Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2829 lines
93 KiB

/*++
Copyright (c) 1990-1998 Microsoft Corporation, All Rights Reserved
Module Name:
kbddep.c
Abstract:
The initialization and hardware-dependent portions of
the Intel i8042 port driver which are specific to the
keyboard.
Environment:
Kernel mode only.
Notes:
NOTES: (Future/outstanding issues)
- Powerfail not implemented.
- Consolidate duplicate code, where possible and appropriate.
Revision History:
--*/
#include "stdarg.h"
#include "stdio.h"
#include "string.h"
#include <ntddk.h>
#include <windef.h>
#include <imm.h>
#include "i8042prt.h"
#include "i8042log.h"
//
// Use the alloc_text pragma to specify the driver initialization routines
// (they can be paged out).
//
#ifdef ALLOC_PRAGMA
#pragma alloc_text(PAGE, I8xKeyboardConfiguration)
#pragma alloc_text(PAGE, I8xInitializeKeyboard)
#pragma alloc_text(PAGE, I8xKeyboardServiceParameters)
#pragma alloc_text(PAGE, I8xServiceCrashDump)
#endif
#define BUFFER_FULL (OUTPUT_BUFFER_FULL|MOUSE_OUTPUT_BUFFER_FULL)
#define GET_MAKE_CODE(_sc_) (_sc_ & 0x7F)
//
// Tests for the top bit
//
#define IS_BREAK_CODE(_sc_) (_sc_ > (UCHAR) 0x7F)
#define IS_MAKE_CODE(_sc_) (_sc_ <= (UCHAR) 0x7F)
BOOLEAN
I8042KeyboardInterruptService(
IN PKINTERRUPT Interrupt,
IN PDEVICE_OBJECT DeviceObject
)
/*++
Routine Description:
This routine performs the actual work. It either processes a keystroke or
the results from a write to the device.
Arguments:
CallIsrContext - Contains the interrupt object and device object.
Return Value:
TRUE if the interrupt was truly ours
--*/
{
UCHAR scanCode, statusByte;
PPORT_KEYBOARD_EXTENSION deviceExtension;
KEYBOARD_SCAN_STATE *scanState;
PKEYBOARD_INPUT_DATA input;
ULONG i;
#ifdef FE_SB
PKEYBOARD_ID KeyboardId;
#endif
IsrPrint(DBG_KBISR_TRACE, ("enter\n"));
//
// Get the device extension.
//
deviceExtension = (PPORT_KEYBOARD_EXTENSION) DeviceObject->DeviceExtension;
//
// The interrupt will fire when we try to toggle the interrupts on the
// controller itself. Don't touch any of the ports in this state and the
// toggle will succeed.
//
if (deviceExtension->PowerState != PowerDeviceD0) {
return FALSE;
}
#ifdef FE_SB
//
// Get a pointer to keyboard id.
//
KeyboardId = &deviceExtension->KeyboardAttributes.KeyboardIdentifier;
#endif
//
// Verify that this device really interrupted. Check the status
// register. The Output Buffer Full bit should be set, and the
// Auxiliary Device Output Buffer Full bit should be clear.
//
statusByte =
I8X_GET_STATUS_BYTE(Globals.ControllerData->DeviceRegisters[CommandPort]);
if ((statusByte & BUFFER_FULL) != OUTPUT_BUFFER_FULL) {
//
// Stall and then try again. The Olivetti MIPS machine
// sometimes gets an interrupt before the status
// register is set. They do this for DOS compatibility (some
// DOS apps do things in polled mode, until they see a character
// in the keyboard buffer at which point they expect to get
// an interrupt???).
//
for (i = 0; i < (ULONG)Globals.ControllerData->Configuration.PollStatusIterations; i++) {
KeStallExecutionProcessor(1);
statusByte = I8X_GET_STATUS_BYTE(Globals.ControllerData->DeviceRegisters[CommandPort]);
if ((statusByte & BUFFER_FULL) == (OUTPUT_BUFFER_FULL)) {
break;
}
}
statusByte = I8X_GET_STATUS_BYTE(Globals.ControllerData->DeviceRegisters[CommandPort]);
if ((statusByte & BUFFER_FULL) != (OUTPUT_BUFFER_FULL)) {
//
// Not our interrupt.
//
// NOTE: If the keyboard has not yet been "enabled", go ahead
// and read a byte from the data port anyway.
// This fixes weirdness on some Gateway machines, where
// we get an interrupt sometime during driver initialization
// after the interrupt is connected, but the output buffer
// full bit never gets set.
//
IsrPrint(DBG_KBISR_ERROR|DBG_KBISR_INFO, ("not our interrupt!\n"));
if (deviceExtension->EnableCount == 0) {
scanCode =
I8X_GET_DATA_BYTE(Globals.ControllerData->DeviceRegisters[DataPort]);
}
return FALSE;
}
}
//
// The interrupt is valid. Read the byte from the i8042 data port.
//
I8xGetByteAsynchronous(
(CCHAR) KeyboardDeviceType,
&scanCode
);
deviceExtension->LastScanCode = deviceExtension->CurrentScanCode;
deviceExtension->CurrentScanCode = scanCode;
IsrPrint(DBG_KBISR_SCODE, ("scanCode 0x%x\n", scanCode));
if (deviceExtension->IsrHookCallback) {
BOOLEAN cont = FALSE, ret;
ret = (*deviceExtension->IsrHookCallback)(
deviceExtension->HookContext,
&deviceExtension->CurrentInput,
&deviceExtension->CurrentOutput,
statusByte,
&scanCode,
&cont,
&deviceExtension->CurrentScanState
);
if (!cont) {
return ret;
}
}
//
// Take the appropriate action, depending on whether the byte read
// is a keyboard command response or a real scan code.
//
switch(scanCode) {
//
// The keyboard controller requests a resend. If the resend count
// has not been exceeded, re-initiate the I/O operation.
//
case RESEND:
IsrPrint(DBG_KBISR_INFO,
(" RESEND, retries = %d\n",
deviceExtension->ResendCount + 1
));
//
// If the timer count is zero, don't process the interrupt
// further. The timeout routine will complete this request.
//
if (Globals.ControllerData->TimerCount == 0) {
break;
}
//
// Reset the timeout value to indicate no timeout.
//
Globals.ControllerData->TimerCount = I8042_ASYNC_NO_TIMEOUT;
//
// If the maximum number of retries has not been exceeded,
//
if ((deviceExtension->CurrentOutput.State == Idle)
|| (DeviceObject->CurrentIrp == NULL)) {
//
// We weren't sending a command or parameter to the hardware.
// This must be a scan code. I hear the Brazilian keyboard
// actually uses this.
//
goto ScanCodeCase;
} else if (deviceExtension->ResendCount
< Globals.ControllerData->Configuration.ResendIterations) {
//
// retard the byte count to resend the last byte
//
deviceExtension->CurrentOutput.CurrentByte -= 1;
deviceExtension->ResendCount += 1;
I8xInitiateIo(DeviceObject);
} else {
deviceExtension->CurrentOutput.State = Idle;
KeInsertQueueDpc(
&deviceExtension->RetriesExceededDpc,
DeviceObject->CurrentIrp,
NULL
);
}
break;
//
// The keyboard controller has acknowledged a previous send.
// If there are more bytes to send for the current packet, initiate
// the next send operation. Otherwise, queue the completion DPC.
//
case ACKNOWLEDGE:
IsrPrint(DBG_KBISR_STATE, (": ACK, "));
//
// If the timer count is zero, don't process the interrupt
// further. The timeout routine will complete this request.
//
if (Globals.ControllerData->TimerCount == 0) {
break;
}
//
// We cannot clear the E0 or E1 bits b/c then the subsequent scan
// code will be misinterpreted. ie, the OS should have seen 0x2d
// with an extended bit, but instead it saw a plain 0x2d
//
// If the keyboard is using 0xE0 0x7A / 0xE0 0xFA as a make / break
// code, then tough luck...bad choice, we do not support it.
//
#if 0
//
// If the E0 or E1 is set, that means that this keyboard's
// manufacturer made a poor choice for a scan code, 0x7A, whose
// break code is 0xFA. Thankfully, they used the E0 or E1 prefix
// so we can tell the difference.
//
if (deviceExtension->CurrentInput.Flags & (KEY_E0 | KEY_E1)) {
//
// The following sequence can occur which requires the driver to
// ignore the spurious keystroke
//
// 1 write set typematic to the device (0xF3)
// 2 device responds with an ACK, ISR sees 0xFA
// 3 write typematic value to the device (0x??)
// 4 user hits an extended key (left arrow for instance), ISR sees 0xE0
// 5 device response with an ACK to the typematic value, ISR sees 0xFA
// before the actual scancode for the left arrow is sent to the ISR
//
//
// Make sure we are trully not writing out data to the device
//
if (Globals.ControllerData->TimerCount == I8042_ASYNC_NO_TIMEOUT &&
deviceExtension->CurrentOutput.State == Idle) {
IsrPrint(DBG_KBISR_INFO,
("BAD KEYBOARD: 0xFA used as a real scancode!\n"));
goto ScanCodeCase;
}
else {
//
// Spurious keystroke case.
//
// Clear the E0 / E1 flag. the 2nd byte of the scan code will
// never come through b/c it was preempted by the ACK for the
// write to the device
//
deviceExtension->CurrentInput.Flags &= ~(KEY_E0 | KEY_E1);
}
}
#endif
//
// Reset the timeout value to indicate no timeout.
//
Globals.ControllerData->TimerCount = I8042_ASYNC_NO_TIMEOUT;
//
// Reset resend count.
//
deviceExtension->ResendCount = 0;
//
// Make sure we are writing to the device if we are going to write
// another byte or queue a DPC
//
if (deviceExtension->CurrentOutput.State == SendingBytes) {
if (deviceExtension->CurrentOutput.CurrentByte <
deviceExtension->CurrentOutput.ByteCount) {
//
// We've successfully sent the first byte of a 2-byte (or more)
// command sequence. Initiate a send of the second byte.
//
IsrPrint(DBG_KBISR_STATE,
("now initiate send of byte #%d\n",
deviceExtension->CurrentOutput.CurrentByte
));
I8xInitiateIo(DeviceObject);
}
else {
//
// We've successfully sent all bytes in the command sequence.
// Reset the current state and queue the completion DPC.
//
IsrPrint(DBG_KBISR_STATE,
("all bytes have been sent\n"
));
deviceExtension->CurrentOutput.State = Idle;
ASSERT(DeviceObject->CurrentIrp != NULL);
IoRequestDpc(
DeviceObject,
DeviceObject->CurrentIrp,
IntToPtr(IsrDpcCauseKeyboardWriteComplete)
);
}
}
break;
//
// Assume we've got a real, live scan code (or perhaps a keyboard
// overrun code, which we treat like a scan code). I.e., a key
// has been pressed or released. Queue the ISR DPC to process
// a complete scan code sequence.
//
ScanCodeCase:
default:
IsrPrint(DBG_KBISR_SCODE, ("real scan code\n"));
//
// Differentiate between an extended key sequence (first
// byte is E0, followed by a normal make or break byte), or
// a normal make code (one byte, the high bit is NOT set),
// or a normal break code (one byte, same as the make code
// but the high bit is set), or the key #126 byte sequence
// (requires special handling -- sequence is E11D459DC5).
//
// If there is a key detection error/overrun, the keyboard
// sends an overrun indicator (0xFF in scan code set 1).
// Map it to the overrun indicator expected by the Windows
// USER Raw Input Thread.
//
input = &deviceExtension->CurrentInput;
scanState = &deviceExtension->CurrentScanState;
if (scanCode == (UCHAR) 0xFF) {
IsrPrint(DBG_KBISR_ERROR, ("OVERRUN\n"));
input->MakeCode = KEYBOARD_OVERRUN_MAKE_CODE;
input->Flags = 0;
*scanState = Normal;
} else {
switch (*scanState) {
case Normal:
if (scanCode == (UCHAR) 0xE0) {
input->Flags |= KEY_E0;
*scanState = GotE0;
IsrPrint(DBG_KBISR_STATE, ("change state to GotE0\n"));
break;
} else if (scanCode == (UCHAR) 0xE1) {
input->Flags |= KEY_E1;
*scanState = GotE1;
IsrPrint(DBG_KBISR_STATE, ("change state to GotE1\n"));
break;
}
//
// Fall through to the GotE0/GotE1 case for the rest of the
// Normal case.
//
case GotE0:
case GotE1:
if (deviceExtension->CrashFlags != 0x0) {
I8xProcessCrashDump(deviceExtension,
scanCode,
*scanState);
}
if (IS_BREAK_CODE(scanCode)) {
SYS_BUTTON_ACTION action;
//
// Got a break code. Strip the high bit off
// to get the associated make code and set flags
// to indicate a break code.
//
IsrPrint(DBG_KBISR_SCODE, ("BREAK code\n"));
input->MakeCode = GET_MAKE_CODE(scanCode);
input->Flags |= KEY_BREAK;
if (input->Flags & KEY_E0) {
switch (input->MakeCode) {
case KEYBOARD_POWER_CODE:
if (deviceExtension->PowerCaps &
I8042_POWER_SYS_BUTTON) {
IsrPrint(DBG_KBISR_POWER, ("Send Power Button\n"));
action = SendAction;
}
else {
IsrPrint(DBG_KBISR_POWER, ("Update Power Button\n"));
action = UpdateAction;
}
break;
case KEYBOARD_SLEEP_CODE:
if (deviceExtension->PowerCaps &
I8042_SLEEP_SYS_BUTTON) {
IsrPrint(DBG_KBISR_POWER, ("Send Sleep Button\n"));
action = SendAction;
}
else {
IsrPrint(DBG_KBISR_POWER, ("Update Sleep Button\n"));
action = UpdateAction;
}
break;
case KEYBOARD_WAKE_CODE:
if (deviceExtension->PowerCaps &
I8042_WAKE_SYS_BUTTON) {
IsrPrint(DBG_KBISR_POWER, ("Send Wake Button\n"));
action = SendAction;
}
else {
IsrPrint(DBG_KBISR_POWER, ("Update Wake Button\n"));
action = UpdateAction;
}
break;
default:
action = NoAction;
break;
}
if (action != NoAction) {
//
// Queue a DPC so that we can do the appropriate
// action
//
KeInsertQueueDpc(
&deviceExtension->SysButtonEventDpc,
(PVOID) action,
(PVOID) input->MakeCode
);
}
}
} else {
//
// Got a make code.
//
IsrPrint(DBG_KBISR_SCODE, ("MAKE code\n"));
input->MakeCode = scanCode;
//
// If the input scan code is debug stop, then drop
// into the kernel debugger if it is active.
//
if ((KD_DEBUGGER_NOT_PRESENT == FALSE) && !(input->Flags & KEY_BREAK)) {
if (ENHANCED_KEYBOARD(
deviceExtension->KeyboardAttributes.KeyboardIdentifier
)) {
//
// Enhanced 101 keyboard, SysReq key is 0xE0 0x37.
//
if ((input->MakeCode == KEYBOARD_DEBUG_HOTKEY_ENH) &&
(input->Flags & KEY_E0)) {
try {
if ((KD_DEBUGGER_ENABLED != FALSE) &&
Globals.BreakOnSysRq) {
DbgBreakPointWithStatus(DBG_STATUS_SYSRQ);
}
} except(EXCEPTION_EXECUTE_HANDLER) {
}
}
//
// 84-key AT keyboard, SysReq key is 0xE0 0x54.
//
} else if ((input->MakeCode == KEYBOARD_DEBUG_HOTKEY_AT)) {
try {
if ((KD_DEBUGGER_ENABLED != FALSE)
&& Globals.BreakOnSysRq) {
DbgBreakPointWithStatus(DBG_STATUS_SYSRQ);
}
} except(EXCEPTION_EXECUTE_HANDLER) {
}
}
}
}
//
// Reset the state to Normal.
//
*scanState = Normal;
break;
default:
//
// Queue a DPC to log an internal driver error.
//
KeInsertQueueDpc(
&deviceExtension->ErrorLogDpc,
(PIRP) NULL,
LongToPtr(I8042_INVALID_ISR_STATE_KBD)
);
ASSERT(FALSE);
break;
}
}
//
// In the Normal state, if the keyboard device is enabled,
// add the data to the InputData queue and queue the ISR DPC.
//
if (*scanState == Normal) {
I8xQueueCurrentKeyboardInput(DeviceObject);
}
break;
}
IsrPrint(DBG_KBISR_TRACE, ("exit\n"));
return TRUE;
}
VOID
I8xProcessCrashDump(
PPORT_KEYBOARD_EXTENSION DeviceExtension,
UCHAR ScanCode,
KEYBOARD_SCAN_STATE ScanState
)
{
LONG crashFlags;
BOOLEAN processFlags;
UCHAR crashScanCode, crashScanCode2;
crashFlags = DeviceExtension->CrashFlags;
crashScanCode = DeviceExtension->CrashScanCode;
crashScanCode2 = DeviceExtension->CrashScanCode2;
if (IS_MAKE_CODE(ScanCode)) {
//
// make code
//
// If it is one of the crash flag keys record it.
// If it is a crash dump key record it
// If it is neither, reset the current tracking state (CurrentCrashFlags)
//
switch (ScanCode) {
case CTRL_SCANCODE:
if (ScanState == Normal) { // Left
DeviceExtension->CurrentCrashFlags |= CRASH_L_CTRL;
}
else if (ScanState == GotE0) { // Right
DeviceExtension->CurrentCrashFlags |= CRASH_R_CTRL;
}
break;
case ALT_SCANCODE:
if (ScanState == Normal) { // Left
DeviceExtension->CurrentCrashFlags |= CRASH_L_ALT;
}
else if (ScanState == GotE0) { // Right
DeviceExtension->CurrentCrashFlags |= CRASH_R_ALT;
}
break;
case LEFT_SHIFT_SCANCODE:
if (ScanState == Normal) {
DeviceExtension->CurrentCrashFlags |= CRASH_L_SHIFT;
}
break;
case RIGHT_SHIFT_SCANCODE:
if (ScanState == Normal) {
DeviceExtension->CurrentCrashFlags |= CRASH_R_SHIFT;
}
break;
default:
if (IS_MAKE_CODE(crashScanCode)) {
if (ScanState == Normal && crashScanCode == ScanCode) {
break;
}
}
else {
if (ScanState == GotE0 && GET_MAKE_CODE(crashScanCode) == ScanCode) {
break;
}
}
if (IS_MAKE_CODE(crashScanCode2)) {
if (ScanState == Normal &&
crashScanCode2 == ScanCode) {
break;
}
}
else {
if (ScanState == GotE0 &&
GET_MAKE_CODE(crashScanCode2) == ScanCode) {
break;
}
}
//
// Not a key we are interested in, reset our current state
//
DeviceExtension->CurrentCrashFlags = 0x0;
break;
}
}
else {
//
// break code
//
// If one of the modifer keys is released, our state is reset and all
// keys have to be pressed again.
// If it is a non modifier key, proceed with the processing if it is the
// crash dump key, otherwise reset our tracking state
//
switch (GET_MAKE_CODE(ScanCode)) {
case CTRL_SCANCODE:
if (ScanState == Normal) { // Left
DeviceExtension->CurrentCrashFlags &=
~(CRASH_BOTH_TIMES | CRASH_L_CTRL);
}
else if (ScanState == GotE0) { // Right
DeviceExtension->CurrentCrashFlags &=
~(CRASH_BOTH_TIMES | CRASH_R_CTRL);
}
break;
case ALT_SCANCODE:
if (ScanState == Normal) { // Left
DeviceExtension->CurrentCrashFlags &=
~(CRASH_BOTH_TIMES | CRASH_L_ALT);
}
else if (ScanState == GotE0) { // Right
DeviceExtension->CurrentCrashFlags &=
~(CRASH_BOTH_TIMES | CRASH_R_ALT);
}
break;
case RIGHT_SHIFT_SCANCODE:
if (ScanState == Normal) {
DeviceExtension->CurrentCrashFlags &=
~(CRASH_BOTH_TIMES | CRASH_R_SHIFT);
}
break;
case LEFT_SHIFT_SCANCODE:
if (ScanState == Normal) {
DeviceExtension->CurrentCrashFlags &=
~(CRASH_BOTH_TIMES | CRASH_L_SHIFT);
}
break;
default:
processFlags = FALSE;
if (IS_MAKE_CODE(crashScanCode)) {
if (ScanState == Normal && crashScanCode == GET_MAKE_CODE(ScanCode))
processFlags = TRUE;
}
else {
if (ScanState == GotE0 && crashScanCode == ScanCode) {
processFlags = TRUE;
}
}
if (IS_MAKE_CODE(crashScanCode2)) {
if (ScanState == Normal && crashScanCode2 == GET_MAKE_CODE(ScanCode)) {
processFlags = TRUE;
}
}
else {
if (ScanState == GotE0 && crashScanCode2 == ScanCode)
processFlags = TRUE;
}
//
// If this is the key we are interested in, continue, otherwise
// our tracking state is reset
//
if (processFlags) {
//
// test to see if all the needed modifier
// keys are down
//
if (crashFlags != (DeviceExtension->CurrentCrashFlags & crashFlags)) {
break;
}
//
// record how many times we have seen
// this key
//
if (DeviceExtension->CurrentCrashFlags & CRASH_FIRST_TIME) {
DeviceExtension->CurrentCrashFlags |= CRASH_SECOND_TIME;
}
else {
DeviceExtension->CurrentCrashFlags |= CRASH_FIRST_TIME;
}
break;
}
DeviceExtension->CurrentCrashFlags = 0x0;
break;
}
}
crashFlags |= CRASH_BOTH_TIMES;
if (DeviceExtension->CurrentCrashFlags == crashFlags) {
DeviceExtension->CurrentCrashFlags = 0x0;
//
// Bring down the system in a somewhat controlled manner
//
KeBugCheckEx(MANUALLY_INITIATED_CRASH, 0, 0, 0, 0);
}
}
//
// The following table is used to convert typematic rate (keys per
// second) into the value expected by the keyboard. The index into the
// array is the number of keys per second. The resulting value is
// the bit equate to send to the keyboard.
//
UCHAR
I8xConvertTypematicParameters(
IN USHORT Rate,
IN USHORT Delay
)
/*++
Routine Description:
This routine converts the typematic rate and delay to the form the
keyboard expects.
The byte passed to the keyboard looks like this:
- bit 7 is zero
- bits 5 and 6 indicate the delay
- bits 0-4 indicate the rate
The delay is equal to 1 plus the binary value of bits 6 and 5,
multiplied by 250 milliseconds.
The period (interval from one typematic output to the next) is
determined by the following equation:
Period = (8 + A) x (2^B) x 0.00417 seconds
where
A = binary value of bits 0-2
B = binary value of bits 3 and 4
Arguments:
Rate - Number of keys per second.
Delay - Number of milliseconds to delay before the key repeat starts.
Return Value:
The byte to pass to the keyboard.
--*/
{
UCHAR value;
UCHAR TypematicPeriod[] = {
31, // 0 keys per second
31, // 1 keys per second
28, // 2 keys per second, This is really 2.5, needed for NEXUS.
26, // 3 keys per second
23, // 4 keys per second
20, // 5 keys per second
18, // 6 keys per second
17, // 7 keys per second
15, // 8 keys per second
13, // 9 keys per second
12, // 10 keys per second
11, // 11 keys per second
10, // 12 keys per second
9, // 13 keys per second
9, // 14 keys per second
8, // 15 keys per second
7, // 16 keys per second
6, // 17 keys per second
5, // 18 keys per second
4, // 19 keys per second
4, // 20 keys per second
3, // 21 keys per second
3, // 22 keys per second
2, // 23 keys per second
2, // 24 keys per second
1, // 25 keys per second
1, // 26 keys per second
1 // 27 keys per second
// > 27 keys per second, use 0
};
Print(DBG_CALL_TRACE, ("I8xConvertTypematicParameters: enter\n"));
//
// Calculate the delay bits.
//
value = (UCHAR) ((Delay / 250) - 1);
//
// Put delay bits in the right place.
//
value <<= 5;
//
// Get the typematic period from the table. If keys per second
// is > 27, the typematic period value is zero.
//
if (Rate <= 27) {
value |= TypematicPeriod[Rate];
}
Print(DBG_CALL_TRACE, ("I8xConvertTypematicParameters: exit\n"));
return(value);
}
#define KB_INIT_FAILED_RESET 0x00000001
#define KB_INIT_FAILED_XLATE_OFF 0x00000010
#define KB_INIT_FAILED_XLATE_ON 0x00000020
#define KB_INIT_FAILED_SET_TYPEMATIC 0x00000100
#define KB_INIT_FAILED_SET_TYPEMATIC_PARAM 0x00000200
#define KB_INIT_FAILED_SET_LEDS 0x00001000
#define KB_INIT_FAILED_SET_LEDS_PARAM 0x00002000
#define KB_INIT_FAILED_SELECT_SS 0x00010000
#define KB_INIT_FAILED_SELECT_SS_PARAM 0x00020000
#if KEYBOARD_RECORD_INIT
ULONG KeyboardInitStatus;
#define SET_KB_INIT_FAILURE(flag) KeyboardInitStatus |= flag
#define KB_INIT_START() KeyboardInitStatus = 0x0;
#else
#define SET_KB_INIT_FAILURE(flag)
#define KB_INIT_START()
#endif // KEYBOARD_RECORD_INIT
NTSTATUS
I8xInitializeKeyboard(
IN PPORT_KEYBOARD_EXTENSION KeyboardExtension
)
/*++
Routine Description:
This routine initializes the i8042 keyboard hardware. It is called
only at initialization, and does not synchronize access to the hardware.
Arguments:
DeviceObject - Pointer to the device object.
Return Value:
Returns status.
--*/
{
NTSTATUS status;
PKEYBOARD_ID id;
PPORT_KEYBOARD_EXTENSION deviceExtension;
PDEVICE_OBJECT deviceObject;
UCHAR byte,
failedResetResponseByte,
failedResetResponseByte2;
I8042_TRANSMIT_CCB_CONTEXT transmitCCBContext;
ULONG i;
ULONG limit;
NTSTATUS failedLedsStatus,
failedTypematicStatus,
failedResetStatus,
failedResetResponseStatus,
failedResetResponseStatus2;
PI8042_CONFIGURATION_INFORMATION configuration;
PKEYBOARD_ID keyboardId;
LARGE_INTEGER startOfSpin,
nextQuery,
difference,
resetRespTimeout,
li;
BOOLEAN waitForAckOnReset = WAIT_FOR_ACKNOWLEDGE,
translationOn = TRUE,
failedReset = FALSE,
failedResetResponse = FALSE,
failedResetResponse2 = FALSE,
failedTypematic = FALSE,
failedLeds = FALSE;
#define DUMP_COUNT 4
ULONG dumpData[DUMP_COUNT];
PAGED_CODE();
KB_INIT_START();
Print(DBG_SS_TRACE, ("I8xInitializeKeyboard, enter\n"));
for (i = 0; i < DUMP_COUNT; i++)
dumpData[i] = 0;
//
// Get the device extension.
//
deviceExtension = KeyboardExtension;
deviceObject = deviceExtension->Self;
//
// Reset the keyboard.
//
StartOfReset:
status = I8xPutBytePolled(
(CCHAR) DataPort,
waitForAckOnReset,
(CCHAR) KeyboardDeviceType,
(UCHAR) KEYBOARD_RESET
);
if (!NT_SUCCESS(status)) {
SET_KB_INIT_FAILURE(KB_INIT_FAILED_RESET);
failedReset = TRUE;
failedResetStatus = status;
if (KeyboardExtension->FailedReset == FAILED_RESET_STOP) {
//
// If the device was reported, but not responding, it is phantom
//
status = STATUS_DEVICE_NOT_CONNECTED;
SET_HW_FLAGS(PHANTOM_KEYBOARD_HARDWARE_REPORTED);
Print(DBG_SS_INFO,
("kb failed reset Reset failed, stopping immediately\n"));
goto I8xInitializeKeyboardExit;
}
else {
//
// NOTE: The Gateway 4DX2/66V has a problem when an old Compaq 286
// keyboard is attached. In this case, the keyboard reset
// is not acknowledged (at least, the system never
// receives the ack). Instead, the KEYBOARD_COMPLETE_SUCCESS
// byte is sitting in the i8042 output buffer. The fix
// is to ignore the keyboard reset failure and continue.
//
/* do nothing */;
Print(DBG_SS_INFO, ("kb failed reset, proceeding\n"));
}
}
//
// Get the keyboard reset self-test response. A response byte of
// KEYBOARD_COMPLETE_SUCCESS indicates success; KEYBOARD_COMPLETE_FAILURE
// indicates failure.
//
// Note that it is usually necessary to stall a long time to get the
// keyboard reset/self-test to work.
//
li.QuadPart = -100;
resetRespTimeout.QuadPart = 10*10*1000*1000;
KeQueryTickCount(&startOfSpin);
while (TRUE) {
status = I8xGetBytePolled(
(CCHAR) KeyboardDeviceType,
&byte
);
if (NT_SUCCESS(status)) {
if (byte == (UCHAR) KEYBOARD_COMPLETE_SUCCESS) {
//
// The reset completed successfully.
//
break;
}
else {
//
// There was some sort of failure during the reset
// self-test. Continue anyway.
//
failedResetResponse = TRUE;
failedResetResponseStatus = status;
failedResetResponseByte = byte;
break;
}
}
else {
if (status == STATUS_IO_TIMEOUT) {
//
// Stall, and then try again to get a response from
// the reset.
//
KeDelayExecutionThread(KernelMode,
FALSE,
&li);
KeQueryTickCount(&nextQuery);
difference.QuadPart = nextQuery.QuadPart - startOfSpin.QuadPart;
ASSERT(KeQueryTimeIncrement() <= MAXLONG);
if (difference.QuadPart*KeQueryTimeIncrement() >=
resetRespTimeout.QuadPart) {
Print(DBG_SS_ERROR, ("no reset response, quitting\n"));
break;
}
}
else {
break;
}
}
}
if (!NT_SUCCESS(status)) {
if (waitForAckOnReset == WAIT_FOR_ACKNOWLEDGE) {
waitForAckOnReset = NO_WAIT_FOR_ACKNOWLEDGE;
goto StartOfReset;
}
failedResetResponse2 = TRUE;
failedResetResponseStatus2 = status;
failedResetResponseByte2 = byte;
goto I8xInitializeKeyboardExit;
}
//
// Turn off Keyboard Translate Mode. Call I8xTransmitControllerCommand
// to read the Controller Command Byte, modify the appropriate bits, and
// rewrite the Controller Command Byte.
//
transmitCCBContext.HardwareDisableEnableMask = 0;
transmitCCBContext.AndOperation = AND_OPERATION;
transmitCCBContext.ByteMask = (UCHAR) ~((UCHAR)CCB_KEYBOARD_TRANSLATE_MODE);
I8xTransmitControllerCommand(
(PVOID) &transmitCCBContext
);
if (!NT_SUCCESS(transmitCCBContext.Status)) {
//
// If failure then retry once. This is for Toshiba T3400CT.
//
I8xTransmitControllerCommand(
(PVOID) &transmitCCBContext
);
}
if (!NT_SUCCESS(transmitCCBContext.Status)) {
Print(DBG_SS_ERROR,
("I8xInitializeKeyboard: could not turn off translate\n"
));
status = transmitCCBContext.Status;
SET_KB_INIT_FAILURE(KB_INIT_FAILED_XLATE_OFF);
goto I8xInitializeKeyboardExit;
}
//
// Get a pointer to the keyboard identifier field.
//
id = &deviceExtension->KeyboardAttributes.KeyboardIdentifier;
//
// Set the typematic rate and delay. Send the Set Typematic Rate command
// to the keyboard, followed by the typematic rate/delay parameter byte.
// Note that it is often necessary to stall a long time to get this
// to work. The stall value was determined by experimentation. Some
// broken hardware does not accept this command, so ignore errors in the
// hope that the keyboard will work okay anyway.
//
//
if ((status = I8xPutBytePolled(
(CCHAR) DataPort,
WAIT_FOR_ACKNOWLEDGE,
(CCHAR) KeyboardDeviceType,
(UCHAR) SET_KEYBOARD_TYPEMATIC
)) != STATUS_SUCCESS) {
Print(DBG_SS_INFO, ("kb set typematic failed\n"));
SET_KB_INIT_FAILURE(KB_INIT_FAILED_SET_TYPEMATIC);
failedTypematic = TRUE;
failedTypematicStatus = status;
} else if ((status = I8xPutBytePolled(
(CCHAR) DataPort,
WAIT_FOR_ACKNOWLEDGE,
(CCHAR) KeyboardDeviceType,
I8xConvertTypematicParameters(
deviceExtension->KeyRepeatCurrent.Rate,
deviceExtension->KeyRepeatCurrent.Delay
))) != STATUS_SUCCESS) {
SET_KB_INIT_FAILURE(KB_INIT_FAILED_SET_TYPEMATIC_PARAM);
Print(DBG_SS_ERROR,
("I8xInitializeKeyboard: could not send typematic param\n"
));
//
// Log an error.
//
dumpData[0] = KBDMOU_COULD_NOT_SEND_PARAM;
dumpData[1] = DataPort;
dumpData[2] = SET_KEYBOARD_TYPEMATIC;
dumpData[3] =
I8xConvertTypematicParameters(
deviceExtension->KeyRepeatCurrent.Rate,
deviceExtension->KeyRepeatCurrent.Delay
);
I8xLogError(
deviceObject,
I8042_SET_TYPEMATIC_FAILED,
I8042_ERROR_VALUE_BASE + 540,
status,
dumpData,
4
);
}
status = STATUS_SUCCESS;
//
// Set the keyboard indicator lights. Ignore errors.
//
if ((status = I8xPutBytePolled(
(CCHAR) DataPort,
WAIT_FOR_ACKNOWLEDGE,
(CCHAR) KeyboardDeviceType,
(UCHAR) SET_KEYBOARD_INDICATORS
)) != STATUS_SUCCESS) {
Print(DBG_SS_INFO, ("kb set LEDs failed\n"));
SET_KB_INIT_FAILURE(KB_INIT_FAILED_SET_LEDS);
failedLeds = TRUE;
failedLedsStatus = status;
} else if ((status = I8xPutBytePolled(
(CCHAR) DataPort,
WAIT_FOR_ACKNOWLEDGE,
(CCHAR) KeyboardDeviceType,
(UCHAR) deviceExtension->KeyboardIndicators.LedFlags
)) != STATUS_SUCCESS) {
SET_KB_INIT_FAILURE(KB_INIT_FAILED_SET_LEDS_PARAM);
Print(DBG_SS_ERROR,
("I8xInitializeKeyboard: could not send SET LEDS param\n"
));
//
// Log an error.
//
dumpData[0] = KBDMOU_COULD_NOT_SEND_PARAM;
dumpData[1] = DataPort;
dumpData[2] = SET_KEYBOARD_INDICATORS;
dumpData[3] =
deviceExtension->KeyboardIndicators.LedFlags;
I8xLogError(
deviceObject,
I8042_SET_LED_FAILED,
I8042_ERROR_VALUE_BASE + 550,
status,
dumpData,
4
);
}
status = STATUS_SUCCESS;
#if !(defined(_X86_) || defined(_IA64_) || defined(_PPC_)) // IBMCPK: MIPS specific initialization
//
// NOTE: This code is necessary until the MIPS firmware stops
// selecting scan code set 3. Select scan code set 2 here.
// Since the translate bit is set, the net effect is that
// we will receive scan code set 1 bytes.
//
if (ENHANCED_KEYBOARD(*id)) {
status = I8xPutBytePolled(
(CCHAR) DataPort,
WAIT_FOR_ACKNOWLEDGE,
(CCHAR) KeyboardDeviceType,
(UCHAR) SELECT_SCAN_CODE_SET
);
if (NT_SUCCESS(status)) {
//
// Send the associated parameter byte.
//
status = I8xPutBytePolled(
(CCHAR) DataPort,
WAIT_FOR_ACKNOWLEDGE,
(CCHAR) KeyboardDeviceType,
(UCHAR) 2
);
}
if (!NT_SUCCESS(status)) {
Print(DBG_SS_ERROR,
("I8xInitializeKeyboard: could not send Select Scan command\n"
));
//
// This failed so probably what we have here isn't an enhanced
// keyboard at all. Make this an old style keyboard.
//
configuration = &Globals.ControllerData->Configuration;
keyboardId = &deviceExtension->KeyboardAttributes.KeyboardIdentifier;
keyboardId->Type = 3;
deviceExtension->KeyboardAttributes.NumberOfFunctionKeys =
KeyboardTypeInformation[keyboardId->Type - 1].NumberOfFunctionKeys;
deviceExtension->KeyboardAttributes.NumberOfIndicators =
KeyboardTypeInformation[keyboardId->Type - 1].NumberOfIndicators;
deviceExtension->KeyboardAttributes.NumberOfKeysTotal =
KeyboardTypeInformation[keyboardId->Type - 1].NumberOfKeysTotal;
status = STATUS_SUCCESS;
}
}
#endif
#if defined(FE_SB)
if (IBM02_KEYBOARD(*id)) {
//
// IBM-J 5576-002 Keyboard should set local scan code set for
// supplied NLS key.
//
status = I8xPutBytePolled(
(CCHAR) DataPort,
WAIT_FOR_ACKNOWLEDGE,
(CCHAR) KeyboardDeviceType,
(UCHAR) SELECT_SCAN_CODE_SET
);
if (status != STATUS_SUCCESS) {
Print(DBG_SS_ERROR,
("I8xInitializeKeyboard: could not send Select Scan command\n"
));
Print(DBG_SS_ERROR,
("I8xInitializeKeyboard: WARNING - using scan set 82h\n"
));
deviceExtension->KeyboardAttributes.KeyboardMode = 3;
} else {
//
// Send the associated parameter byte.
//
status = I8xPutBytePolled(
(CCHAR) DataPort,
WAIT_FOR_ACKNOWLEDGE,
(CCHAR) KeyboardDeviceType,
(UCHAR) 0x82
);
if (status != STATUS_SUCCESS) {
Print(DBG_SS_ERROR,
("I8xInitializeKeyboard: could not send Select Scan param\n"
));
Print(DBG_SS_ERROR,
("I8xInitializeKeyboard: WARNING - using scan set 82h\n"
));
deviceExtension->KeyboardAttributes.KeyboardMode = 3;
}
}
}
#endif // FE_SB
if (deviceExtension->InitializationHookCallback) {
(*deviceExtension->InitializationHookCallback) (
deviceExtension->HookContext,
(PVOID) deviceObject,
(PI8042_SYNCH_READ_PORT) I8xKeyboardSynchReadPort,
(PI8042_SYNCH_WRITE_PORT) I8xKeyboardSynchWritePort,
&translationOn
);
}
if (deviceExtension->KeyboardAttributes.KeyboardMode == 1 &&
translationOn) {
//
// Turn translate back on. The keyboard should, by default, send
// scan code set 2. When the translate bit in the 8042 command byte
// is on, the 8042 translates the scan code set 2 bytes to scan code
// set 1 before sending them to the CPU. Scan code set 1 is
// the industry standard scan code set.
//
// N.B. It does not appear to be possible to change the translate
// bit on some models of PS/2.
//
transmitCCBContext.HardwareDisableEnableMask = 0;
transmitCCBContext.AndOperation = OR_OPERATION;
transmitCCBContext.ByteMask = (UCHAR) CCB_KEYBOARD_TRANSLATE_MODE;
I8xTransmitControllerCommand(
(PVOID) &transmitCCBContext
);
if (!NT_SUCCESS(transmitCCBContext.Status)) {
SET_KB_INIT_FAILURE(KB_INIT_FAILED_XLATE_ON);
Print(DBG_SS_ERROR,
("I8xInitializeKeyboard: couldn't turn on translate\n"
));
if (transmitCCBContext.Status == STATUS_DEVICE_DATA_ERROR) {
//
// Could not turn translate back on. This happens on some
// PS/2 machines. In this case, select scan code set 1
// for the keyboard, since the 8042 will not do the
// translation from the scan code set 2, which is what the
// KEYBOARD_RESET caused the keyboard to default to.
//
if (ENHANCED_KEYBOARD(*id)) {
status = I8xPutBytePolled(
(CCHAR) DataPort,
WAIT_FOR_ACKNOWLEDGE,
(CCHAR) KeyboardDeviceType,
(UCHAR) SELECT_SCAN_CODE_SET
);
if (!NT_SUCCESS(status)) {
SET_KB_INIT_FAILURE(KB_INIT_FAILED_SELECT_SS);
Print(DBG_SS_ERROR,
("I8xInitializeKeyboard: could not send Select Scan command\n"
));
Print(DBG_SS_ERROR,
("I8xInitializeKeyboard: WARNING - using scan set 2\n"
));
deviceExtension->KeyboardAttributes.KeyboardMode = 2;
//
// Log an error.
//
dumpData[0] = KBDMOU_COULD_NOT_SEND_COMMAND;
dumpData[1] = DataPort;
dumpData[2] = SELECT_SCAN_CODE_SET;
I8xLogError(
deviceObject,
I8042_SELECT_SCANSET_FAILED,
I8042_ERROR_VALUE_BASE + 555,
status,
dumpData,
3
);
} else {
//
// Send the associated parameter byte.
//
status = I8xPutBytePolled(
(CCHAR) DataPort,
WAIT_FOR_ACKNOWLEDGE,
(CCHAR) KeyboardDeviceType,
#ifdef FE_SB // I8xInitializeKeyboard()
(UCHAR) (IBM02_KEYBOARD(*id) ? 0x81 : 1 )
#else
(UCHAR) 1
#endif // FE_SB
);
if (!NT_SUCCESS(status)) {
SET_KB_INIT_FAILURE(KB_INIT_FAILED_SELECT_SS_PARAM);
Print(DBG_SS_ERROR,
("I8xInitializeKeyboard: could not send Select Scan param\n"
));
Print(DBG_SS_ERROR,
("I8xInitializeKeyboard: WARNING - using scan set 2\n"
));
deviceExtension->KeyboardAttributes.KeyboardMode = 2;
//
// Log an error.
//
dumpData[0] = KBDMOU_COULD_NOT_SEND_PARAM;
dumpData[1] = DataPort;
dumpData[2] = SELECT_SCAN_CODE_SET;
dumpData[3] = 1;
I8xLogError(
deviceObject,
I8042_SELECT_SCANSET_FAILED,
I8042_ERROR_VALUE_BASE + 560,
status,
dumpData,
4
);
}
}
}
} else {
status = transmitCCBContext.Status;
goto I8xInitializeKeyboardExit;
}
}
}
I8xInitializeKeyboardExit:
//
// If all 3 of these have failed, then we have a device that was reported
// present but is not plugged in. This usually happens on either an ACPI
// enabled machine (where it always reports the PS/2 kbd and mouse present)
// or on a machine which has legacy HID support (where the reported PS/2
// device(s) are really USB HID).
//
// If this is the case, then we will succeed the start and hide the device
// in the UI
//
if (failedReset && failedTypematic && failedLeds) {
if (KeyboardExtension->FailedReset == FAILED_RESET_PROCEED) {
OBJECT_ATTRIBUTES oa;
UNICODE_STRING string;
HANDLE hService, hParameters;
InitializeObjectAttributes(&oa,
&Globals.RegistryPath,
OBJ_CASE_INSENSITIVE,
NULL,
(PSECURITY_DESCRIPTOR) NULL);
if (NT_SUCCESS(ZwOpenKey(&hService, KEY_ALL_ACCESS, &oa))) {
RtlInitUnicodeString(&string, L"Parameters");
InitializeObjectAttributes(&oa,
&string,
OBJ_CASE_INSENSITIVE,
hService,
(PSECURITY_DESCRIPTOR) NULL);
if (NT_SUCCESS(ZwOpenKey(&hParameters, KEY_ALL_ACCESS, &oa))) {
ULONG tmp;
RtlInitUnicodeString (&string, STR_FAILED_RESET);
tmp = FAILED_RESET_STOP;
Print(DBG_SS_INFO | DBG_SS_ERROR,
("Future failed kbd resets will stop init\n"));
ZwSetValueKey(hParameters,
&string,
0,
REG_DWORD,
&tmp,
sizeof(tmp));
ZwClose(hParameters);
}
ZwClose(hService);
}
}
Print(DBG_SS_INFO,
("kb, all 3 sets failed, assuming a phantom keyboard\n"));
status = STATUS_DEVICE_NOT_CONNECTED;
// errorCode = I8042_NO_KBD_DEVICE;
SET_HW_FLAGS(PHANTOM_KEYBOARD_HARDWARE_REPORTED);
if (Globals.ReportResetErrors) {
I8xLogError(deviceObject,
I8042_NO_KBD_DEVICE,
0,
status,
NULL,
0
);
}
}
else {
if (failedReset) {
Print(DBG_SS_ERROR,
("I8xInitializeKeyboard: failed keyboard reset, status 0x%x\n",
status
));
if (Globals.ReportResetErrors) {
dumpData[0] = KBDMOU_COULD_NOT_SEND_COMMAND;
dumpData[1] = DataPort;
dumpData[2] = KEYBOARD_RESET;
I8xLogError(deviceObject,
I8042_KBD_RESET_COMMAND_FAILED,
I8042_ERROR_VALUE_BASE + 510,
failedResetStatus,
dumpData,
3
);
}
}
if (failedResetResponse2) {
Print(DBG_SS_ERROR,
("I8xInitializeKeyboard, failed reset response, status 0x%x, byte 0x%x\n",
status,
byte
));
//
// Log a warning.
//
dumpData[0] = KBDMOU_INCORRECT_RESPONSE;
dumpData[1] = KeyboardDeviceType;
dumpData[2] = KEYBOARD_COMPLETE_SUCCESS;
dumpData[3] = failedResetResponse2;
I8xLogError(
deviceObject,
I8042_KBD_RESET_RESPONSE_FAILED,
I8042_ERROR_VALUE_BASE + 520,
failedResetResponseStatus2,
dumpData,
4
);
}
else if (failedResetResponse) {
Print(DBG_SS_ERROR,
("kb failed reset response\n")
);
//
// Log a warning.
//
dumpData[0] = KBDMOU_INCORRECT_RESPONSE;
dumpData[1] = KeyboardDeviceType;
dumpData[2] = KEYBOARD_COMPLETE_SUCCESS;
dumpData[3] = failedResetResponseByte;
I8xLogError(
deviceObject,
I8042_KBD_RESET_RESPONSE_FAILED,
I8042_ERROR_VALUE_BASE + 515,
failedResetResponseStatus,
dumpData,
4
);
}
if (failedTypematic) {
Print(DBG_SS_ERROR,
("I8xInitializeKeyboard: could not send SET TYPEMATIC cmd\n"
));
//
// Log an error.
//
dumpData[0] = KBDMOU_COULD_NOT_SEND_COMMAND;
dumpData[1] = DataPort;
dumpData[2] = SET_KEYBOARD_TYPEMATIC;
I8xLogError(
deviceObject,
I8042_SET_TYPEMATIC_FAILED,
I8042_ERROR_VALUE_BASE + 535,
failedTypematicStatus,
dumpData,
3
);
}
if (failedLeds) {
Print(DBG_SS_ERROR,
("I8xInitializeKeyboard: could not send SET LEDS cmd\n"
));
//
// Log an error.
//
dumpData[0] = KBDMOU_COULD_NOT_SEND_COMMAND;
dumpData[1] = DataPort;
dumpData[2] = SET_KEYBOARD_INDICATORS;
I8xLogError(
deviceObject,
I8042_SET_LED_FAILED,
I8042_ERROR_VALUE_BASE + 545,
failedLedsStatus,
dumpData,
3
);
}
}
if (DEVICE_START_SUCCESS(status)) {
SET_HW_FLAGS(KEYBOARD_HARDWARE_PRESENT |
KEYBOARD_HARDWARE_INITIALIZED);
}
else {
CLEAR_KEYBOARD_PRESENT();
}
//
// Initialize current keyboard set packet state.
//
deviceExtension->CurrentOutput.State = Idle;
deviceExtension->CurrentOutput.Bytes = NULL;
deviceExtension->CurrentOutput.ByteCount = 0;
Print(DBG_SS_TRACE, ("I8xInitializeKeyboard (0x%x)\n", status));
return status;
}
NTSTATUS
I8xKeyboardConfiguration(
IN PPORT_KEYBOARD_EXTENSION KeyboardExtension,
IN PCM_RESOURCE_LIST ResourceList
)
/*++
Routine Description:
This routine retrieves the configuration information for the keyboard.
Arguments:
KeyboardExtension - Keyboard extension
ResourceList - Translated resource list give to us via the start IRP
Return Value:
STATUS_SUCCESS if all the resources required are presented
--*/
{
NTSTATUS status = STATUS_SUCCESS;
PCM_PARTIAL_RESOURCE_LIST partialResList = NULL;
PCM_PARTIAL_RESOURCE_DESCRIPTOR firstResDesc = NULL,
currentResDesc = NULL;
PCM_FULL_RESOURCE_DESCRIPTOR fullResDesc = NULL;
PI8042_CONFIGURATION_INFORMATION configuration;
PKEYBOARD_ID keyboardId;
ULONG count,
i;
KINTERRUPT_MODE defaultInterruptMode;
BOOLEAN defaultInterruptShare;
PAGED_CODE();
if (!ResourceList) {
Print(DBG_SS_INFO | DBG_SS_ERROR, ("keyboard with null resources\n"));
return STATUS_INSUFFICIENT_RESOURCES;
}
fullResDesc = ResourceList->List;
if (!fullResDesc) {
//
// this should never happen
//
ASSERT(fullResDesc != NULL);
return STATUS_INSUFFICIENT_RESOURCES;
}
configuration = &Globals.ControllerData->Configuration;
partialResList = &fullResDesc->PartialResourceList;
currentResDesc = firstResDesc = partialResList->PartialDescriptors;
count = partialResList->Count;
configuration->FloatingSave = I8042_FLOATING_SAVE;
configuration->BusNumber = fullResDesc->BusNumber;
configuration->InterfaceType = fullResDesc->InterfaceType;
if (configuration->InterfaceType == MicroChannel) {
defaultInterruptShare = TRUE;
defaultInterruptMode = LevelSensitive;
}
else {
defaultInterruptShare = I8042_INTERRUPT_SHARE;
defaultInterruptMode = I8042_INTERRUPT_MODE;
}
for (i = 0; i < count; i++, currentResDesc++) {
switch (currentResDesc->Type) {
case CmResourceTypeMemory:
Globals.RegistersMapped = TRUE;
case CmResourceTypePort:
//
// Copy the port information. We will sort the port list
// into ascending order based on the starting port address
// later (note that we *know* there are a max of two port
// ranges for the i8042).
//
#if 0
if (currentResDesc->Flags == CM_RESOURCE_PORT_MEMORY) {
Globals.RegistersMapped = TRUE;
}
#endif
Print(DBG_SS_NOISE,
("port is %s.\n",
Globals.RegistersMapped ? "memory" : "io"));
if (configuration->PortListCount < MaximumPortCount) {
configuration->PortList[configuration->PortListCount] =
*currentResDesc;
configuration->PortList[configuration->PortListCount].ShareDisposition =
I8042_REGISTER_SHARE ? CmResourceShareShared:
CmResourceShareDriverExclusive;
configuration->PortListCount += 1;
}
else {
Print(DBG_SS_INFO | DBG_SS_ERROR,
("KB::PortListCount already at max (%d)\n",
configuration->PortListCount
)
);
}
break;
case CmResourceTypeInterrupt:
//
// Copy the interrupt information.
//
KeyboardExtension->InterruptDescriptor = *currentResDesc;
KeyboardExtension->InterruptDescriptor.ShareDisposition =
defaultInterruptShare ? CmResourceShareShared :
CmResourceShareDeviceExclusive;
break;
default:
Print(DBG_ALWAYS,
("resource type 0x%x unhandled...\n",
(LONG) currentResDesc->Type
));
break;
}
}
if (KeyboardExtension->InterruptDescriptor.Type & CmResourceTypeInterrupt) {
Print(DBG_SS_INFO,
("Keyboard interrupt config --\n"
" %s, %s, Irq = 0x%x\n",
KeyboardExtension->InterruptDescriptor.ShareDisposition ==
CmResourceShareShared ? "Sharable" : "NonSharable",
KeyboardExtension->InterruptDescriptor.Flags ==
CM_RESOURCE_INTERRUPT_LATCHED ? "Latched" : "Level Sensitive",
KeyboardExtension->InterruptDescriptor.u.Interrupt.Vector
));
}
//
// If no keyboard-specific information (i.e., keyboard type, subtype,
// and initial LED settings) was found, use the keyboard driver
// defaults.
//
if (KeyboardExtension->KeyboardAttributes.KeyboardIdentifier.Type == 0) {
Print(DBG_SS_INFO, ("Using default keyboard type\n"));
KeyboardExtension->KeyboardAttributes.KeyboardIdentifier.Type =
KEYBOARD_TYPE_DEFAULT;
KeyboardExtension->KeyboardIndicators.LedFlags =
KEYBOARD_INDICATORS_DEFAULT;
KeyboardExtension->KeyboardIdentifierEx.Type = KEYBOARD_TYPE_DEFAULT;
}
Print(DBG_SS_INFO,
("Keyboard device specific data --\n"
" Type = %d, Subtype = %d, Initial LEDs = 0x%x\n",
KeyboardExtension->KeyboardAttributes.KeyboardIdentifier.Type,
KeyboardExtension->KeyboardAttributes.KeyboardIdentifier.Subtype,
KeyboardExtension->KeyboardIndicators.LedFlags
));
keyboardId = &KeyboardExtension->KeyboardAttributes.KeyboardIdentifier;
if (!ENHANCED_KEYBOARD(*keyboardId)) {
Print(DBG_SS_INFO, ("Old AT-style keyboard\n"));
configuration->PollingIterations =
configuration->PollingIterationsMaximum;
}
//
// Initialize keyboard-specific configuration parameters.
//
if (FAREAST_KEYBOARD(*keyboardId)) {
ULONG iIndex = 0;
PKEYBOARD_TYPE_INFORMATION pKeyboardTypeInformation = NULL;
while (KeyboardFarEastOemInformation[iIndex].KeyboardId.Type) {
if ((KeyboardFarEastOemInformation[iIndex].KeyboardId.Type
== keyboardId->Type) &&
(KeyboardFarEastOemInformation[iIndex].KeyboardId.Subtype
== keyboardId->Subtype)) {
pKeyboardTypeInformation = (PKEYBOARD_TYPE_INFORMATION)
&(KeyboardFarEastOemInformation[iIndex].KeyboardTypeInformation);
break;
}
iIndex++;
}
if (pKeyboardTypeInformation == NULL) {
//
// Set default...
//
pKeyboardTypeInformation = (PKEYBOARD_TYPE_INFORMATION)
&(KeyboardTypeInformation[KEYBOARD_TYPE_DEFAULT-1]);
}
KeyboardExtension->KeyboardAttributes.NumberOfFunctionKeys =
pKeyboardTypeInformation->NumberOfFunctionKeys;
KeyboardExtension->KeyboardAttributes.NumberOfIndicators =
pKeyboardTypeInformation->NumberOfIndicators;
KeyboardExtension->KeyboardAttributes.NumberOfKeysTotal =
pKeyboardTypeInformation->NumberOfKeysTotal;
}
else {
KeyboardExtension->KeyboardAttributes.NumberOfFunctionKeys =
KeyboardTypeInformation[keyboardId->Type - 1].NumberOfFunctionKeys;
KeyboardExtension->KeyboardAttributes.NumberOfIndicators =
KeyboardTypeInformation[keyboardId->Type - 1].NumberOfIndicators;
KeyboardExtension->KeyboardAttributes.NumberOfKeysTotal =
KeyboardTypeInformation[keyboardId->Type - 1].NumberOfKeysTotal;
}
KeyboardExtension->KeyboardAttributes.KeyboardMode =
KEYBOARD_SCAN_CODE_SET;
KeyboardExtension->KeyboardAttributes.KeyRepeatMinimum.Rate =
KEYBOARD_TYPEMATIC_RATE_MINIMUM;
KeyboardExtension->KeyboardAttributes.KeyRepeatMinimum.Delay =
KEYBOARD_TYPEMATIC_DELAY_MINIMUM;
KeyboardExtension->KeyboardAttributes.KeyRepeatMaximum.Rate =
KEYBOARD_TYPEMATIC_RATE_MAXIMUM;
KeyboardExtension->KeyboardAttributes.KeyRepeatMaximum.Delay =
KEYBOARD_TYPEMATIC_DELAY_MAXIMUM;
KeyboardExtension->KeyRepeatCurrent.Rate =
KEYBOARD_TYPEMATIC_RATE_DEFAULT;
KeyboardExtension->KeyRepeatCurrent.Delay =
KEYBOARD_TYPEMATIC_DELAY_DEFAULT;
return status;
}
#if defined(_X86_)
ULONG
I8042ConversionStatusForOasys(
IN ULONG fOpen,
IN ULONG ConvStatus)
/*++
Routine Description:
This routine convert ime open/close status and ime converion mode to
FMV oyayubi-shift keyboard device internal input mode.
Arguments:
Return Value:
FMV oyayubi-shift keyboard's internal input mode.
--*/
{
ULONG ImeMode = 0;
if (fOpen) {
if (ConvStatus & IME_CMODE_ROMAN) {
if (ConvStatus & IME_CMODE_ALPHANUMERIC) {
//
// Alphanumeric, roman mode.
//
ImeMode = THUMB_ROMAN_ALPHA_CAPSON;
} else if (ConvStatus & IME_CMODE_KATAKANA) {
//
// Katakana, roman mode.
//
ImeMode = THUMB_ROMAN_KATAKANA;
} else if (ConvStatus & IME_CMODE_NATIVE) {
//
// Hiragana, roman mode.
//
ImeMode = THUMB_ROMAN_HIRAGANA;
} else {
ImeMode = THUMB_ROMAN_ALPHA_CAPSON;
}
} else {
if (ConvStatus & IME_CMODE_ALPHANUMERIC) {
//
// Alphanumeric, no-roman mode.
//
ImeMode = THUMB_NOROMAN_ALPHA_CAPSON;
} else if (ConvStatus & IME_CMODE_KATAKANA) {
//
// Katakana, no-roman mode.
//
ImeMode = THUMB_NOROMAN_KATAKANA;
} else if (ConvStatus & IME_CMODE_NATIVE) {
//
// Hiragana, no-roman mode.
//
ImeMode = THUMB_NOROMAN_HIRAGANA;
} else {
ImeMode = THUMB_NOROMAN_ALPHA_CAPSON;
}
}
} else {
//
// Ime close. In this case, internal mode is always this value.
// (the both LED off roman and kana)
//
ImeMode = THUMB_NOROMAN_ALPHA_CAPSON;
}
return ImeMode;
}
ULONG
I8042QueryIMEStatusForOasys(
IN PKEYBOARD_IME_STATUS KeyboardIMEStatus
)
{
ULONG InternalMode;
//
// Map to IME mode to hardware mode.
//
InternalMode = I8042ConversionStatusForOasys(
KeyboardIMEStatus->ImeOpen,
KeyboardIMEStatus->ImeConvMode
);
return InternalMode;
}
NTSTATUS
I8042SetIMEStatusForOasys(
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp,
IN OUT PINITIATE_OUTPUT_CONTEXT InitiateContext
)
{
PKEYBOARD_IME_STATUS KeyboardIMEStatus;
PPORT_KEYBOARD_EXTENSION kbExtension;
ULONG InternalMode;
LARGE_INTEGER deltaTime;
kbExtension = DeviceObject->DeviceExtension;
//
// Get pointer to KEYBOARD_IME_STATUS buffer.
//
KeyboardIMEStatus = (PKEYBOARD_IME_STATUS)(Irp->AssociatedIrp.SystemBuffer);
//
// Map IME mode to keyboard hardware mode.
//
InternalMode = I8042QueryIMEStatusForOasys(KeyboardIMEStatus);
//
// Set up the context structure for the InitiateIo wrapper.
//
InitiateContext->Bytes = Globals.ControllerData->DefaultBuffer;
InitiateContext->DeviceObject = DeviceObject;
InitiateContext->ByteCount = 3;
InitiateContext->Bytes[0] = 0xF0;
InitiateContext->Bytes[1] = 0x8C;
InitiateContext->Bytes[2] = (UCHAR)InternalMode;
return (STATUS_SUCCESS);
}
#endif // defined(_X86_)
VOID
I8xQueueCurrentKeyboardInput(
IN PDEVICE_OBJECT DeviceObject
)
/*++
Routine Description:
This routine queues the current input data to be processed by a
DPC outside the ISR
Arguments:
DeviceObject - Pointer to the device object
Return Value:
None
--*/
{
PPORT_KEYBOARD_EXTENSION deviceExtension;
deviceExtension = DeviceObject->DeviceExtension;
if (deviceExtension->EnableCount) {
if (!I8xWriteDataToKeyboardQueue(
deviceExtension,
&deviceExtension->CurrentInput
)) {
//
// The InputData queue overflowed. There is
// not much that can be done about it, so just
// continue (but don't queue the ISR DPC, since
// no new packets were added to the queue).
//
// Queue a DPC to log an overrun error.
//
IsrPrint(DBG_KBISR_ERROR, ("queue overflow\n"));
if (deviceExtension->OkayToLogOverflow) {
KeInsertQueueDpc(
&deviceExtension->ErrorLogDpc,
(PIRP) NULL,
LongToPtr(I8042_KBD_BUFFER_OVERFLOW)
);
deviceExtension->OkayToLogOverflow = FALSE;
}
} else if (deviceExtension->DpcInterlockKeyboard >= 0) {
//
// The ISR DPC is already executing. Tell the ISR DPC
// it has more work to do by incrementing
// DpcInterlockKeyboard.
//
deviceExtension->DpcInterlockKeyboard += 1;
} else {
//
// Queue the ISR DPC.
//
KeInsertQueueDpc(
&deviceExtension->KeyboardIsrDpc,
DeviceObject->CurrentIrp,
NULL
);
}
}
//
// Reset the input state.
//
deviceExtension->CurrentInput.Flags = 0;
}
VOID
I8xServiceCrashDump(
IN PPORT_KEYBOARD_EXTENSION DeviceExtension,
IN PUNICODE_STRING RegistryPath
)
/*++
Routine Description:
This routine retrieves this driver's service parameters information
from the registry.
Arguments:
DeviceExtension - Pointer to the device extension.
RegistryPath - Pointer to the null-terminated Unicode name of the
registry path for this driver.
Return Value:
None. As a side-effect, sets fields in DeviceExtension->Dump1Keys
& DeviceExtension->Dump2Key.
--*/
{
PRTL_QUERY_REGISTRY_TABLE parameters = NULL;
UNICODE_STRING parametersPath;
LONG defaultCrashFlags = 0;
LONG crashFlags;
LONG defaultKeyNumber = 0;
LONG keyNumber;
NTSTATUS status = STATUS_SUCCESS;
PWSTR path = NULL;
USHORT queriesPlusOne = 3;
const UCHAR keyToScanTbl[134] = {
0x00,0x29,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,
0x0A,0x0B,0x0C,0x0D,0x7D,0x0E,0x0F,0x10,0x11,0x12,
0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1A,0x1B,0x00,
0x3A,0x1E,0x1F,0x20,0x21,0x22,0x23,0x24,0x25,0x26,
0x27,0x28,0x2B,0x1C,0x2A,0x00,0x2C,0x2D,0x2E,0x2F,
0x30,0x31,0x32,0x33,0x34,0x35,0x73,0x36,0x1D,0x00,
0x38,0x39,0xB8,0x00,0x9D,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0xD2,0xD3,0x00,0x00,0xCB,
0xC7,0xCF,0x00,0xC8,0xD0,0xC9,0xD1,0x00,0x00,0xCD,
0x45,0x47,0x4B,0x4F,0x00,0xB5,0x48,0x4C,0x50,0x52,
0x37,0x49,0x4D,0x51,0x53,0x4A,0x4E,0x00,0x9C,0x00,
0x01,0x00,0x3B,0x3C,0x3D,0x3E,0x3F,0x40,0x41,0x42,
0x43,0x44,0x57,0x58,0x00,0x46,0x00,0x00,0x00,0x00,
0x00,0x7B,0x79,0x70 };
PAGED_CODE();
parametersPath.Buffer = NULL;
//
// Registry path is already null-terminated, so just use it.
//
path = RegistryPath->Buffer;
if (NT_SUCCESS(status)) {
//
// Allocate the Rtl query table.
//
parameters = ExAllocatePool(
PagedPool,
sizeof(RTL_QUERY_REGISTRY_TABLE) * queriesPlusOne
);
if (!parameters) {
Print(DBG_SS_ERROR,
("I8xServiceCrashDump: Couldn't allocate table for Rtl query to parameters for %ws\n",
path
));
status = STATUS_UNSUCCESSFUL;
} else {
RtlZeroMemory(
parameters,
sizeof(RTL_QUERY_REGISTRY_TABLE) * queriesPlusOne
);
//
// Form a path to this driver's Parameters subkey.
//
RtlInitUnicodeString(
&parametersPath,
NULL
);
parametersPath.MaximumLength = RegistryPath->Length +
sizeof(L"\\Crashdump");
parametersPath.Buffer = ExAllocatePool(
PagedPool,
parametersPath.MaximumLength
);
if (!parametersPath.Buffer) {
Print(DBG_SS_ERROR,
("I8xServiceCrashDump: Couldn't allocate string for path to parameters for %ws\n",
path
));
status = STATUS_UNSUCCESSFUL;
}
}
}
if (NT_SUCCESS(status)) {
//
// Form the parameters path.
//
RtlZeroMemory(
parametersPath.Buffer,
parametersPath.MaximumLength
);
RtlAppendUnicodeToString(
&parametersPath,
path
);
RtlAppendUnicodeToString(
&parametersPath,
L"\\Crashdump"
);
Print(DBG_SS_INFO,
("I8xServiceCrashDump: crashdump path is %ws\n",
parametersPath.Buffer
));
//
// Gather all of the "user specified" information from
// the registry.
//
parameters[0].Flags = RTL_QUERY_REGISTRY_DIRECT;
parameters[0].Name = L"Dump1Keys";
parameters[0].EntryContext = &crashFlags;
parameters[0].DefaultType = REG_DWORD;
parameters[0].DefaultData = &defaultCrashFlags;
parameters[0].DefaultLength = sizeof(LONG);
parameters[1].Flags = RTL_QUERY_REGISTRY_DIRECT;
parameters[1].Name = L"Dump2Key";
parameters[1].EntryContext = &keyNumber;
parameters[1].DefaultType = REG_DWORD;
parameters[1].DefaultData = &defaultKeyNumber;
parameters[1].DefaultLength = sizeof(LONG);
status = RtlQueryRegistryValues(
RTL_REGISTRY_ABSOLUTE | RTL_REGISTRY_OPTIONAL,
parametersPath.Buffer,
parameters,
NULL,
NULL
);
}
if (!NT_SUCCESS(status)) {
//
// Go ahead and assign driver defaults.
//
DeviceExtension->CrashFlags = defaultCrashFlags;
}
else {
DeviceExtension->CrashFlags = crashFlags;
}
if (DeviceExtension->CrashFlags) {
if (keyNumber == 124) {
DeviceExtension->CrashScanCode = KEYBOARD_DEBUG_HOTKEY_ENH | 0x80;
DeviceExtension->CrashScanCode2 = KEYBOARD_DEBUG_HOTKEY_AT;
}
else {
if(keyNumber <= 133) {
DeviceExtension->CrashScanCode = keyToScanTbl[keyNumber];
}
else {
DeviceExtension->CrashScanCode = 0;
}
DeviceExtension->CrashScanCode2 = 0;
}
}
Print(DBG_SS_NOISE,
("I8xServiceCrashDump: CrashFlags = 0x%x\n",
DeviceExtension->CrashFlags
));
Print(DBG_SS_NOISE,
("I8xServiceCrashDump: CrashScanCode = 0x%x, CrashScanCode2 = 0x%x\n",
(ULONG) DeviceExtension->CrashScanCode,
(ULONG) DeviceExtension->CrashScanCode2
));
//
// Free the allocated memory before returning.
//
if (parametersPath.Buffer)
ExFreePool(parametersPath.Buffer);
if (parameters)
ExFreePool(parameters);
}
VOID
I8xKeyboardServiceParameters(
IN PUNICODE_STRING RegistryPath,
IN PPORT_KEYBOARD_EXTENSION KeyboardExtension
)
/*++
Routine Description:
This routine retrieves this driver's service parameters information
from the registry. Overrides these values if they are present in the
devnode.
Arguments:
RegistryPath - Pointer to the null-terminated Unicode name of the
registry path for this driver.
KeyboardExtension - Keyboard extension
Return Value:
None.
--*/
{
NTSTATUS status = STATUS_SUCCESS;
PI8042_CONFIGURATION_INFORMATION configuration;
PRTL_QUERY_REGISTRY_TABLE parameters = NULL;
PWSTR path = NULL;
ULONG defaultDataQueueSize = DATA_QUEUE_SIZE;
ULONG invalidKeyboardSubtype = (ULONG) -1;
ULONG invalidKeyboardType = 0;
ULONG overrideKeyboardSubtype = (ULONG) -1;
ULONG overrideKeyboardType = 0;
ULONG pollStatusIterations = 0;
ULONG defaultPowerCaps = 0x0, powerCaps = 0x0;
ULONG failedReset = FAILED_RESET_DEFAULT,
defaultFailedReset = FAILED_RESET_DEFAULT;
ULONG i = 0;
UNICODE_STRING parametersPath;
HANDLE keyHandle;
ULONG defaultPollStatusIterations = I8042_POLLING_DEFAULT;
ULONG crashOnCtrlScroll = 0,
defaultCrashOnCtrlScroll = 0;
USHORT queries = 8;
PAGED_CODE();
#if I8042_VERBOSE
queries += 2;
#endif
configuration = &(Globals.ControllerData->Configuration);
parametersPath.Buffer = NULL;
//
// Registry path is already null-terminated, so just use it.
//
path = RegistryPath->Buffer;
if (NT_SUCCESS(status)) {
//
// Allocate the Rtl query table.
//
parameters = ExAllocatePool(
PagedPool,
sizeof(RTL_QUERY_REGISTRY_TABLE) * (queries + 1)
);
if (!parameters) {
Print(DBG_SS_ERROR,
("%s: couldn't allocate table for Rtl query to %ws for %ws\n",
pFncServiceParameters,
pwParameters,
path
));
status = STATUS_UNSUCCESSFUL;
} else {
RtlZeroMemory(
parameters,
sizeof(RTL_QUERY_REGISTRY_TABLE) * (queries + 1)
);
//
// Form a path to this driver's Parameters subkey.
//
RtlInitUnicodeString( &parametersPath, NULL );
parametersPath.MaximumLength = RegistryPath->Length +
(wcslen(pwParameters) * sizeof(WCHAR) ) + sizeof(UNICODE_NULL);
parametersPath.Buffer = ExAllocatePool(
PagedPool,
parametersPath.MaximumLength
);
if (!parametersPath.Buffer) {
Print(DBG_SS_ERROR,
("%s: Couldn't allocate string for path to %ws for %ws\n",
pFncServiceParameters,
pwParameters,
path
));
status = STATUS_UNSUCCESSFUL;
}
}
}
if (NT_SUCCESS(status)) {
//
// Form the parameters path.
//
RtlZeroMemory(
parametersPath.Buffer,
parametersPath.MaximumLength
);
RtlAppendUnicodeToString(
&parametersPath,
path
);
RtlAppendUnicodeToString(
&parametersPath,
pwParameters
);
//
// Gather all of the "user specified" information from
// the registry.
//
parameters[i].Flags = RTL_QUERY_REGISTRY_DIRECT;
parameters[i].Name = pwKeyboardDataQueueSize;
parameters[i].EntryContext =
&KeyboardExtension->KeyboardAttributes.InputDataQueueLength;
parameters[i].DefaultType = REG_DWORD;
parameters[i].DefaultData = &defaultDataQueueSize;
parameters[i].DefaultLength = sizeof(ULONG);
parameters[++i].Flags = RTL_QUERY_REGISTRY_DIRECT;
parameters[i].Name = pwOverrideKeyboardType;
parameters[i].EntryContext = &overrideKeyboardType;
parameters[i].DefaultType = REG_DWORD;
parameters[i].DefaultData = &invalidKeyboardType;
parameters[i].DefaultLength = sizeof(ULONG);
parameters[++i].Flags = RTL_QUERY_REGISTRY_DIRECT;
parameters[i].Name = pwOverrideKeyboardSubtype;
parameters[i].EntryContext = &overrideKeyboardSubtype;
parameters[i].DefaultType = REG_DWORD;
parameters[i].DefaultData = &invalidKeyboardSubtype;
parameters[i].DefaultLength = sizeof(ULONG);
parameters[++i].Flags = RTL_QUERY_REGISTRY_DIRECT;
parameters[i].Name = pwPollStatusIterations;
parameters[i].EntryContext = &pollStatusIterations;
parameters[i].DefaultType = REG_DWORD;
parameters[i].DefaultData = &defaultPollStatusIterations;
parameters[i].DefaultLength = sizeof(ULONG);
parameters[++i].Flags = RTL_QUERY_REGISTRY_DIRECT;
parameters[i].Name = pwPowerCaps;
parameters[i].EntryContext = &powerCaps;
parameters[i].DefaultType = REG_DWORD;
parameters[i].DefaultData = &defaultPowerCaps;
parameters[i].DefaultLength = sizeof(ULONG);
parameters[++i].Flags = RTL_QUERY_REGISTRY_DIRECT;
parameters[i].Name = L"CrashOnCtrlScroll";
parameters[i].EntryContext = &crashOnCtrlScroll;
parameters[i].DefaultType = REG_DWORD;
parameters[i].DefaultData = &defaultCrashOnCtrlScroll;
parameters[i].DefaultLength = sizeof(ULONG);
parameters[++i].Flags = RTL_QUERY_REGISTRY_DIRECT;
parameters[i].Name = STR_FAILED_RESET;
parameters[i].EntryContext = &failedReset;
parameters[i].DefaultType = REG_DWORD;
parameters[i].DefaultData = &defaultFailedReset;
parameters[i].DefaultLength = sizeof(ULONG);
status = RtlQueryRegistryValues(
RTL_REGISTRY_ABSOLUTE | RTL_REGISTRY_OPTIONAL,
parametersPath.Buffer,
parameters,
NULL,
NULL
);
if (!NT_SUCCESS(status)) {
Print(DBG_SS_INFO,
("kb RtlQueryRegistryValues failed (0x%x)\n",
status
));
}
}
if (!NT_SUCCESS(status)) {
//
// Go ahead and assign driver defaults.
//
configuration->PollStatusIterations = (USHORT)
defaultPollStatusIterations;
KeyboardExtension->KeyboardAttributes.InputDataQueueLength =
defaultDataQueueSize;
}
else {
configuration->PollStatusIterations = (USHORT) pollStatusIterations;
}
switch (failedReset) {
case FAILED_RESET_STOP:
case FAILED_RESET_PROCEED:
case FAILED_RESET_PROCEED_ALWAYS:
KeyboardExtension->FailedReset = (UCHAR) failedReset;
break;
default:
KeyboardExtension->FailedReset = FAILED_RESET_DEFAULT;
break;
}
Print(DBG_SS_NOISE, ("Failed reset is set to %d\n",
KeyboardExtension->FailedReset));
status = IoOpenDeviceRegistryKey(KeyboardExtension->PDO,
PLUGPLAY_REGKEY_DEVICE,
STANDARD_RIGHTS_READ,
&keyHandle
);
if (NT_SUCCESS(status)) {
//
// If the value is not present in devnode, then the default is the value
// read in from the Services\i8042prt\Parameters key
//
ULONG prevInputDataQueueLength,
prevPowerCaps,
prevOverrideKeyboardType,
prevOverrideKeyboardSubtype,
prevPollStatusIterations;
prevInputDataQueueLength =
KeyboardExtension->KeyboardAttributes.InputDataQueueLength;
prevPowerCaps = powerCaps;
prevOverrideKeyboardType = overrideKeyboardType;
prevOverrideKeyboardSubtype = overrideKeyboardSubtype;
prevPollStatusIterations = pollStatusIterations;
RtlZeroMemory(
parameters,
sizeof(RTL_QUERY_REGISTRY_TABLE) * (queries + 1)
);
i = 0;
//
// Gather all of the "user specified" information from
// the registry (this time from the devnode)
//
parameters[i].Flags = RTL_QUERY_REGISTRY_DIRECT;
parameters[i].Name = pwKeyboardDataQueueSize;
parameters[i].EntryContext =
&KeyboardExtension->KeyboardAttributes.InputDataQueueLength;
parameters[i].DefaultType = REG_DWORD;
parameters[i].DefaultData = &prevInputDataQueueLength;
parameters[i].DefaultLength = sizeof(ULONG);
parameters[++i].Flags = RTL_QUERY_REGISTRY_DIRECT;
parameters[i].Name = pwOverrideKeyboardType;
parameters[i].EntryContext = &overrideKeyboardType;
parameters[i].DefaultType = REG_DWORD;
parameters[i].DefaultData = &prevOverrideKeyboardType;
parameters[i].DefaultLength = sizeof(ULONG);
parameters[++i].Flags = RTL_QUERY_REGISTRY_DIRECT;
parameters[i].Name = pwOverrideKeyboardSubtype;
parameters[i].EntryContext = &overrideKeyboardSubtype;
parameters[i].DefaultType = REG_DWORD;
parameters[i].DefaultData = &prevOverrideKeyboardSubtype;
parameters[i].DefaultLength = sizeof(ULONG);
parameters[++i].Flags = RTL_QUERY_REGISTRY_DIRECT;
parameters[i].Name = pwPollStatusIterations;
parameters[i].EntryContext = &pollStatusIterations;
parameters[i].DefaultType = REG_DWORD;
parameters[i].DefaultData = &prevPollStatusIterations;
parameters[i].DefaultLength = sizeof(ULONG);
parameters[++i].Flags = RTL_QUERY_REGISTRY_DIRECT;
parameters[i].Name = pwPowerCaps,
parameters[i].EntryContext = &powerCaps;
parameters[i].DefaultType = REG_DWORD;
parameters[i].DefaultData = &prevPowerCaps;
parameters[i].DefaultLength = sizeof(ULONG);
status = RtlQueryRegistryValues(
RTL_REGISTRY_HANDLE,
(PWSTR) keyHandle,
parameters,
NULL,
NULL
);
if (!NT_SUCCESS(status)) {
Print(DBG_SS_INFO,
("kb RtlQueryRegistryValues (via handle) failed (0x%x)\n",
status
));
}
ZwClose(keyHandle);
}
else {
Print(DBG_SS_INFO | DBG_SS_ERROR,
("kb, opening devnode handle failed (0x%x)\n",
status
));
}
Print(DBG_SS_NOISE, ("I8xKeyboardServiceParameters results..\n"));
Print(DBG_SS_NOISE,
(pDumpDecimal,
pwPollStatusIterations,
configuration->PollStatusIterations
));
if (KeyboardExtension->KeyboardAttributes.InputDataQueueLength == 0) {
Print(DBG_SS_INFO | DBG_SS_ERROR,
("\toverriding %ws = 0x%x\n",
pwKeyboardDataQueueSize,
KeyboardExtension->KeyboardAttributes.InputDataQueueLength
));
KeyboardExtension->KeyboardAttributes.InputDataQueueLength =
defaultDataQueueSize;
}
KeyboardExtension->KeyboardAttributes.InputDataQueueLength *=
sizeof(KEYBOARD_INPUT_DATA);
KeyboardExtension->PowerCaps = (UCHAR) (powerCaps & I8042_SYS_BUTTONS);
Print(DBG_SS_NOISE, (pDumpHex, pwPowerCaps, KeyboardExtension->PowerCaps));
if (overrideKeyboardType != invalidKeyboardType) {
if (overrideKeyboardType <= NUM_KNOWN_KEYBOARD_TYPES) {
Print(DBG_SS_NOISE,
(pDumpDecimal,
pwOverrideKeyboardType,
overrideKeyboardType
));
KeyboardExtension->KeyboardAttributes.KeyboardIdentifier.Type =
(UCHAR) overrideKeyboardType;
} else {
Print(DBG_SS_NOISE,
(pDumpDecimal,
pwOverrideKeyboardType,
overrideKeyboardType
));
}
KeyboardExtension->KeyboardIdentifierEx.Type = overrideKeyboardType;
}
if (overrideKeyboardSubtype != invalidKeyboardSubtype) {
Print(DBG_SS_NOISE,
(pDumpDecimal,
pwOverrideKeyboardSubtype,
overrideKeyboardSubtype
));
KeyboardExtension->KeyboardAttributes.KeyboardIdentifier.Subtype =
(UCHAR) overrideKeyboardSubtype;
KeyboardExtension->KeyboardIdentifierEx.Subtype =
overrideKeyboardSubtype;
}
if (crashOnCtrlScroll) {
Print(DBG_SS_INFO, ("Crashing on Ctrl + Scroll Lock\n"));
KeyboardExtension->CrashFlags = CRASH_R_CTRL;
KeyboardExtension->CrashScanCode = SCROLL_LOCK_SCANCODE;
KeyboardExtension->CrashScanCode2 = 0x0;
}
//
// Free the allocated memory before returning.
//
if (parametersPath.Buffer)
ExFreePool(parametersPath.Buffer);
if (parameters)
ExFreePool(parameters);
}