Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2052 lines
65 KiB

//---------------------------------------------------------------------------
//
// Module: kmxltop.c
//
// Description:
// Topology parsing routines for the kernel mixer line driver
//
//
//@@BEGIN_MSINTERNAL
// Development Team:
// D. Baumberger
//
// History: Date Author Comment
//
//@@END_MSINTERNAL
//
//---------------------------------------------------------------------------
//
// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
// KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR
// PURPOSE.
//
// Copyright (C) Microsoft Corporation, 1997 - 1999 All Rights Reserved.
//
//---------------------------------------------------------------------------
///////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////
// //
// I N C L U D E S //
// //
///////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////
#include "WDMSYS.H"
#include "kmxluser.h"
///////////////////////////////////////////////////////////////////////
//
// kmxlQueryTopology
//
// Queries the topology from the device and stores all the information
// in pTopology.
//
//
NTSTATUS
kmxlQueryTopology(
IN PFILE_OBJECT pfoInstance, // The handle to query the topology for
OUT PKSTOPOLOGY pTopology // The topology structure to fill in
)
{
NTSTATUS Status;
PKSMULTIPLE_ITEM pCategories = NULL;
PKSMULTIPLE_ITEM pNodes = NULL;
PKSMULTIPLE_ITEM pConnections = NULL;
ASSERT( pfoInstance );
ASSERT( pTopology );
PAGED_CODE();
//
// Get device's topology categories
//
Status = kmxlGetProperty(
pfoInstance,
&KSPROPSETID_Topology,
KSPROPERTY_TOPOLOGY_CATEGORIES,
0, // 0 extra input bytes
NULL, // No input data
0, // Flags
&pCategories
);
if( !NT_SUCCESS( Status ) ) {
RETURN( Status );
}
//
// Get the list of nodes types in the topology
//
Status = kmxlGetProperty(
pfoInstance,
&KSPROPSETID_Topology,
KSPROPERTY_TOPOLOGY_NODES,
0, // 0 extra input bytes
NULL, // No input data
0, // Flags
&pNodes
);
if( !NT_SUCCESS( Status ) ) {
AudioFreeMemory_Unknown( &pCategories );
RETURN( Status );
}
//
// Get the list of connections in the meta-topology
//
Status = kmxlGetProperty(
pfoInstance,
&KSPROPSETID_Topology,
KSPROPERTY_TOPOLOGY_CONNECTIONS,
0, // 0 extra input butes
NULL, // No input data
0, // Flags
&pConnections
);
if( !NT_SUCCESS( Status ) ) {
AudioFreeMemory_Unknown( &pCategories );
AudioFreeMemory_Unknown( &pNodes );
RETURN( Status );
}
//
// Fill in the topology structure so this information is available
// later. For the Categories and TopologyNodes, the pointers are
// pointers to a KSMULTIPLE_ITEM structure. The definition of this
// is that the data will follow immediately after the structure.
//
pTopology->CategoriesCount = pCategories->Count;
pTopology->Categories = ( GUID* )( pCategories + 1 );
pTopology->TopologyNodesCount = pNodes->Count;
pTopology->TopologyNodes = ( GUID* )( pNodes + 1 );
pTopology->TopologyConnectionsCount = pConnections->Count;
pTopology->TopologyConnections =
(PKSTOPOLOGY_CONNECTION) ( pConnections + 1 );
return( STATUS_SUCCESS );
}
///////////////////////////////////////////////////////////////////////
//
// kmxlParseTopology
//
// Loops through all the pins building up lists of sources and
// destinations. For each source, a child graph is the built.
//
//
NTSTATUS
kmxlParseTopology(
IN PMIXEROBJECT pmxobj,
OUT NODELIST* plistSources, // Pointer to the sources list to build
OUT NODELIST* plistDests // Pointer to the dests list to build
)
{
NTSTATUS Status;
ULONG cPins,
PinID;
PMXLNODE pTemp;
NODELIST listSources = NULL;
NODELIST listDests = NULL;
ASSERT( pmxobj );
ASSERT( plistSources );
ASSERT( plistDests );
PAGED_CODE();
//
// Query the number of pins
//
DPF(DL_TRACE|FA_MIXER,("Parsing Topology for: %ls",pmxobj->pMixerDevice->DeviceInterface) );
Status = GetPinProperty(
pmxobj->pfo,
KSPROPERTY_PIN_CTYPES,
0,
sizeof( cPins ),
&cPins );
if( !NT_SUCCESS( Status ) ) {
DPF(DL_WARNING|FA_USER,("GetPinProperty CTYPES Failed Status=%X",Status) );
RETURN( Status );
}
DPF(DL_TRACE|FA_MIXER,("Number of Pins %u",cPins));
//
// Now scan through each of the pins identifying those that are
// sources and destinations.
//
for( PinID = 0; PinID < cPins; PinID++ ) {
KSPIN_DATAFLOW DataFlow;
//
// Read the direction of dataflow of this pin.
//
Status = GetPinProperty(
pmxobj->pfo,
KSPROPERTY_PIN_DATAFLOW,
PinID,
sizeof( KSPIN_DATAFLOW ),
&DataFlow
);
if( !NT_SUCCESS( Status ) ) {
DPF(DL_WARNING|FA_USER,("GetPinProperty DATAFLOW Failed Status=%X",Status) );
continue;
}
//
// Based on the DataFlow, identify if the pin is a source,
// a destination, or neither.
//
switch( DataFlow ) {
///////////////////////////////////////////////////////////
case KSPIN_DATAFLOW_IN:
///////////////////////////////////////////////////////////
// DATAFLOW_IN pins are sources. //
///////////////////////////////////////////////////////////
//
// Create a new mixer node structure for this source
// and fill in the known information about it.
//
pTemp = kmxlAllocateNode( TAG_AudN_NODE );
if( !pTemp ) {
Status=STATUS_INSUFFICIENT_RESOURCES;
goto exit;
}
pTemp->Type = SOURCE;
pTemp->Id = PinID;
//
// Retrieve the category of this pin and store it away.
// The return does not need to be checked because the
// GUID will remain at GUID_NULL and be categorized
// properly.
//
GetPinProperty(
pmxobj->pfo,
KSPROPERTY_PIN_CATEGORY,
PinID,
sizeof( pTemp->NodeType ),
&pTemp->NodeType
);
DPF(DL_TRACE|FA_MIXER,( "Identified SOURCE Pin %d: %s", PinID,
PinCategoryToString( &pTemp->NodeType ) ) );
//
// Retrieve the commmunication of this pin and store it away so
// we can tell if this is a wave out or wave in source
//
Status = GetPinProperty(
pmxobj->pfo,
KSPROPERTY_PIN_COMMUNICATION,
PinID,
sizeof( pTemp->Communication ),
&pTemp->Communication
);
if (!NT_SUCCESS(Status)) {
pTemp->Communication = KSPIN_COMMUNICATION_NONE;
}
//
// Add this new source node to the list of source
// nodes.
//
kmxlAddToList( listSources, pTemp );
break;
///////////////////////////////////////////////////////////
case KSPIN_DATAFLOW_OUT:
///////////////////////////////////////////////////////////
// DATAFLOW_OUT pins are destinations //
///////////////////////////////////////////////////////////
//
// Create a new mixer node structure for this dest
// and fill in the known information about it.
//
pTemp = kmxlAllocateNode( TAG_AudN_NODE );
if( !pTemp ) {
Status=STATUS_INSUFFICIENT_RESOURCES;
goto exit;
}
pTemp->Type = DESTINATION;
pTemp->Id = PinID;
//
// Retrieve the category of this pin and store it away.
// The return does not need to be checked because the
// GUID will remain at GUID_NULL and be categorized
// properly.
//
GetPinProperty(
pmxobj->pfo,
KSPROPERTY_PIN_CATEGORY,
PinID,
sizeof( pTemp->NodeType ),
&pTemp->NodeType
);
DPF(DL_TRACE|FA_MIXER,( "Identified DESTINATION Pin %d: %s", PinID,
PinCategoryToString( &pTemp->NodeType ) ) );
//
// Retrieve the commmunication of this pin and store it away so
// we can tell if this is a wave out or wave in destination
//
Status = GetPinProperty(
pmxobj->pfo,
KSPROPERTY_PIN_COMMUNICATION,
PinID,
sizeof( pTemp->Communication ),
&pTemp->Communication
);
if (!NT_SUCCESS(Status)) {
pTemp->Communication = KSPIN_COMMUNICATION_NONE;
}
//
// Add this new destination node to the list of destination
// nodes.
//
kmxlAddToList( listDests, pTemp );
break;
///////////////////////////////////////////////////////////
default:
///////////////////////////////////////////////////////////
// DATAFLOW_BOTH and others are currently not supported. //
///////////////////////////////////////////////////////////
DPF(DL_WARNING|FA_USER,("Invalid DataFlow value =%X",DataFlow) );
}
}
DPF(DL_TRACE|FA_MIXER,("DataFlow done. PIN_COMMUNICATION read.") );
//
// For each source found, build the graphs of their children. This
// will recurse builing the graph of the children's children, etc.
//
pTemp = kmxlFirstInList( listSources );
while( pTemp ) {
Status=kmxlBuildChildGraph(
pmxobj, // The mixer object
listDests, // The list of all the destinations
pTemp, // The source node to build the graph for
KSFILTER_NODE, // Sources are always KSFILTER_NODEs
pTemp->Id // The Pin id of the source
);
if (!NT_SUCCESS(Status)) {
DPF(DL_WARNING|FA_USER,("kmxlBuildChildGraph failed Status=%X",Status) );
goto exit;
}
pTemp = kmxlNextNode( pTemp );
}
exit:
//
// Finally fill in the client pointers
//
*plistSources = listSources;
*plistDests = listDests;
//We must have a destination and a source
if (listSources == NULL || listDests == NULL)
{
Status = STATUS_INVALID_DEVICE_REQUEST;
}
return Status;
}
///////////////////////////////////////////////////////////////////////
//
// BuildChildGraph
//
// Builds the graph of the child of the given node. For each child
// of the node, it recurses to find their child, etc.
//
//
NTSTATUS
kmxlBuildChildGraph(
IN PMIXEROBJECT pmxobj,
IN NODELIST listDests, // The list of destinations
IN PMXLNODE pNode, // The node to build the graph for
IN ULONG FromNode, // The node's ID
IN ULONG FromNodePin // The Pin connection to look for
)
{
ULONG Index = 0;
PMXLNODE pNewNode = NULL;
PMXLNODE pTemp = NULL;
BOOL bEndOfTheLine = FALSE;
PEERNODE* pPeerNode = NULL;
NTSTATUS Status=STATUS_SUCCESS;
PAGED_CODE();
//
// Find the index of the requested connection. A return of -1
// indicates that the connection was not found. Searches start
// at Index, which starts with 0 and is > 0 if the last was a match.
//
while ( (Index = kmxlFindTopologyConnection(pmxobj, Index, FromNode, FromNodePin))
!= (ULONG) -1) {
//
// Check to see if this connection is a KSFILTER_NODE. That will
// indicate that it's connected to a destination and not another node.
//
if( pmxobj->pTopology->TopologyConnections[ Index ].ToNode == KSFILTER_NODE ) {
//
// Find the destination node so that the parent field can be
// updated to include this node. bEndOfTheLine is set to TRUE
// since there can be no other connections after the destination.
//
pNewNode = kmxlFindDestination(
listDests,
pmxobj->pTopology->TopologyConnections[ Index ].ToNodePin
);
bEndOfTheLine = TRUE;
//
// We better find a destination; if not, something's really wrong.
//
if (pNewNode==NULL) {
RETURN( STATUS_UNSUCCESSFUL );
}
} else {
//
// Using the identifier stored in the ToNode of the topology
// connections, index into the node table and retrieve the
// mixer node associated with that id.
//
pNewNode = &pmxobj->pNodeTable[
pmxobj->pTopology->TopologyConnections[ Index ].ToNode
];
//
// Fill in a couple of missing details. Note that these details
// may already be filled in but it doesn't hurt to overwrite
// them with the same values.
//
pNewNode->Type = NODE;
pNewNode->Id = pmxobj->pTopology->TopologyConnections[ Index ].ToNode;
}
//
// Insert the new node into the childlist of the current node only
// if it isn't already there. It only wastes memory to add it more
// than once and prevents the proper updating of the child and parent
// lists.
//
if( !kmxlInChildList( pNode, pNewNode ) ) {
pPeerNode = kmxlAllocatePeerNode( pNewNode, TAG_Audn_PEERNODE );
if( !pPeerNode ) {
RETURN( STATUS_INSUFFICIENT_RESOURCES );
}
DPF(DL_TRACE|FA_MIXER,( "Added %s(%d-0x%08x) to child list of %s(%d-0x%08x).",
pPeerNode->pNode->Type == SOURCE ? "SOURCE" :
pPeerNode->pNode->Type == DESTINATION ? "DEST" :
pPeerNode->pNode->Type == NODE ? "NODE" :
"Huh?",
pPeerNode->pNode->Id,
pPeerNode,
pNode->Type == SOURCE ? "SOURCE" :
pNode->Type == DESTINATION ? "DEST" :
pNode->Type == NODE ? "NODE" :
"Huh?",
pNode->Id,
pNode ) );
kmxlAddToChildList( pNode, pPeerNode );
}
//
// Insert the new node into the parentlist of the new node only
// if it isn't already there. It only wastes memory to add it more
// than once and prevents the proper updating the child and parent
// lists.
//
if( !kmxlInParentList( pNewNode, pNode ) ) {
pPeerNode = kmxlAllocatePeerNode( pNode, TAG_Audn_PEERNODE );
if( !pPeerNode ) {
RETURN( STATUS_INSUFFICIENT_RESOURCES );
}
DPF(DL_TRACE|FA_MIXER,("Added %s(%d-0x%08x) to parent list of %s(%d-0x%08x).",
pPeerNode->pNode->Type == SOURCE ? "SOURCE" :
pPeerNode->pNode->Type == DESTINATION ? "DEST" :
pPeerNode->pNode->Type == NODE ? "NODE" :
"Huh?",
pPeerNode->pNode->Id,
pPeerNode,
pNewNode->Type == SOURCE ? "SOURCE" :
pNewNode->Type == DESTINATION ? "DEST" :
pNewNode->Type == NODE ? "NODE" :
"Huh?",
pNewNode->Id,
pNewNode ) );
kmxlAddToParentList( pNewNode, pPeerNode );
}
//
// Skip past the connection we just processed.
//
++Index;
} // Loop until FindConnection fails.
//
// The last connection found connects to a destination node. Do not
// try to enumerate the children, since there are none.
//
if( bEndOfTheLine ) {
RETURN( Status );
}
//
// For each of the children of this node, recurse to build up the lists
// of the child's nodes.
//
pPeerNode = kmxlFirstChildNode( pNode );
while( pPeerNode ) {
Status = kmxlBuildChildGraph(
pmxobj,
listDests, // The list of destination nodes
pPeerNode->pNode, // The parent node
pPeerNode->pNode->Id, // The Id of the parent
PINID_WILDCARD // Look for any connection by this node
);
if (!NT_SUCCESS(Status)) {
break;
}
pPeerNode = kmxlNextPeerNode( pPeerNode );
}
RETURN( Status );
}
///////////////////////////////////////////////////////////////////////
//
// BuildNodeTable
//
// Allocates enough memory to hold TopologyNodeCount MXLNODE structures.
// The GUIDs from the Topology are copied over into the MXLNODE structures.
//
//
PMXLNODE
kmxlBuildNodeTable(
IN PKSTOPOLOGY pTopology // The topology structure
)
{
PMXLNODE pTable = NULL;
ULONG i;
ASSERT( pTopology );
PAGED_CODE();
//
// If we don't have any node count, we don't want to allocate a zero byte buffer.
// simply return the error case.
//
if( 0 == pTopology->TopologyNodesCount )
{
return NULL;
}
//
// Allocate an array of nodes the same size as the Topology Node
// table.
//
if( !NT_SUCCESS( AudioAllocateMemory_Paged(pTopology->TopologyNodesCount * sizeof( MXLNODE ),
TAG_AudN_NODE,
ZERO_FILL_MEMORY,
&pTable) ) )
{
return( NULL );
}
//
// Initialize the nodes. All the can be filled in here is the GUIDs,
// copied from the node table.
//
for( i = 0; i < pTopology->TopologyNodesCount; i++ ) {
pTable[ i ].NodeType = pTopology->TopologyNodes[ i ];
}
return( pTable );
}
///////////////////////////////////////////////////////////////////////
//
// FindTopologyConnection
//
// Scans through the connection table looking for a connection that
// matches the FromNode/FromNodePin criteria.
//
//
ULONG
kmxlFindTopologyConnection(
IN PMIXEROBJECT pmxobj,
IN ULONG StartIndex, // Index to start search
IN ULONG FromNode, // The Node ID to look for
IN ULONG FromNodePin // The Pin ID to look for
)
{
ULONG i;
PAGED_CODE();
for( i = StartIndex; i < pmxobj->pTopology->TopologyConnectionsCount; i++ ) {
if( ( ( pmxobj->pTopology->TopologyConnections[ i ].FromNode == FromNode )||
( FromNode == PINID_WILDCARD ) ) &&
( ( pmxobj->pTopology->TopologyConnections[ i ].FromNodePin == FromNodePin ) ||
( FromNodePin == PINID_WILDCARD ) ) ) {
//#ifdef PARSE_TRACE
//TRACE( "WDMAUD: Found connection from (%d,%d) -> %d.\n",
// FromNode, FromNodePin, i );
//#endif
return( i );
}
}
return( (ULONG) -1 );
}
///////////////////////////////////////////////////////////////////////
//
// kmxlGetProperty
//
// Queries a property by first determining the correct number of
// output bytes, allocating that much memory, and quering the
// actual data.
//
//
NTSTATUS
kmxlGetProperty(
PFILE_OBJECT pFileObject, // The instance of the filter
CONST GUID *pguidPropertySet, // The requested property set
ULONG ulPropertyId, // The ID of the specific property
ULONG cbInput, // The number of extra input bytes
PVOID pInputData, // Pointer to the extra input bytes
ULONG Flags, // Additional flags
PVOID *ppPropertyOutput // Pointer to a pointer of the output
)
{
ULONG BytesReturned;
ULONG cbPropertyInput = sizeof(KSPROPERTY);
PKSPROPERTY pPropertyInput = NULL;
NTSTATUS Status;
PAGED_CODE();
ASSERT( pFileObject );
//
// Allocate enough memory for the KSPROPERTY structure and any additional
// input the callers wants to include.
//
cbPropertyInput += cbInput;
Status = AudioAllocateMemory_Paged(cbPropertyInput,
TAG_AudV_PROPERTY,
ZERO_FILL_MEMORY,
&pPropertyInput );
if(!NT_SUCCESS(Status)) {
goto exit;
}
//
// Set up the field of the KSPROPERTY structure
//
pPropertyInput->Set = *pguidPropertySet;
pPropertyInput->Id = ulPropertyId;
pPropertyInput->Flags = KSPROPERTY_TYPE_GET | Flags;
//
// Copy the additional input from the caller.
//
if(pInputData != NULL) {
RtlCopyMemory(pPropertyInput + 1, pInputData, cbInput);
}
//
// This first call will query the number of bytes the output needs.
//
DPF(DL_TRACE|FA_SYSAUDIO,("KS_PROPERTY pPropertyInput=%X",pPropertyInput) );
Status = KsSynchronousIoControlDevice(
pFileObject,
KernelMode,
IOCTL_KS_PROPERTY,
pPropertyInput,
cbPropertyInput,
NULL,
0,
&BytesReturned
);
DPF(DL_TRACE|FA_SYSAUDIO,("KS_PROPERTY Status=%X",Status) );
ASSERT(!NT_SUCCESS(Status));
if(Status != STATUS_BUFFER_OVERFLOW) {
goto exit;
}
if(BytesReturned == 0) {
*ppPropertyOutput = NULL;
Status = STATUS_SUCCESS;
goto exit;
}
//
// Allocate enough memory to hold all of the output.
//
Status = AudioAllocateMemory_Paged(BytesReturned,
TAG_Audv_PROPERTY,
ZERO_FILL_MEMORY | LIMIT_MEMORY,
ppPropertyOutput );
if(!NT_SUCCESS(Status)) {
goto exit;
}
//
// Now actually get the output data.
//
DPF(DL_TRACE|FA_SYSAUDIO,("KS_PROPERTY pPropertyInput=%X",pPropertyInput) );
Status = KsSynchronousIoControlDevice(
pFileObject,
KernelMode,
IOCTL_KS_PROPERTY,
pPropertyInput,
cbPropertyInput,
*ppPropertyOutput,
BytesReturned,
&BytesReturned
);
DPF(DL_TRACE|FA_SYSAUDIO,("KS_PROPERTY Status=%X",Status) );
if(!NT_SUCCESS(Status)) {
AudioFreeMemory_Unknown(ppPropertyOutput);
goto exit;
}
exit:
AudioFreeMemory_Unknown(&pPropertyInput);
if(!NT_SUCCESS(Status)) {
*ppPropertyOutput = NULL;
DPF(DL_WARNING|FA_USER,("Failed to get Property Status=%X",Status) );
}
RETURN(Status);
}
///////////////////////////////////////////////////////////////////////
//
// kmxlNodeProperty
//
// Creates a KSNODEPROPERTY structure with additional input data
// after it and uses KsSychronousIoControlDevice() to query or set the
// property. Only memory for the input is allocated here.
//
//
NTSTATUS
kmxlNodeProperty(
IN PFILE_OBJECT pFileObject, // Instance of the filter owning node
IN CONST GUID* pguidPropertySet, // The GUID of the property set
IN ULONG ulPropertyId, // The specific property in the set
IN ULONG ulNodeId, // The virtual node id
IN ULONG cbInput, // # of extra input bytes
IN PVOID pInputData, // Pointer to the extra input bytes
OUT PVOID pPropertyOutput, // Pointer to the output data
IN ULONG cbPropertyOutput, // Size of the output data buffer
IN ULONG Flags // KSPROPERTY_TYPE_GET or SET
)
{
NTSTATUS Status;
KSNODEPROPERTY NodeProperty;
ULONG cbPropertyIn = sizeof( KSNODEPROPERTY );
PKSNODEPROPERTY pInData = NULL;
ULONG BytesReturned;
PAGED_CODE();
ASSERT( pFileObject );
ASSERT( pguidPropertySet );
if( cbInput > 0 ) {
//
// If the caller passed in some extra input, add that size
// to the size of the required KSNODEPROPERTY and allocate
// a chunk of memory.
//
cbPropertyIn += cbInput;
Status = AudioAllocateMemory_Paged(cbPropertyIn,
TAG_AudU_PROPERTY,
ZERO_FILL_MEMORY,
&pInData );
if( !NT_SUCCESS( Status ) ) {
goto exit;
}
RtlCopyMemory( pInData + 1, pInputData, cbInput );
} else {
pInData = &NodeProperty;
}
//
// Fill in the property and node information.
//
pInData->Property.Set = *pguidPropertySet;
pInData->Property.Id = ulPropertyId;
pInData->Property.Flags = Flags |
KSPROPERTY_TYPE_TOPOLOGY;
pInData->NodeId = ulNodeId;
pInData->Reserved = 0;
DPF(DL_TRACE|FA_SYSAUDIO,("KS_PROPERTY pInData=%X",pInData) );
Status = KsSynchronousIoControlDevice(
pFileObject, // The FILE_OBJECT for SysAudio
KernelMode, // Call originates in Kernel mode
IOCTL_KS_PROPERTY, // KS PROPERTY IOCTL
pInData, // Pointer to the KSNODEPROPERTY struct
cbPropertyIn, // Number or bytes input
pPropertyOutput, // Pointer to the buffer to store output
cbPropertyOutput, // Size of the output buffer
&BytesReturned // Number of bytes returned from the call
);
DPF(DL_TRACE|FA_SYSAUDIO,("KS_PROPERTY Status=%X",Status) );
if(!NT_SUCCESS(Status)) {
goto exit;
}
exit:
//
// If the user passed in extra byte, we allocated memory to hold them.
// Now the memory must be deallocated.
//
if( cbInput > 0 ) {
AudioFreeMemory_Unknown( &pInData );
}
RETURN( Status );
}
///////////////////////////////////////////////////////////////////////
//
// kmxlAudioNodeProperty
//
// Similar to kmxlNodeProperty except for the property set is assumed
// to be KSPROPSETID_Audio and a KSNODEPROPERTY_AUDIO_CHANNEL structure
// is used instead of KSNODEPROPERTY to allow channel selection.
//
//
NTSTATUS
kmxlAudioNodeProperty(
IN PFILE_OBJECT pfo, // Instance of the filter owning node
IN ULONG ulPropertyId, // The audio property to get
IN ULONG ulNodeId, // The virtual node id
IN LONG lChannel, // The channel number
IN PVOID pInData, // Pointer to extra input bytes
IN ULONG cbInData, // Number of extra input bytes
OUT PVOID pOutData, // Pointer to output buffer
IN LONG cbOutData, // Size of the output buffer
IN ULONG Flags // KSPROPERTY_TYPE_GET or SET
)
{
NTSTATUS Status;
KSNODEPROPERTY_AUDIO_CHANNEL Channel;
PKSNODEPROPERTY_AUDIO_CHANNEL pInput = NULL;
ULONG cbInput;
ULONG BytesReturned;
PAGED_CODE();
ASSERT( pfo );
//
// Determine the minimum number of input bytes
//
cbInput = sizeof( KSNODEPROPERTY_AUDIO_CHANNEL );
//
// If the caller passed in additional data, allocate enough memory
// to hold the KSNODEPROPERTY_AUDIO_CHANNEL plus the input bytes
// and copy the input bytes into the new memory immediately after
// the KSNODEPROPERTY_AUDIO_CHANNEL structure.
//
if( cbInData > 0 ) {
cbInput += cbInData;
Status = AudioAllocateMemory_Paged(cbInput,
TAG_Audu_PROPERTY,
ZERO_FILL_MEMORY,
&pInput );
if( !NT_SUCCESS( Status ) ) {
goto exit;
}
RtlCopyMemory( pInput + 1, pInData, cbInData );
} else {
//
// Memory saving hack... if the user didn't give any additional
// bytes, just point to memory on the stack.
//
pInput = &Channel;
}
//
// Fill in the property fields.
//
pInput->NodeProperty.Property.Set = KSPROPSETID_Audio;
pInput->NodeProperty.Property.Id = ulPropertyId;
pInput->NodeProperty.Property.Flags = Flags |
KSPROPERTY_TYPE_TOPOLOGY;
//
// Fill in the node details.
//
pInput->NodeProperty.NodeId = ulNodeId;
pInput->NodeProperty.Reserved = 0;
//
// Fill in the channel details.
//
pInput->Channel = lChannel;
pInput->Reserved = 0;
//
// And execute the property.
//
DPF(DL_TRACE|FA_SYSAUDIO,("KS_PROPERTY pInput=%X",pInput) );
Status = KsSynchronousIoControlDevice(
pfo, // The FILE_OBJECT for SysAudio
KernelMode, // Call originates in Kernel mode
IOCTL_KS_PROPERTY, // KS PROPERTY IOCTL
pInput, // Pointer to the KSNODEPROPERTY struct
cbInput, // Number or bytes input
pOutData, // Pointer to the buffer to store output
cbOutData, // Size of the output buffer
&BytesReturned // Number of bytes returned from the call
);
DPF(DL_TRACE|FA_SYSAUDIO,("KS_PROPERTY result=%X",Status) );
if(!NT_SUCCESS(Status)) {
goto exit;
}
exit:
//
// If the user passed in extra bytes, we allocated memory to hold them.
// Now the memory must be deallocated.
//
if( cbInData > 0 ) {
AudioFreeMemory_Unknown( &pInData );
}
RETURN( Status );
}
///////////////////////////////////////////////////////////////////////
//
// kmxlGetPinName
//
// Calls GetPinPropertyEx to guery and allocate memory for the pin
// name. If that call fails, a default name is copy based on the
// pin type.
//
// The short name is made identical to the long name, but using only
// the first sizeof( szShortName ) / sizeof( WCHAR ) characters.
//
//
VOID
kmxlGetPinName(
IN PFILE_OBJECT pfo, // Instance of the owning filter
IN ULONG PinId, // Id of the pin
IN PMXLLINE pLine // The line to store the name into
)
{
WCHAR* szName = NULL;
NTSTATUS Status;
KSP_PIN Pin;
ULONG BytesReturned = 0;
ULONG BytesReturned2 = 0;
PAGED_CODE();
Pin.Property.Set = KSPROPSETID_Pin;
Pin.Property.Id = KSPROPERTY_PIN_NAME;
Pin.Property.Flags = KSPROPERTY_TYPE_GET;
Pin.PinId = PinId;
Pin.Reserved = 0;
//
// Query to see how many bytes of storage we need to allocate.
// Note that the pointer and number of bytes must both be zero
// or this will fail!
//
DPF(DL_TRACE|FA_SYSAUDIO,("KS_PROPERTY Pin=%X",&Pin) );
Status = KsSynchronousIoControlDevice(
pfo,
KernelMode,
IOCTL_KS_PROPERTY,
&Pin,
sizeof(KSP_PIN),
NULL,
0,
&BytesReturned
);
DPF(DL_TRACE|FA_SYSAUDIO,("KS_PROPERTY result=%X",Status) );
ASSERT(!NT_SUCCESS(Status));
if( Status != STATUS_BUFFER_OVERFLOW ) {
goto exit;
}
//
// Allocate what was returned.
//
Status = AudioAllocateMemory_Paged(BytesReturned,
TAG_Audp_NAME,
ZERO_FILL_MEMORY | LIMIT_MEMORY,
&szName );
if( !NT_SUCCESS( Status ) ) {
DPF(DL_WARNING|FA_USER,("Setting Default szName") );
goto exit;
}
//
// Call again to get the pin name.
//
DPF(DL_TRACE|FA_SYSAUDIO,("KS_PROPERTY Pin=%X",&Pin) );
BytesReturned2=BytesReturned;
Status = KsSynchronousIoControlDevice(
pfo,
KernelMode,
IOCTL_KS_PROPERTY,
&Pin,
sizeof(KSP_PIN),
szName,
BytesReturned2,
&BytesReturned2
);
DPF(DL_TRACE|FA_SYSAUDIO,("KS_PROPERTY result=%X",Status) );
//
// If successful, copy as much of the name that will fit into the
// short name and name fields of the line.
//
if( NT_SUCCESS( Status ) && szName ) {
#ifdef DEBUG
//
// There is no good reason that I can think of for a driver to return
// a different return value the second time it's called. That would just
// be stupid.
//
if( BytesReturned != BytesReturned2 )
{
DPF(DL_WARNING|FA_SYSAUDIO,("Unequal returns! BR=%08x,BR2=%08x",BytesReturned,BytesReturned2));
}
//
// Let's explicitly look for the case that made this driver fault. The
// BytesReturned value was 8 and it contained MUX\0 in the buffer. The problem
// was that wcsncpy walked MIXER_SHORT_NAME_CHARS number of characters.
// Thus it walked off the end of the source buffer.
//
if( (BytesReturned/sizeof(WCHAR) < MIXER_SHORT_NAME_CHARS) &&
(szName[BytesReturned/sizeof(WCHAR)-1] != (WCHAR)NULL) )
{
DPF(DL_ERROR|FA_SYSAUDIO,("Hit short name assert! BR=%08x",BytesReturned));
}
#endif
wcsncpy(
pLine->Line.szShortName,
szName,
min(BytesReturned/sizeof(WCHAR),MIXER_SHORT_NAME_CHARS)
);
pLine->Line.szShortName[ min(BytesReturned/sizeof(WCHAR),MIXER_SHORT_NAME_CHARS) - 1 ] = (WCHAR)NULL;
wcsncpy(
pLine->Line.szName,
szName,
min(BytesReturned/sizeof(WCHAR),MIXER_LONG_NAME_CHARS) );
pLine->Line.szName[ min(BytesReturned/sizeof(WCHAR),MIXER_LONG_NAME_CHARS) - 1 ] = (WCHAR)NULL;
AudioFreeMemory_Unknown( &szName );
return;
}
AudioFreeMemory_Unknown( &szName );
exit:
//
// The pin doesn't support the property. Copy in a good default.
//
CopyAnsiStringtoUnicodeString(
pLine->Line.szName,
PinCategoryToString( &pLine->Type ),
min(MIXER_LONG_NAME_CHARS, strlen(PinCategoryToString(&pLine->Type)) + 1)
);
wcsncpy(
pLine->Line.szShortName,
pLine->Line.szName,
MIXER_SHORT_NAME_CHARS
);
pLine->Line.szShortName[ MIXER_SHORT_NAME_CHARS - 1 ] = 0x00;
}
///////////////////////////////////////////////////////////////////////
//
// kmxlGetNodeName
//
// Retrieves the name of a node (control).
//
//
VOID
kmxlGetNodeName(
IN PFILE_OBJECT pfo, // Instance of the owning filter
IN ULONG NodeId, // The node id
IN PMXLCONTROL pControl // The control to store the name
)
{
NTSTATUS Status;
LONG cbName=0;
WCHAR* szName = NULL;
KSNODEPROPERTY NodeProperty;
PAGED_CODE();
ASSERT( pfo );
ASSERT( pControl );
//
// Query the number of bytes the node name is
//
NodeProperty.Property.Set = KSPROPSETID_Topology;
NodeProperty.Property.Id = KSPROPERTY_TOPOLOGY_NAME;
NodeProperty.Property.Flags = KSPROPERTY_TYPE_GET |
KSPROPERTY_TYPE_TOPOLOGY;
NodeProperty.NodeId = NodeId;
NodeProperty.Reserved = 0;
DPF(DL_TRACE|FA_SYSAUDIO,("KS_PROPERTY Node=%X",&NodeProperty) );
Status = KsSynchronousIoControlDevice(
pfo,
KernelMode,
IOCTL_KS_PROPERTY,
&NodeProperty,
sizeof( NodeProperty ),
NULL,
0,
&cbName
);
DPF(DL_TRACE|FA_SYSAUDIO,("KS_PROPERTY result=%X",Status) );
if( ( Status == STATUS_BUFFER_OVERFLOW ) ||
( Status == STATUS_BUFFER_TOO_SMALL ) ) {
//
// Allocate enough space to hold the entire name
//
if( !NT_SUCCESS( AudioAllocateMemory_Paged(cbName,
TAG_Audp_NAME,
ZERO_FILL_MEMORY | LIMIT_MEMORY,
&szName ) ) )
{
goto exit;
}
ASSERT( szName );
//
// Requery for the name with the previously allocated buffer.
//
Status = kmxlNodeProperty(
pfo,
&KSPROPSETID_Topology,
KSPROPERTY_TOPOLOGY_NAME,
NodeId,
0,
NULL,
szName,
cbName,
KSPROPERTY_TYPE_GET
);
if( NT_SUCCESS( Status ) && szName ) {
//
// Copy the names retrieved into the szShortName and Name
// fields of the control. The short name is just a shortened
// version of the full name.
//
//
// Note: cbName is a byte value and wcsncpy takes a count of characters,
// We are dealing with wide characters, thus we must adjust the
// memory size to characters! Note that the driver could have
// returned a source buffer less then MIXER_SHORT_NAME_CHARS in length!
//
#ifdef DEBUG
if( (cbName/sizeof(WCHAR) < MIXER_SHORT_NAME_CHARS) &&
(szName[cbName/sizeof(WCHAR)-1] != (WCHAR)NULL) )
{
DPF(DL_ERROR|FA_SYSAUDIO,("Hit short name assert! cbName=%08x",cbName));
}
#endif
wcsncpy(
pControl->Control.szShortName,
szName,
min(cbName/sizeof(WCHAR),MIXER_SHORT_NAME_CHARS)
);
pControl->Control.szShortName[ min(cbName/sizeof(WCHAR),MIXER_SHORT_NAME_CHARS) - 1 ] = (WCHAR)NULL;
wcsncpy(
pControl->Control.szName,
szName,
min(cbName/sizeof(WCHAR),MIXER_LONG_NAME_CHARS) );
pControl->Control.szName[ min(cbName/sizeof(WCHAR),MIXER_LONG_NAME_CHARS) - 1 ] = (WCHAR)NULL;
AudioFreeMemory_Unknown( &szName );
return;
}
}
//
// Looks like we might leak memory on the error condition. See
// kmxlGetPinName above!
//
AudioFreeMemory_Unknown( &szName );
exit:
//
// The node doesn't support the property. Copy in a good default.
//
CopyAnsiStringtoUnicodeString(
pControl->Control.szName,
NodeTypeToString( pControl->NodeType ),
min(MIXER_LONG_NAME_CHARS, strlen(NodeTypeToString(pControl->NodeType)) + 1)
);
wcsncpy(
pControl->Control.szShortName,
pControl->Control.szName,
MIXER_SHORT_NAME_CHARS
);
pControl->Control.szShortName[ MIXER_SHORT_NAME_CHARS - 1 ] = 0x00;
}
///////////////////////////////////////////////////////////////////////
//
// kmxlGetSuperMixCaps
//
//
NTSTATUS
kmxlGetSuperMixCaps(
IN PFILE_OBJECT pfo,
IN ULONG ulNodeId,
OUT PKSAUDIO_MIXCAP_TABLE* paMixCaps
)
{
NTSTATUS Status;
ULONG Size;
struct {
ULONG InputChannels;
ULONG OutputChannels;
} SuperMixSize;
PKSAUDIO_MIXCAP_TABLE pMixCaps = NULL;
PAGED_CODE();
ASSERT( pfo );
ASSERT( paMixCaps );
*paMixCaps = NULL;
//
// Query the node with just the first 2 DWORDs of the MIXCAP table.
// This will return the dimensions of the supermixer.
//
Status = kmxlNodeProperty(
pfo,
&KSPROPSETID_Audio,
KSPROPERTY_AUDIO_MIX_LEVEL_CAPS,
ulNodeId,
0,
NULL,
&SuperMixSize,
sizeof( SuperMixSize ),
KSPROPERTY_TYPE_GET
);
if( !NT_SUCCESS( Status ) ) {
DPF(DL_WARNING|FA_MIXER,( "kmxlNodeProperty failed with %X!", Status ) );
RETURN( Status );
}
//
// Allocate a MIXCAPS table big enough to hold all the entires.
// The size needs to include the first 2 DWORDs in the MIXCAP
// table besides the array ( InputCh * OutputCh ) of MIXCAPs
//
Size = sizeof( SuperMixSize ) +
SuperMixSize.InputChannels * SuperMixSize.OutputChannels *
sizeof( KSAUDIO_MIX_CAPS );
Status = AudioAllocateMemory_Paged(Size,
TAG_AudS_SUPERMIX,
ZERO_FILL_MEMORY | LIMIT_MEMORY,
&pMixCaps );
if( !NT_SUCCESS( Status ) ) {
DPF(DL_WARNING|FA_MIXER,( "failed to allocate caps memory!" ) );
RETURN( Status );
}
//
// Query the node once again to fill in the MIXCAPS structures.
//
Status = kmxlNodeProperty(
pfo,
&KSPROPSETID_Audio,
KSPROPERTY_AUDIO_MIX_LEVEL_CAPS,
ulNodeId,
0,
NULL,
pMixCaps,
Size,
KSPROPERTY_TYPE_GET
);
if( !NT_SUCCESS( Status ) ) {
DPF(DL_WARNING|FA_PROPERTY ,( "kmxlNodeProperty failed with %X!", Status ) );
AudioFreeMemory( Size,&pMixCaps );
RETURN( Status );
}
*paMixCaps = pMixCaps;
RETURN( Status );
}
///////////////////////////////////////////////////////////////////////
//
// kmxlQueryPropertyRange
//
//
NTSTATUS
kmxlQueryPropertyRange(
IN PFILE_OBJECT pfo,
IN CONST GUID* pguidPropSet,
IN ULONG ulPropertyId,
IN ULONG ulNodeId,
OUT PKSPROPERTY_DESCRIPTION* ppPropDesc
)
{
NTSTATUS Status;
KSNODEPROPERTY NodeProperty;
KSPROPERTY_DESCRIPTION PropertyDescription;
PKSPROPERTY_DESCRIPTION pPropDesc = NULL;
ULONG BytesReturned;
PAGED_CODE();
//
// We don't want to allocate some arbitrary memory size if the driver
// does not set this value.
//
PropertyDescription.DescriptionSize=0;
NodeProperty.Property.Set = *pguidPropSet;
NodeProperty.Property.Id = ulPropertyId;
NodeProperty.Property.Flags = KSPROPERTY_TYPE_BASICSUPPORT |
KSPROPERTY_TYPE_TOPOLOGY;
NodeProperty.NodeId = ulNodeId;
NodeProperty.Reserved = 0;
DPF(DL_TRACE|FA_SYSAUDIO,("KS_PROPERTY Query Node=%X",&NodeProperty) );
Status = KsSynchronousIoControlDevice(
pfo,
KernelMode,
IOCTL_KS_PROPERTY,
&NodeProperty,
sizeof( NodeProperty ),
&PropertyDescription,
sizeof( PropertyDescription ),
&BytesReturned
);
DPF(DL_TRACE|FA_SYSAUDIO,("KS_PROPERTY result=%X",Status) );
if( !NT_SUCCESS( Status ) ) {
RETURN( Status );
}
//
// Never use a buffer that is smaller then we think it should be!
//
if( PropertyDescription.DescriptionSize < sizeof(KSPROPERTY_DESCRIPTION) )
{
#ifdef DEBUG
DPF(DL_ERROR|FA_ALL,("KSPROPERTY_DESCRIPTION.DescriptionSize!>=sizeof(KSPROPERTY_DESCRIPTION)") );
#endif
RETURN(STATUS_INVALID_PARAMETER);
}
Status = AudioAllocateMemory_Paged(PropertyDescription.DescriptionSize,
TAG_Auda_PROPERTY,
ZERO_FILL_MEMORY | LIMIT_MEMORY,
&pPropDesc );
if( !NT_SUCCESS( Status ) ) {
RETURN( Status );
}
DPF(DL_TRACE|FA_SYSAUDIO,("KS_PROPERTY Get Node=%X",&NodeProperty) );
Status = KsSynchronousIoControlDevice(
pfo,
KernelMode,
IOCTL_KS_PROPERTY,
&NodeProperty,
sizeof( NodeProperty ),
pPropDesc,
PropertyDescription.DescriptionSize,
&BytesReturned
);
DPF(DL_TRACE|FA_SYSAUDIO,("KS_PROPERTY result=%X",Status) );
if( !NT_SUCCESS( Status ) ) {
AudioFreeMemory( PropertyDescription.DescriptionSize,&pPropDesc );
RETURN( Status );
}
*ppPropDesc = pPropDesc;
return( STATUS_SUCCESS );
}
///////////////////////////////////////////////////////////////////////
//
// kmxlGetControlChannels
//
//
NTSTATUS
kmxlGetControlChannels(
IN PFILE_OBJECT pfo,
IN PMXLCONTROL pControl
)
{
NTSTATUS Status;
PKSPROPERTY_DESCRIPTION pPropDesc = NULL;
PKSPROPERTY_MEMBERSHEADER pMemberHeader;
PCHANNEL_STEPPING pChannelStepping;
ULONG i;
PAGED_CODE();
Status = kmxlQueryPropertyRange(
pfo,
&KSPROPSETID_Audio,
pControl->PropertyId,
pControl->Id,
&pPropDesc
);
//
// Do some checking on the returned value. Look for things that we
// support.
//
if ( NT_SUCCESS(Status) ) {
ASSERT(pPropDesc);
pMemberHeader = (PKSPROPERTY_MEMBERSHEADER) ( pPropDesc + 1 );
#ifdef DEBUG
//
// If the MembersListCount is greater then zero and the GUID's are equal
// then we will reference the pMemberHeader value that we create here.
// If we do, then we must make sure that the memory that we allocated
// is large enough to handle it!
//
if( ( pPropDesc->MembersListCount > 0 ) &&
(IsEqualGUID( &pPropDesc->PropTypeSet.Set, &KSPROPTYPESETID_General )) )
{
//
// if this is the case, we will touch the pMemberHeader->MembersCount
// field.
//
if (pPropDesc->DescriptionSize < (sizeof(KSPROPERTY_DESCRIPTION) +
sizeof(KSPROPERTY_MEMBERSHEADER)) )
{
DPF(DL_ERROR|FA_ALL,("Incorrectly reported DescriptionSize in KSPROPERTY_DESCRIPTION structure") );
RETURN(STATUS_INVALID_PARAMETER);
}
}
#endif
}
if( ( NT_SUCCESS( Status ) ) &&
( pPropDesc->MembersListCount > 0 ) &&
( IsEqualGUID( &pPropDesc->PropTypeSet.Set, &KSPROPTYPESETID_General )) &&
( pMemberHeader->MembersCount > 0 ) &&
( pMemberHeader->Flags & KSPROPERTY_MEMBER_FLAG_BASICSUPPORT_MULTICHANNEL ) )
{
//
// Volume controls may either be of MIXERTYPE_CONTROLF_UNIFORM
// or not. Uniform controls adjust all channels (or are mono
// in the first place) with one control. Those that have the
// fdwControl field set to 0 can set all channels of the volume
// independently. This information will have to come from the
// node itself, by checking to see if the node uniform control.
//
pControl->NumChannels = pMemberHeader->MembersCount;
if( (pMemberHeader->Flags & KSPROPERTY_MEMBER_FLAG_BASICSUPPORT_UNIFORM) ||
(pMemberHeader->MembersCount == 1) ) {
pControl->Control.fdwControl = MIXERCONTROL_CONTROLF_UNIFORM;
}
}
else {
// Fall through to using the old method which checks if volume is supported on
// each channel one at a time
Status = kmxlSupportsMultiChannelControl(pfo,
pControl->Id,
pControl->PropertyId);
if (NT_SUCCESS(Status)) {
pControl->NumChannels = 2; // we have stereo
pControl->Control.fdwControl = 0;
} else {
pControl->NumChannels = 1; // we have mono or master channel
pControl->Control.fdwControl = MIXERCONTROL_CONTROLF_UNIFORM;
}
}
// Done with the pPropDesc
AudioFreeMemory_Unknown( &pPropDesc );
ASSERT(pControl->NumChannels > 0);
ASSERT(pControl->pChannelStepping == NULL);
Status = AudioAllocateMemory_Paged(pControl->NumChannels * sizeof( CHANNEL_STEPPING ),
TAG_AuDB_CHANNEL,
ZERO_FILL_MEMORY,
&pControl->pChannelStepping );
if( !NT_SUCCESS( Status ) ) {
pControl->NumChannels = 0;
return( Status );
}
// For a failure, set the default range.
pChannelStepping = pControl->pChannelStepping;
for (i = 0; i < pControl->NumChannels; i++, pChannelStepping++) {
pChannelStepping->MinValue = DEFAULT_RANGE_MIN;
pChannelStepping->MaxValue = DEFAULT_RANGE_MAX;
pChannelStepping->Steps = DEFAULT_RANGE_STEPS;
}
return( STATUS_SUCCESS );
}
///////////////////////////////////////////////////////////////////////
//
// kmxlGetControlRange
//
//
NTSTATUS
kmxlGetControlRange(
IN PFILE_OBJECT pfo,
IN PMXLCONTROL pControl
)
{
NTSTATUS Status;
PKSPROPERTY_DESCRIPTION pPropDesc;
PKSPROPERTY_MEMBERSHEADER pMemberHeader;
PKSPROPERTY_STEPPING_LONG pSteppingLong;
PCHANNEL_STEPPING pChannelStepping;
ULONG i;
PAGED_CODE();
//
// Query the range for this control and initialize pControl in case of failure
//
ASSERT( pControl->pChannelStepping == NULL );
pControl->pChannelStepping = NULL;
Status = kmxlQueryPropertyRange(
pfo,
&KSPROPSETID_Audio,
pControl->PropertyId,
pControl->Id,
&pPropDesc
);
if( !NT_SUCCESS( Status ) ) {
DPF(DL_WARNING|FA_MIXER,( "Failed to get BASICSUPPORT on control %x!", pControl ) );
// If BASICSUPPORT fails, kmxlGetControlChannels to handle the default behavior
Status = kmxlGetControlChannels( pfo, pControl );
RETURN( Status );
}
//
// Do some checking on the returned value. Look for things that we
// support.
//
if( ( pPropDesc->MembersListCount == 0 ) ||
( !IsEqualGUID( &pPropDesc->PropTypeSet.Set, &KSPROPTYPESETID_General ) ) ||
( pPropDesc->PropTypeSet.Id != VT_I4 ) )
{
AudioFreeMemory_Unknown( &pPropDesc );
RETURN( STATUS_NOT_SUPPORTED );
}
pMemberHeader = (PKSPROPERTY_MEMBERSHEADER) ( pPropDesc + 1 );
#ifdef DEBUG
//
// If the MembersListCount is greater then zero and the GUID's are equal
// then we will reference the pMemberHeader value that we create here.
// If we do, then we must make sure that the memory that we allocated
// is large enough to handle it!
//
if (pPropDesc->DescriptionSize < (sizeof(KSPROPERTY_DESCRIPTION) +
sizeof(KSPROPERTY_MEMBERSHEADER)) )
{
DPF(DL_ERROR|FA_ALL,("Incorrectly reported DescriptionSize in KSPROPERTY_DESCRIPTION structure") );
RETURN(STATUS_INVALID_PARAMETER);
}
#endif
//
// Do some more checking on the returned value.
//
if ( (pMemberHeader->MembersCount == 0) ||
(pMemberHeader->MembersSize != sizeof(KSPROPERTY_STEPPING_LONG)) ||
(!(pMemberHeader->MembersFlags & KSPROPERTY_MEMBER_STEPPEDRANGES)) )
{
AudioFreeMemory_Unknown( &pPropDesc );
RETURN( STATUS_NOT_SUPPORTED );
}
//
// Volume controls may either be of MIXERTYPE_CONTROLF_UNIFORM
// or not. Uniform controls adjust all channels (or are mono
// in the first place) with one control. Those that have the
// fdwControl field set to 0 can set all channels of the volume
// independently. This information will have to come from the
// node itself, by checking to see if the node uniform control.
//
if (pMemberHeader->Flags & KSPROPERTY_MEMBER_FLAG_BASICSUPPORT_MULTICHANNEL) {
pControl->NumChannels = pMemberHeader->MembersCount;
if( (pMemberHeader->Flags & KSPROPERTY_MEMBER_FLAG_BASICSUPPORT_UNIFORM) ||
(pMemberHeader->MembersCount == 1) ) {
pControl->Control.fdwControl = MIXERCONTROL_CONTROLF_UNIFORM;
}
} else {
// Use the old method which checks if volume is supported on
// each channel one at a time
Status = kmxlSupportsMultiChannelControl(pfo,
pControl->Id,
pControl->PropertyId);
if (NT_SUCCESS(Status)) {
pControl->NumChannels = 2; // we have stereo
pControl->Control.fdwControl = 0;
} else {
pControl->NumChannels = 1; // we have mono or master channel
pControl->Control.fdwControl = MIXERCONTROL_CONTROLF_UNIFORM;
}
}
DPF(DL_TRACE|FA_MIXER,(
"KMXL: Found %d channel ranges on control %x",
pControl->NumChannels,
pControl
) );
ASSERT(pControl->NumChannels > 0);
ASSERT(pControl->pChannelStepping == NULL);
Status = AudioAllocateMemory_Paged(pControl->NumChannels * sizeof( CHANNEL_STEPPING ),
TAG_AuDA_CHANNEL,
ZERO_FILL_MEMORY,
&pControl->pChannelStepping );
if( !NT_SUCCESS( Status ) ) {
pControl->NumChannels = 0;
AudioFreeMemory_Unknown( &pPropDesc );
RETURN( Status );
}
pSteppingLong = (PKSPROPERTY_STEPPING_LONG) ( pMemberHeader + 1 );
pChannelStepping = pControl->pChannelStepping;
// Assuming that MemberSize is sizeof(KSPROPERTY_STEPPING_LONG) for now
for (i = 0; i < pControl->NumChannels; pChannelStepping++) {
if ( pSteppingLong->Bounds.SignedMaximum == pSteppingLong->Bounds.SignedMinimum ) {
DPF(DL_WARNING|FA_MIXER,( "Channel %d has pSteppingLong->Bounds.SignedMaximum == pSteppingLong->Bounds.SignedMinimum", i ) );
AudioFreeMemory_Unknown( &pPropDesc );
RETURN( STATUS_NOT_SUPPORTED );
}
pChannelStepping->MinValue = pSteppingLong->Bounds.SignedMinimum;
pChannelStepping->MaxValue = pSteppingLong->Bounds.SignedMaximum;
if( pSteppingLong->SteppingDelta == 0 ) {
DPF(DL_WARNING|FA_MIXER,( "Channel %d has pSteppingLong->SteppingDelta == 0", i ) );
AudioFreeMemory_Unknown( &pPropDesc );
RETURN( STATUS_NOT_SUPPORTED );
}
pChannelStepping->Steps = (LONG) ( ( (LONGLONG) pSteppingLong->Bounds.SignedMaximum -
(LONGLONG) pSteppingLong->Bounds.SignedMinimum ) /
(LONGLONG) pSteppingLong->SteppingDelta );
if( pChannelStepping->Steps == 0 ) {
DPF(DL_WARNING|FA_MIXER, ( "Channel %d has pChannelStepping->Steps == 0", i ) );
AudioFreeMemory_Unknown( &pPropDesc );
RETURN( STATUS_NOT_SUPPORTED );
}
//
// Need to correct any out of bounds min, max and stepping values. This code use to be
// in persist.c.
//
/*
ASSERT ( pChannelStepping->MinValue >= -150*65536 && pChannelStepping->MinValue <= 150*65536 );
ASSERT ( pChannelStepping->MaxValue >= -150*65536 && pChannelStepping->MaxValue <= 150*65536 );
ASSERT ( pChannelStepping->Steps >= 0 && pChannelStepping->Steps <= 65535 );
*/
if (!(pChannelStepping->MinValue >= -150*65536 && pChannelStepping->MinValue <= 150*65536)) {
DPF(DL_WARNING|FA_MIXER,
("MinValue %X of Control %X of type %X on Channel %X is out of range! Correcting",
pChannelStepping->MinValue,
pControl->Control.dwControlID,
pControl->Control.dwControlType,
i) );
pChannelStepping->MinValue = DEFAULT_RANGE_MIN;
}
if (!(pChannelStepping->MaxValue >= -150*65536 && pChannelStepping->MaxValue <= 150*65536)) {
DPF(DL_WARNING|FA_MIXER,
("MaxValue %X of Control %X of type %X on Channel %X is out of range! Correcting",
pChannelStepping->MaxValue,
pControl->Control.dwControlID,
pControl->Control.dwControlType,
i) );
pChannelStepping->MaxValue = DEFAULT_RANGE_MAX;
}
if (!(pChannelStepping->Steps >= 0 && pChannelStepping->Steps <= 65535)) {
DPF(DL_WARNING|FA_MIXER,
("Steps %X of Control %X of type %X on Channel %X is out of range! Correcting",
pChannelStepping->Steps,
pControl->Control.dwControlID,
pControl->Control.dwControlType,
i) );
pChannelStepping->Steps = DEFAULT_RANGE_STEPS;
pControl->Control.Metrics.cSteps = DEFAULT_RANGE_STEPS;
}
DPF(DL_TRACE|FA_MIXER,( "Channel %d ranges from %08x to %08x by %08x steps",
i,
pChannelStepping->MinValue,
pChannelStepping->MaxValue,
pChannelStepping->Steps ) );
// Use the next Stepping structure, if there is one.
if (++i < pMemberHeader->MembersCount) {
pSteppingLong++;
}
}
AudioFreeMemory_Unknown( &pPropDesc );
return( STATUS_SUCCESS );
}
///////////////////////////////////////////////////////////////////////
//
// FindTopologyConnectionTo
//
// Scans through the connection table looking for a connection that
// matches the ToNode/ToNodePin criteria.
//
//
ULONG
kmxlFindTopologyConnectionTo(
IN CONST KSTOPOLOGY_CONNECTION* pConnections, // The connection table
IN ULONG cConnections, // The # of connections
IN ULONG StartIndex, // Index to start search
IN ULONG ToNode, // The Node ID to look for
IN ULONG ToNodePin // The Pin ID to look for
)
{
ULONG i;
PAGED_CODE();
for( i = StartIndex; i < cConnections; i++ ) {
if( ( ( pConnections[ i ].ToNode == ToNode ) ||
( ToNode == PINID_WILDCARD ) ) &&
( ( pConnections[ i ].ToNodePin == ToNodePin ) ||
( ToNodePin == PINID_WILDCARD ) ) ) {
return( i );
}
}
return( (ULONG) -1 );
}
///////////////////////////////////////////////////////////////////////
//
// kmxlGetNumMuxLines
//
//
DWORD
kmxlGetNumMuxLines(
IN PKSTOPOLOGY pTopology,
IN ULONG NodeId
)
{
ULONG Index = 0,
Count = 0;
PAGED_CODE();
do {
Index = kmxlFindTopologyConnectionTo(
pTopology->TopologyConnections,
pTopology->TopologyConnectionsCount,
Index,
NodeId,
PINID_WILDCARD
);
if( Index == (ULONG) -1 ) {
break;
}
++Count;
++Index;
} while( 1 );
return( Count );
}
///////////////////////////////////////////////////////////////////////
//
// kmxlGetMuxLineNames
//
//
VOID
kmxlGetMuxLineNames(
IN PMIXEROBJECT pmxobj,
IN PMXLCONTROL pControl
)
{
PMXLNODE pNode;
ULONG i, Index = 0, NodeId;
ASSERT( pmxobj );
ASSERT( pControl );
PAGED_CODE();
if( !NT_SUCCESS( AudioAllocateMemory_Paged(pControl->Control.cMultipleItems * sizeof( MIXERCONTROLDETAILS_LISTTEXT ),
TAG_AudG_GETMUXLINE,
ZERO_FILL_MEMORY,
&pControl->Parameters.lpmcd_lt ) ) )
{
DPF(DL_WARNING|FA_USER,("Failing non failable routine!") );
return;
}
if( !NT_SUCCESS( AudioAllocateMemory_Paged(pControl->Control.cMultipleItems * sizeof( ULONG ),
TAG_AudG_GETMUXLINE,
ZERO_FILL_MEMORY,
&pControl->Parameters.pPins ) ) )
{
AudioFreeMemory( pControl->Control.cMultipleItems * sizeof( MIXERCONTROLDETAILS_LISTTEXT ),
&pControl->Parameters.lpmcd_lt );
pControl->Parameters.Count = 0;
DPF(DL_WARNING|FA_USER,("Failing non failable routine!") );
return;
}
ASSERT( pControl->Parameters.lpmcd_lt );
ASSERT( pControl->Parameters.pPins );
pControl->Parameters.Count = pControl->Control.cMultipleItems;
for( i = 0; i < pControl->Control.cMultipleItems; i++ ) {
Index = kmxlFindTopologyConnectionTo(
pmxobj->pTopology->TopologyConnections,
pmxobj->pTopology->TopologyConnectionsCount,
Index,
pControl->Id,
PINID_WILDCARD
);
if( Index != (ULONG) -1 ) {
NodeId = pmxobj->pTopology->TopologyConnections[ Index ].FromNode;
if( NodeId == KSFILTER_NODE ) {
pControl->Parameters.lpmcd_lt[ i ].dwParam1 = pmxobj->pTopology->TopologyConnections[ Index ].FromNodePin;
pControl->Parameters.lpmcd_lt[ i ].dwParam2 = (DWORD) -1;
pControl->Parameters.pPins[ i ]
= pmxobj->pTopology->TopologyConnections[ Index ].ToNodePin;
++Index;
continue;
} else {
pNode = &pmxobj->pNodeTable[ NodeId ];
}
++Index;
while( pNode ) {
if( IsEqualGUID( &pNode->NodeType, &KSNODETYPE_SUM ) ||
IsEqualGUID( &pNode->NodeType, &KSNODETYPE_MUX ) ||
( kmxlParentListLength( pNode ) > 1 ) )
{
pControl->Parameters.lpmcd_lt[ i ].dwParam1 = 0x8000 + pNode->Id;
pControl->Parameters.lpmcd_lt[ i ].dwParam2 = (DWORD) -1;
pControl->Parameters.pPins[ i ]
= pmxobj->pTopology->TopologyConnections[ Index - 1 ].ToNodePin;
break;
}
if( pNode->Type == SOURCE ) {
pControl->Parameters.lpmcd_lt[ i ].dwParam1 = pNode->Id;
pControl->Parameters.lpmcd_lt[ i ].dwParam2 = (DWORD) -1;
pControl->Parameters.pPins[ i ]
= pmxobj->pTopology->TopologyConnections[ Index - 1 ].ToNodePin;
break;
} // if
if( kmxlFirstParentNode( pNode ) ) {
pNode = (kmxlFirstParentNode( pNode ))->pNode;
} else {
pNode = NULL;
}
} // while
} // if
} // for
} // kmxlGetMuxLineNames