Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

641 lines
18 KiB

/*++
Copyright (c) 1995-1999 Microsoft Corporation
Module Name:
entrypt.c
Abstract:
Debugger extensions that give an entry point from either an
intel address or a native address
Author:
02-Aug-1995 Ori Gershony (t-orig)
Revision History:
--*/
#define _WOW64CPUDBGAPI_
#define DECLARE_CPU_DEBUGGER_INTERFACE
#include <nt.h>
#include <ntrtl.h>
#include <nturtl.h>
#include <windows.h>
#include <imagehlp.h>
#include <ntsdexts.h>
#include "ntosdef.h"
#include "v86emul.h"
#include "ia64.h"
#include "wow64.h"
#include "wow64cpu.h"
#include "threadst.h"
#include "entrypt.h"
extern HANDLE Process;
extern HANDLE Thread;
extern PNTSD_OUTPUT_ROUTINE OutputRoutine;
extern PNTSD_GET_SYMBOL GetSymbolRoutine;
extern PNTSD_GET_EXPRESSION GetExpression;
extern PWOW64GETCPUDATA CpuGetData;
extern LPSTR ArgumentString;
#define DEBUGGERPRINT (*OutputRoutine)
#define GETSYMBOL (*GetSymbolRoutine)
#define GETEXPRESSION (*GetExpression)
#define CPUGETDATA (*CpuGetData)
extern THREADSTATE LocalCpuContext;
extern BOOL ContextFetched;
extern BOOL ContextDirty;
#define DECLARE_EXTAPI(name) \
VOID \
name( \
HANDLE hCurrentProcess, \
HANDLE hCurrentThread, \
DWORD64 dwCurrentPc, \
PNTSD_EXTENSION_APIS lpExtensionApis, \
LPSTR lpArgumentString \
)
#define INIT_EXTAPI \
Process = hCurrentProcess; \
Thread = hCurrentThread; \
OutputRoutine = lpExtensionApis->lpOutputRoutine; \
GetSymbolRoutine = lpExtensionApis->lpGetSymbolRoutine; \
GetExpression = lpExtensionApis->lpGetExpressionRoutine; \
ArgumentString = lpArgumentString;
#if _ALPHA_
#define EXCEPTIONDATA_SIGNATURE 0x01010101
#else
#define EXCEPTIONDATA_SIGNATURE 0x12341234
#endif
// Assume we can have at most 1/2 million entrypoints in a tree:
// With 4MB Translation Cache, we can have 1 million RISC instructions
// in the cache. Assume each Intel instruction requires 2 RISC instructions,
// and that each Intel instruction has its own Entrypoint. In that case,
// there can be at most 1/2 million entrypoints. Realistically, that number
// should be much smaller (like 50,000).
//
// Also, since the Entrypoint tree is balanced (a property of Red-Black trees),
// the required stack depth should be log2(500,000).
//
#define MAX_EPN_STACK_DEPTH 512*1024
ULONG_PTR EPN_Stack[MAX_EPN_STACK_DEPTH];
ULONG EPN_StackTop;
ULONG EPN_MaxStackDepth;
#define EPN_STACK_RESET() EPN_StackTop=0; EPN_MaxStackDepth=0
#define EPN_PUSH(x) { \
if (EPN_StackTop == MAX_EPN_STACK_DEPTH-1) { \
DEBUGGERPRINT("Error: EPN stack overflow\n"); \
goto Error; \
} else { \
EPN_Stack[EPN_StackTop] = x; \
EPN_StackTop++; \
if (EPN_StackTop > EPN_MaxStackDepth) EPN_MaxStackDepth=EPN_StackTop; \
} \
}
#define EPN_POP(x) { \
if (EPN_StackTop == 0) { \
DEBUGGERPRINT("Error: EPN stack underflow\n"); \
goto Error; \
} else { \
EPN_StackTop--; \
x = EPN_Stack[EPN_StackTop]; \
} \
}
NTSTATUS
TryGetExpr(
PSTR Expression,
PULONG_PTR pValue
);
VOID
findEPI(
ULONG_PTR intelAddress,
ULONG_PTR intelRoot
)
/*++
Routine Description:
This routine finds an entry point which contains intelAddress if in the
tree under intelRoot.
Arguments:
intelAddress -- The intel address to be contained in the entry point
intelRoot -- The root of the tree to use for the search
Return Value:
return-value - none
--*/
{
EPNODE entrypoint;
NTSTATUS Status;
for (;;) {
Status = NtReadVirtualMemory(Process, (PVOID)intelRoot, (PVOID) (&entrypoint), sizeof(EPNODE), NULL);
if (!NT_SUCCESS(Status)) {
DEBUGGERPRINT("Error: cannot read value of entry point at location %x\n", intelRoot);
return;
}
if (intelRoot == (ULONG_PTR)entrypoint.intelLeft) {
//
// At a NIL node.
//
break;
}
if (intelAddress < (ULONG_PTR)entrypoint.ep.intelStart){
intelRoot = (ULONG_PTR)entrypoint.intelLeft;
} else if (intelAddress > (ULONG_PTR)entrypoint.ep.intelEnd) {
intelRoot = (ULONG_PTR)entrypoint.intelRight;
} else {
DEBUGGERPRINT ("Entry point for intel address %x is at %x\n", intelAddress, intelRoot);
DEBUGGERPRINT ("intelStart = %x, intelEnd = %x\n", entrypoint.ep.intelStart, entrypoint.ep.intelEnd);
DEBUGGERPRINT ("nativeStart = %x, nativeEnd = %x\n", entrypoint.ep.nativeStart, entrypoint.ep.nativeEnd);
return;
}
}
DEBUGGERPRINT("Entry point corresponding to intel address %x is not in the tree.\n", intelAddress);
}
DECLARE_EXTAPI(epi)
/*++
Routine Description:
This routine dumps the entry point information for an intel address
Arguments:
Return Value:
return-value - none
--*/
{
CHAR *pchCmd;
ULONG_PTR intelAddress, pIntelRoot, intelRoot;
NTSTATUS Status;
INIT_EXTAPI;
//
// fetch the CpuContext for the current thread
//
if (!CpuDbgGetRemoteContext(CPUGETDATA(Process, Thread))) {
return;
}
DEBUGGERPRINT ("Argument: %s\n", ArgumentString);
//
// advance to first token
//
pchCmd = ArgumentString;
while (*pchCmd && isspace(*pchCmd)) {
pchCmd++;
}
//
// if exists must be intel address
//
if (*pchCmd) {
Status = TryGetExpr(pchCmd, &intelAddress);
if (!NT_SUCCESS(Status)) {
DEBUGGERPRINT("Invalid Intel Address '%s' Status %x\n", pchCmd, Status);
return;
}
} else {
// Take the current eip value as the first argument
intelAddress = LocalCpuContext.eipReg.i4;
}
Status = TryGetExpr("intelRoot", &pIntelRoot);
if (!NT_SUCCESS(Status)) {
DEBUGGERPRINT("Error: cannot evaluate intelRoot\n");
return;
}
Status = NtReadVirtualMemory(Process, (PVOID)pIntelRoot, (PVOID) (&intelRoot), sizeof(intelRoot), NULL);
if (!NT_SUCCESS(Status)) {
DEBUGGERPRINT("Error: cannot read value of intelRoot\n");
return;
}
findEPI(intelAddress, intelRoot);
}
ULONG_PTR
findEPN(
ULONG_PTR nativeAddress,
ULONG_PTR intelRoot
)
/*++
Routine Description:
This routine finds an entry point which contains nativeAddress if in the
tree under intelRoot.
Arguments:
nativeAddress -- The native address to be contained in the entry point
intelRoot -- The root of the tree to use for the search
Return Value:
return-value - NULL - entrypoint not found
non-NULL - ptr to ENTRYPOINT matching the native address
--*/
{
EPNODE entrypoint;
NTSTATUS Status;
PVOID SubEP;
EPN_STACK_RESET();
EPN_PUSH(0);
while (intelRoot != 0) {
Status = NtReadVirtualMemory(Process, (PVOID)intelRoot, (PVOID) (&entrypoint), sizeof(EPNODE), NULL);
if (!NT_SUCCESS(Status)) {
DEBUGGERPRINT("Error: cannot read value of entry point at location %x\n", intelRoot);
return 0;
}
if ((nativeAddress >= (ULONG_PTR)entrypoint.ep.nativeStart) &&
(nativeAddress <= (ULONG_PTR)entrypoint.ep.nativeEnd)) {
DEBUGGERPRINT ("Entry point for native address %x is at %x\n", nativeAddress, intelRoot);
DEBUGGERPRINT ("intelStart = %x, intelEnd = %x\n", entrypoint.ep.intelStart, entrypoint.ep.intelEnd);
DEBUGGERPRINT ("nativeStart = %x, nativeEnd = %x\n", entrypoint.ep.nativeStart, entrypoint.ep.nativeEnd);
return intelRoot;
}
// If there are sub-entrypoints, search them, too.
SubEP = (PVOID)entrypoint.ep.SubEP;
while (SubEP) {
ENTRYPOINT ep;
Status = NtReadVirtualMemory(Process, SubEP, (PVOID)(&ep), sizeof(ENTRYPOINT), NULL);
if (!NT_SUCCESS(Status)) {
DEBUGGERPRINT("Error: cannot read value of sub-entry point at location %x\n", SubEP);
return 0;
}
if ((nativeAddress >= (ULONG_PTR)ep.nativeStart) &&
(nativeAddress <= (ULONG_PTR)ep.nativeEnd)) {
DEBUGGERPRINT ("Entry point for native address %x is at %x\n", nativeAddress, intelRoot);
DEBUGGERPRINT ("Sub-entrypoint actually containing the native address is %x\n", SubEP);
DEBUGGERPRINT ("intelStart = %x, intelEnd = %x\n", ep.intelStart, ep.intelEnd);
DEBUGGERPRINT ("nativeStart = %x, nativeEnd = %x\n", ep.nativeStart, ep.nativeEnd);
return (ULONG_PTR)SubEP;
}
SubEP = ep.SubEP;
}
if ((ULONG_PTR)entrypoint.intelRight != intelRoot) {
EPN_PUSH((ULONG_PTR)entrypoint.intelRight);
}
if ((ULONG_PTR)entrypoint.intelLeft != intelRoot) {
EPN_PUSH((ULONG_PTR)entrypoint.intelLeft);
}
EPN_POP(intelRoot);
}
DEBUGGERPRINT("Entry point corresponding to native address %x is not in the tree.\n", nativeAddress);
Error:
return 0;
}
VOID
FindEipFromNativeAddress(
ULONG_PTR nativeAddress,
ULONG_PTR pEP
)
{
ENTRYPOINT EP;
NTSTATUS Status;
PVOID pUL;
ULONG UL;
ULONG RiscStart;
ULONG RiscEnd;
ULONG cEntryPoints;
Status = NtReadVirtualMemory(Process, (PVOID)pEP, (PVOID)(&EP), sizeof(ENTRYPOINT), NULL);
if (!NT_SUCCESS(Status)) {
DEBUGGERPRINT("Error: cannot read value of entry point at location %x\n", pEP);
return;
}
//
// Search forward to the next EXCEPTIONDATA_SIGNATURE in the cache
//
pUL = (PVOID)(((ULONG_PTR)EP.nativeEnd+3) & ~3);
do {
Status = NtReadVirtualMemory(Process, pUL, &UL, sizeof(ULONG), NULL);
if (!NT_SUCCESS(Status)) {
DEBUGGERPRINT("Error: error reading from TC at %x\n", pUL);
return;
}
pUL = (PVOID)( (PULONG)pUL + 1);
} while (UL != EXCEPTIONDATA_SIGNATURE);
//
// Found the signature, get cEntryPoints
//
Status = NtReadVirtualMemory(Process, pUL, &cEntryPoints, sizeof(ULONG), NULL);
if (!NT_SUCCESS(Status)) {
DEBUGGERPRINT("Error: error reading from TC at %x\n", pUL);
return;
}
pUL = (PVOID)( (PULONG)pUL + 1); // skip cEntryPoints
while (1) {
Status = NtReadVirtualMemory(Process, pUL, &UL, sizeof(ULONG), NULL);
if (!NT_SUCCESS(Status)) {
DEBUGGERPRINT("Error: error reading from TC at %x\n", pUL);
return;
}
if (UL == (ULONG)pEP) {
//
// Found the right ENTRYPOINT pointer
//
break;
}
//
// Skip over the pairs of (x86, risc) offsets
//
do {
pUL = (PVOID)( (PULONG)pUL + 1);
Status = NtReadVirtualMemory(Process, pUL, &UL, sizeof(ULONG), NULL);
if (!NT_SUCCESS(Status)) {
DEBUGGERPRINT("Error: error reading from TC at %x\n", pUL);
return;
}
} while ((UL & 1) == 0);
cEntryPoints--;
if (cEntryPoints == 0) {
DEBUGGERPRINT("Error: cEntryPoints went to 0 at %x\n", pUL);
return;
}
pUL = (PVOID)( (PULONG)pUL + 1);
}
//
// pUL points at the correct entrypoint pointer
//
nativeAddress -= (ULONG_PTR)EP.nativeStart; // Make relative to start of EP
RiscStart = 0; // Also relative to start of EP
while (1) {
ULONG UL2;
pUL = (PVOID)( (PULONG)pUL + 1);
Status = NtReadVirtualMemory(Process, pUL, &UL, sizeof(ULONG), NULL);
if (!NT_SUCCESS(Status)) {
DEBUGGERPRINT("Error: error reading from TC at %x\n", pUL);
return;
}
if (UL & 1) {
break;
}
Status = NtReadVirtualMemory(Process, (PVOID)((PULONG)pUL+1), &UL2, sizeof(ULONG), NULL);
if (!NT_SUCCESS(Status)) {
DEBUGGERPRINT("Error: error reading from TC at %p\n", (ULONG_PTR)pUL+4);
return;
}
RiscEnd = LOWORD(UL2) & 0xfffe; // RiscEnd = RiscStart of next instr
if ((RiscStart <= nativeAddress && nativeAddress < RiscEnd)
|| (UL & 1)) {
DEBUGGERPRINT("Corresponding EIP=%p\n", (ULONG_PTR)EP.intelStart + HIWORD(UL));
return;
}
}
return;
}
DECLARE_EXTAPI(epn)
/*++
Routine Description:
This routine dumps the entry point information for a native address
Arguments:
Return Value:
return-value - none
--*/
{
CHAR *pchCmd;
ULONG_PTR nativeAddress, pIntelRoot, intelRoot, EP;
NTSTATUS Status;
INIT_EXTAPI;
//
// fetch the CpuContext for the current thread
//
if (!CpuDbgGetRemoteContext(CPUGETDATA(Process, Thread))) {
return;
}
//
// advance to first token
//
pchCmd = ArgumentString;
while (*pchCmd && isspace(*pchCmd)) {
pchCmd++;
}
//
// if exists must be intel address
//
if (*pchCmd) {
Status = TryGetExpr(pchCmd, &nativeAddress);
if (!NT_SUCCESS(Status)) {
DEBUGGERPRINT("Invalid Native Address '%s' Status %x\n", pchCmd, Status);
return;
}
} else {
// Use the current pc as the host address
CONTEXT context;
if (!GetThreadContext(Thread, &context)){
DEBUGGERPRINT("Error: cannot get thread context\n");
return;
}
#if defined (_MIPS_) || defined (_ALPHA_)
nativeAddress = (ULONG)context.Fir;
#elif defined (_PPC_)
nativeAddress = context.Iar;
#endif
}
Status = TryGetExpr("intelRoot", &pIntelRoot);
if (!NT_SUCCESS(Status)) {
DEBUGGERPRINT("Error: cannot evaluate intelRoot\n");
return;
}
Status = NtReadVirtualMemory(Process, (PVOID)pIntelRoot, (PVOID) (&intelRoot), sizeof(ULONG_PTR), NULL);
if (!NT_SUCCESS(Status)) {
DEBUGGERPRINT("Error: cannot read value of intelRoot\n");
return;
}
EP = findEPN(nativeAddress, intelRoot);
if (EP) {
FindEipFromNativeAddress(nativeAddress, EP);
}
}
DECLARE_EXTAPI(dumpep)
/*++
Routine Description:
This routine dumps all entrypoints.
Arguments:
Return Value:
return-value - none
--*/
{
ULONG_PTR pIntelRoot, intelRoot;
NTSTATUS Status;
EPNODE entrypoint;
INIT_EXTAPI;
//
// fetch the CpuContext for the current thread
//
if (!CpuDbgGetRemoteContext(CPUGETDATA(Process, Thread))) {
return;
}
Status = TryGetExpr("intelRoot", &pIntelRoot);
if (!NT_SUCCESS(Status)) {
DEBUGGERPRINT("Error: cannot evaluate intelRoot\n");
return;
}
Status = NtReadVirtualMemory(Process, (PVOID)pIntelRoot, (PVOID) (&intelRoot), sizeof(intelRoot), NULL);
if (!NT_SUCCESS(Status)) {
DEBUGGERPRINT("Error: cannot read value of intelRoot\n");
return;
}
EPN_STACK_RESET();
EPN_PUSH(0);
DEBUGGERPRINT("Entrypt: iStart: iEnd: rStart: rEnd: SubEP: iLeft: iRight:\n");
// xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
while (intelRoot != 0) {
PENTRYPOINT ep;
Status = NtReadVirtualMemory(Process, (PVOID)intelRoot, (PVOID) (&entrypoint), sizeof(EPNODE), NULL);
if (!NT_SUCCESS(Status)) {
DEBUGGERPRINT("Error: cannot read value of entry point at location %x\n", intelRoot);
return;
}
ep = &entrypoint.ep;
//
// Print all entrypoints except NIL.
//
if ((ULONG_PTR)entrypoint.intelLeft != intelRoot &&
(ULONG_PTR)entrypoint.intelRight != intelRoot) {
DEBUGGERPRINT("%8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X %8.8X\n",
intelRoot,
ep->intelStart,
ep->intelEnd,
ep->nativeStart,
ep->nativeEnd,
ep->SubEP,
entrypoint.intelLeft,
entrypoint.intelRight
);
while (ep->SubEP) {
PVOID SubEP;
SubEP = (PVOID)ep->SubEP;
Status = NtReadVirtualMemory(Process, SubEP, (PVOID)ep, sizeof(ENTRYPOINT), NULL);
if (!NT_SUCCESS(Status)) {
DEBUGGERPRINT("Error: cannot read value of sub-entry point at location %x\n", SubEP);
return;
}
DEBUGGERPRINT("%8.8X %8.8X %8.8X %8.8X %8.8X %8.8X\n",
SubEP,
ep->intelStart,
ep->intelEnd,
ep->nativeStart,
ep->nativeEnd,
ep->SubEP
);
}
}
if ((ULONG_PTR)entrypoint.intelRight != intelRoot) {
EPN_PUSH((ULONG_PTR)entrypoint.intelRight);
}
if ((ULONG_PTR)entrypoint.intelLeft != intelRoot) {
EPN_PUSH((ULONG_PTR)entrypoint.intelLeft);
}
EPN_POP(intelRoot);
}
DEBUGGERPRINT("---- End of Entrypoint Dump ----\n");
Error:
return;
}