberOfCells;
unsigned long i,j;
int GlobalMode;
HANDLE hEvent;
BOOL b;
Me = (unsigned long)ThreadIndex;
MyRecalcValue = 0;
MyCellVectorBase = ThreadWork[Me].CellVector;
MyNumberOfCells = ThreadWork[Me].NumberOfCells;
GlobalMode = ThreadWork[Me].GlobalMode;
/*
// Signal that I am ready to go
*/
if ( !SetEvent(ThreadReadyDoneEvents[Me]) ) {
fprintf(stderr,"SMPSCALE (1) SetEvent(ThreadReadyDoneEvent[%d]) Failed %d\n",Me,GetLastError());
ExitProcess(1);
}
/*
// Wait for the master to release us to do the recalc
*/
i = WaitForSingleObject(hStartOfRace,INFINITE);
if ( i == WAIT_FAILED ) {
fprintf(stderr,"SMPSCALE Thread %d Wait for start of recalc Failed %d\n",Me,GetLastError());
ExitProcess(1);
}
/*
// perform the recalc operation
*/
for (i=0, CurrentCellVector = MyCellVectorBase,j=0; i<MyNumberOfCells; i++ ) {
if (GlobalMode){
GlobalData[Me] += *CurrentCellVector++;
}
else {
MyRecalcValue += *CurrentCellVector++;
}
}
if (GlobalMode){
MyRecalcValue = GlobalData[Me];
}
ThreadWork[Me].RecalcResult = MyRecalcValue;
/*
// Signal that I am done and then wait for further instructions
*/
if ( !SetEvent(ThreadReadyDoneEvents[Me]) ) {
fprintf(stderr,"SMPSCALE (2) SetEvent(ThreadReadyDoneEvent[%d]) Failed %d\n",Me,GetLastError());
ExitProcess(1);
}
i = WaitForSingleObject(hEndOfRace,INFINITE);
if ( i == WAIT_FAILED ) {
fprintf(stderr,"SMPSCALE Thread %d Wait for end of recalc Failed %d\n",Me,GetLastError());
ExitProcess(1);
}
return MyRecalcValue;
}