Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3905 lines
125 KiB

/****************************************************************************
MODULE: MIDI_OBJ.CPP
Tab stops 5 9
Copyright 1995, 1996, Microsoft Corporation, All Rights Reserved.
PURPOSE: Methods for SWFF MIDI device object
FUNCTIONS: Classes methods
Author(s): Name:
---------- ----------------
MEA Manolito E. Adan
Revision History:
-----------------
Version Date Author Comments
------- ------ ----- -----------------------------------------
0.1 10-Sep-96 MEA original
1.1 20-May-97 MEA Added Mutex and Thread safe code
17-Jun-97 MEA Fixed bug Midi Handle lost if 1st process
terminated.
16-Mar-99 waltw Add dwDeviceID param: CJoltMidi::Initialize
and pass down food chain
16-Mar-99 waltw GetRing0DriverName in InitDigitalOverDrive
now passes down joystick ID
20-Mar-99 waltw Added dwDeviceID param to DetectMidiDevice
20-Mar-99 waltw Comment out invalid call to CloseHandle in dtor
****************************************************************************/
#include <assert.h>
#include <windows.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <mmsystem.h>
#include "SW_Error.hpp"
#include "midi_obj.hpp"
#include "vxdioctl.hpp"
#include "joyregst.hpp"
#include "FFDevice.h"
#include "CritSec.h"
#define NT50 1
#include "DTrans.h"
DataTransmitter* g_pDataTransmitter = NULL;
/****************************************************************************
Declaration of externs
****************************************************************************/
extern void CALLBACK midiOutputHandler(HMIDIOUT, UINT, DWORD, DWORD, DWORD);
extern TCHAR szDeviceName[MAX_SIZE_SNAME];
extern CJoltMidi *g_pJoltMidi;
/****************************************************************************
Declaration of variables
****************************************************************************/
/****************************************************************************
Macros etc
****************************************************************************/
#ifdef _DEBUG
extern char g_cMsg[160];
void DebugOut(LPCTSTR szDebug)
{
g_CriticalSection.Enter();
OutputDebugString(szDebug);
g_CriticalSection.Leave();
#ifdef _LOG_DEBUG
#pragma message("Compiling with Debug Log to sw_effct.txt")
FILE *pf = fopen("sw_effct.txt", "a");
if (pf != NULL)
{
fputs(szDebug, pf);
fclose(pf);
}
#endif // _LOG_DEBUG
}
#else !_DEBUG
#define DebugOut(x)
#endif // _DEBUG
// ****************************************************************************
// *** --- Member functions for base CJoltMidi
//
// ****************************************************************************
//
// ----------------------------------------------------------------------------
// Function: CJoltMidi::CJoltMidi
// Purpose: Constructor(s)/Destructor for CJoltMidi Object
// Parameters:
// Returns:
// Algorithm:
// ----------------------------------------------------------------------------
CJoltMidi::CJoltMidi(void)
{
//
// --- THIS IS A CRITICAL SECTION
//
CriticalLock cl;
static char cWaterMark[MAX_SIZE_SNAME] = {"SWFF_SHAREDMEMORY MEA"};
BOOL bAlreadyMapped = FALSE;
#ifdef _DEBUG
DebugOut("sw_effct(DX):CJoltMidi::CJoltMidi\n");
#endif
memset(this, 0, sizeof(CJoltMidi));
m_hVxD = INVALID_HANDLE_VALUE;
// Create an in-memory memory-mapped file
m_hSharedMemoryFile = CreateFileMapping((HANDLE) 0xFFFFFFFF,
NULL, PAGE_READWRITE, 0, SIZE_SHARED_MEMORY,
__TEXT(SWFF_SHAREDMEM_FILE));
if (m_hSharedMemoryFile == NULL)
{
#ifdef _DEBUG
DebugOut("sw_effct(DX):ERROR! Failed to create Memory mapped file\n");
#endif
}
else
{
if (GetLastError() == ERROR_ALREADY_EXISTS)
{
bAlreadyMapped = TRUE;
}
// File mapping created successfully.
// Map a view of the file into the address space.
m_pSharedMemory = (PSHARED_MEMORY) MapViewOfFile(m_hSharedMemoryFile,
FILE_MAP_READ | FILE_MAP_WRITE, 0, 0, 0);
if ((BYTE *) m_pSharedMemory == NULL)
{
#ifdef _DEBUG
DebugOut("sw_effct(DX):ERROR! Failed to Map view of shared memory\n");
#endif
}
// ***** Shared Memory Access *****
LockSharedMemory();
if (!bAlreadyMapped)
{
// Set watermark and initialize, Bump Ref Count
memcpy(&m_pSharedMemory->m_cWaterMark[0], &cWaterMark[0], MAX_SIZE_SNAME);
m_pSharedMemory->m_RefCnt = 0;
}
m_pSharedMemory->m_RefCnt++;
}
#ifdef _DEBUG
wsprintf(g_cMsg, "sw_effct(DX): Shared Memory:%lx, m_RefCnt:%d\n",m_pSharedMemory,
m_pSharedMemory->m_RefCnt);
DebugOut(g_cMsg);
#endif
UnlockSharedMemory();
// ***** End of Shared Memory Access *****
// --- END OF CRITICAL SECTION
//
}
// --- Destructor
CJoltMidi::~CJoltMidi()
{
//
// --- THIS IS A CRITICAL SECTION
//
CriticalLock cl;
BOOL bKillObject = FALSE;
#ifdef _DEBUG
DebugOut("sw_effct(DX):CJoltMidi::~CJoltMidi()\n");
#endif
// Normal CJoltMidi Destructor
// Free all buffers and other data
if (m_lpCallbackInstanceData) FreeCallbackInstanceData();
// Free the MIDI Effect objects (except RTC Spring)
DeleteDownloadedEffects();
// Free the Primary SYS_EX locked memory
if (m_hPrimaryBuffer)
{
GlobalUnlock(m_hPrimaryBuffer);
GlobalFree(m_hPrimaryBuffer);
}
// ***** Shared Memory Access *****
LockSharedMemory();
// Decrement Ref Count and clean up if equal to zero.
m_pSharedMemory->m_RefCnt--;
#ifdef _DEBUG
wsprintf(g_cMsg,"CJoltMidi::~CJoltMidi. RefCnt = %d\n",m_pSharedMemory->m_RefCnt);
DebugOut(g_cMsg);
#endif
if (0 == m_pSharedMemory->m_RefCnt)
{
bKillObject = TRUE;
// Tri-state Midi lines
CMD_SetDeviceState(SWDEV_KILL_MIDI);
if (m_pSharedMemory->m_hMidiOut) {
if (COMM_WINMM == m_COMMInterface) {
DebugOut("CJoltMidi::~CJoltMidi. Resetting and closing Midi handles\n");
// Reset, close and release Midi Handles
midiOutReset(HMIDIOUT(m_pSharedMemory->m_hMidiOut));
midiOutClose(HMIDIOUT(m_pSharedMemory->m_hMidiOut));
}
// This is bogus - midiOutClose has already closed this handle
// if (g_pDataTransmitter == NULL) { // DataTransmitter closes its own handle
// CloseHandle(m_pSharedMemory->m_hMidiOut);
// }
m_pSharedMemory->m_hMidiOut = NULL;
}
// Kill Data Transmitter
if (g_pDataTransmitter != NULL) {
delete g_pDataTransmitter;
g_pDataTransmitter = NULL;
}
// Release Mutex handles
// if (m_hSWFFDataMutex) CloseHandle(m_hSWFFDataMutex); -- Unlock will take care of this
// Kill RTC Spring object
if (m_pJoltEffectList[SYSTEM_RTCSPRING_ID])
{
delete m_pJoltEffectList[SYSTEM_RTCSPRING_ID];
m_pJoltEffectList[SYSTEM_RTCSPRING_ID] = NULL;
}
// Release the Midi Output Event handles
if (m_hMidiOutputEvent)
{
CloseHandle (m_hMidiOutputEvent);
m_hMidiOutputEvent = NULL;
}
}
UnlockSharedMemory();
// ***** End of Shared Memory Access *****
// Release Memory Mapped file handles
if (m_hSharedMemoryFile)
{
BOOL bRet = UnmapViewOfFile((LPCVOID) m_pSharedMemory);
bRet = CloseHandle(m_hSharedMemoryFile);
}
// Close VxD handles
if (g_pDriverCommunicator != NULL)
{
delete g_pDriverCommunicator;
g_pDriverCommunicator = NULL;
}
memset(this, 0, sizeof(CJoltMidi));
m_hVxD = INVALID_HANDLE_VALUE;
// --- END OF CRITICAL SECTION
//
if (bKillObject)
{
// Delete the critical section object
// DeleteCriticalSection(&g_SWFFCriticalSection);
}
}
// ----------------------------------------------------------------------------
// Function: CJoltMidi::Initialize
// Purpose: Initializer
// Parameters:
// Returns:
// Algorithm:
// ----------------------------------------------------------------------------
HRESULT CJoltMidi::Initialize(DWORD dwDeviceID)
{
//
// --- THIS IS A CRITICAL SECTION
//
CriticalLock cl;
HRESULT hRet = SUCCESS;
// initialize the MIDI output information block
m_MidiOutInfo.uDeviceType = MIDI_OUT;
m_MidiOutInfo.hMidiOut = NULL;
m_MidiOutInfo.fAlwaysKeepOpen = TRUE;
m_MidiOutInfo.uDeviceStatus = MIDI_DEVICE_IDLE;
m_MidiOutInfo.MidiHdr.dwBytesRecorded = 0;
m_MidiOutInfo.MidiHdr.dwUser = 0;
m_MidiOutInfo.MidiHdr.dwOffset = 0;
m_MidiOutInfo.MidiHdr.dwFlags = 0;
// Allocate and lock global memory for SysEx messages
m_hPrimaryBuffer = GlobalAlloc(GMEM_SHARE|GMEM_MOVEABLE, MAX_SYS_EX_BUFFER_SIZE);
assert(m_hPrimaryBuffer);
if(NULL == m_hPrimaryBuffer)
{
return (SFERR_DRIVER_ERROR);
}
m_pPrimaryBuffer = (LPBYTE) GlobalLock(m_hPrimaryBuffer);
assert(m_pPrimaryBuffer);
if(NULL == m_pPrimaryBuffer)
{
GlobalFree(m_hPrimaryBuffer);
return (SFERR_DRIVER_ERROR);
}
// Initialize the IOCTL interface to VjoyD mini-driver
hRet = InitDigitalOverDrive(dwDeviceID);
if (SUCCESS != hRet)
{
DebugOut("Warning! Could not Initialize Digital OverDrive\n");
return (hRet);
}
else
DebugOut("InitDigitalOverDrive - Success\n");
// Create a Callback Event
HANDLE hEvent = OpenEvent(EVENT_ALL_ACCESS, FALSE, SWFF_MIDIEVENT);
if (NULL == hEvent)
{
// Create an Event for notification when Midi Output has completed
m_hMidiOutputEvent = CreateEvent(NULL, // No security
TRUE, // Manual reset
FALSE, // Initial event is non-signaled
SWFF_MIDIEVENT ); // Named
assert(m_hMidiOutputEvent);
}
else
m_hMidiOutputEvent = hEvent;
// We are only called after g_pJoltMidi is created
assert(g_pJoltMidi);
PDELAY_PARAMS pDelayParams = g_pJoltMidi->DelayParamsPtrOf();
GetDelayParams(dwDeviceID, pDelayParams);
// Reset HW first
g_pDriverCommunicator->ResetDevice();
Sleep(DelayParamsPtrOf()->dwHWResetDelay);
// Set MIDI channel to default then Detect a Midi Device
SetMidiChannel(DEFAULT_MIDI_CHANNEL);
if (!DetectMidiDevice(dwDeviceID, // joystick ID
&m_MidiOutInfo.uDeviceID, // Midi Device ID
&m_COMMInterface, // COMM_WINMM||COMM_BACKDOOR
// ||COMM_SERIAL
&m_COMMPort)) // Port address
{
DebugOut("SW_EFFCT: Warning! No Midi Device detected\n");
return (SFERR_DRIVER_ERROR);
}
else
{
#ifdef _DEBUG
wsprintf(g_cMsg,"DetectMidiDevice returned: DeviceID=%d, COMMInterface=%x, COMMPort=%x\n",
m_MidiOutInfo.uDeviceID, m_COMMInterface, m_COMMPort);
DebugOut(g_cMsg);
#endif
}
// Allocate the Instance data buffer
m_lpCallbackInstanceData = AllocCallbackInstanceData();
assert(m_lpCallbackInstanceData);
// Initialize Midi channel, then open the Input and Output channels
m_MidiChannel = DEFAULT_MIDI_CHANNEL;
// Send Initialization packet(s) to Jolt
hRet = CMD_Init();
if (SUCCESS != hRet)
{
DebugOut("Warning! Could not Initialize Jolt\n");
return (hRet);
}
else
DebugOut("JOLT CMD_Init - Success\n");
// At this point, we have a valid MIDI path...
// Continue by setting up the ROM Effects default table entries
// ID , OutputRate, Gain, Duration
static ROM_FX_PARAM RomFxTable [] = {{ RE_ROMID1 , 100, 100, 12289 }, // Random Noise
{ RE_ROMID2 , 100, 100, 2625 }, // AircraftCarrierTakeOff
{ RE_ROMID3 , 100, 50, 166 }, // BasketballDribble
{ RE_ROMID4 , 100, 14, 10000 }, // CarEngineIdling
{ RE_ROMID5 , 100, 30, 1000 }, // Chainsaw
{ RE_ROMID6 , 100, 100, 1000 }, // ChainsawingThings
{ RE_ROMID7 , 100, 40, 10000 }, // DieselEngineIdling
{ RE_ROMID8 , 100, 100, 348 }, // Jump
{ RE_ROMID9 , 100, 100, 250 }, // Land
{ RE_ROMID10, 200, 100, 1000 }, // MachineGun
{ RE_ROMID11, 100, 100, 83 }, // Punched
{ RE_ROMID12, 100, 100, 1000 }, // RocketLauncher
{ RE_ROMID13, 100, 98, 500 }, // SecretDoor
{ RE_ROMID14, 100, 66, 25 }, // SwitchClick
{ RE_ROMID15, 100, 75, 500 }, // WindGust
{ RE_ROMID16, 100, 100, 2500 }, // WindShear
{ RE_ROMID17, 100, 100, 50 }, // Pistol
{ RE_ROMID18, 100, 100, 295 }, // Shotgun
{ RE_ROMID19, 500, 95, 1000 }, // Laser1
{ RE_ROMID20, 500, 96, 1000 }, // Laser2
{ RE_ROMID21, 500, 100, 1000 }, // Laser3
{ RE_ROMID22, 500, 100, 1000 }, // Laser4
{ RE_ROMID23, 500, 100, 1000 }, // Laser5
{ RE_ROMID24, 500, 70, 1000 }, // Laser6
{ RE_ROMID25, 100, 100, 25 }, // OutOfAmmo
{ RE_ROMID26, 100, 71, 1000 }, // LigntningGun
{ RE_ROMID27, 100, 100, 250 }, // Missile
{ RE_ROMID28, 100, 100, 1000 }, // GatlingGun
{ RE_ROMID29, 500, 97, 250 }, // ShortPlasma
{ RE_ROMID30, 500, 100, 500 }, // PlasmaCannon1
{ RE_ROMID31, 500, 99, 625 }, // PlasmaCannon2
{ RE_ROMID32, 100, 100, 440 }}; // Cannon
// { RE_ROMID33, 100, 68, 1000 }, // FlameThrower
// { RE_ROMID34, 100, 100, 75 }, // BoltActionRifle
// { RE_ROMID35, 500, 100, 300 }, // Crossbow
// { RE_ROMID36, 100, 100, 1000 }, // Sine
// { RE_ROMID37, 100, 100, 1000 }}; // Cosine
m_pRomFxTable = &RomFxTable[0];
// ***** Shared Memory Access *****
LockSharedMemory();
LONG lRefCnt = m_pSharedMemory->m_RefCnt;
UnlockSharedMemory();
// ***** End of Shared Memory Access *****
// Initialize the RTC_Spring object
SYSTEM_PARAMS SystemParams;
GetSystemParams(dwDeviceID, &SystemParams);
RTCSPRING_PARAM RTCSpring = { sizeof(RTCSPRING_PARAM),
DEFAULT_RTC_KX,
DEFAULT_RTC_KY,
DEFAULT_RTC_X0,
DEFAULT_RTC_Y0,
DEFAULT_RTC_XSAT,
DEFAULT_RTC_YSAT,
DEFAULT_RTC_XDBAND,
DEFAULT_RTC_YDBAND };
CMidiRTCSpring * pMidiRTCSpring = new CMidiRTCSpring(&RTCSpring);
SetEffectByID(SYSTEM_RTCSPRING_ID, pMidiRTCSpring);
DNHANDLE DnHandle;
CMD_Download_RTCSpring(&(SystemParams.RTCSpringParam),&DnHandle);
// initialize the joystick params
JOYSTICK_PARAMS JoystickParams;
GetJoystickParams(dwDeviceID, &JoystickParams);
UpdateJoystickParams(&JoystickParams);
// initialize the firmware params fudge factors (for the first time)
// in the case of the FFD interface, this will be the only time they
// are initialized, which may cause a problem because joystick is assumed
// to be ID1
PFIRMWARE_PARAMS pFirmwareParams = g_pJoltMidi->FirmwareParamsPtrOf();
GetFirmwareParams(dwDeviceID, pFirmwareParams);
// --- END OF CRITICAL SECTION
//
return (SUCCESS);
}
// *** ---------------------------------------------------------------------***
// Function: CJoltMidi::LockSharedMemory
// Purpose: Creates a Mutex for Shared Memory access
// Parameters: none
//
//
// Returns: TRUE if Mutex available else FALSE
// Algorithm:
//
// Comments:
//
//
// *** ---------------------------------------------------------------------***
BOOL CJoltMidi::LockSharedMemory(void)
{
DWORD dwRet;
{ // --- THIS IS A CRITICAL SECTION
CriticalLock cl;
// Create the SWFF mutex
HANDLE hMutex = OpenMutex(MUTEX_ALL_ACCESS, FALSE, SWFF_SHAREDMEM_MUTEX);
if (NULL == hMutex) {
// Doesn't exist yet, so create it
hMutex = CreateMutex(NULL, TRUE, SWFF_SHAREDMEM_MUTEX);
if (NULL == hMutex)
{
#ifdef _DEBUG
DebugOut("Error! Could not create SWFFDataMutex\n");
#endif
m_hSWFFDataMutex = NULL;
return (FALSE);
}
}
// SUCCESS
m_hSWFFDataMutex = hMutex;
dwRet = WaitForSingleObject(m_hSWFFDataMutex, MUTEX_TIMEOUT);
} // --- END OF CRITICAL SECTION
if (WAIT_OBJECT_0 == dwRet)
return (TRUE);
else
{
#ifdef _DEBUG
g_CriticalSection.Enter();
wsprintf(g_cMsg,"CJoltMidi::LockSharedMemory() error return: %lx\n", dwRet);
DebugOut(g_cMsg);
g_CriticalSection.Leave();
#endif
return (FALSE);
}
}
// *** ---------------------------------------------------------------------***
// Function: CJoltMidi::UnlockSharedMemory
// Purpose: Releases Mutex for Shared Memory access
// Parameters: none
//
//
// Returns: none
// Algorithm:
//
// Comments:
//
//
// *** ---------------------------------------------------------------------***
void CJoltMidi::UnlockSharedMemory(void)
{
//
// --- THIS IS A CRITICAL SECTION
//
g_CriticalSection.Enter();
if (NULL != m_hSWFFDataMutex)
{
ReleaseMutex(m_hSWFFDataMutex);
CloseHandle(m_hSWFFDataMutex);
m_hSWFFDataMutex=NULL;
}
// --- END OF CRITICAL SECTION
//
g_CriticalSection.Leave();
}
// ----------------------------------------------------------------------------
// Function: CJoltMidi::NewEffectID
// Purpose: Generates a new Effect ID
// Parameters: PDNHANDLE pDnloadID - Pointer to a new Effect ID
//
// Returns: TRUE if successful, else FALSE
// Algorithm:
// ----------------------------------------------------------------------------
BOOL CJoltMidi::NewEffectID(PDNHANDLE pDnloadID)
{
//
// --- THIS IS A CRITICAL SECTION
//
g_CriticalSection.Enter();
BOOL bRet = FALSE;
int nID_Index = 2; // ID0 = RTC Spring, ID1 = Friction cancellation
for (int i=nID_Index; i<MAX_EFFECT_IDS; i++)
{
if (NULL == m_pJoltEffectList[i])
{
*pDnloadID = (DNHANDLE) i;
#ifdef _DEBUG
wsprintf(g_cMsg,"New Effect ID=%d\n",i);
DebugOut(g_cMsg);
#endif
bRet = TRUE;
break;
}
}
// --- END OF CRITICAL SECTION
//
g_CriticalSection.Leave();
return (bRet);
}
// ----------------------------------------------------------------------------
// Function: CJoltMidi::DeleteDownloadedEffects
// Purpose: Deletes all downloaded Effects
// Parameters: none
//
// Returns:
// Algorithm:
// Note: Does not delete System Effect IDs like RTC_SPRING and FRICTION CANCEL
//
// ----------------------------------------------------------------------------
void CJoltMidi::DeleteDownloadedEffects(void)
{
//
// --- THIS IS A CRITICAL SECTION
//
g_CriticalSection.Enter();
#ifdef _DEBUG
DebugOut("CJoltMidi::DeleteDownloadedEffects()\n");
#endif
// Free the MIDI Effect objects
for (int i=(SYSTEM_RTCSPRING_ID+1); i<MAX_EFFECT_IDS; i++)
{
if (m_pJoltEffectList[i])
{
delete m_pJoltEffectList[i];
m_pJoltEffectList[i]= NULL;
}
}
// --- END OF CRITICAL SECTION
//
g_CriticalSection.Leave();
}
// ----------------------------------------------------------------------------
// Function: CJoltMidi::RestoreDownloadedEffects
// Purpose: Restores all Downloaded Effects
// Parameters: none
//
// Returns:
// Algorithm:
// ----------------------------------------------------------------------------
void CJoltMidi::RestoreDownloadedEffects(void)
{
//
// --- THIS IS A CRITICAL SECTION
//
CriticalLock cl;
HRESULT hRet;
DNHANDLE DummyID;
#ifdef _DEBUG
DebugOut("CJoltMidi::RestoreDownloadedEffects()\n");
#endif
// Walk the list and restore the MIDI Effect objects
for (int i=0; i<MAX_EFFECT_IDS; i++)
{
if (m_pJoltEffectList[i])
{
#ifdef _DEBUG
wsprintf(g_cMsg,"Restoring Effect ID:%d\n", i);
DebugOut(g_cMsg);
#endif
// Generate Sys_Ex packet then prepare for output
(m_pJoltEffectList[i])->GenerateSysExPacket();
int nSizeBuf = (m_pJoltEffectList[i])->MidiBufferSizeOf();
int nRetries = MAX_RETRY_COUNT;
while (nRetries > 0)
{
hRet = (m_pJoltEffectList[i])->SendPacket(&DummyID, nSizeBuf);
if (SUCCESS == hRet) break;
BumpRetryCounter();
nRetries--;
}
assert(SUCCESS == hRet);
}
}
// --- END OF CRITICAL SECTION
//
}
// ----------------------------------------------------------------------------
// Function: CJoltMidi::OpenOutput
// Purpose: Opens Midi Output
// Parameters: int nDeviceID - MIDI device ID 0-based.
//
// Returns: success or Error code
// Algorithm:
// ----------------------------------------------------------------------------
HRESULT CJoltMidi::OpenOutput(int nDeviceID)
{
//
// --- THIS IS A CRITICAL SECTION
//
CriticalLock cl;
// ***** Shared Memory Access *****
LockSharedMemory();
// Return if already opened by another task
if (m_pSharedMemory->m_hMidiOut)
{
m_MidiOutInfo = m_pSharedMemory->m_MidiOutInfo;
UnlockSharedMemory();
// ***** End of Shared Memory Access *****
return (SUCCESS);
}
MMRESULT wRtn;
// Get MIDI input device caps
assert(nDeviceID <= (int) midiOutGetNumDevs());
wRtn = midiOutGetDevCaps(nDeviceID, (LPMIDIOUTCAPS) &m_MidiOutCaps,
sizeof(MIDIOUTCAPS));
if(MMSYSERR_NOERROR != wRtn)
{
#ifdef _DEBUG
midiOutGetErrorText(wRtn, (LPSTR)g_cMsg, sizeof(g_cMsg));
DebugOut(g_cMsg);
DebugOut(":midiOutGetDevCaps\n");
#endif
return (SFERR_DRIVER_ERROR);
}
// Now open, with Callback handler
HANDLE hMidiOut = NULL;
wRtn = midiOutOpen((LPHMIDIOUT)&hMidiOut,
nDeviceID,
// (DWORD) m_hMidiOutputEvent,
(DWORD) NULL,
(DWORD) this, // the CJoltMidi object
CALLBACK_EVENT);
if(MMSYSERR_NOERROR != wRtn)
{
#ifdef _DEBUG
midiOutGetErrorText(wRtn, (LPSTR)g_cMsg, sizeof(g_cMsg));
DebugOut(g_cMsg);
wsprintf(g_cMsg, "midiOutOpen(%u)\n", nDeviceID);
DebugOut(g_cMsg);
#endif
return (SFERR_DRIVER_ERROR);
}
m_MidiOutInfo.hMidiOut = HMIDIOUT(hMidiOut);
m_MidiOutDeviceID = nDeviceID;
m_MidiOutOpened = TRUE;
m_pSharedMemory->m_MidiOutInfo = m_MidiOutInfo;
// Copy Midi Output handle to SharedMemory
m_pSharedMemory->m_hMidiOut = hMidiOut;
UnlockSharedMemory();
// ***** End of Shared Memory Access *****
// --- END OF CRITICAL SECTION
//
return (SUCCESS);
}
// ----------------------------------------------------------------------------
// Function: CJoltMidi::AllocCallbackInstanceData
// Purpose: Allocates a CALLBACKINSTANCEDATA structure. This structure is
// used to pass information to the low-level callback function,
// each time it receives a message. Because this structure is
// accessed by the low-level callback function, it must be
// allocated using GlobalAlloc() with the GMEM_SHARE and
// GMEM_MOVEABLE flags and page-locked with GlobalPageLock().
//
// Parameters: none
//
// Returns: A pointer to the allocated CALLBACKINSTANCE data structure.
// else NULL if Fail
// Algorithm:
// ----------------------------------------------------------------------------
LPCALLBACKINSTANCEDATA CJoltMidi::AllocCallbackInstanceData(void)
{
HANDLE hMem;
LPCALLBACKINSTANCEDATA lpBuf;
// Allocate and lock global memory.
hMem = GlobalAlloc(GMEM_SHARE | GMEM_MOVEABLE,
(DWORD)sizeof(CALLBACKINSTANCEDATA));
if(hMem == NULL) return NULL;
lpBuf = (LPCALLBACKINSTANCEDATA)GlobalLock(hMem);
if(lpBuf == NULL)
{
GlobalFree(hMem);
return NULL;
}
// Save the handle.
lpBuf->hSelf = hMem;
return lpBuf;
}
// ----------------------------------------------------------------------------
// Function: CJoltMidi::FreeCallbackInstanceData
// Purpose: Frees the memory for the CALLBACKINSTANCEDATA structure
// Parameters: none
//
// Returns: none
// Algorithm:
// ----------------------------------------------------------------------------
void CJoltMidi::FreeCallbackInstanceData(void)
{
LPCALLBACKINSTANCEDATA lpBuf = m_lpCallbackInstanceData;
HANDLE hMem;
// Save the handle until we're through here.
hMem = lpBuf->hSelf;
// Free the structure.
GlobalUnlock(hMem);
GlobalFree(hMem);
}
// ----------------------------------------------------------------------------
// Function: CJoltMidi::GetAckNackData
// Purpose: Waits for a Response ACK
//
// Parameters: int nTImeWait - Time to wait in 1 ms increment, 0=no wait
// PACKNACK pAckNack - Pointer to ACKNACK structure
//
// Returns: SUCCESS else error code SFERR_DRIVER_ERROR
//
// Algorithm:
//
// Note: For Short messages the MidiOutProc callback receives no MM_MOM_DONE
// indicating completed transmission. Only Long (SysEx) messages do.
// Uses:
//typedef struct _ACKNACK {
// DWORD cBytes;
// DWORD dwAckNack; //ACK, NACK
// DWORD dwErrorCode;
// DWORD dwEffectStatus; //DEV_STS_EFFECT_RUNNING||DEV_STS_EFFECT_STOPPED
//} ACKNACK, *PACKNACK;
//
// ----------------------------------------------------------------------------
HRESULT CJoltMidi::GetAckNackData(
IN int nTimeWait,
IN OUT PACKNACK pAckNack,
IN USHORT regindex)
{
//
// --- THIS IS A CRITICAL SECTION
//
CriticalLock cl;
assert(pAckNack);
// Use IOCTL from VxD to get AckNack data
// Wait for Event to be set
if (nTimeWait && m_hMidiOutputEvent)
{
DWORD dwRet = WaitForSingleObject(m_hMidiOutputEvent, nTimeWait);
// :
#ifdef _DEBUG
wsprintf(g_cMsg,"WaitForSingleObject %lx returned %lx, nTimeWait=%ld\n", m_hMidiOutputEvent, dwRet, nTimeWait);
DebugOut(g_cMsg);
#endif
BOOL bRet = ResetEvent(m_hMidiOutputEvent);
}
HRESULT hRet = g_pDriverCommunicator->GetAckNack(*pAckNack, regindex);
// --- END OF CRITICAL SECTION
//
return (hRet);
}
// ----------------------------------------------------------------------------
// Function: CJoltMidi::GetEffectStatus
// Purpose: Checks status of Effect
//
// Parameters: int DnloadID - Effect ID
// PBYTE pStatusCode - Ptr to a byte for status code
//
// Returns: SUCCESS else error code SFERR_DRIVER_ERROR
//
// Algorithm:
//
// Note: For Short messages the MidiOutProc callback receives no MM_MOM_DONE
// indicating completed transmission. Only Long (SysEx) messages do.
// Uses:
//typedef struct _ACKNACK {
// DWORD cBytes;
// DWORD dwAckNack; //ACK, NACK
// DWORD dwErrorCode;
// DWORD dwEffectStatus; //DEV_STS_EFFECT_RUNNING||DEV_STS_EFFECT_STOPPED
//} ACKNACK, *PACKNACK;
//
// ----------------------------------------------------------------------------
HRESULT CJoltMidi::GetEffectStatus(
IN DWORD DnloadID ,
IN OUT PBYTE pStatusCode)
{
//
// --- THIS IS A CRITICAL SECTION
//
g_CriticalSection.Enter();
assert(pStatusCode);
HRESULT hRet = CMD_GetEffectStatus((DNHANDLE) DnloadID, pStatusCode);
// --- END OF CRITICAL SECTION
//
g_CriticalSection.Leave();
return (hRet);
}
// ----------------------------------------------------------------------------
// Function: CJoltMidi::InitDigitalOverDrive
// Purpose: Initialize the VxD interface
//
// Parameters: none
//
// Returns: SUCCESS or Error code
//
// Algorithm:
// ----------------------------------------------------------------------------
HRESULT CJoltMidi::InitDigitalOverDrive(DWORD dwDeviceID)
{
if (g_pDriverCommunicator != NULL)
{ // Attempt to reinit
ASSUME_NOT_REACHED();
return S_OK;
}
//
// --- THIS IS A CRITICAL SECTION
//
HRESULT hRet = SUCCESS;
DWORD driverMajor = 0xFFFFFFFF;
DWORD driverMinor = 0xFFFFFFFF;
g_CriticalSection.Enter();
// This fork works on NT5 only (VxD stuff removed)
assert(g_ForceFeedbackDevice.IsOSNT5() == TRUE);
{
g_pDriverCommunicator = new HIDFeatureCommunicator;
if (g_pDriverCommunicator == NULL)
{
g_CriticalSection.Leave();
return DIERR_OUTOFMEMORY;
}
if (((HIDFeatureCommunicator*)g_pDriverCommunicator)->Initialize(dwDeviceID) == FALSE)
{ // Could not load the driver
hRet = SFERR_DRIVER_ERROR;
}
}
if (FAILED(hRet))
{
return hRet;
}
// Loaded driver, get the version
g_pDriverCommunicator->GetDriverVersion(driverMajor, driverMinor);
// --- END OF CRITICAL SECTION
//
g_CriticalSection.Leave();
g_ForceFeedbackDevice.SetDriverVersion(driverMajor, driverMinor);
return (hRet);
}
// ----------------------------------------------------------------------------
// Function: CJoltMidi::GetJoltStatus
// Purpose: Returns JOLT Device Status using SWForce SWDEVICESTATE struct
//
// Parameters: LPDEVICESTATE pDeviceState
//
// Returns: none
//
// Algorithm: copies SWDEVICESTATUS to caller
// Internal Representation:
//typedef struct _SWDEVICESTATE {
// ULONG m_Bytes; // size of this structure
// ULONG m_ForceState; // DS_FORCE_ON || DS_FORCE_OFF || DS_SHUTDOWN
// ULONG m_EffectState; // DS_STOP_ALL || DS_CONTINUE || DS_PAUSE
// ULONG m_HOTS; // Hands On Throttle and Stick Status
// 0 = Hands Off, 1 = Hands On
// ULONG m_BandWidth; // Percentage of CPU available 1 to 100%
// Lower number indicates CPU is in trouble!
// ULONG m_ACBrickFault; // 0 = AC Brick OK, 1 = AC Brick Fault
// ULONG m_ResetDetect; // 1 = HW Reset Detected
// ULONG m_ShutdownDetect; // 1 = Shutdown detected
// ULONG m_CommMode; // TRUE=SERIAL, FALSE=MIDI
//} SWDEVICESTATE, *PSWDEVICESTATE;
//
// ----------------------------------------------------------------------------
HRESULT CJoltMidi::GetJoltStatus(PSWDEVICESTATE pDeviceState)
{
//
// --- THIS IS A CRITICAL SECTION
//
g_CriticalSection.Enter();
// Use Digital Overdrive to get the status packet
JOYCHANNELSTATUS statusPacket = { sizeof JOYCHANNELSTATUS };
HRESULT hRet = g_pDriverCommunicator->GetStatus(statusPacket);
if (hRet == SUCCESS) {
// Store/update Jolt's status in main object
SetJoltStatus(&statusPacket);
memcpy(pDeviceState, &m_DeviceState, sizeof(SWDEVICESTATE));
}
//
// --- END OF CRITICAL SECTION
//
g_CriticalSection.Leave();
return (hRet);
}
// ----------------------------------------------------------------------------
// Function: CJoltMidi::GetJoltStatus
// Purpose: Returns JOLT Device Status
//
// Parameters: LPDEVICESTATE pDeviceState using DXFF DEVICESTATE
//
// Returns: none
//
// Algorithm: copies SWDEVICESTATUS to caller converted to DEVICESTATE
// Internal Representation:
//typedef struct _SWDEVICESTATE {
// ULONG m_Bytes; // size of this structure
// ULONG m_ForceState; // DS_FORCE_ON || DS_FORCE_OFF || DS_SHUTDOWN
// ULONG m_EffectState; // DS_STOP_ALL || DS_CONTINUE || DS_PAUSE
// ULONG m_HOTS; // Hands On Throttle and Stick Status
// 0 = Hands Off, 1 = Hands On
// ULONG m_BandWidth; // Percentage of CPU available 1 to 100%
// Lower number indicates CPU is in trouble!
// ULONG m_ACBrickFault; // 0 = AC Brick OK, 1 = AC Brick Fault
// ULONG m_ResetDetect; // 1 = HW Reset Detected
// ULONG m_ShutdownDetect; // 1 = Shutdown detected
// ULONG m_CommMode; // 0 = Midi, 1-4 = Serial
//} SWDEVICESTATE, *PSWDEVICESTATE;
//
// DirectInputEffect Representation
//typedef struct DEVICESTATE {
// DWORD dwSize;
// DWORD dwState;
// DWORD dwSwitches;
// DWORD dwLoading;
//} DEVICESTATE, *LPDEVICESTATE;
//
//where:
//// dwState values:
//DS_FORCE_SHUTDOWN 0x00000001
//DS_FORCE_ON 0x00000002
//DS_FORCE_OFF 0x00000003
//DS_CONTINUE 0x00000004
//DS_PAUSE 0x00000005
//DS_STOP_ALL 0x00000006
//
// dwSwitches values:
//DSW_ACTUATORSON 0x00000001
//DSW_ACTUATORSOFF 0x00000002
//DSW_POWERON 0x00000004
//DSW_POWEROFF 0x00000008
//DSW_SAFETYSWITCHON 0x00000010
//DSW_SAFETYSWITCHOFF 0x00000020
//DSW_USERFFSWITCHON 0x00000040
//DSW_USERFFSWTTCHOFF 0x00000080
//
// Note: Apparently, DSW_ACTUATORSON and DSW_ACTUATORSOFF is a mirrored state
// from DS_FORCE_ON and DS_FORCE_OFF as set from SetForceFeedbackState
//
// ----------------------------------------------------------------------------
HRESULT CJoltMidi::GetJoltStatus(LPDIDEVICESTATE pDeviceState)
{
//
// --- THIS IS A CRITICAL SECTION
//
CriticalLock cl;
// Use Digital Overdrive to get the status packet
JOYCHANNELSTATUS StatusPacket = {sizeof(JOYCHANNELSTATUS)};
HRESULT hRet = g_pDriverCommunicator->GetStatus(StatusPacket);
if (hRet != SUCCESS) {
return (hRet);
}
// Store/update Jolts status
SetJoltStatus(&StatusPacket);
#ifdef _DEBUG
wsprintf(g_cMsg,"%s: DXFF:dwDeviceStatus=%.8lx\n",&szDeviceName, StatusPacket.dwDeviceStatus);
DebugOut(g_cMsg);
#endif
pDeviceState->dwState = 0;
// Note: Apparently, DSW_ACTUATORSON and DSW_ACTUATORSOFF is a mirrored state
// from DS_FORCE_ON and DS_FORCE_OFF as set from SetForceFeedbackState
// So, also Map the redundant info that DI needs if necessary
switch(m_DeviceState.m_ForceState)
{
case SWDEV_SHUTDOWN:
pDeviceState->dwState = DIGFFS_ACTUATORSON;
break;
case SWDEV_FORCE_ON:
pDeviceState->dwState = DIGFFS_ACTUATORSON;
break;
case SWDEV_FORCE_OFF:
pDeviceState->dwState = DIGFFS_ACTUATORSOFF;
break;
default:
break;
}
// see if the stick is empty
// remember that ID's start at 2
BOOL bEmpty = TRUE;
for (int i=2; i<MAX_EFFECT_IDS; i++)
{
if (m_pJoltEffectList[i] != NULL)
bEmpty = FALSE;
}
if(bEmpty)
pDeviceState->dwState |= DIGFFS_EMPTY;
switch(m_DeviceState.m_EffectState)
{
case SWDEV_PAUSE:
pDeviceState->dwState |= DIGFFS_PAUSED;
break;
case SWDEV_CONTINUE:
break;
case SWDEV_STOP_ALL:
pDeviceState->dwState |= DIGFFS_STOPPED;
break;
default:
break;
}
if(m_DeviceState.m_HOTS)
pDeviceState->dwState |= DIGFFS_SAFETYSWITCHON;
else
pDeviceState->dwState |= DIGFFS_SAFETYSWITCHOFF;
if (m_DeviceState.m_ACBrickFault)
pDeviceState->dwState |= DIGFFS_POWEROFF;
else
pDeviceState->dwState |= DIGFFS_POWERON;
pDeviceState->dwLoad = 0; //m_DeviceState.m_BandWidth * SCALE_GAIN;
// --- END OF CRITICAL SECTION
//
return SUCCESS;
}
// ----------------------------------------------------------------------------
// Function: CJoltMidi::SetJoltStatus
// Purpose: Sets JOLT Device Status
//
// Parameters: PJOYCHANNELSTATUS pJoyChannelStatus
//
// Returns: none
//
// Algorithm: Sets SWDEVICESTATE from caller
//typedef struct _SWDEVICESTATE {
// ULONG m_Bytes; // size of this structure
// ULONG m_ForceState; // DS_FORCE_ON || DS_FORCE_OFF || DS_FORCE_SHUTDOWN
// ULONG m_EffectState; // DS_STOP_ALL || DS_CONTINUE || DS_PAUSE
// ULONG m_HOTS; // Hands On Throttle and Stick Status
// 0(FALSE) = Hands Off, 1 (TRUE) = Hands On
// ULONG m_BandWidth; // Percentage of CPU available 1 to 100%
// Lower number indicates CPU is in trouble!
// ULONG m_ACBrickFault; // 0(FALSE) = AC Brick OK, 1(TRUE) = AC Fault
// ULONG m_ResetDetect; // 1(TRUE) = HW Reset Detected
// ULONG m_ShutdownDetect; // 1(TRUE) = Shutdown detected
// ULONG m_CommMode; // 0(FALSE) = Midi, 1(TRUE) = Serial
//} SWDEVICESTATE, *PSWDEVICESTATE;
// ----------------------------------------------------------------------------
void CJoltMidi::SetJoltStatus(JOYCHANNELSTATUS* pJoyChannelStatus)
{
//
// --- THIS IS A CRITICAL SECTION
//
CriticalLock cl;
if (pJoyChannelStatus->dwDeviceStatus & HOTS_MASK)
m_DeviceState.m_HOTS = TRUE;
else
m_DeviceState.m_HOTS = FALSE;
if (pJoyChannelStatus->dwDeviceStatus & BANDWIDTH_MASK)
m_DeviceState.m_BandWidth = MINIMUM_BANDWIDTH;
else
m_DeviceState.m_BandWidth = MAXIMUM_BANDWIDTH;
if (pJoyChannelStatus->dwDeviceStatus & AC_FAULT_MASK)
m_DeviceState.m_ACBrickFault = TRUE;
else
m_DeviceState.m_ACBrickFault = FALSE;
if (pJoyChannelStatus->dwDeviceStatus & COMM_MODE_MASK)
m_DeviceState.m_CommMode = TRUE; // Serial RS232
else
m_DeviceState.m_CommMode = FALSE; // Midi port
if (pJoyChannelStatus->dwDeviceStatus & RESET_MASK)
m_DeviceState.m_ResetDetect = TRUE; // Power ON Reset entered
else
m_DeviceState.m_ResetDetect = FALSE;
//REVIEW: If we detected a Reset, shouldn't we go through re-init of object?
if (pJoyChannelStatus->dwDeviceStatus & SHUTDOWN_MASK)
m_DeviceState.m_ShutdownDetect = TRUE; // Soft Reset received
else
m_DeviceState.m_ShutdownDetect = FALSE;
// --- END OF CRITICAL SECTION
//
}
// ----------------------------------------------------------------------------
// Function: CJoltMidi::UpdateDeviceMode
// Purpose: Sets JOLT Device Mode
//
// Parameters: ULONG ulMode
//
// Returns: none
//
// Algorithm:
// This is the SideWinder State structure
//typedef struct _SWDEVICESTATE {
// ULONG m_Bytes; // size of this structure
// ULONG m_ForceState; // DS_FORCE_ON || DS_FORCE_OFF || DS_SHUTDOWN
// ULONG m_EffectState; // DS_STOP_ALL || DS_CONTINUE || DS_PAUSE
// ULONG m_HOTS; // Hands On Throttle and Stick Status
// // 0 = Hands Off, 1 = Hands On
// ULONG m_BandWidth; // Percentage of CPU available 1 to 100%
// // Lower number indicates CPU is in trouble!
// ULONG m_ACBrickFault; // 0 = AC Brick OK, 1 = AC Brick Fault
// ULONG m_ResetDetect; // 1 = HW Reset Detected
// ULONG m_ShutdownDetect; // 1 = Shutdown detected
// ULONG m_CommMode; // 0 = Midi, 1-4 = Serial
//} SWDEVICESTATE, *PSWDEVICESTATE;
//
// ----------------------------------------------------------------------------
void CJoltMidi::UpdateDeviceMode(ULONG ulMode)
{
//
// --- THIS IS A CRITICAL SECTION
//
CriticalLock cl;
switch (ulMode)
{
case SWDEV_FORCE_ON: // REVIEW
case SWDEV_FORCE_OFF:
m_DeviceState.m_ForceState = ulMode;
break;
case SWDEV_SHUTDOWN:
m_DeviceState.m_ForceState = ulMode;
m_DeviceState.m_EffectState = 0;
break;
case SWDEV_STOP_ALL:
case SWDEV_CONTINUE:
case SWDEV_PAUSE:
m_DeviceState.m_EffectState = ulMode;
break;
default:
break;
}
// --- END OF CRITICAL SECTION
//
}
// ----------------------------------------------------------------------------
// Function: CJoltMidi::GetJoltID
// Purpose: Returns JOLT ProductID
//
// Parameters: LOCAL_PRODUCT_ID pProductID - Pointer to a LOCAL_PRODUCT_ID structure
//
// Returns: none
//
// Algorithm:
//
// ----------------------------------------------------------------------------
HRESULT CJoltMidi::GetJoltID(LOCAL_PRODUCT_ID* pProductID)
{
HRESULT hRet;
assert(pProductID->cBytes = sizeof LOCAL_PRODUCT_ID);
if (pProductID->cBytes != sizeof LOCAL_PRODUCT_ID) return (SFERR_INVALID_STRUCT_SIZE);
//
// --- THIS IS A CRITICAL SECTION
//
g_CriticalSection.Enter();
for (int i=0;i<MAX_RETRY_COUNT;i++)
{
if (SUCCESS == (hRet = g_pDriverCommunicator->GetID(*pProductID))) break;
}
if (SUCCESS == hRet)
{
memcpy(&m_ProductID, pProductID, sizeof LOCAL_PRODUCT_ID);
}
else
DebugOut("GetJoltID: Warning! GetIDPacket - Fail\n");
// --- END OF CRITICAL SECTION
//
g_CriticalSection.Leave();
return (hRet);
}
// ----------------------------------------------------------------------------
// Function: CJoltMidi::LogError
// Purpose: Logs Error codes
//
// Parameters: HRESULT SystemError - System Error code
// HRESULT DriverError - Driver Error code
//
// Returns: SWFORCE Error code
//
// Algorithm:
// ----------------------------------------------------------------------------
typedef struct _DRIVERERROR {
ULONG ulDriverCode;
LONG lSystemCode;
} DRIVERERROR, *PDRIVERERROR;
HRESULT CJoltMidi::LogError(
IN HRESULT SystemError,
IN HRESULT DriverError)
{
// REVIEW: map MM error codes to our SWForce codes
DRIVERERROR DriverErrorCodes[] = {
{DEV_ERR_INVALID_ID , SWDEV_ERR_INVALID_ID},
{DEV_ERR_INVALID_PARAM , SWDEV_ERR_INVALID_PARAM},
{DEV_ERR_CHECKSUM , SWDEV_ERR_CHECKSUM},
{DEV_ERR_TYPE_FULL , SWDEV_ERR_TYPE_FULL},
{DEV_ERR_UNKNOWN_CMD , SWDEV_ERR_UNKNOWN_CMD},
{DEV_ERR_PLAYLIST_FULL , SWDEV_ERR_PLAYLIST_FULL},
{DEV_ERR_PROCESS_LIST_FULL , SWDEV_ERR_PROCESSLIST_FULL} };
int nDriverErrorCodes = sizeof(DriverErrorCodes)/(sizeof(DRIVERERROR));
for (int i=0; i<nDriverErrorCodes; i++)
{
if (DriverError == (LONG) DriverErrorCodes[i].ulDriverCode)
{
SystemError = DriverErrorCodes[i].lSystemCode;
break;
}
}
// Store in Jolt object
m_Error.HCode = SystemError;
m_Error.ulDriverCode = DriverError;
#ifdef _DEBUG
wsprintf(g_cMsg,"LogError: SystemError=%.8lx, DriverError=%.8lx\n",
SystemError, DriverError);
DebugOut(g_cMsg);
#endif
return SystemError;
}
//
// ----------------------------------------------------------------------------
// Function: SetupROM_Fx
// Purpose: Sets up parameters for ROM Effects
// Parameters: PEFFECT pEffect
//
//
// Returns: pEffect is updated with new ROM parameters
// OutputRate
// Gain
// Duration
//
// Algorithm:
// ----------------------------------------------------------------------------
HRESULT CJoltMidi::SetupROM_Fx(
IN OUT PEFFECT pEffect)
{
assert(pEffect);
if (NULL == pEffect) return (SFERR_INVALID_PARAM);
ULONG ulSubType = pEffect->m_SubType;
BOOL bFound = FALSE;
for (int i=0; i< MAX_ROM_EFFECTS; i++)
{
if (ulSubType == m_pRomFxTable[i].m_ROM_Id)
{
bFound = TRUE;
break;
}
}
if (!bFound) return (SFERR_INVALID_OBJECT);
// Found, so fill in the default parameters, use Default if Gain=1, Duration=-1, OutputRate=-1
BOOL bDefaultDuration = (ULONG)-1 == pEffect->m_Duration;
if (1 == pEffect->m_Gain) pEffect->m_Gain = m_pRomFxTable[i].m_Gain;
if (bDefaultDuration) pEffect->m_Duration = m_pRomFxTable[i].m_Duration;
if ((ULONG)-1 == pEffect->m_ForceOutputRate)
{
pEffect->m_ForceOutputRate = m_pRomFxTable[i].m_ForceOutputRate;
}
else if(bDefaultDuration && pEffect->m_ForceOutputRate != 0)
{
// scale the duration to correspond to the output rate
pEffect->m_Duration = pEffect->m_Duration*m_pRomFxTable[i].m_ForceOutputRate/pEffect->m_ForceOutputRate;
}
return (SUCCESS);
}
// *** ---------------------------------------------------------------------***
// Function: DetectMidiDevice
// Purpose: Determines Midi Output Device ID
// Parameters:
// DWORD dwDeviceID - joystick ID
// UINT *pDeviceOutID - Ptr to Midi Out Device ID
// ULONG pCOMMInterface - Ptr to COMMInterface value
// ULONG pCOMMPort - Ptr to COMMPort value (Registry)
// Returns: BOOL TRUE if successful match and IDs are filled in
// else FALSE
//
// *** ---------------------------------------------------------------------***
BOOL CJoltMidi::DetectMidiDevice(
IN DWORD dwDeviceID,
IN OUT UINT *pDeviceOutID,
OUT ULONG *pCOMMInterface,
OUT ULONG *pCOMMPort)
{
//
// --- THIS IS A CRITICAL SECTION
//
CriticalLock cl;
HRESULT hRet;
BOOL bMidiOutFound = FALSE;
int nMidiOutDevices;
// Valid Serial and MIDI ports table
ULONG MIDI_Ports[] = {0x300, 0x310, 0x320, 0x330, 0x340, 0x350, 0x360, 0x370,
0x380, 0x390, 0x3a0, 0x3b0, 0x3c0, 0x3d0, 0x3e0, 0x3f0};
ULONG Serial_Ports[] = { 1, 2, 3, 4 }; // Entry0 is default
int nMIDI_Ports = sizeof(MIDI_Ports)/sizeof(ULONG);
int nSerial_Ports = sizeof(Serial_Ports)/sizeof(ULONG);
// Set defaults
*pCOMMInterface = COMM_WINMM;
*pCOMMPort = NULL;
*pDeviceOutID = 0;
SWDEVICESTATE SWDeviceState = {sizeof(SWDEVICESTATE)};
// Turn on tristated Jolt MIDI lines by call GetIDPacket()
LOCAL_PRODUCT_ID ProductID = {sizeof LOCAL_PRODUCT_ID };
Sleep(DelayParamsPtrOf()->dwDigitalOverdrivePrechargeCmdDelay);
if (SUCCESS != GetJoltID(&ProductID))
{
DebugOut("DetectMidiDevice: Warning! GetIDPacket - Fail\n");
return (FALSE);
}
#ifdef _DEBUG
wsprintf(g_cMsg,"%s: ProductID=%.8lx, FWVersion=%d.%.2ld\n",
&szDeviceName,
m_ProductID.dwProductID,
m_ProductID.dwFWMajVersion,
m_ProductID.dwFWMinVersion);
DebugOut(g_cMsg);
#endif
// Set the device firmware version from GetID
g_ForceFeedbackDevice.SetFirmwareVersion(dwDeviceID, m_ProductID.dwFWMajVersion, m_ProductID.dwFWMinVersion);
// Get Device status prior to starting detection
BOOL statusPacketFailed = (GetJoltStatus(&SWDeviceState) != SUCCESS);
if (statusPacketFailed)
{
DebugOut("DetectMidiDevice: Warning! StatusPacket - Fail\n");
}
if (statusPacketFailed == FALSE) {
#ifdef _DEBUG
wsprintf(g_cMsg, "RESETDetect=%.8lx, SHUTDOWNDetect=%.8lx, COMMMode=%.8lx\n",
SWDeviceState.m_ResetDetect,
SWDeviceState.m_ShutdownDetect,
SWDeviceState.m_CommMode);
DebugOut(g_cMsg);
#endif
// Make sure HW Reset Detect bit is cleared after GetID
if (SWDeviceState.m_ResetDetect) {
DebugOut("DetectMidiDevice: Error! Jolt ResetDetect bit not cleared after GetID\n");
return (FALSE);
}
}
// See if Serial Dongle connected, otherwise must be MIDI device
DebugOut("sw_effct:Trying Auto HW Detection: MIDI Serial Port Device...\n");
// Get Registry values, If high bit of COMMInterface is set, then force override
// otherwise, do automatic scanning as follows:
// 1. Backdoor mode
// 2. WinMM mode
//
// joyGetForceFeedbackCOMMInterface's 1st param changed to joystick ID
if (SUCCESS != joyGetForceFeedbackCOMMInterface(dwDeviceID, pCOMMInterface, pCOMMPort)) {
DebugOut("DetectMidiDevice: Registry key(s) missing! Bailing Out...\n");
return (FALSE);
}
#ifdef _DEBUG
wsprintf(g_cMsg, "DetectMidiDevice: Registry.COMMInterface=%lx, Registry.COMMPort=%lx\n",
*pCOMMInterface, *pCOMMPort);
DebugOut(g_cMsg);
#endif
ULONG regInterface = *pCOMMInterface;
// Was a serial dongle detected, or did we fail to get status
if (SWDeviceState.m_CommMode || statusPacketFailed) { // Use serial (regardless what registry says!)
DebugOut("DetectMidiDevice: Serial Port interface detected.\n");
// Set to backdoor serial method by default
*pCOMMInterface = COMM_SERIAL_BACKDOOR;
m_COMMInterface = COMM_SERIAL_BACKDOOR;
// Use front-door (serial file method) only, if NT5
// since there is no backdoor on NT5 registry is irrelevent
if (g_ForceFeedbackDevice.IsOSNT5()) {
*pCOMMInterface = COMM_SERIAL_FILE;
m_COMMInterface = COMM_SERIAL_FILE;
} else if ((g_ForceFeedbackDevice.GetFirmwareVersionMajor() == 1) && (g_ForceFeedbackDevice.GetFirmwareVersionMinor() != 16)) {
// Firmware is not 1.16 (which can't use the frontdoor serial with quick ack/nack)
if (!(regInterface & MASK_SERIAL_BACKDOOR)) { // Is back door forced by registry
*pCOMMInterface = COMM_SERIAL_FILE; // Use Serial File method
m_COMMInterface = COMM_SERIAL_FILE;
}
}
// See if already detected and ready to use
// ***** Shared Memory Access *****
LockSharedMemory();
HANDLE hMidiOut = m_pSharedMemory->m_hMidiOut;
UnlockSharedMemory();
// ***** End of Shared Memory Access *****
// Return if already opened by another task
if (NULL != hMidiOut) {
bMidiOutFound = TRUE;
} else { // Use the serial transmitter to find the proper port (even if backdoor selected)
if (g_pDataTransmitter != NULL) {
delete g_pDataTransmitter;
g_pDataTransmitter = NULL;
}
g_pDataTransmitter = new SerialDataTransmitter();
if (g_pDataTransmitter->Initialize()) {
LockSharedMemory();
m_pSharedMemory->m_hMidiOut = g_pDataTransmitter->GetCOMMHandleHack();
UnlockSharedMemory();
bMidiOutFound = TRUE;
}
// If Serial Backdoor let the driver know which port, kill DataTransmitter (without closing port)
if (m_COMMInterface == COMM_SERIAL_BACKDOOR) {
hRet = g_pDriverCommunicator->SetBackdoorPort(g_pDataTransmitter->GetSerialPortHack());
if (hRet != SUCCESS) { // Low level driver fails, use normal serial routines not backdoor
DebugOut("\nDetectMidiDevice: Warning! Could not set serial I/O port, cannot use backdoor serial\n");
*pCOMMInterface = COMM_SERIAL_FILE;
m_COMMInterface = COMM_SERIAL_FILE;
} else {
g_pDataTransmitter->StopAutoClose();
delete g_pDataTransmitter;
g_pDataTransmitter = NULL;
}
}
}
if (bMidiOutFound)
{
regInterface = (regInterface & (MASK_OVERRIDE_MIDI_PATH | MASK_SERIAL_BACKDOOR)) | m_COMMInterface;
// joySetForceFeedbackCOMMInterface's 1st param changed to joystick ID
joySetForceFeedbackCOMMInterface(dwDeviceID, regInterface, *pCOMMPort);
}
if ((statusPacketFailed == FALSE) || bMidiOutFound)
{
return (bMidiOutFound);
}
} // End of Serial Port Auto HW selection
// No Serial HW dongle detected, check if any Midi device for WinMM and Backdoor
DebugOut("sw_effct:Scanning MIDI Output Devices\n");
nMidiOutDevices = midiOutGetNumDevs();
if (0 == nMidiOutDevices) {
DebugOut("DetectMidiDevice: No MIDI devices present\n");
return (FALSE);
}
#if 0
// Try the midi pin solution
g_pDataTransmitter = new PinTransmitter();
if (g_pDataTransmitter->Initialize()) {
// Use backdoor flag for now
m_COMMInterface = COMM_MIDI_BACKDOOR;
*pCOMMInterface = COMM_MIDI_BACKDOOR;
return TRUE;
}
// Pin failed delete transmitter continue looking
delete g_pDataTransmitter;
g_pDataTransmitter = NULL;
#endif
ULONG ulPort = *pCOMMPort;
if ( !(*pCOMMInterface & MASK_OVERRIDE_MIDI_PATH) ) { // Use Automatic detection
DebugOut("DetectMidiDevice: Auto Detection. Trying Backdoor\n");
// Back Door
bMidiOutFound = FindJoltBackdoor(pDeviceOutID, pCOMMInterface, pCOMMPort);
if (!bMidiOutFound) { // Try Front Door
DebugOut("DetectMidiDevice: trying WINMM...\n");
bMidiOutFound = FindJoltWinMM(pDeviceOutID, pCOMMInterface, pCOMMPort);
}
if (bMidiOutFound) {
regInterface = (regInterface & (MASK_OVERRIDE_MIDI_PATH | MASK_SERIAL_BACKDOOR)) | m_COMMInterface;
joySetForceFeedbackCOMMInterface(*pDeviceOutID, regInterface, *pCOMMPort);
}
return (bMidiOutFound);
}
// Over-ride since high bit is set
*pCOMMInterface &= ~(MASK_OVERRIDE_MIDI_PATH | MASK_SERIAL_BACKDOOR); // Mask out high bit (and second bit)
switch (*pCOMMInterface)
{
case COMM_WINMM:
bMidiOutFound = FindJoltWinMM(pDeviceOutID, pCOMMInterface, pCOMMPort);
if (!bMidiOutFound) {
DebugOut("DetectMidiDevice: Error! Invalid Over-ride parameter values!\n");
}
return (bMidiOutFound);
case COMM_MIDI_BACKDOOR:
int i;
for (i=0;i<nMIDI_Ports;i++)
{
if (ulPort == MIDI_Ports[i])
{
bMidiOutFound = TRUE;
break;
}
}
break;
case COMM_SERIAL_BACKDOOR: // mlc - This should never work if no dongle detected
for (i=0;i<nSerial_Ports;i++)
{
if (ulPort == Serial_Ports[i])
{
bMidiOutFound = TRUE;
break;
}
}
break;
default:
bMidiOutFound = FALSE;
break;
}
if (!bMidiOutFound)
{
DebugOut("DetectMidiDevice: Error! Invalid Over-ride parameter values\n");
return (bMidiOutFound);
}
// We have the forced Port #, Let's see if Jolt is out there
#ifdef _DEBUG
wsprintf(g_cMsg,"DetectMidiDevice: (Over-ride) MIDI%.8lx Query - ", ulPort);
DebugOut(g_cMsg);
#endif
bMidiOutFound = FALSE;
hRet = g_pDriverCommunicator->SetBackdoorPort(ulPort);
if (SUCCESS != hRet)
{
DebugOut("\nDetectMidiDevice: Warning! Could not Set Midi/Serial I/O Port\n");
}
else
{
if (QueryForJolt())
{
DebugOut(" Success!\n");
bMidiOutFound = TRUE;
}
else
DebugOut(" No Answer\n");
}
// --- END OF CRITICAL SECTION
//
return (bMidiOutFound);
}
// *** ---------------------------------------------------------------------***
// Function: FindJoltWinMM
// Purpose: Searches for Jolt using WinMM
// Parameters: none
// UINT *pDeviceOutID - Ptr to Midi Out Device ID
// ULONG pCOMMInterface - Ptr to COMMInterface value
// ULONG pCOMMPort - Ptr to COMMPort value (Registry)
// Returns: BOOL TRUE if successful match and IDs are filled in
//
// Comments: SHUTDOWN is destructive!!!
//
// *** ---------------------------------------------------------------------***
BOOL CJoltMidi::FindJoltWinMM(
IN OUT UINT *pDeviceOutID,
OUT ULONG *pCOMMInterface,
OUT ULONG *pCOMMPort)
{
HRESULT hRet;
WORD wTechnology; // looking for MOD_MIDIPORT
WORD wChannelMask; // ==0xFFFF if all 16 channels
BOOL bMidiOutFound = FALSE;
// Device Capabilities
MIDIOUTCAPS midiOutCaps;
int nMidiOutDevices = midiOutGetNumDevs();
if (0 == nMidiOutDevices) return (FALSE);
m_COMMInterface = COMM_WINMM;
for (int nIndex=0;nIndex<(nMidiOutDevices);nIndex++)
{
MMRESULT ret = midiOutGetDevCaps(nIndex, &midiOutCaps, sizeof(midiOutCaps));
if (ret != MMSYSERR_NOERROR) break;
wTechnology = midiOutCaps.wTechnology;
wChannelMask= midiOutCaps.wChannelMask;
#ifdef _DEBUG
g_CriticalSection.Enter();
wsprintf(g_cMsg,"FindJoltWinMM: Technology=%x," \
"ChannelMask=%x, Mid=%d, Pid=%d\r\n", midiOutCaps.szPname,
wTechnology, wChannelMask, midiOutCaps.wMid,
midiOutCaps.wPid);
DebugOut(g_cMsg);
g_CriticalSection.Leave();
#endif
// Check if this is a MOD_MIDIPORT device
//REVIEW: Need to check for multiple MOD_MIDIPORT devices
if (wTechnology == MOD_MIDIPORT)
{
*pDeviceOutID = (UINT) nIndex;
#ifdef _DEBUG
DebugOut("DetectMidiDevice: Opening WinMM Midi Output\n");
#endif
hRet = OpenOutput(m_MidiOutInfo.uDeviceID);
if (SUCCESS != hRet)
{
DebugOut("DetectMidiDevice: Error! Could not Open WinMM Midi Output\n");
return (FALSE);
}
else
{
DebugOut("Open Midi Output - Success.\nQuery for Jolt Device - ");
if (QueryForJolt())
{
DebugOut(" Success!\n");
bMidiOutFound = TRUE;
}
else
{
DebugOut(" No Answer\n");
bMidiOutFound = FALSE;
break;
}
return (bMidiOutFound);
}
} // end of MOD_MIDIPORT
}
return (bMidiOutFound);
}
// *** ---------------------------------------------------------------------***
// Function: FindJoltBackdoor
// Purpose: Searches for Jolt using BackDoor
// Parameters: none
// UINT *pDeviceOutID - Ptr to Midi Out Device ID
// ULONG pCOMMInterface - Ptr to COMMInterface value
// ULONG pCOMMPort - Ptr to COMMPort value (Registry)
// Returns: BOOL TRUE if successful match and IDs are filled in
//
// Comments: SHUTDOWN is destructive!!!
//
// *** ---------------------------------------------------------------------***
BOOL CJoltMidi::FindJoltBackdoor(
IN OUT UINT *pDeviceOutID,
OUT ULONG *pCOMMInterface,
OUT ULONG *pCOMMPort)
{
int nMidiOutDevices = midiOutGetNumDevs();
if (0 == nMidiOutDevices) return (FALSE);
HRESULT hRet;
// Valid Serial and MIDI ports table
ULONG MIDI_Ports[] = {0x300, 0x310, 0x320, 0x330, 0x340, 0x350, 0x360, 0x370,
0x380, 0x390, 0x3a0, 0x3b0, 0x3c0, 0x3d0, 0x3e0, 0x3f0};
int nMIDI_Ports = sizeof(MIDI_Ports)/sizeof(ULONG);
BOOL bMidiOutFound = FALSE;
m_COMMInterface = COMM_MIDI_BACKDOOR;
*pCOMMInterface = COMM_MIDI_BACKDOOR;
*pCOMMPort = 0;
for (int i=0;i<nMIDI_Ports;i++)
{
#ifdef _DEBUG
wsprintf(g_cMsg,"FindJoltBackdoor: Midi Port:%lx - ", MIDI_Ports[i]);
DebugOut(g_cMsg);
#endif
// We have the Port #, Let's see if Jolt is out there
hRet = g_pDriverCommunicator->SetBackdoorPort(MIDI_Ports[i]);
if (SUCCESS == hRet)
{
if (QueryForJolt())
{
DebugOut(" Success!\n");
bMidiOutFound = TRUE;
*pCOMMPort = MIDI_Ports[i];
break;
}
else
DebugOut(" No Answer\n");
}
}
return (bMidiOutFound);
}
// *** ---------------------------------------------------------------------***
// Function: QueryForJolt
// Purpose: Sends Shutdown and Queries for Shutdown status bit
// Parameters: none
// Returns: BOOL TRUE if Jolt found, else FALSE
//
// Comments: SHUTDOWN is destructive!!!
//
// *** ---------------------------------------------------------------------***
BOOL CJoltMidi::QueryForJolt(void)
{
HRESULT hRet;
// Send Shutdown command then detect if Shutdown Detect bit is set
SWDEVICESTATE SWDeviceState = {sizeof(SWDEVICESTATE)};
for (int i=0;i<MAX_RETRY_COUNT;i++)
{
// Send a ShutDown, then check for response
MidiSendShortMsg((SYSTEM_CMD|DEFAULT_MIDI_CHANNEL), SWDEV_SHUTDOWN, 0);
Sleep(DelayParamsPtrOf()->dwShutdownDelay); // 10 ms
if (SUCCESS == (hRet=GetJoltStatus(&SWDeviceState))) break;
}
Sleep(DelayParamsPtrOf()->dwDigitalOverdrivePrechargeCmdDelay);
// Clear the Previous state and turn on tri-state buffers
LOCAL_PRODUCT_ID ProductID = {sizeof LOCAL_PRODUCT_ID };
hRet = GetJoltID(&ProductID);
if (SUCCESS != hRet)
{
#ifdef _DEBUG
DebugOut("QueryForJolt: Driver Error. Get Jolt Status/ID\n");
#endif
return (FALSE);
}
if (SWDeviceState.m_ShutdownDetect)
return (TRUE);
else
return (FALSE);
}
// *** ---------------------------------------------------------------------***
// Function: MidiSendShortMsg
// Purpose: Send status, channel and data.
// Parameters:
// BYTE cStatus - MIDI status byte for this message
// BYTE cData1 - MIDI data byte for this message
// BYTE cData2 - 2nd MIDI data byte for this message (may be 0)
// Returns: HRESULT
//
// *** ---------------------------------------------------------------------***
HRESULT CJoltMidi::MidiSendShortMsg(
IN BYTE cStatus,
IN BYTE cData1,
IN BYTE cData2)
{
//
// --- THIS IS A CRITICAL SECTION
//
CriticalLock cl;
DWORD dwMsg;
HRESULT hRet = SUCCESS;
// For diagnostics, record the attempts at this message
BumpShortMsgCounter();
if ((m_COMMInterface == COMM_WINMM) && (NULL == m_MidiOutInfo.hMidiOut))
{
DebugOut("SW_EFFECT: No Midi Out Devs opened\r\n ");
ASSUME_NOT_REACHED();
return (SFERR_DRIVER_ERROR);
}
// pack the message and send it
dwMsg = MAKEMIDISHORTMSG(cStatus, m_MidiChannel, cData1, cData2);
if (COMM_WINMM == m_COMMInterface)
{
// Clear the Event Callback
BOOL bRet = ResetEvent(m_hMidiOutputEvent);
// send the message only if valid Handle
if (SUCCESS == ValidateMidiHandle())
{
hRet = midiOutShortMsg(m_MidiOutInfo.hMidiOut, dwMsg);
}
else
{
return (SFERR_DRIVER_ERROR);
}
if (SUCCESS != hRet) hRet = SFERR_DRIVER_ERROR;
}
else
{
hRet = g_pDriverCommunicator->SendBackdoorShortMidi(dwMsg);
}
// --- END OF CRITICAL SECTION
//
return (hRet);
}
// *** ---------------------------------------------------------------------***
// Function: MidiSendLongMsg
// Purpose: Send system exclusive message or series of short messages.
// Parameters:
// none - assumes m_pMidiOutInfo structure is valid
//
// Returns:
//
//
// *** ---------------------------------------------------------------------***
HRESULT CJoltMidi::MidiSendLongMsg(void)
{
//
// --- THIS IS A CRITICAL SECTION
//
CriticalLock cl;
if (NULL == g_pJoltMidi) return (SFERR_DRIVER_ERROR);
HRESULT hRet = SUCCESS;
// For diagnostics, record the attempts at this message
BumpLongMsgCounter();
if (m_MidiOutInfo.uDeviceType != MIDI_OUT)
{
#ifdef _DEBUG
MessageBox(NULL, "Must use a MIDI output device",
"MidiSendLongMsg", MB_ICONSTOP);
#endif
return (SFERR_DRIVER_ERROR);
}
if (COMM_WINMM == m_COMMInterface)
{
// Clear the Event Callback
BOOL bRet = ResetEvent(m_hMidiOutputEvent);
// send the long message only if valid Handle
if (SUCCESS == ValidateMidiHandle())
hRet = midiOutLongMsg(m_MidiOutInfo.hMidiOut,
&(m_MidiOutInfo.MidiHdr), sizeof(MIDIHDR));
else
{
return (SFERR_DRIVER_ERROR);
}
if (SUCCESS == hRet)
m_MidiOutInfo.uDeviceStatus = MIDI_DEVICE_BUSY;
else
{
if (m_MidiOutInfo.MidiHdr.dwFlags != MHDR_DONE)
{
// abort the current message
hRet = midiOutReset(m_MidiOutInfo.hMidiOut);
// set the device status because buffer(s) have been marked as
// done and returned to the application
if (SUCCESS == hRet)
m_MidiOutInfo.uDeviceStatus = MIDI_DEVICE_ABANDONED;
}
else
// tried to abort but the operation was already complete
m_MidiOutInfo.uDeviceStatus = MIDI_DEVICE_IDLE;
}
if (SUCCESS != hRet) hRet = (SFERR_DRIVER_ERROR);
}
else
{
hRet = g_pDriverCommunicator->SendBackdoorLongMidi(PBYTE(m_MidiOutInfo.MidiHdr.lpData));
}
Sleep(g_pJoltMidi->DelayParamsPtrOf()->dwLongMsgDelay);
// --- END OF CRITICAL SECTION
//
return (hRet);
}
// *** ---------------------------------------------------------------------***
// Function: ValidateMidiHandle
// Purpose: Validates Midi handle and reopens if necessary
// Parameters:
// none - assumes m_pMidiOutInfo structure is valid
//
// Returns:
//
//
// *** ---------------------------------------------------------------------***
HRESULT CJoltMidi::ValidateMidiHandle(void)
{
HRESULT hRet = SUCCESS;
UINT dwID;
if (MMSYSERR_INVALHANDLE == midiOutGetID(m_MidiOutInfo.hMidiOut, &dwID))
{
#ifdef _DEBUG
DebugOut("CJoltMidi::MidiValidateHandle - Midi Handle invalid. Re-opening...\n");
#endif
// Clear old global handle and Re-open Midi channel
// ***** Shared Memory Access *****
LockSharedMemory();
m_pSharedMemory->m_hMidiOut = NULL;
UnlockSharedMemory();
// ***** End of Shared Memory Access *****
hRet = OpenOutput(m_MidiOutInfo.uDeviceID);
}
return (hRet);
}
// *** ---------------------------------------------------------------------***
// Function: MidiAssignBuffer
// Purpose: Assign lpData and dwBufferLength members and prepare the
// MIDIHDR. Also add the buffer if it is an input buffer.
// If the third parameter is false, unprepare and reinitialize
// the header.
// Parameters:
// LPSTR lpData - address of buffer, NULL if cleaning up
// DWORD dwBufferLength - buffer size in bytes
// BOOL fAssign - TRUE = Assign, FALSE = cleanup
//
// Returns: SUCCESS or SFERR_DRIVER_ERROR
//
// Note: assumes m_pMidiOutInfo structure is valid
//
// *** ---------------------------------------------------------------------***
HRESULT CJoltMidi::MidiAssignBuffer(
LPSTR lpData, // address of buffer, NULL if cleaning up
DWORD dwBufferLength, // size of buffer in bytes, 0L if cleaning up
BOOL fAssign) // TRUE = assign, FALSE = cleanup
{
//
// --- THIS IS A CRITICAL SECTION
//
CriticalLock cl;
#ifdef _DEBUG
DebugOut("MidiAssignBuffer:\n");
#endif
HRESULT hRet = SUCCESS;
if (m_MidiOutInfo.uDeviceType == MIDI_OUT)
{
if ((COMM_WINMM == m_COMMInterface) && !m_MidiOutInfo.hMidiOut)
{
if (!fAssign && m_MidiOutInfo.uDeviceStatus == MIDI_DEVICE_ABANDONED)
{
// clear the device status
m_MidiOutInfo.uDeviceStatus = MIDI_DEVICE_IDLE;
// don't return an error for this case because if the user aborts
// the transmission of a long message before it completes the
// buffers will be marked as done and returned to the application,
// just as when recording successfully completes. So it is ok
// for this function to be called (with fAssign = FALSE) when
// hMidiIn = 0, as long as uDeviceStatus = MIDI_DEVICE_ABANDONED.
return (SUCCESS);
}
else
{
// all other cases are an application error
#ifdef _DEBUG
MessageBox(NULL, "Must open MIDI output device first",
"MidiAssignBuffer", MB_ICONSTOP);
#endif
// because this failed call might result in an input or output
// device being reset (if the application is written to do so),
// an MM_MOM_DONE or MM_MIM_LONGDATA message could be sent to
// the application. This might result in an additional call to
// this routine, so set the device status to prevent another
// error message
m_MidiOutInfo.uDeviceStatus = MIDI_DEVICE_ABANDONED;
return (SFERR_DRIVER_ERROR);
}
}
}
else
{
#ifdef _DEBUG
DebugOut("\r\nMidiAssignBuffer: uDeviceType bad");
#endif
return (SFERR_INVALID_PARAM);
}
if (fAssign)
{
// check for the buffer's address and size
if (!lpData || !dwBufferLength)
{
#ifdef _DEBUG
MessageBox(NULL, "Must specify a buffer and size",
"MidiAssignBuffer", MB_ICONSTOP);
#endif
return (SFERR_INVALID_PARAM);
}
// assign buffer to the MIDIHDR
m_MidiOutInfo.MidiHdr.lpData = lpData;
m_MidiOutInfo.MidiHdr.dwBufferLength = dwBufferLength;
m_MidiOutInfo.MidiHdr.dwBytesRecorded = dwBufferLength;
if (COMM_WINMM == m_COMMInterface)
{
// prepare the MIDIHDR
m_MidiOutInfo.MidiHdr.dwFlags = 0;
hRet = midiOutPrepareHeader(m_MidiOutInfo.hMidiOut,
&(m_MidiOutInfo.MidiHdr), sizeof(MIDIHDR));
}
}
else
{ // unprepare the MIDIHDR
if (COMM_WINMM == m_COMMInterface)
{
if ((m_MidiOutInfo.MidiHdr.dwFlags & MHDR_DONE) != MHDR_DONE)
{
//hRet = midiOutReset(m_MidiOutInfo.hMidiOut);
}
if (SUCCESS == hRet)
{
hRet = midiOutUnprepareHeader(m_MidiOutInfo.hMidiOut,
&(m_MidiOutInfo.MidiHdr), sizeof(MIDIHDR));
}
}
else
hRet = SUCCESS;
if (SUCCESS == hRet)
{
// reinitialize MIDIHDR to guard against casual re-use
m_MidiOutInfo.MidiHdr.lpData = NULL;
m_MidiOutInfo.MidiHdr.dwBufferLength = 0;
m_MidiOutInfo.MidiHdr.dwBytesRecorded = 0;
// clear the device status
m_MidiOutInfo.uDeviceStatus = MIDI_DEVICE_IDLE;
}
}
if (SUCCESS != hRet) hRet = SFERR_DRIVER_ERROR;
#ifdef _DEBUG
wsprintf(g_cMsg, "Returning from MidiAssignBuffer: %lx\n", hRet);
#endif
// --- END OF CRITICAL SECTION
//
return (hRet);
}
// ****************************************************************************
// *** --- Helper functions for CJoltMidi
//
// ****************************************************************************
//
#define REGSTR_VAL_FIRMWARE_PARAMS "FirmwareParams"
void GetFirmwareParams(UINT nJoystickID, PFIRMWARE_PARAMS pFirmwareParams)
{
BOOL bFail = FALSE;
// try to open the registry key
HKEY hKey;
DWORD dwcb = sizeof(FIRMWARE_PARAMS);
LONG lr;
hKey = joyOpenOEMForceFeedbackKey(nJoystickID);
if(!hKey)
bFail = TRUE;
if (!bFail)
{
// Get Firmware Parameters
lr = RegQueryValueEx( hKey,
REGSTR_VAL_FIRMWARE_PARAMS,
NULL, NULL,
(PBYTE)pFirmwareParams,
&dwcb);
RegCloseKey(hKey);
if (lr != ERROR_SUCCESS)
bFail = TRUE;
}
if(bFail)
{
// if reading from the registry fails, just use the defaults
pFirmwareParams->dwScaleKx = DEF_SCALE_KX;
pFirmwareParams->dwScaleKy = DEF_SCALE_KY;
pFirmwareParams->dwScaleBx = DEF_SCALE_BX;
pFirmwareParams->dwScaleBy = DEF_SCALE_BY;
pFirmwareParams->dwScaleMx = DEF_SCALE_MX;
pFirmwareParams->dwScaleMy = DEF_SCALE_MY;
pFirmwareParams->dwScaleFx = DEF_SCALE_FX;
pFirmwareParams->dwScaleFy = DEF_SCALE_FY;
pFirmwareParams->dwScaleW = DEF_SCALE_W;
}
}
#define REGSTR_VAL_SYSTEM_PARAMS "SystemParams"
void GetSystemParams(UINT nJoystickID, PSYSTEM_PARAMS pSystemParams)
{
BOOL bFail = FALSE;
// try to open the registry key
HKEY hKey;
DWORD dwcb = sizeof(SYSTEM_PARAMS);
LONG lr;
hKey = joyOpenOEMForceFeedbackKey(nJoystickID);
if(!hKey)
bFail = TRUE;
if (!bFail)
{
// Get Firmware Parameters
lr = RegQueryValueEx( hKey,
REGSTR_VAL_SYSTEM_PARAMS,
NULL, NULL,
(PBYTE)pSystemParams,
&dwcb);
// scale them
pSystemParams->RTCSpringParam.m_XKConstant /= SCALE_CONSTANTS;
pSystemParams->RTCSpringParam.m_YKConstant /= SCALE_CONSTANTS;
pSystemParams->RTCSpringParam.m_XAxisCenter /= SCALE_POSITION;
pSystemParams->RTCSpringParam.m_YAxisCenter = -pSystemParams->RTCSpringParam.m_YAxisCenter/SCALE_POSITION;
pSystemParams->RTCSpringParam.m_XSaturation /= SCALE_POSITION;
pSystemParams->RTCSpringParam.m_YSaturation /= SCALE_POSITION;
pSystemParams->RTCSpringParam.m_XDeadBand /= SCALE_POSITION;
pSystemParams->RTCSpringParam.m_YDeadBand /= SCALE_POSITION;
RegCloseKey(hKey);
if (lr != ERROR_SUCCESS)
bFail = TRUE;
}
if(bFail)
{
// if reading from the registry fails, just use the defaults
pSystemParams->RTCSpringParam.m_Bytes = sizeof(RTCSPRING_PARAM);
pSystemParams->RTCSpringParam.m_XKConstant = DEFAULT_RTC_KX;
pSystemParams->RTCSpringParam.m_YKConstant = DEFAULT_RTC_KY;
pSystemParams->RTCSpringParam.m_XAxisCenter = DEFAULT_RTC_X0;
pSystemParams->RTCSpringParam.m_YAxisCenter = DEFAULT_RTC_Y0;
pSystemParams->RTCSpringParam.m_XSaturation = DEFAULT_RTC_XSAT;
pSystemParams->RTCSpringParam.m_YSaturation = DEFAULT_RTC_YSAT;
pSystemParams->RTCSpringParam.m_XDeadBand = DEFAULT_RTC_XDBAND;
pSystemParams->RTCSpringParam.m_YDeadBand = DEFAULT_RTC_YDBAND;
}
}
#define REGSTR_VAL_DELAY_PARAMS "TimingParams"
void GetDelayParams(UINT nJoystickID, PDELAY_PARAMS pDelayParams)
{
BOOL bFail = FALSE;
// try to open the registry key
HKEY hKey;
DWORD dwcb = sizeof(DELAY_PARAMS);
LONG lr;
hKey = joyOpenOEMForceFeedbackKey(nJoystickID);
if(!hKey)
bFail = TRUE;
if (!bFail)
{
// Get Firmware Parameters
lr = RegQueryValueEx( hKey,
REGSTR_VAL_DELAY_PARAMS,
NULL, NULL,
(PBYTE)pDelayParams,
&dwcb);
RegCloseKey(hKey);
if (lr != ERROR_SUCCESS)
bFail = TRUE;
}
if(bFail)
{
// if reading from the registry fails, just use the defaults
pDelayParams->dwBytes = sizeof(DELAY_PARAMS);
pDelayParams->dwDigitalOverdrivePrechargeCmdDelay = DEFAULT_DIGITAL_OVERDRIVE_PRECHARGE_CMD_DELAY;
pDelayParams->dwShutdownDelay = DEFAULT_SHUTDOWN_DELAY;
pDelayParams->dwHWResetDelay = DEFAULT_HWRESET_DELAY;
pDelayParams->dwPostSetDeviceStateDelay = DEFAULT_POST_SET_DEVICE_STATE_DELAY;
pDelayParams->dwGetEffectStatusDelay = DEFAULT_GET_EFFECT_STATUS_DELAY;
pDelayParams->dwGetDataPacketDelay = DEFAULT_GET_DATA_PACKET_DELAY;
pDelayParams->dwGetStatusPacketDelay = DEFAULT_GET_STATUS_PACKET_DELAY;
pDelayParams->dwGetIDPacketDelay = DEFAULT_GET_ID_PACKET_DELAY;
pDelayParams->dwGetStatusGateDataDelay = DEFAULT_GET_STATUS_GATE_DATA_DELAY;
pDelayParams->dwSetIndexDelay = DEFAULT_SET_INDEX_DELAY;
pDelayParams->dwModifyParamDelay = DEFAULT_MODIFY_PARAM_DELAY;
pDelayParams->dwForceOutDelay = DEFAULT_FORCE_OUT_DELAY;
pDelayParams->dwShortMsgDelay = DEFAULT_SHORT_MSG_DELAY;
pDelayParams->dwLongMsgDelay = DEFAULT_LONG_MSG_DELAY;
pDelayParams->dwDestroyEffectDelay = DEFAULT_DESTROY_EFFECT_DELAY;
pDelayParams->dwForceOutMod = DEFAULT_FORCE_OUT_MOD;
// write the defaults to the registry
hKey = joyOpenOEMForceFeedbackKey(nJoystickID);
if(hKey)
{
// Modify Registry Values
RegSetValueEx ( hKey, REGSTR_VAL_DELAY_PARAMS, 0, REG_BINARY, (const unsigned char *)pDelayParams, sizeof(DELAY_PARAMS) );
// Close Key
RegCloseKey(hKey);
}
}
if(pDelayParams->dwForceOutMod == 0)
pDelayParams->dwForceOutMod = 1;
}
#define REGSTR_VAL_JOYSTICK_PARAMS "JoystickParams"
void GetJoystickParams(UINT nJoystickID, PJOYSTICK_PARAMS pJoystickParams)
{
BOOL bFail = FALSE;
// try to open the registry key
HKEY hKey;
DWORD dwcb = sizeof(JOYSTICK_PARAMS);
LONG lr;
hKey = joyOpenOEMForceFeedbackKey(nJoystickID);
if(!hKey)
bFail = TRUE;
if (!bFail)
{
// Get Firmware Parameters
lr = RegQueryValueEx( hKey,
REGSTR_VAL_JOYSTICK_PARAMS,
NULL, NULL,
(PBYTE)pJoystickParams,
&dwcb);
RegCloseKey(hKey);
if (lr != ERROR_SUCCESS)
bFail = TRUE;
}
if(bFail)
{
// if reading from the registry fails, just use the defaults
pJoystickParams->dwXYConst = DEF_XY_CONST;
pJoystickParams->dwRotConst = DEF_ROT_CONST;
pJoystickParams->dwSldrConst = DEF_SLDR_CONST;
pJoystickParams->dwAJPos = DEF_AJ_POS;
pJoystickParams->dwAJRot = DEF_AJ_ROT;
pJoystickParams->dwAJSldr = DEF_AJ_SLDR;
pJoystickParams->dwSprScl = DEF_SPR_SCL;
pJoystickParams->dwBmpScl = DEF_BMP_SCL;
pJoystickParams->dwDmpScl = DEF_DMP_SCL;
pJoystickParams->dwInertScl = DEF_INERT_SCL;
pJoystickParams->dwVelOffScl = DEF_VEL_OFFSET_SCL;
pJoystickParams->dwAccOffScl = DEF_ACC_OFFSET_SCL;
pJoystickParams->dwYMotBoost = DEF_Y_MOT_BOOST;
pJoystickParams->dwXMotSat = DEF_X_MOT_SATURATION;
pJoystickParams->dwReserved = 0;
pJoystickParams->dwMasterGain = 0;
}
}
void UpdateJoystickParams(PJOYSTICK_PARAMS pJoystickParams)
{
// modify the Joystick Params by modifying the SYSTEM_EFFECT_ID
// note that some parameters must be divided by 2 before being sent
// Jolt will multiply by 2 to restore to original
CMD_ModifyParamByIndex(INDEX0, SYSTEM_EFFECT_ID, ((WORD)(pJoystickParams->dwXYConst))/2);
CMD_ModifyParamByIndex(INDEX1, SYSTEM_EFFECT_ID, ((WORD)(pJoystickParams->dwRotConst))/2);
CMD_ModifyParamByIndex(INDEX2, SYSTEM_EFFECT_ID, (WORD)(pJoystickParams->dwSldrConst));
CMD_ModifyParamByIndex(INDEX3, SYSTEM_EFFECT_ID, (WORD)(pJoystickParams->dwAJPos));
CMD_ModifyParamByIndex(INDEX4, SYSTEM_EFFECT_ID, (WORD)(pJoystickParams->dwAJRot));
CMD_ModifyParamByIndex(INDEX5, SYSTEM_EFFECT_ID, (WORD)(pJoystickParams->dwAJSldr));
CMD_ModifyParamByIndex(INDEX6, SYSTEM_EFFECT_ID, (WORD)(pJoystickParams->dwSprScl));
CMD_ModifyParamByIndex(INDEX7, SYSTEM_EFFECT_ID, (WORD)(pJoystickParams->dwBmpScl));
CMD_ModifyParamByIndex(INDEX8, SYSTEM_EFFECT_ID, (WORD)(pJoystickParams->dwDmpScl));
CMD_ModifyParamByIndex(INDEX9, SYSTEM_EFFECT_ID, (WORD)(pJoystickParams->dwInertScl));
CMD_ModifyParamByIndex(INDEX10, SYSTEM_EFFECT_ID, (WORD)(pJoystickParams->dwVelOffScl));
CMD_ModifyParamByIndex(INDEX11, SYSTEM_EFFECT_ID, (WORD)(pJoystickParams->dwAccOffScl));
CMD_ModifyParamByIndex(INDEX12, SYSTEM_EFFECT_ID, ((WORD)(pJoystickParams->dwYMotBoost))/2);
CMD_ModifyParamByIndex(INDEX13, SYSTEM_EFFECT_ID, (WORD)(pJoystickParams->dwXMotSat));
}
// ****************************************************************************
// *** --- Member functions for base class CMidiEffect
//
// ****************************************************************************
//
// ----------------------------------------------------------------------------
// Function: CMidiEffect::CMidiEffect
// Purpose: Constructor(s)/Destructor for CMidiEffect Object
// Parameters:
// Returns:
// Algorithm:
// ----------------------------------------------------------------------------
CMidiEffect::CMidiEffect(IN ULONG ulButtonPlayMask)
{
m_bSysExCmd = SYS_EX_CMD; // SysEx Fx command
m_bEscManufID = 0; // Escape to long Manufac. ID, s/b 0
m_bManufIDL = (MS_MANUFACTURER_ID & 0x7f); // Low byte
m_bManufIDH = ((MS_MANUFACTURER_ID >> 8) & 0x7f); // High byte
m_bProdID = JOLT_PRODUCT_ID; // Product ID
m_bAxisMask = X_AXIS|Y_AXIS;
m_bEffectID = NEW_EFFECT_ID; // Default to indicate create NEW
Effect.bDurationL = 1; // in 2ms increments
Effect.bDurationH = 0; // in 2ms increments
Effect.bAngleL = 0; // 0 to 359 degrees
Effect.bAngleH = 0;
Effect.bGain = (BYTE) 100; // 1 to 100 %
Effect.bButtonPlayL = (BYTE) ulButtonPlayMask & 0x7f;
Effect.bButtonPlayH = (BYTE) ((ulButtonPlayMask >> 7) & 0x03);// Button 1- 9
Effect.bForceOutRateL= DEFAULT_JOLT_FORCE_RATE; // 1 to 500 Hz
Effect.bForceOutRateH=0;
Effect.bPercentL = (BYTE) ((DEFAULT_PERCENT) & 0x7f);
Effect.bPercentH = (BYTE) ((DEFAULT_PERCENT >> 7 ) & 0x7f);
m_LoopCount = 1; // Default
SetPlayMode(PLAY_STORE); // Default
}
// ----------------------------------------------------------------------------
// Function: CMidiEffect::CMidiEffect
// Purpose: Constructor(s)/Destructor for CMidiEffect Object
// Parameters:
// Returns:
// Algorithm:
// ----------------------------------------------------------------------------
CMidiEffect::CMidiEffect(
IN PEFFECT pEffect,
IN PENVELOPE pEnvelope)
{
m_bSysExCmd = SYS_EX_CMD; // SysEx Fx command
m_bEscManufID = 0; // Escape to long Manufac. ID, s/b 0
m_bManufIDL = (MS_MANUFACTURER_ID & 0x7f); // Low byte
m_bManufIDH = ((MS_MANUFACTURER_ID >> 8) & 0x7f); // High byte
m_bProdID = JOLT_PRODUCT_ID; // Product ID
m_bAxisMask = X_AXIS|Y_AXIS;
m_OpCode = DNLOAD_DATA | X_AXIS|Y_AXIS; // Subcommand opcode:DNLOAD_DATA
m_bEffectID = NEW_EFFECT_ID; // Default to indicate create NEW
SetDuration(pEffect->m_Duration);
Effect.bDurationL = (BYTE) (m_Duration & 0x7f); // in 2ms increments
Effect.bDurationH = (BYTE) ((m_Duration >> 7 ) & 0x7f); // in 2ms increments
Effect.bAngleL = (BYTE) (pEffect->m_DirectionAngle2D & 0x7f); // 0 to 359 degrees
Effect.bAngleH = (BYTE) ((pEffect->m_DirectionAngle2D >> 7 ) & 0x7f);
Effect.bGain = (BYTE) (pEffect->m_Gain & 0x7f); // 1 to 100 %
Effect.bButtonPlayL = (BYTE) (pEffect->m_ButtonPlayMask & 0x7f);
Effect.bButtonPlayH = (BYTE) ((pEffect->m_ButtonPlayMask >> 7) & 0x03);// Button 1- 9
Effect.bForceOutRateL=(BYTE) (pEffect->m_ForceOutputRate & 0x7f); // 1 to 500 Hz
Effect.bForceOutRateH=(BYTE) ((pEffect->m_ForceOutputRate >> 7 ) & 0x03);
Effect.bPercentL = (BYTE) ((DEFAULT_PERCENT) & 0x7f);
Effect.bPercentH = (BYTE) ((DEFAULT_PERCENT >> 7 ) & 0x7f);
m_LoopCount = 1; // Default
SetPlayMode(PLAY_STORE); // Default
// Set Envelope members
if (pEnvelope)
{
m_Envelope.m_Type = pEnvelope->m_Type;
m_Envelope.m_Attack = pEnvelope->m_Attack;
m_Envelope.m_Sustain = pEnvelope->m_Sustain;
m_Envelope.m_Decay = pEnvelope->m_Decay;
m_Envelope.m_StartAmp = (ULONG) (pEnvelope->m_StartAmp);
m_Envelope.m_SustainAmp = (ULONG) (pEnvelope->m_SustainAmp);
m_Envelope.m_EndAmp = (ULONG) (pEnvelope->m_EndAmp);
}
// save the original effect params
m_OriginalEffectParam = *pEffect;
}
// --- Destructor
CMidiEffect::~CMidiEffect()
{
memset(this, 0, sizeof(CMidiEffect));
}
// ----------------------------------------------------------------------------
// Function: CMidiEffect::SetDuration
// Purpose: Sets the Duration member
// Parameters: ULONG ulArg - the duration
// Returns:
// Algorithm:
// ----------------------------------------------------------------------------
void CMidiEffect::SetDuration(ULONG ulArg)
{
if (ulArg != 0)
{
ulArg = (ULONG) ( (float) ulArg/TICKRATE);
if (ulArg <= 0) ulArg = 1;
}
m_Duration = ulArg;
}
// ----------------------------------------------------------------------------
// Function: CMidiEffect::SetTotalDuration
// Purpose: Modifies the Effect.bDurationL/H parameter for Loop Counts
// Parameters: none
//
// Returns: Effect.bDurationL/H is filled with total duration
// Algorithm:
// Notes: Percentage is 1 to 10000
// Total Duration = ((Percentage of waveform)/10000) * Duration * Loop Count
// Example: Loop count of 1, the Percentage of waveform =10000,
// Total Duration = (10000/10000) * 1 * Duration
//
// ----------------------------------------------------------------------------
void CMidiEffect::SetTotalDuration(void)
{
ULONG ulPercent = Effect.bPercentL + ((USHORT)Effect.bPercentH << 7);
ULONG ulTotalDuration = (ULONG) (((float) ulPercent/10000.0)
* (float) m_LoopCount
* (float) m_Duration );
Effect.bDurationL = (BYTE) ulTotalDuration & 0x7f;
Effect.bDurationH = (BYTE) (ulTotalDuration >> 7) & 0x7f;
}
// ----------------------------------------------------------------------------
// Function: CMidiEffect::ComputeEnvelope
// Purpose: Computes the Envelope for the Effect, Loopcount in consideration
// Parameters: none
// Returns: none
// Algorithm:
//For our standard PERCENTAGE Envelope, set the following as default:
//m_Type = PERCENTAGE
//
// Baseline is (m_MaxAmp + m_MinAmp)/2
// m_StartAmp = 0
// m_SustainAmp = Effect.m_MaxAmp - baseline
// m_EndAmp = m_StartAmp;
// where: baseline = (Effect.m_MaxAmp + Effect.m_MinAmp)/2;
// ----------------------------------------------------------------------------
void CMidiEffect::ComputeEnvelope(void)
{
ULONG ulTimeToSustain;
ULONG ulTimeToDecay;
//REVIEW: TIME vs PERCENTAGE option
if (PERCENTAGE == m_Envelope.m_Type)
{
ULONG ulPercent = Effect.bPercentL + ((USHORT)Effect.bPercentH << 7);
ULONG ulTotalDuration = (ULONG) (((float) ulPercent/10000.0)
* (float) m_LoopCount
* (float) m_Duration );
ulTimeToSustain = (ULONG) ((m_Envelope.m_Attack * ulTotalDuration) /100.);
ulTimeToDecay = (ULONG) ((m_Envelope.m_Attack + m_Envelope.m_Sustain)
* ulTotalDuration /100.);
}
else // TIME option envelope
{
ulTimeToSustain = (ULONG) (m_Envelope.m_Attack);
ulTimeToDecay = (ULONG) (m_Envelope.m_Attack + m_Envelope.m_Sustain);
ulTimeToSustain = (ULONG) ( (float) ulTimeToSustain/TICKRATE);
ulTimeToDecay = (ULONG) ( (float) ulTimeToDecay/TICKRATE);
}
Envelope.bAttackLevel = (BYTE) (m_Envelope.m_StartAmp & 0x7f);
Envelope.bSustainLevel = (BYTE) (m_Envelope.m_SustainAmp & 0x7f);
Envelope.bDecayLevel = (BYTE) (m_Envelope.m_EndAmp & 0x7f);
Envelope.bSustainL = (BYTE) (ulTimeToSustain & 0x7f);
Envelope.bSustainH = (BYTE) ((ulTimeToSustain >> 7) & 0x7f);
Envelope.bDecayL = (BYTE) (ulTimeToDecay & 0x7f);
Envelope.bDecayH = (BYTE) ((ulTimeToDecay >> 7) & 0x7f);
}
// ----------------------------------------------------------------------------
// Function: CMidiEffect::SubTypeOf
// Purpose: Returns the SubType for the Effect
// Parameters: none
// Returns: ULONG - DirectEffect style SubType
// Algorithm:
// ----------------------------------------------------------------------------
ULONG CMidiEffect::SubTypeOf(void)
{
static EFFECT_TYPE EffectTypes[] = {
{BE_SPRING , ET_BE_SPRING},
{BE_SPRING_2D , ET_BE_SPRING},
{BE_DAMPER , ET_BE_DAMPER},
{BE_DAMPER_2D , ET_BE_DAMPER},
{BE_INERTIA , ET_BE_INERTIA},
{BE_INERTIA_2D , ET_BE_INERTIA},
{BE_FRICTION , ET_BE_FRICTION},
{BE_FRICTION_2D , ET_BE_FRICTION},
{BE_WALL , ET_BE_WALL},
{BE_DELAY , ET_BE_DELAY},
{SE_CONSTANT_FORCE , ET_SE_CONSTANT_FORCE},
{SE_SINE , ET_SE_SINE},
{SE_COSINE , ET_SE_COSINE},
{SE_SQUARELOW , ET_SE_SQUARELOW},
{SE_SQUAREHIGH , ET_SE_SQUAREHIGH},
{SE_RAMPUP , ET_SE_RAMPUP},
{SE_RAMPDOWN , ET_SE_RAMPDOWN},
{SE_TRIANGLEUP , ET_SE_TRIANGLEUP},
{SE_TRIANGLEDOWN , ET_SE_TRIANGLEDOWN},
{SE_SAWTOOTHUP , ET_SE_SAWTOOTHUP},
{SE_SAWTOOTHDOWN , ET_SE_SAWTOOTHDOWN},
{PL_CONCATENATE , ET_PL_CONCATENATE},
{PL_SUPERIMPOSE , ET_PL_SUPERIMPOSE},
{RE_ROMID1 , ET_RE_ROMID1 },
{RE_ROMID2 , ET_RE_ROMID2 },
{RE_ROMID3 , ET_RE_ROMID3 },
{RE_ROMID4 , ET_RE_ROMID4 },
{RE_ROMID5 , ET_RE_ROMID5 },
{RE_ROMID6 , ET_RE_ROMID6 },
{RE_ROMID7 , ET_RE_ROMID7 },
{RE_ROMID8 , ET_RE_ROMID8 },
{RE_ROMID9 , ET_RE_ROMID9 },
{RE_ROMID10 , ET_RE_ROMID10 },
{RE_ROMID11 , ET_RE_ROMID11 },
{RE_ROMID12 , ET_RE_ROMID12 },
{RE_ROMID13 , ET_RE_ROMID13 },
{RE_ROMID14 , ET_RE_ROMID14 },
{RE_ROMID15 , ET_RE_ROMID15 },
{RE_ROMID16 , ET_RE_ROMID16 },
{RE_ROMID17 , ET_RE_ROMID17 },
{RE_ROMID18 , ET_RE_ROMID18 },
{RE_ROMID19 , ET_RE_ROMID19 },
{RE_ROMID20 , ET_RE_ROMID20 },
{RE_ROMID21 , ET_RE_ROMID21 },
{RE_ROMID22 , ET_RE_ROMID22 },
{RE_ROMID23 , ET_RE_ROMID23 },
{RE_ROMID24 , ET_RE_ROMID24 },
{RE_ROMID25 , ET_RE_ROMID25 },
{RE_ROMID26 , ET_RE_ROMID26 },
{RE_ROMID27 , ET_RE_ROMID27 },
{RE_ROMID28 , ET_RE_ROMID28 },
{RE_ROMID29 , ET_RE_ROMID29 },
{RE_ROMID30 , ET_RE_ROMID30 },
{RE_ROMID31 , ET_RE_ROMID31 },
{RE_ROMID32 , ET_RE_ROMID32 }};
int nNumEffectTypes = sizeof(EffectTypes)/(sizeof(EFFECT_TYPE));
for (int i=0; i<nNumEffectTypes; i++)
{
if (m_SubType == EffectTypes[i].bDeviceSubType)
return EffectTypes[i].ulHostSubType;
}
return (NULL);
}
// ----------------------------------------------------------------------------
// Function: CMidiEffect::SubTypeOf
// Purpose: Sets the SubType for the Effect
// Parameters: ULONG - DirectEffect style SubType
// Returns: none
// Algorithm:
// ----------------------------------------------------------------------------
void CMidiEffect::SetSubType(ULONG ulSubType)
{
static EFFECT_TYPE EffectTypes[] = {
{BE_SPRING , ET_BE_SPRING},
{BE_SPRING_2D , ET_BE_SPRING},
{BE_DAMPER , ET_BE_DAMPER},
{BE_DAMPER_2D , ET_BE_DAMPER},
{BE_INERTIA , ET_BE_INERTIA},
{BE_INERTIA_2D , ET_BE_INERTIA},
{BE_FRICTION , ET_BE_FRICTION},
{BE_FRICTION_2D , ET_BE_FRICTION},
{BE_WALL , ET_BE_WALL},
{BE_DELAY , ET_BE_DELAY},
{SE_CONSTANT_FORCE , ET_SE_CONSTANT_FORCE},
{SE_SINE , ET_SE_SINE},
{SE_COSINE , ET_SE_COSINE},
{SE_SQUARELOW , ET_SE_SQUARELOW},
{SE_SQUAREHIGH , ET_SE_SQUAREHIGH},
{SE_RAMPUP , ET_SE_RAMPUP},
{SE_RAMPDOWN , ET_SE_RAMPDOWN},
{SE_TRIANGLEUP , ET_SE_TRIANGLEUP},
{SE_TRIANGLEDOWN , ET_SE_TRIANGLEDOWN},
{SE_SAWTOOTHUP , ET_SE_SAWTOOTHUP},
{SE_SAWTOOTHDOWN , ET_SE_SAWTOOTHDOWN},
{PL_CONCATENATE , ET_PL_CONCATENATE},
{PL_SUPERIMPOSE , ET_PL_SUPERIMPOSE},
{RE_ROMID1 , ET_RE_ROMID1 },
{RE_ROMID2 , ET_RE_ROMID2 },
{RE_ROMID3 , ET_RE_ROMID3 },
{RE_ROMID4 , ET_RE_ROMID4 },
{RE_ROMID5 , ET_RE_ROMID5 },
{RE_ROMID6 , ET_RE_ROMID6 },
{RE_ROMID7 , ET_RE_ROMID7 },
{RE_ROMID8 , ET_RE_ROMID8 },
{RE_ROMID9 , ET_RE_ROMID9 },
{RE_ROMID10 , ET_RE_ROMID10 },
{RE_ROMID11 , ET_RE_ROMID11 },
{RE_ROMID12 , ET_RE_ROMID12 },
{RE_ROMID13 , ET_RE_ROMID13 },
{RE_ROMID14 , ET_RE_ROMID14 },
{RE_ROMID15 , ET_RE_ROMID15 },
{RE_ROMID16 , ET_RE_ROMID16 },
{RE_ROMID17 , ET_RE_ROMID17 },
{RE_ROMID18 , ET_RE_ROMID18 },
{RE_ROMID19 , ET_RE_ROMID19 },
{RE_ROMID20 , ET_RE_ROMID20 },
{RE_ROMID21 , ET_RE_ROMID21 },
{RE_ROMID22 , ET_RE_ROMID22 },
{RE_ROMID23 , ET_RE_ROMID23 },
{RE_ROMID24 , ET_RE_ROMID24 },
{RE_ROMID25 , ET_RE_ROMID25 },
{RE_ROMID26 , ET_RE_ROMID26 },
{RE_ROMID27 , ET_RE_ROMID27 },
{RE_ROMID28 , ET_RE_ROMID28 },
{RE_ROMID29 , ET_RE_ROMID29 },
{RE_ROMID30 , ET_RE_ROMID30 },
{RE_ROMID31 , ET_RE_ROMID31 },
{RE_ROMID32 , ET_RE_ROMID32 }};
int nNumEffectTypes = sizeof(EffectTypes)/(sizeof(EFFECT_TYPE));
for (int i=0; i<nNumEffectTypes; i++)
{
if (ulSubType == EffectTypes[i].ulHostSubType)
{
m_SubType = EffectTypes[i].bDeviceSubType;
return;
}
}
m_SubType = NULL;
}
// ----------------------------------------------------------------------------
// Function: CMidiEffect::ComputeChecksum
// Purpose: Computes current checksum in the m_pBuffer
// Parameters: none
// Returns: Midi packet block is checksummed
// Algorithm:
// ----------------------------------------------------------------------------
BYTE CMidiEffect::ComputeChecksum(PBYTE pBuffer, int nBufferSize)
{
assert(pBuffer);
int nStart = sizeof(SYS_EX_HDR);
PBYTE pBytePacket = pBuffer;
pBytePacket += nStart;
BYTE nSum = 0;
// Checksum only the bytes in the "Body" and s/b 7 bit checksum.
for (int i=nStart;i < (nBufferSize-2);i++)
{
nSum += *pBytePacket;
pBytePacket++;
}
return ((-nSum) & 0x7f);
}
// ----------------------------------------------------------------------------
// Function: CMidiEffect::SendPacket
// Purpose: Sends the SYS_EX Packet
// Parameters: PDNHANDLE pDnloadID - Pointer to DnloadID
// int nPacketSize - Size of SysEx packet
//
// Returns: *pDnloadID is filled.
// else Error code
// Algorithm:
// ----------------------------------------------------------------------------
HRESULT CMidiEffect::SendPacket(PDNHANDLE pDnloadID, int nPacketSize)
{
//
// --- THIS IS A CRITICAL SECTION
//
CriticalLock cl;
HRESULT hRet = SUCCESS;
if (NULL == g_pJoltMidi) return (SFERR_DRIVER_ERROR);
// Prepare the buffer for SysEx output
hRet = g_pJoltMidi->MidiAssignBuffer((LPSTR) m_pBuffer,
(DWORD) nPacketSize, TRUE);
assert(SUCCESS == hRet);
if (SUCCESS != hRet)
{
return (hRet);
}
ACKNACK AckNack = {sizeof(ACKNACK)};
for(int i=0; i<MAX_RETRY_COUNT; i++)
{
g_pJoltMidi->BumpLongMsgCounter();
// Send the message and Wait for the ACK + Download ID
hRet = g_pJoltMidi->MidiSendLongMsg();
assert(SUCCESS == hRet);
if (SUCCESS != hRet)
{
#ifdef _DEBUG
OutputDebugString("SendPacket Error: MidiSendLongMsg()\n");
#endif
// Release the Midi buffers and Return
g_pJoltMidi->MidiAssignBuffer((LPSTR) m_pBuffer, 0, FALSE);
return (hRet);
}
// Wait for ACK. Note: WinMM has callback Event notification
// while Backdoor and serial does not.
if (COMM_WINMM == g_pJoltMidi->COMMInterfaceOf())
{
hRet = g_pJoltMidi->GetAckNackData(10, &AckNack, REGBITS_DOWNLOADEFFECT);
}
else // Serial or Backdoor
{
if ((COMM_SERIAL_FILE == g_pJoltMidi->COMMInterfaceOf()) || (COMM_SERIAL_BACKDOOR == g_pJoltMidi->COMMInterfaceOf()))
{
hRet = g_pJoltMidi->GetAckNackData(LONG_MSG_TIMEOUT, &AckNack, REGBITS_DOWNLOADEFFECT);
}
else // Backdoor, hopefully to keep Jeff(Mr. Performance '97) happy
{
hRet = g_pJoltMidi->GetAckNackData(SHORT_MSG_TIMEOUT, &AckNack, REGBITS_DOWNLOADEFFECT);
}
}
// :
#ifdef _DEBUG
if (SUCCESS!=hRet)
OutputDebugString("Error getting ACKNACK data\n");
if (ACK != AckNack.dwAckNack)
g_pJoltMidi->LogError(SFERR_DEVICE_NACK, AckNack.dwErrorCode);
#endif
// NOTE: Special check for Device-Full because in certain circumstances
// (e.g. create multiple ROM effects after STOP_ALL command), retries of
// creation will succeed even though device is full
if (ACK == AckNack.dwAckNack || (NACK == AckNack.dwAckNack && AckNack.dwErrorCode == DEV_ERR_TYPE_FULL))
break;
// ******
}
// Release the Midi buffers
g_pJoltMidi->MidiAssignBuffer((LPSTR) m_pBuffer, 0, FALSE);
if (SUCCEEDED(hRet) && (ACK == AckNack.dwAckNack))
{
// Store in Device ID List Array
// First we need to generate a new Effect ID if necessary
if (NEW_EFFECT_ID == m_bEffectID)
{
DNHANDLE DnloadID;
if (g_pJoltMidi->NewEffectID(&DnloadID)) // Successful ID created
{
m_bEffectID = (BYTE) DnloadID;
*pDnloadID = DnloadID;
g_pJoltMidi->SetEffectByID((BYTE) *pDnloadID, this);
}
}
}
else // Failure of some sort
{
if(NACK == AckNack.dwAckNack)
{
g_pJoltMidi->BumpNACKCounter();
switch (AckNack.dwErrorCode)
{
case DEV_ERR_TYPE_FULL:
case DEV_ERR_PROCESS_LIST_FULL:
case DEV_ERR_PLAYLIST_FULL:
hRet = g_pJoltMidi->LogError(SFERR_FFDEVICE_MEMORY,
AckNack.dwErrorCode);
break;
default:
case DEV_ERR_INVALID_PARAM:
case DEV_ERR_CHECKSUM:
case DEV_ERR_UNKNOWN_CMD:
case DEV_ERR_INVALID_ID:
hRet = g_pJoltMidi->LogError(SFERR_DEVICE_NACK,
AckNack.dwErrorCode);
break;
}
}
}
// --- END OF CRITICAL SECTION
//
return (hRet);
}
// ----------------------------------------------------------------------------
// Function: CMidiEffect::DestroyEffect
// Purpose: Sends the SYS_EX Packet
// Parameters: PDNHANDLE pDnloadID - Pointer to DnloadID
// int nPacketSize - Size of SysEx packet
//
// Returns: *pDnloadID is filled.
// else Error code
// Algorithm:
// ----------------------------------------------------------------------------
HRESULT CMidiEffect::DestroyEffect()
{
HRESULT hRet;
if (NULL == g_pJoltMidi) return (SFERR_DRIVER_ERROR);
hRet = g_pJoltMidi->MidiSendShortMsg(EFFECT_CMD,DESTROY_EFFECT,EffectIDOf());
if(!FAILED(hRet))
g_pJoltMidi->SetEffectByID(EffectIDOf(), NULL);
Sleep(g_pJoltMidi->DelayParamsPtrOf()->dwDestroyEffectDelay);
return hRet;
}
// ****************************************************************************
// *** --- Member functions for derived class CMidiBehavioral
//
// ****************************************************************************
//
// ----------------------------------------------------------------------------
// Function: CMidiBehavioral::CMidiBehavioral
// Purpose: Constructor(s)/Destructor for CMidiBehavioral Object
// Parameters:
// Returns:
// Algorithm:
// ----------------------------------------------------------------------------
CMidiBehavioral::CMidiBehavioral(PEFFECT pEffect, PENVELOPE pEnvelope,
PBE_XXX pBE_XXX):CMidiEffect(pEffect, NULL)
{
SetSubType(pEffect->m_SubType);
SetXConstant(pBE_XXX->m_XConstant);
SetYConstant(pBE_XXX->m_YConstant);
SetParam3(pBE_XXX->m_Param3);
SetParam4(pBE_XXX->m_Param4);
m_MidiBufferSize = sizeof(BEHAVIORAL_SYS_EX);
}
// --- Destructor
CMidiBehavioral::~CMidiBehavioral()
{
memset(this, 0, sizeof(CMidiBehavioral));
}
// ----------------------------------------------------------------------------
// Function: CMidiBehavioral::SetEffect
// Purpose: Sets the common MIDI_EFFECT parameters
// Parameters: PEFFECT pEffect
// Returns: none
// Algorithm:
// ----------------------------------------------------------------------------
void CMidiBehavioral::SetEffectParams(PEFFECT pEffect, PBE_XXX pBE_XXX)
{
// Set the MIDI_EFFECT parameters
SetDuration(pEffect->m_Duration);
SetButtonPlaymask(pEffect->m_ButtonPlayMask);
SetAxisMask(X_AXIS|Y_AXIS);
SetDirectionAngle(pEffect->m_DirectionAngle2D);
SetGain((BYTE) (pEffect->m_Gain));
SetForceOutRate(pEffect->m_ForceOutputRate);
Effect.bPercentL = (BYTE) (DEFAULT_PERCENT & 0x7f);
Effect.bPercentH = (BYTE) ((DEFAULT_PERCENT >> 7) & 0x7f);
// set the type specific parameters for BE_XXX
SetXConstant(pBE_XXX->m_XConstant);
SetYConstant(pBE_XXX->m_YConstant);
SetParam3(pBE_XXX->m_Param3);
SetParam4(pBE_XXX->m_Param4);
}
// ----------------------------------------------------------------------------
// Function: CMidiBehavioral::GenerateSysExPacket
// Purpose: Builds the SysEx packet into the pBuf
// Parameters: none
// Returns: PBYTE - pointer to a buffer filled with SysEx Packet
// Algorithm:
// ----------------------------------------------------------------------------
PBYTE CMidiBehavioral::GenerateSysExPacket(void)
{
if (NULL == g_pJoltMidi) return ((PBYTE) NULL);
PBYTE pSysExBuffer = g_pJoltMidi->PrimaryBufferPtrOf();
assert(pSysExBuffer);
// Copy SysEx Header + m_OpCode + m_SubType
memcpy(pSysExBuffer, &m_bSysExCmd, sizeof(SYS_EX_HDR)+2 );
PBEHAVIORAL_SYS_EX pBuf = (PBEHAVIORAL_SYS_EX) pSysExBuffer;
SetTotalDuration(); // Compute total with Loop count parameter
pBuf->bDurationL = (BYTE) (Effect.bDurationL & 0x7f);
pBuf->bDurationH = (BYTE) (Effect.bDurationH & 0x7f);
pBuf->bButtonPlayL = (BYTE) (Effect.bButtonPlayL & 0x7f);
pBuf->bButtonPlayH = (BYTE) (Effect.bButtonPlayH & 0x7f);
// Behavioral params
LONG XConstant = (LONG) (XConstantOf() * MAX_SCALE);
LONG YConstant = (LONG) (YConstantOf() * MAX_SCALE);
pBuf->bXConstantL = (BYTE) XConstant & 0x7f;
pBuf->bXConstantH = (BYTE) (XConstant >> 7 ) & 0x01;
pBuf->bYConstantL = (BYTE) YConstant & 0x7f;
pBuf->bYConstantH = (BYTE) (YConstant >> 7 ) & 0x01;
LONG Param3 = (LONG) (Param3Of() * MAX_SCALE);
LONG Param4 = (LONG) (Param4Of() * MAX_SCALE);
pBuf->bParam3L = (BYTE) Param3 & 0x7f;
pBuf->bParam3H = (BYTE) (Param3 >> 7 ) & 0x01;
pBuf->bParam4L = (BYTE) Param4 & 0x7f;
pBuf->bParam4H = (BYTE) (Param4 >> 7 ) & 0x01;
pBuf->bEffectID = m_bEffectID;
pBuf->bChecksum = ComputeChecksum((PBYTE) pSysExBuffer,
sizeof(BEHAVIORAL_SYS_EX));
pBuf->bEOX = MIDI_EOX;
return ((PBYTE) pSysExBuffer);
}
// ****************************************************************************
// *** --- Member functions for derived class CMidiFriction
//
// ****************************************************************************
//
// ----------------------------------------------------------------------------
// Function: CMidiFriction::CMidiFriction
// Purpose: Constructor(s)/Destructor for CMidiFriction Object
// Parameters:
// Returns:
// Algorithm:
// ----------------------------------------------------------------------------
CMidiFriction::CMidiFriction(PEFFECT pEffect, PENVELOPE pEnvelope,
PBE_XXX pBE_XXX):CMidiBehavioral(pEffect, NULL, pBE_XXX)
{
m_MidiBufferSize = sizeof(FRICTION_SYS_EX);
}
// --- Destructor
CMidiFriction::~CMidiFriction()
{
memset(this, 0, sizeof(CMidiFriction));
}
// ----------------------------------------------------------------------------
// Function: CMidiFriction::GenerateSysExPacket
// Purpose: Builds the SysEx packet into the pBuf
// Parameters: none
// Returns: PBYTE - pointer to a buffer filled with SysEx Packet
// Algorithm:
// ----------------------------------------------------------------------------
PBYTE CMidiFriction::GenerateSysExPacket(void)
{
if (NULL == g_pJoltMidi) return ((PBYTE) NULL);
PBYTE pSysExBuffer = g_pJoltMidi->PrimaryBufferPtrOf();
assert(pSysExBuffer);
// Copy SysEx Header + m_OpCode + m_SubType
memcpy(pSysExBuffer, &m_bSysExCmd, sizeof(SYS_EX_HDR)+2 );
PFRICTION_SYS_EX pBuf = (PFRICTION_SYS_EX) pSysExBuffer;
SetTotalDuration(); // Compute total with Loop count parameter
pBuf->bDurationL = (BYTE) (Effect.bDurationL & 0x7f);
pBuf->bDurationH = (BYTE) (Effect.bDurationH & 0x7f);
pBuf->bButtonPlayL = (BYTE) (Effect.bButtonPlayL & 0x7f);
pBuf->bButtonPlayH = (BYTE) (Effect.bButtonPlayH & 0x7f);
// BE_FRICTION params
LONG XConstant = (LONG) (XConstantOf() * MAX_SCALE);
LONG YConstant = (LONG) (YConstantOf() * MAX_SCALE);
pBuf->bXFConstantL = (BYTE) XConstant & 0x7f;
pBuf->bXFConstantH = (BYTE) (XConstant >> 7 ) & 0x01;
pBuf->bYFConstantL = (BYTE) YConstant & 0x7f;
pBuf->bYFConstantH = (BYTE) (YConstant >> 7 ) & 0x01;
pBuf->bEffectID = m_bEffectID;
pBuf->bChecksum = ComputeChecksum((PBYTE) pSysExBuffer,
sizeof(FRICTION_SYS_EX));
pBuf->bEOX = MIDI_EOX;
return ((PBYTE) pSysExBuffer);
}
// ****************************************************************************
// *** --- Member functions for derived class CMidiWall
//
// ****************************************************************************
//
// ----------------------------------------------------------------------------
// Function: CMidiWall::CMidiWall
// Purpose: Constructor(s)/Destructor for CMidiWall Object
// Parameters:
// Returns:
// Algorithm:
// ----------------------------------------------------------------------------
CMidiWall::CMidiWall(PEFFECT pEffect, PENVELOPE pEnvelope,
PBE_XXX pBE_XXX):CMidiBehavioral(pEffect, NULL, pBE_XXX)
{
m_MidiBufferSize = sizeof(WALL_SYS_EX);
}
// --- Destructor
CMidiWall::~CMidiWall()
{
memset(this, 0, sizeof(CMidiWall));
}
// ----------------------------------------------------------------------------
// Function: CMidiWall::GenerateSysExPacket
// Purpose: Builds the SysEx packet into the pBuf
// Parameters: none
// Returns: PBYTE - pointer to a buffer filled with SysEx Packet
// Algorithm:
// ----------------------------------------------------------------------------
PBYTE CMidiWall::GenerateSysExPacket(void)
{
if (NULL == g_pJoltMidi) return ((PBYTE) NULL);
PBYTE pSysExBuffer = g_pJoltMidi->PrimaryBufferPtrOf();
assert(pSysExBuffer);
// Copy SysEx Header + m_OpCode + m_SubType
memcpy(pSysExBuffer, &m_bSysExCmd, sizeof(SYS_EX_HDR)+2 );
PWALL_SYS_EX pBuf = (PWALL_SYS_EX) pSysExBuffer;
SetTotalDuration(); // Compute total with Loop count parameter
pBuf->bDurationL = (BYTE) (Effect.bDurationL & 0x7f);
pBuf->bDurationH = (BYTE) (Effect.bDurationH & 0x7f);
pBuf->bButtonPlayL = (BYTE) (Effect.bButtonPlayL & 0x7f);
pBuf->bButtonPlayH = (BYTE) (Effect.bButtonPlayH & 0x7f);
// BE_WALL params
LONG WallType = (LONG) (XConstantOf());
LONG WallConstant = (LONG) (YConstantOf() * MAX_SCALE);
LONG WallAngle = (LONG) Param3Of();
LONG WallDistance = (LONG) (Param4Of() * MAX_SCALE);
pBuf->bWallType = (BYTE) (WallType & 0x01);
pBuf->bWallConstantL = (BYTE) (WallConstant & 0x7f);
pBuf->bWallConstantH = (BYTE) ((WallConstant >> 7 ) & 0x01); //+/-100
pBuf->bWallAngleL = (BYTE) (WallAngle & 0x7f); // 0 to 359
pBuf->bWallAngleH = (BYTE) ((WallAngle >> 7 ) & 0x03);
pBuf->bWallDistance = (BYTE) (WallDistance & 0x7f);
pBuf->bEffectID = m_bEffectID;
pBuf->bChecksum = ComputeChecksum((PBYTE) pSysExBuffer,
sizeof(WALL_SYS_EX));
pBuf->bEOX = MIDI_EOX;
return ((PBYTE) pSysExBuffer);
}
// ****************************************************************************
// *** --- Member functions for derived class CMidiRTCSpring
//
// ****************************************************************************
//
// ----------------------------------------------------------------------------
// Function: CMidiRTCSpring::CMidiRTCSpring
// Purpose: Constructor(s)/Destructor for CMidiRTCSpring Object
// Parameters:
// Returns:
// Algorithm:
// ----------------------------------------------------------------------------
CMidiRTCSpring::CMidiRTCSpring(PRTCSPRING_PARAM pRTCSpring):CMidiEffect(NULL)
{
memcpy(&m_RTCSPRINGParam, pRTCSpring, sizeof(RTCSPRING_PARAM));
}
// --- Destructor
CMidiRTCSpring::~CMidiRTCSpring()
{
memset(this, 0, sizeof(CMidiRTCSpring));
}
// ----------------------------------------------------------------------------
// Function: CMidiRTCSpring::SetEffectParams
// Purpose: Sets parameters
// Parameters:
// Returns:
// Algorithm:
// ----------------------------------------------------------------------------
void CMidiRTCSpring::SetEffectParams(PRTCSPRING_PARAM pRTCSpring)
{
memcpy(&m_RTCSPRINGParam, pRTCSpring, sizeof(RTCSPRING_PARAM));
}
// ----------------------------------------------------------------------------
// Function: CMidiRTCSpring::GenerateSysExPacket
// Purpose: virtual
// Parameters: none
// Returns:
// Algorithm:
// ----------------------------------------------------------------------------
PBYTE CMidiRTCSpring::GenerateSysExPacket(void)
{
return (NULL);
}
// ****************************************************************************
// *** --- Member functions for derived class CMidiDelay
//
// ****************************************************************************
//
// ----------------------------------------------------------------------------
// Function: CMidiDelay::CMidiDelay
// Purpose: Constructor(s)/Destructor for CMidiDelay Object
// Parameters:
// Returns:
// Algorithm:
// ----------------------------------------------------------------------------
CMidiDelay::CMidiDelay(PEFFECT pEffect) : CMidiEffect(pEffect, NULL)
{
m_SubType = ET_BE_DELAY; // BE Effect Type: BE_DELAY
m_OpCode = DNLOAD_DATA | X_AXIS|Y_AXIS | PLAY_SUPERIMPOSE;
m_MidiBufferSize = sizeof(NOP_SYS_EX);
}
// --- Destructor
CMidiDelay::~CMidiDelay()
{
memset(this, 0, sizeof(CMidiDelay));
}
// ----------------------------------------------------------------------------
// Function: CMidiDelay::GenerateSysExPacket
// Purpose: Builds the SysEx packet into the pBuf
// Parameters: none
// Returns: PBYTE - pointer to a buffer filled with SysEx Packet
// Algorithm:
// ----------------------------------------------------------------------------
PBYTE CMidiDelay::GenerateSysExPacket(void)
{
if (NULL == g_pJoltMidi) return ((PBYTE) NULL);
PBYTE pSysExBuffer = g_pJoltMidi->PrimaryBufferPtrOf();
assert(pSysExBuffer);
// Copy SysEx Header + m_OpCode + m_SubType
memcpy(pSysExBuffer, &m_bSysExCmd, sizeof(SYS_EX_HDR)+2 );
PNOP_SYS_EX pBuf = (PNOP_SYS_EX) pSysExBuffer;
pBuf->bEffectID = m_bEffectID;
SetTotalDuration(); // Compute total with Loop count parameter
pBuf->bDurationL = (BYTE) (Effect.bDurationL & 0x7f);
pBuf->bDurationH = (BYTE) (Effect.bDurationH & 0x7f);
pBuf->bChecksum = ComputeChecksum((PBYTE) pSysExBuffer,
sizeof(NOP_SYS_EX));
pBuf->bEOX = MIDI_EOX;
return ((PBYTE) pSysExBuffer);
}
// ****************************************************************************
// *** --- Member functions for derived class CMidiSynthesized
//
// ****************************************************************************
//
// ----------------------------------------------------------------------------
// Function: CMidiSynthesized::CMidiSynthesized
// Purpose: Constructor(s)/Destructor for CMidiSynthesized Object
// Parameters:
// Returns:
// Algorithm:
// ----------------------------------------------------------------------------
CMidiSynthesized::CMidiSynthesized(PEFFECT pEffect, PENVELOPE pEnvelope,
PSE_PARAM pParam ) : CMidiEffect(pEffect, pEnvelope)
{
SetSubType(pEffect->m_SubType); // SE Effect Type
// Effect.bForceOutRateL= (BYTE) pParam->m_SampleRate & 0x7f; // 1 to 500 Hz
// Effect.bForceOutRateH= (BYTE) ((pParam->m_SampleRate >> 7) & 0x3);
Effect.bPercentL = (BYTE) (DEFAULT_PERCENT & 0x7f);
Effect.bPercentH = (BYTE) ((DEFAULT_PERCENT >> 7) & 0x7f);
m_Freq = pParam->m_Freq; // Frequency
m_MaxAmp = pParam->m_MaxAmp; // Maximum Amplitude
// Special case a SE_CONSTANT_FORCE
if (SE_CONSTANT_FORCE == pEffect->m_SubType)
m_MinAmp = 0;
else
m_MinAmp = pParam->m_MinAmp; // Minimum Amplitude
m_MidiBufferSize = sizeof(SE_WAVEFORM_SYS_EX);
}
// --- Destructor
CMidiSynthesized::~CMidiSynthesized()
{
memset(this, 0, sizeof(CMidiSynthesized));
}
// ----------------------------------------------------------------------------
// Function: CMidiSynthesized::SetEffect
// Purpose: Sets the common MIDI_EFFECT parameters
// Parameters: PEFFECT pEffect
// Returns: none
// Algorithm:
// ----------------------------------------------------------------------------
void CMidiSynthesized::SetEffectParams(PEFFECT pEffect, PSE_PARAM pParam,
ULONG ulAction)
{
// Set the MIDI_EFFECT parameters
SetDuration(pEffect->m_Duration);
SetButtonPlaymask(pEffect->m_ButtonPlayMask);
SetAxisMask(X_AXIS|Y_AXIS);
SetDirectionAngle(pEffect->m_DirectionAngle2D);
SetGain((BYTE) (pEffect->m_Gain));
SetForceOutRate(pEffect->m_ForceOutputRate);
//Set the loop count from HIWORD of ulAction
m_LoopCount = (ulAction >> 16) & 0xffff;
if (0 == m_LoopCount) m_LoopCount++;
Effect.bPercentL = (BYTE) (DEFAULT_PERCENT & 0x7f);
Effect.bPercentH = (BYTE) ((DEFAULT_PERCENT >> 7) & 0x7f);
// set the type specific parameters for SE_xxx
m_Freq = pParam->m_Freq;
m_MaxAmp = pParam->m_MaxAmp;
m_MinAmp = pParam->m_MinAmp;
}
// ----------------------------------------------------------------------------
// Function: CMidiSynthesized::GenerateSysExPacket
// Purpose: Builds the SysEx packet into the pBuf
// Parameters: none
// Returns: PBYTE - pointer to a buffer filled with SysEx Packet
// Algorithm:
// ----------------------------------------------------------------------------
PBYTE CMidiSynthesized::GenerateSysExPacket(void)
{
if (NULL == g_pJoltMidi) return ((PBYTE) NULL);
PBYTE pSysExBuffer = g_pJoltMidi->PrimaryBufferPtrOf();
assert(pSysExBuffer);
// Compute total with Loop count parameter, Note: Envelope parameters are
// adjusted according to the Loop Count parameter, if affected.
SetTotalDuration();
ComputeEnvelope();
// Copy SysEx Header + m_OpCode + m_SubType + m_bEffectID + MIDI_EFFECT
// + MIDI_ENVELOPE
memcpy(pSysExBuffer,&m_bSysExCmd, (sizeof(SYS_EX_HDR)+3+sizeof(MIDI_EFFECT)+
sizeof(MIDI_ENVELOPE)) );
PSE_WAVEFORM_SYS_EX pBuf = (PSE_WAVEFORM_SYS_EX) pSysExBuffer;
// Scale the gain, and Envelope amplitudes
pBuf->Effect.bGain = (BYTE) (pBuf->Effect.bGain * MAX_SCALE) & 0x7f;
pBuf->Envelope.bAttackLevel = (BYTE) (pBuf->Envelope.bAttackLevel * MAX_SCALE) & 0x7f;
pBuf->Envelope.bSustainLevel = (BYTE) (pBuf->Envelope.bSustainLevel * MAX_SCALE) & 0x7f;
pBuf->Envelope.bDecayLevel = (BYTE) (pBuf->Envelope.bDecayLevel * MAX_SCALE) & 0x7f;
// Copy the SE specific parameters
LONG MaxAmp = (LONG) (m_MaxAmp * MAX_SCALE);
LONG MinAmp = (LONG) (m_MinAmp * MAX_SCALE);
pBuf->bFreqL = (BYTE) (m_Freq & 0x7f);
pBuf->bFreqH = (BYTE) ((m_Freq >> 7 ) & 0x03); // 1 to 500
pBuf->bMaxAmpL = (BYTE) (MaxAmp & 0x7f);
pBuf->bMaxAmpH = (BYTE) ((MaxAmp >> 7 ) &0x01); // +127 to -128
pBuf->bMinAmpL = (BYTE) (MinAmp & 0x7f);
pBuf->bMinAmpH = (BYTE) ((MinAmp >> 7 ) & 0x01);
pBuf->bChecksum = ComputeChecksum((PBYTE) pSysExBuffer,
sizeof(SE_WAVEFORM_SYS_EX));
pBuf->bEOX = MIDI_EOX;
return ((PBYTE) pSysExBuffer);
}
// ****************************************************************************
// *** --- Member functions for derived class CUD_Waveform
//
// ****************************************************************************
//
// ----------------------------------------------------------------------------
// Function: CUD_Waveform::CUD_Waveform
// Purpose: Constructor(s)/Destructor for CUD_Waveform Object
// Parameters:
// Returns:
// Algorithm:
// ----------------------------------------------------------------------------
CMidiUD_Waveform::CMidiUD_Waveform(PEFFECT pEffect, ULONG ulNumVectors, PLONG pArray) : CMidiEffect(pEffect, NULL),
m_pRawData(NULL)
{
m_OpCode = DNLOAD_DATA | X_AXIS|Y_AXIS;// Sub-command opcode: DNLOAD_DATA
m_SubType = ET_UD_WAVEFORM; // Effect Type: UD_WAVEFORM
assert(pArray);
// Create the buffer to hold the waveform data, compress it,
// then copy to this object
// The buffer size is initially set to the number of uncompressed vectors
// x 2 bytes, for worse-case Absolute data
// Once the buffer is compressed, the actual size is determined
// Also, create a temp copy so that the original unscaled data is not
// affected.
// Set a fixed maximum size
DWORD nSize = MAX_MIDI_WAVEFORM_DATA_SIZE + 2;
m_pArrayData = new BYTE[nSize];
// m_pRawData = new BYTE [nSize*2];
assert(m_pArrayData);
ULONG NewForceRate;
m_MidiBufferSize = SetTypeParams(ulNumVectors, pArray, &NewForceRate);
// Copy structures to object
memcpy(&m_Effect.m_Bytes, pEffect, sizeof(EFFECT));
SetForceOutRate(NewForceRate);
m_Effect.m_Gain = m_Effect.m_Gain & 0x7f;
m_Effect.m_Duration = (ULONG) ((float) (m_Effect.m_Duration / TICKRATE));
m_Duration = m_Effect.m_Duration;
}
// --- Destructor
CMidiUD_Waveform::~CMidiUD_Waveform()
{
if (m_pArrayData) delete [] m_pArrayData;
memset(this, 0, sizeof(CMidiUD_Waveform));
}
// ----------------------------------------------------------------------------
// Function: CMidiUD_Waveform::SetEffectParams
// Purpose: Sets the Effect specific parameters
// Parameters: PEFFECT pEffect
// Returns:
// Algorithm:
// ----------------------------------------------------------------------------
void CMidiUD_Waveform::SetEffectParams(PEFFECT pEffect)
{
// Set the MIDI_EFFECT parameters
SetButtonPlaymask(pEffect->m_ButtonPlayMask);
SetAxisMask(X_AXIS|Y_AXIS);
SetDirectionAngle(pEffect->m_DirectionAngle2D);
SetGain((BYTE) (pEffect->m_Gain));
SetForceOutRate(pEffect->m_ForceOutputRate);
}
// ----------------------------------------------------------------------------
// Function: CMidiUD_Waveform::SetTypeParams
// Purpose: Sets the type specific parameters
// Parameters: int nSize - size of the array
// PLONG pArray - Pointer to an ARRAY of force values
//
// Returns: MidiBuffer size for the packet
// Algorithm:
// ----------------------------------------------------------------------------
int CMidiUD_Waveform::SetTypeParams(int nSize, PLONG pArray, ULONG *pNewRate)
{
// Compress the buffer data then copy to this object
// The buffer size is initially set to the number of uncompressed vectors
// x 2 bytes, for worse-case Absolute data
// Once the buffer is compressed, the actual size is determined
// Also, create a temp copy so that the original unscaled data is not
// affected.
m_NumberOfVectors = 0;
m_pRawData = new BYTE [nSize*2];
if (m_pRawData != NULL)
{
// Convert to -128 to +127
for (int i=0; i<nSize; i++)
{
m_pRawData[i] = (BYTE) ((LONG) (pArray[i] * MAX_SCALE));
}
m_NumberOfVectors = CompressWaveform(&m_pRawData[0], m_pArrayData, nSize, pNewRate);
assert(m_NumberOfVectors <= (MAX_MIDI_WAVEFORM_DATA_SIZE));
delete [] m_pRawData;
m_pRawData = 0;
}
if (0 == m_NumberOfVectors) // No room!
return (0);
m_MidiBufferSize = (m_NumberOfVectors + sizeof(UD_WAVEFORM_SYS_EX) + 2);
return (m_MidiBufferSize);
}
// ----------------------------------------------------------------------------
// Function: CMidiUD_Waveform::CompressWaveform
// Purpose: Builds the SysEx packet into the pBuf
// Parameters: PBYTE pSrcArray - Source Array pointer
// PBYTE pDestArray - Dest. Array Pointer
// int nSize - Size in Bytes of the Source Array
//
// Returns: int - Size of the compressed Array (in bytes)
// Algorithm:
// To "compress" we need to fit the entire waveform into 98 points (there is a
// FW bug that limits us to 100 points only, and we need at least two samples
// for the starting Absolute mode point.
// 1. Determine how many points over 98.
// nSrcSize: Total sample size
// nMaxSamples: Maximum samples to squeeze into = 98
// nOver: nSrcSize - nMaxSamples
// nSkipSample: # of points to keep before skipping one
// = nSrcSize/nOver
// while ( Sample is less than nSrcSize, bump index)
// {
// if ( (index % nSkipSample) == 0) // no remainder
// {
// index++ // bump to skip the next sample
// }
// Compress the data
// }
//
// ----------------------------------------------------------------------------
int CMidiUD_Waveform::CompressWaveform(
IN PBYTE pSrcArray,
IN OUT PBYTE pDestArray,
IN int nSrcSize,
OUT ULONG *pNewForceRate)
{
assert(pSrcArray && pDestArray);
LONG nDifference;
// 8 bits (-128 to +127) Starting Absolute Data Value
pDestArray[0] = pSrcArray[0] & 0x3f;
pDestArray[1] = (pSrcArray[0] >> 6) & 0x03;
// int nMaxSamples = MAX_MIDI_WAVEFORM_DATA_SIZE;
int nSkipSample, nSrcIndex, nDestIndex;
int nAbsolute = 0;
int nRelative = 0;
//
// Start with Finest Resolution, then reduce until # of Samples <= nMaxSamples
//
nSkipSample = nSrcSize;
while (TRUE)
{
nSrcIndex = 0; // 1st sample already accounted for
nDestIndex = 2;
#ifdef _DEBUG
g_CriticalSection.Enter();
wsprintf(g_cMsg,"nSkipSample=%d\n",nSkipSample);
DebugOut(g_cMsg);
g_CriticalSection.Leave();
#endif
while (nSrcIndex < nSrcSize)
{
nSrcIndex++;
if (0 == (nSrcIndex % nSkipSample))
{
nSrcIndex++; // Skip next one
nDifference = ((char) pSrcArray[nSrcIndex]) - ((char) pSrcArray[nSrcIndex-2]);
}
else
nDifference = ((char) pSrcArray[nSrcIndex]) - ((char) pSrcArray[nSrcIndex-1]);
// make sure we do not write outside of array bounds
if(nDestIndex > MAX_MIDI_WAVEFORM_DATA_SIZE) break;
if (abs(nDifference) < DIFFERENCE_THRESHOLD)
{
pDestArray[nDestIndex] = (BYTE)((nDifference & 0x3f) | DIFFERENCE_BIT);
nDestIndex++;
nRelative++;
}
else // Switch to Absolute Data (8 bits)
{
pDestArray[nDestIndex] = pSrcArray[nSrcIndex] & 0x3f;
pDestArray[nDestIndex+1] = (pSrcArray[nSrcIndex] >> 6) & 0x3;
nDestIndex = nDestIndex+2;
nAbsolute++;
}
}
if (nDestIndex <= MAX_MIDI_WAVEFORM_DATA_SIZE) break;
// Reduce the resolution
if (nSkipSample < 8)
nSkipSample--;
else
nSkipSample = nSkipSample/2;
if (1 == nSkipSample) return (0); // Sorry charlie, no room!
nAbsolute = 0;
nRelative = 0;
}
// Done
ULONG ulOriginalForceRate = ForceOutRateOf();
// *pNewForceRate = (ulOriginalForceRate - (ULONG) (ulOriginalForceRate * ((float) nSkipSample / (float) nSrcSize)))/nSkipSample;
*pNewForceRate = (ULONG) ((1.0f - (1.0f/nSkipSample)) * ulOriginalForceRate);
#ifdef _DEBUG
g_CriticalSection.Enter();
wsprintf(g_cMsg, "CompressWaveform: nSrcSize=%d, nSkipSample=%d, NewForceRate=%d\n",
nSrcSize, nSkipSample, *pNewForceRate);
DebugOut(g_cMsg);
wsprintf(g_cMsg,"\nTotal Absolute Data:%d, Relative Data:%d", nAbsolute, nRelative);
DebugOut(g_cMsg);
g_CriticalSection.Leave();
#endif
#ifdef _SHOWCOMPRESS
#pragma message("Compiling with SHOWCOMPRESS")
g_CriticalSection.Enter();
DebugOut("CMidiUD_Waveform::CompressWaveform(..) \npSrcArray Dump (Decimal)\n");
for (int i=0; i<nSrcSize; i++)
{
wsprintf(g_cMsg," %0.4ld",((char) pSrcArray[i]));
DebugOut(g_cMsg);
}
DebugOut("\npDestArray Dump (HEX)\n");
for (i=0; i<nDestIndex; i++)
{
wsprintf(g_cMsg," %0.4x",pDestArray[i]);
DebugOut(g_cMsg);
}
g_CriticalSection.Leave();
#endif
return (nDestIndex);
}
// ----------------------------------------------------------------------------
// Function: CMidiUD_Waveform::GenerateSysExPacket
// Purpose: Builds the SysEx packet into the pBuf
// Parameters: none
// Returns: PBYTE - pointer to a buffer filled with SysEx Packet
// Algorithm:
// ----------------------------------------------------------------------------
PBYTE CMidiUD_Waveform::GenerateSysExPacket(void)
{
if (NULL == g_pJoltMidi) return ((PBYTE) NULL);
PBYTE pSysExBuffer = g_pJoltMidi->PrimaryBufferPtrOf();
assert(pSysExBuffer);
// Copy SysEx Header + m_OpCode + m_SubType
memcpy(pSysExBuffer, &m_bSysExCmd, sizeof(SYS_EX_HDR)+2 );
PUD_WAVEFORM_SYS_EX pBuf = (PUD_WAVEFORM_SYS_EX) pSysExBuffer;
SetTotalDuration(); // Compute total with Loop count parameter
pBuf->Effect.bDurationL = (BYTE) (m_Duration & 0x7f);
pBuf->Effect.bDurationH = (BYTE) (m_Duration >> 7) & 0x7f;
pBuf->Effect.bAngleL = Effect.bAngleL & 0x7f;
pBuf->Effect.bAngleH = Effect.bAngleH & 0x7f;
pBuf->Effect.bGain = (BYTE) (Effect.bGain * MAX_SCALE) & 0x7f;
pBuf->Effect.bButtonPlayL = Effect.bButtonPlayL & 0x7f;
pBuf->Effect.bButtonPlayH = Effect.bButtonPlayH & 0x7f;
pBuf->Effect.bForceOutRateL = Effect.bForceOutRateL & 0x7f;
pBuf->Effect.bForceOutRateH = Effect.bForceOutRateH & 0x7f;
pBuf->Effect.bPercentL = Effect.bPercentL & 0x7f;
pBuf->Effect.bPercentH = Effect.bPercentH & 0x7f;
// Fill in the Array Data
PBYTE pArray = ((PBYTE) pBuf) + UD_WAVEFORM_START_OFFSET;
memcpy(pArray, m_pArrayData, m_NumberOfVectors); // Already scaled!
pBuf->bEffectID = m_bEffectID;
int nArraySize = (m_NumberOfVectors + sizeof(UD_WAVEFORM_SYS_EX));
pSysExBuffer[nArraySize] = 0;
pSysExBuffer[nArraySize+1] = 0;
pSysExBuffer[nArraySize] = ComputeChecksum((PBYTE) pSysExBuffer, (nArraySize+2));
pSysExBuffer[nArraySize+1]= MIDI_EOX;
return ((PBYTE) pSysExBuffer);
}
// ****************************************************************************
// *** --- Member functions for derived class CMidiProcessList
//
// ****************************************************************************
//
// ----------------------------------------------------------------------------
// Function: CMidiProcessList::CMidiProcessList
// Purpose: Constructor(s)/Destructor for CMidiProcessList Object
// Parameters:
// Returns:
// Algorithm:
// ----------------------------------------------------------------------------
CMidiProcessList::CMidiProcessList(ULONG ulButtonPlayMask, PPLIST pParam)
: CMidiEffect(ulButtonPlayMask)
{
m_OpCode = PROCESS_DATA | X_AXIS|Y_AXIS; // Subcommand opcode:PROCESS_DATA
m_NumEffects = pParam->ulNumEffects;
if (m_NumEffects > MAX_PLIST_EFFECT_SIZE) m_NumEffects = MAX_PLIST_EFFECT_SIZE;
assert(m_NumEffects > 0 && m_NumEffects <= MAX_PLIST_EFFECT_SIZE);
m_ProcessMode = pParam->ulProcessMode;
m_pEffectArray = new BYTE [m_NumEffects];
if (m_pEffectArray != NULL)
{
for (int i=0; i< (int) m_NumEffects; i++)
{
m_pEffectArray[i] = (BYTE) (pParam->pEffectArray)[i];
}
}
m_MidiBufferSize = sizeof(SYS_EX_HDR)+5+m_NumEffects + 2;
}
// --- Destructor
CMidiProcessList::~CMidiProcessList()
{
if (m_pEffectArray) delete [] m_pEffectArray;
memset(this, 0, sizeof(CMidiProcessList));
}
// ----------------------------------------------------------------------------
// Function: CMidiProcessList::SetParams
// Purpose: Sets the type specific parameters
// Parameters: PPLIST pParam
// Returns:
// Algorithm:
// ----------------------------------------------------------------------------
void CMidiProcessList::SetParams(ULONG ulButtonPlayMask, PPLIST pParam)
{
m_NumEffects = pParam->ulNumEffects;
if (m_NumEffects > MAX_PLIST_EFFECT_SIZE) m_NumEffects = MAX_PLIST_EFFECT_SIZE;
assert(m_NumEffects > 0 && m_NumEffects <= MAX_PLIST_EFFECT_SIZE);
Effect.bButtonPlayL = (BYTE) ulButtonPlayMask & 0x7f;
Effect.bButtonPlayH = (BYTE) ((ulButtonPlayMask >> 7) & 0x03);
m_ProcessMode = pParam->ulProcessMode;
if (m_pEffectArray != NULL)
{
for (int i=0; i< (int) m_NumEffects; i++)
{
m_pEffectArray[i] = (BYTE) (pParam->pEffectArray)[i];
}
}
}
// ----------------------------------------------------------------------------
// Function: CMidiProcessList::GenerateSysExPacket
// Purpose: Builds the SysEx packet into the pBuf
// Parameters: none
// Returns: PBYTE - pointer to a buffer filled with SysEx Packet
// Algorithm:
// ----------------------------------------------------------------------------
PBYTE CMidiProcessList::GenerateSysExPacket(void)
{
if (NULL == g_pJoltMidi) return ((PBYTE) NULL);
PBYTE pSysExBuffer = g_pJoltMidi->PrimaryBufferPtrOf();
assert(pSysExBuffer);
// Copy SysEx Header + m_OpCode + m_SubType + m_bEffectID + m_bButtonPlayL
// + m_bButtonPlayH
memcpy(pSysExBuffer,&m_bSysExCmd, (sizeof(SYS_EX_HDR) + 5 ));
PPROCESS_LIST_SYS_EX pBuf = (PPROCESS_LIST_SYS_EX) pSysExBuffer;
if (PL_SUPERIMPOSE == m_ProcessMode)
pBuf->bSubType = PLIST_SUPERIMPOSE;
else
pBuf->bSubType = PLIST_CONCATENATE;
pBuf->bButtonPlayL = (BYTE) (Effect.bButtonPlayL & 0x7f);
pBuf->bButtonPlayH = (BYTE) (Effect.bButtonPlayH & 0x7f);
// Copy the PLIST specific parameters
memcpy(&pBuf->bEffectArrayID, m_pEffectArray, m_NumEffects);
PBYTE pChecksum = (PBYTE) ( &pBuf->bEffectArrayID + m_NumEffects );
pChecksum[0] = ComputeChecksum((PBYTE) pSysExBuffer,
sizeof(SYS_EX_HDR)+5+m_NumEffects+2);
pChecksum[1] = MIDI_EOX;
return ((PBYTE) pSysExBuffer);
}
// ****************************************************************************
// *** --- Member functions for derived class CMidiVFXProcessList
//
// ****************************************************************************
//
// ----------------------------------------------------------------------------
// Function: CMidiVFXProcessList::CMidiVFXProcessList
// Purpose: Constructor(s)/Destructor for CMidiVFXProcessList Object
// Parameters:
// Returns:
// Algorithm:
// ----------------------------------------------------------------------------
CMidiVFXProcessList::CMidiVFXProcessList(ULONG ulButtonPlayMask, PPLIST pParam)
: CMidiProcessList(ulButtonPlayMask, pParam)
{
}
// ----------------------------------------------------------------------------
// Function: CMidiVFXEffect::DestroyEffect
// Purpose: Sends the Short Message for itself and children
// Parameters:
// Returns: Error code
// Algorithm:
// ----------------------------------------------------------------------------
HRESULT CMidiVFXProcessList::DestroyEffect()
{
HRESULT hRet;
if (NULL == g_pJoltMidi) return (SFERR_DRIVER_ERROR);
// destroy the children
for (int i=0; i< (int) m_NumEffects; i++)
{
// get the CMidiEffect object corresponding to child ID
CMidiEffect* pMidiEffect = g_pJoltMidi->GetEffectByID(m_pEffectArray[i]);
assert(NULL != pMidiEffect);
if (NULL == pMidiEffect) return (SFERR_INVALID_OBJECT);
// destroy the effect
hRet = pMidiEffect->DestroyEffect();
// remove it from the map
if(!FAILED(hRet))
g_pJoltMidi->SetEffectByID(EffectIDOf(), NULL);
// delete the object
delete pMidiEffect;
}
// destroy itself
hRet = CMidiEffect::DestroyEffect();
// remove it from the map
if(!FAILED(hRet))
g_pJoltMidi->SetEffectByID(EffectIDOf(), NULL);
return hRet;
}
// ****************************************************************************
// *** --- Member functions for derived class CMidiAssign
//
// ****************************************************************************
//
// ----------------------------------------------------------------------------
// Function: CMidiAssign::CMidiAssign
// Purpose: Constructor(s)/Destructor for CMidiAssign Object
// Parameters:
// Returns:
// Algorithm:
// ----------------------------------------------------------------------------
CMidiAssign::CMidiAssign(void) : CMidiEffect(NULL)
{
//
// --- THIS IS A CRITICAL SECTION
//
CriticalLock cl;
m_OpCode = MIDI_ASSIGN; // Sub-command opcode
m_SubType = 0; // not used
m_Channel = DEFAULT_MIDI_CHANNEL; // Midi channel
m_MidiBufferSize = sizeof(MIDI_ASSIGN_SYS_EX);
// --- END OF CRITICAL SECTION
//
}
// --- Destructor
CMidiAssign::~CMidiAssign()
{
memset(this, 0, sizeof(CMidiAssign));
}
// ----------------------------------------------------------------------------
// Function: CMidiAssign::GenerateSysExPacket
// Purpose: Builds the SysEx packet into the pBuf
// Parameters: none
// Returns: PBYTE - pointer to a buffer filled with SysEx Packet
// Algorithm:
// ----------------------------------------------------------------------------
PBYTE CMidiAssign::GenerateSysExPacket(void)
{
if (NULL == g_pJoltMidi) return ((PBYTE) NULL);
PBYTE pSysExBuffer = g_pJoltMidi->PrimaryBufferPtrOf();
assert(pSysExBuffer);
// Copy SysEx Header + m_OpCode + m_SubType
memcpy(pSysExBuffer, &m_bSysExCmd, sizeof(SYS_EX_HDR)+2 );
PMIDI_ASSIGN_SYS_EX pBuf = (PMIDI_ASSIGN_SYS_EX) pSysExBuffer;
pBuf->bChannel = (BYTE) (m_Channel & 0x0f);
pBuf->bChecksum = ComputeChecksum((PBYTE) pSysExBuffer,
sizeof(MIDI_ASSIGN_SYS_EX));
pBuf->bEOX = MIDI_EOX;
return ((PBYTE) pSysExBuffer);
}