Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1190 lines
36 KiB

#include "precomp.h"
DEBUG_FILEZONE(ZONE_T120_GCCNC);
/*
* invoklst.cpp
*
* Copyright (c) 1995 by DataBeam Corporation, Lexington, KY
*
* Abstract:
* This is the implementation file for the class
* CInvokeSpecifierListContainer. This class manages the data associated
* with an Application Invoke Request or Indication. This includes a list
* of applications to be invoked. The CInvokeSpecifierListContainer data
* container utilizes a CSessKeyContainer container to buffer part of the data
* associated with each application invoke specifier. Each application
* invoke specifier also includes a capability ID whose data is buffered
* internally by the using a CCapIDContainer container. The list
* of application invoke specifiers is maintained internally by the class
* through the use of a Rogue Wave list container.
*
* Protected Instance Variables:
* m_InvokeSpecifierList
* List of structures used to hold the container data internally.
* m_pAPEListPDU
* Storage for the "PDU" form of the invoke data.
* m_fValidAPEListPDU
* Flag indicating that memory has been allocated to hold the internal
* "PDU" invoke data.
* m_cbDataSize
* Variable holding the size of the memory which will be required to
* hold any data referenced by the "API" structure.
*
* Caveats:
* None.
*
* Author:
* blp/jbo
*/
#include "ms_util.h"
#include "invoklst.h"
/*
* CInvokeSpecifierListContainer ()
*
* Public Function Description:
* This constructor is used to create an CInvokeSpecifierListContainer
* object from a list of "API" application protocol entities.
*/
CInvokeSpecifierListContainer::CInvokeSpecifierListContainer(
UINT number_of_protocol_entities,
PGCCAppProtocolEntity * app_protocol_entity_list,
PGCCError pRetCode)
:
CRefCount(MAKE_STAMP_ID('I','S','L','C')),
m_fValidAPEListPDU(FALSE),
m_cbDataSize(0)
{
UINT i;
PGCCAppProtocolEntity ape;
INVOKE_SPECIFIER *specifier_info;
/*
* Initialize instance variables.
*/
GCCError rc = GCC_NO_ERROR;
/*
* Go through the list of application protocol entities (APE's), saving the
* necessary information in the internal list of info. structures.
*/
for (i = 0; i < number_of_protocol_entities; i++)
{
/*
* Create a new INVOKE_SPECIFIER structure to hold the data for this
* APE. Check to make sure it was successfully created.
*/
DBG_SAVE_FILE_LINE
specifier_info = new INVOKE_SPECIFIER;
if (specifier_info != NULL)
{
/*
* Get the APE from the list.
*/
ape = app_protocol_entity_list[i];
/*
* Create a new CSessKeyContainer object to hold the session key.
* Check to make sure construction was successful.
*/
DBG_SAVE_FILE_LINE
specifier_info->session_key = new CSessKeyContainer(&ape->session_key, &rc);
if ((specifier_info->session_key != NULL) && (rc == GCC_NO_ERROR))
{
/*
* Save the startup channel type and "invoke" flag.
*/
specifier_info->startup_channel_type =ape->startup_channel_type;
specifier_info->must_be_invoked = ape->must_be_invoked;
/*
* Save the capabilities list for this APE in the internal info.
* structure.
*/
rc = SaveAPICapabilities(specifier_info,
ape->number_of_expected_capabilities,
ape->expected_capabilities_list);
/*
* Insert the new invoke specifier info structure pointer into
* the internal list if no error condition exists.
*/
if (rc == GCC_NO_ERROR)
{
m_InvokeSpecifierList.Append(specifier_info);
}
else
{
ERROR_OUT(("CInvokeSpecifierListContainer::Construc1: Error saving caps"));
break;
}
}
else if (specifier_info->session_key == NULL)
{
ERROR_OUT(("CInvokeSpecifierListContainer::Construc1: Error creating CSessKeyContainer"));
rc = GCC_ALLOCATION_FAILURE;
break;
}
else
{
break;
}
}
else
{
ERROR_OUT(("CInvokeSpecifierListContainer::Construc1: Error creating INVOKE_SPECIFIER"));
break;
}
}
if(rc != GCC_NO_ERROR)
{
if(specifier_info)
{
ERROR_OUT(("CInvokeSpecifierListContainer::Construc1: Error creating CSessKeyContainer"));
if(specifier_info->session_key)
{
specifier_info->session_key->Release();
}
delete specifier_info;
}
}
*pRetCode = rc;
}
/*
* CInvokeSpecifierListContainer ()
*
* Public Function Description:
* This constructor is used to create an CInvokeSpecifierListContainer
* object from a "PDU" ApplicationProtocolEntityList.
*/
CInvokeSpecifierListContainer::CInvokeSpecifierListContainer (
PApplicationProtocolEntityList protocol_entity_list,
PGCCError pRetCode)
:
CRefCount(MAKE_STAMP_ID('I','S','L','C')),
m_fValidAPEListPDU(FALSE),
m_cbDataSize(0)
{
ApplicationInvokeSpecifier specifier;
INVOKE_SPECIFIER *specifier_info;
GCCError rc = GCC_NO_ERROR;
while (protocol_entity_list != NULL)
{
/*
* Create a new INVOKE_SPECIFIER structure to hold the data for this
* APE. Check to make sure it was successfully created.
*/
DBG_SAVE_FILE_LINE
specifier_info = new INVOKE_SPECIFIER;
if (specifier_info != NULL)
{
specifier = protocol_entity_list->value;
/*
* Create a CSessKeyContainer object to hold the session key
* internally. Check to make sure the object is successfully
* created.
*/
DBG_SAVE_FILE_LINE
specifier_info->session_key = new CSessKeyContainer(&specifier.session_key, &rc);
if ((specifier_info->session_key != NULL) && (rc == GCC_NO_ERROR))
{
/*
* The session key was saved correctly so check to see if a list
* of expected capabilities is present and save them if so.
*/
if (specifier.bit_mask & EXPECTED_CAPABILITY_SET_PRESENT)
{
rc = SavePDUCapabilities(specifier_info, specifier.expected_capability_set);
if (rc != GCC_NO_ERROR)
{
specifier_info->session_key->Release();
specifier_info->ExpectedCapItemList.DeleteList();
delete specifier_info;
break;
}
}
/*
* Save the startup channel type. If the channel type is not
* present in the PDU then set the channel type in the info
* strucuture equal to MCS_NO_CHANNEL_TYPE_SPECIFIED;
*/
if (specifier.bit_mask & INVOKE_STARTUP_CHANNEL_PRESENT)
{
switch (specifier.invoke_startup_channel)
{
case CHANNEL_TYPE_STATIC:
specifier_info->startup_channel_type = MCS_STATIC_CHANNEL;
break;
case DYNAMIC_MULTICAST:
specifier_info->startup_channel_type = MCS_DYNAMIC_MULTICAST_CHANNEL;
break;
case DYNAMIC_PRIVATE:
specifier_info->startup_channel_type = MCS_DYNAMIC_PRIVATE_CHANNEL;
break;
case DYNAMIC_USER_ID:
specifier_info->startup_channel_type = MCS_DYNAMIC_USER_ID_CHANNEL;
break;
}
}
else
{
specifier_info->startup_channel_type = MCS_NO_CHANNEL_TYPE_SPECIFIED;
}
/*
* Insert the new invoke specifier info structure pointer into
* the internal list if no error condition exists.
*/
m_InvokeSpecifierList.Append(specifier_info);
}
else if (specifier_info->session_key == NULL)
{
ERROR_OUT(("CInvokeSpecifierListContainer::Construc2: Error creating CSessKeyContainer"));
rc = GCC_ALLOCATION_FAILURE;
break;
}
else
{
ERROR_OUT(("CInvokeSpecifierListContainer::Construc2: Error creating CSessKeyContainer"));
break;
}
/*
* Retrieve the next APE in the list.
*/
protocol_entity_list = protocol_entity_list->next;
}
else
{
ERROR_OUT(("CInvokeSpecifierListContainer::Construc2: Error creating INVOKE_SPECIFIER"));
break;
}
}
if(rc != GCC_NO_ERROR && specifier_info != NULL)
{
if(specifier_info->session_key != NULL)
{
specifier_info->session_key->Release();
}
specifier_info->ExpectedCapItemList.DeleteList();
delete specifier_info;
}
*pRetCode = rc;
}
/*
* ~CInvokeSpecifierListContainer ()
*
* Public Function Description
* The CInvokeSpecifierListContainer destructor is responsible for
* freeing any memory allocated to hold the invoke data.
*
*/
CInvokeSpecifierListContainer::~CInvokeSpecifierListContainer(void)
{
INVOKE_SPECIFIER *lpInvSpecInfo;
/*
* If "PDU" data has been allocated for this object, free it now.
*/
if (m_fValidAPEListPDU)
FreeApplicationInvokeSpecifierListPDU ();
/*
* Delete any data containers held internally in the list of info.
* structures by iterating through the internal list.
*/
m_InvokeSpecifierList.Reset();
while (NULL != (lpInvSpecInfo = m_InvokeSpecifierList.Iterate()))
{
/*
* Delete any CSessKeyContainer objects in the INVOKE_SPECIFIER list.
*/
if (NULL != lpInvSpecInfo->session_key)
{
lpInvSpecInfo->session_key->Release();
}
/*
* Iterate through the capabilities list held in the INVOKE_SPECIFIER
* structure.
*/
lpInvSpecInfo->ExpectedCapItemList.DeleteList();
/*
* Delete the INVOKE_SPECIFIER structure.
*/
delete lpInvSpecInfo;
}
}
/*
* LockApplicationInvokeSpecifierList ()
*
* Public Function Description:
* This routine locks the invoke specifier data and determines the amount
* of memory necessary to hold the associated data.
*/
UINT CInvokeSpecifierListContainer::LockApplicationInvokeSpecifierList(void)
{
/*
* If this is the first time this routine is called, determine the size of
* the memory required to hold the data for the application invoke
* specifier. Otherwise, just increment the lock count.
*/
if (Lock() == 1)
{
INVOKE_SPECIFIER *lpInvSpecInfo;
APP_CAP_ITEM *pExpCapData;
/*
* Set aside memory to hold the pointers to the GCCAppProtocolEntity
* structures as well as the structures themselves. The "sizeof" the
* structure must be rounded to an even four-byte boundary.
*/
m_cbDataSize = m_InvokeSpecifierList.GetCount() *
(sizeof(PGCCAppProtocolEntity) + ROUNDTOBOUNDARY(sizeof(GCCAppProtocolEntity)));
m_InvokeSpecifierList.Reset();
while (NULL != (lpInvSpecInfo = m_InvokeSpecifierList.Iterate()))
{
/*
* Lock the data for the session keys, adding the amount of memory
* necessary to hold the session key data to the total memory size.
*/
m_cbDataSize += lpInvSpecInfo->session_key->LockSessionKeyData();
lpInvSpecInfo->ExpectedCapItemList.Reset();
/*
* Set aside memory to hold the pointers to the
* GCCApplicationCabability structures as well as the structures
* themselves. The "sizeof" the structure must be rounded to an
* even four-byte boundary.
*/
m_cbDataSize += lpInvSpecInfo->ExpectedCapItemList.GetCount() *
( sizeof(PGCCApplicationCapability) + ROUNDTOBOUNDARY (sizeof(GCCApplicationCapability)) );
/*
* Lock the data for the capability ID's, adding the amount of
* memory necessary to hold the capability ID data to the total
* memory size.
*/
while (NULL != (pExpCapData = lpInvSpecInfo->ExpectedCapItemList.Iterate()))
{
m_cbDataSize += pExpCapData->pCapID->LockCapabilityIdentifierData();
}
}
}
return m_cbDataSize;
}
/*
* GetApplicationInvokeSpecifierList ()
*
* Public Function Description:
* This routine retrieves the invoke specifier data in the form of a
* list of application protocol entities which are written into the memory
* provided. This routine is called after "locking" the data.
*/
UINT CInvokeSpecifierListContainer::GetApplicationInvokeSpecifierList(
USHORT *number_of_protocol_entities,
LPBYTE memory)
{
PGCCAppProtocolEntity * ape_list_ptr;
PGCCAppProtocolEntity ape_ptr;
PGCCApplicationCapability capability_ptr;
UINT data_length = 0;
Int ape_counter = 0;
Int capability_counter = 0;
UINT cbDataSizeToRet = 0;
INVOKE_SPECIFIER *lpInvSpecInfo;
APP_CAP_ITEM *pExpCapData;
/*
* If the object has been locked, fill in the output structure and
* the data referenced by the structure. Otherwise, report that the object
* key has yet to be locked into the "API" form.
*/
if (GetLockCount() > 0)
{
/*
* Fill in the output length parameter which indicates how much data
* referenced outside the structure will be written. This value was
* calculated on the call to "Lock".
*/
cbDataSizeToRet = m_cbDataSize;
/*
* Fill in the number of protocol entities and save a pointer to
* the memory location passed in. This is where the pointers to
* the GCCAppProtocolEntity structures will be written. The actual
* structures will be written into memory immediately following the list
* of pointers.
*/
*number_of_protocol_entities = (USHORT) m_InvokeSpecifierList.GetCount();
ape_list_ptr = (PGCCAppProtocolEntity *)memory;
/*
* Save the amount of memory needed to hold the list of structure
* pointers.
*/
data_length = m_InvokeSpecifierList.GetCount() * sizeof(PGCCAppProtocolEntity);
/*
* Move the memory pointer past the list of APE pointers. This is where
* thefirst APE structure will be written.
*/
memory += data_length;
/*
* Iterate through the internal list of INVOKE_SPECIFIER structures,
* building "API" GCCAppProtocolEntity structures in memory.
*/
m_InvokeSpecifierList.Reset();
while (NULL != (lpInvSpecInfo = m_InvokeSpecifierList.Iterate()))
{
/*
* Save the pointer to the APE structure in the list of pointers.
*/
ape_ptr = (PGCCAppProtocolEntity)memory;
ape_list_ptr[ape_counter++] = ape_ptr;
/*
* Move the memory pointer past the APE structure. This is where
* thesession key data will be written.
*/
memory += ROUNDTOBOUNDARY(sizeof(GCCAppProtocolEntity));
/*
* Fill in the APE structure starting with the session key.
*/
data_length = lpInvSpecInfo->session_key->GetGCCSessionKeyData(&ape_ptr->session_key, memory);
/*
* Move the memory pointer past the session key data. This is
* where the list of pointers to the GCCApplicationCapability
* structures will be written so save the pointer in the APE
* structure's capabilities list pointer.
*/
memory += data_length;
ape_ptr->expected_capabilities_list = (PGCCApplicationCapability *)memory;
/*
* Go ahead and fill in the APE's channel type and invoke flag.
*/
ape_ptr->must_be_invoked = lpInvSpecInfo->must_be_invoked;
ape_ptr->startup_channel_type = lpInvSpecInfo->startup_channel_type;
ape_ptr->number_of_expected_capabilities = (USHORT) lpInvSpecInfo->ExpectedCapItemList.GetCount();
/*
* Move the memory pointer past the list of GCCApplicationCapability
* pointers. This is where the first GCCApplicationCapability
* structure will be written.
*/
memory += (lpInvSpecInfo->ExpectedCapItemList.GetCount() *
sizeof(PGCCApplicationCapability));
/*
* Iterate through the list of capabilities, writing the
* GCCApplicationCapability structures into memory.
*/
capability_counter = 0;
lpInvSpecInfo->ExpectedCapItemList.Reset();
while (NULL != (pExpCapData = lpInvSpecInfo->ExpectedCapItemList.Iterate()))
{
/*
* Save the pointer to the capability structure in the list of
* pointers. Move the memory pointer past the capability
* structure. This is where the data associated with the
* capability ID will be written.
*/
capability_ptr = (PGCCApplicationCapability)memory;
ape_ptr->expected_capabilities_list[capability_counter++] = capability_ptr;
memory += ROUNDTOBOUNDARY(sizeof(GCCApplicationCapability));
/*
* Fill in the capability structure and add the amount of data
* written into memory to the total data length.
*/
data_length = GetApplicationCapability(pExpCapData, capability_ptr, memory);
/*
* Move the memory pointer past the capability data.
*/
memory += data_length;
}
}
}
else
{
number_of_protocol_entities = 0;
ERROR_OUT(("CInvokeSpecifierListContainer::GetAppInvokeSpecList: Error Data Not Locked"));
}
return cbDataSizeToRet;
}
/*
* UnLockApplicationInvokeSpecifierList ()
*
* Public Function Description:
* This routine decrements the lock count and frees the memory associated
* with the "API" invoke specifier list once the lock count reaches zero.
*/
void CInvokeSpecifierListContainer::UnLockApplicationInvokeSpecifierList(void)
{
if (Unlock(FALSE) == 0)
{
INVOKE_SPECIFIER *lpInvSpecInfo;
APP_CAP_ITEM *pExpCapData;
/*
* Unlock any container data held internally in the list of info.
* structures by iterating through the internal list.
*/
m_InvokeSpecifierList.Reset();
while (NULL != (lpInvSpecInfo = m_InvokeSpecifierList.Iterate()))
{
/*
* Unlock any CSessKeyContainer objects.
*/
lpInvSpecInfo->session_key->UnLockSessionKeyData();
/*
* Iterate through the capabilities list held in the
* INVOKE_SPECIFIER structure.
*/
lpInvSpecInfo->ExpectedCapItemList.Reset();
while (NULL != (pExpCapData = lpInvSpecInfo->ExpectedCapItemList.Iterate()))
{
/*
* Unlock the CCapIDContainer objects.
*/
pExpCapData->pCapID->UnLockCapabilityIdentifierData();
}
}
}
// we have to call Release() because we used Unlock(FALSE)
Release();
}
/*
* GetApplicationInvokeSpecifierListPDU ()
*
* Public Function Description:
* This routine retrieves the "PDU" form of an
* ApplicationProtocolEntityList.
*/
GCCError CInvokeSpecifierListContainer::GetApplicationInvokeSpecifierListPDU(
PApplicationProtocolEntityList *protocol_entity_list)
{
GCCError rc = GCC_NO_ERROR;
PApplicationProtocolEntityList new_pdu_ape_list_ptr;
PApplicationProtocolEntityList old_pdu_ape_list_ptr = NULL;
/*
* If this is the first time that PDU data has been requested then we must
* fill in the internal PDU structure and copy it into the structure pointed
* to by the input parameter. On subsequent calls to "GetPDU" we can just
* copy the internal PDU structure into the structure pointed to by the
* input parameter.
*/
if (m_fValidAPEListPDU == FALSE)
{
INVOKE_SPECIFIER *lpInvSpecInfo;
m_fValidAPEListPDU = TRUE;
/*
* Initialize the output parameter to NULL so that the first time
* through the loop it will be set equal to the first new APE list
* created in the iterator loop.
*/
m_pAPEListPDU = NULL;
/*
* Iterate through the list of "INVOKE_SPECIFIER" structures,
* converting each into "PDU" form and saving the pointers in the
* "ApplicationProtocolEntityList" which is a linked list of
* "ApplicationInvokeSpecifiers".
*/
m_InvokeSpecifierList.Reset();
while (NULL != (lpInvSpecInfo = m_InvokeSpecifierList.Iterate()))
{
DBG_SAVE_FILE_LINE
new_pdu_ape_list_ptr = new ApplicationProtocolEntityList;
/*
* If an allocation failure occurs, call the routine which will
* iterate through the list freeing any data which had been
* allocated.
*/
if (new_pdu_ape_list_ptr == NULL)
{
ERROR_OUT(("CInvokeSpecifierListContainer::GetApplicationInvokeSpecifierListPDU: can't allocate ApplicationProtocolEntityList"));
rc = GCC_ALLOCATION_FAILURE;
FreeApplicationInvokeSpecifierListPDU ();
break;
}
/*
* The first time through, set the PDU structure pointer equal
* to the first ApplicationProtocolEntityList created. On
* subsequent loops, set the structure's "next" pointer equal to
* the new structure.
*/
if (m_pAPEListPDU == NULL)
{
m_pAPEListPDU = new_pdu_ape_list_ptr;
}
else
{
old_pdu_ape_list_ptr->next = new_pdu_ape_list_ptr;
}
old_pdu_ape_list_ptr = new_pdu_ape_list_ptr;
/*
* Initialize the new "next" pointer to NULL.
*/
new_pdu_ape_list_ptr->next = NULL;
if (ConvertInvokeSpecifierInfoToPDU (lpInvSpecInfo, new_pdu_ape_list_ptr) !=
GCC_NO_ERROR)
{
ERROR_OUT(("CInvokeSpecifierListContainer::GetApplicationInvokeSpecifierListPDU: can't convert UserDataInfo to PDU"));
rc = GCC_ALLOCATION_FAILURE;
break;
}
}
}
/*
* Copy the internal PDU structure into the structure pointed to by the
* input parameter.
*/
*protocol_entity_list = m_pAPEListPDU;
return rc;
}
/*
* FreeApplicationInvokeSpecifierListPDU ()
*
* Public Function Description:
* This routine is used to free the invoke specifier data held internally
* in the "PDU" form of a "ApplicationProtocolEntityList".
*/
void CInvokeSpecifierListContainer::FreeApplicationInvokeSpecifierListPDU(void)
{
PApplicationProtocolEntityList pCurr, pNext;
INVOKE_SPECIFIER *lpInvSpecInfo;
APP_CAP_ITEM *pExpCapData;
if (m_pAPEListPDU != NULL)
{
m_fValidAPEListPDU = FALSE;
/*
* Loop through the list, freeing the data associated with
* each structure contained in the list.
*/
for (pCurr = m_pAPEListPDU; NULL != pCurr; pCurr = pNext)
{
pNext = pCurr->next;
delete pCurr;
}
}
/*
* Iterate through the internal list, telling each data container object
* to free any PDU data which it has allocated.
*/
m_InvokeSpecifierList.Reset();
while (NULL != (lpInvSpecInfo = m_InvokeSpecifierList.Iterate()))
{
if (lpInvSpecInfo->session_key != NULL)
{
lpInvSpecInfo->session_key->FreeSessionKeyDataPDU();
}
/*
* Iterate through the
* list, freeing the PDU data for the capability ID's.
*/
lpInvSpecInfo->ExpectedCapItemList.Reset();
while (NULL != (pExpCapData = lpInvSpecInfo->ExpectedCapItemList.Iterate()))
{
pExpCapData->pCapID->FreeCapabilityIdentifierDataPDU();
}
}
}
/*
* GCCError CInvokeSpecifierListContainer::SaveAPICapabilities (
* INVOKE_SPECIFIER *invoke_specifier,
* UINT number_of_capabilities,
* PGCCApplicationCapability * capabilities_list)
*
* Private member function of CInvokeSpecifierListContainer.
*
* Function Description:
* This routine is used to save the list of application capabilities passed
* in as "API" data in the internal list of expected capability data
* which is held in the internal info structure.
*
* Formal Parameters:
* invoke_specifier (i) Internal structure used to hold invoke data.
* number_of_capabilities (i) Number of capabilities in list.
* capabilities_list (i) List of API capabilities to save.
*
* Return Value:
* None.
*
* Side Effects:
* None.
*
* Caveats:
* None.
*/
GCCError CInvokeSpecifierListContainer::SaveAPICapabilities(
INVOKE_SPECIFIER *invoke_specifier,
UINT number_of_capabilities,
PGCCApplicationCapability * capabilities_list)
{
GCCError rc = GCC_NO_ERROR;
APP_CAP_ITEM *pExpCapData;
UINT i;
for (i = 0; i < number_of_capabilities; i++)
{
/*
* For each capability, create an APP_CAP_ITEM structure
* to hold all the necessary data. This structure will be inserted into
* the list held by the internal info. structure.
*/
DBG_SAVE_FILE_LINE
pExpCapData = new APP_CAP_ITEM((GCCCapabilityType) capabilities_list[i]->capability_class.eType);
if (pExpCapData != NULL)
{
/*
* Create a new CCapIDContainer object to hold the
* identifier data.
*/
DBG_SAVE_FILE_LINE
pExpCapData->pCapID = new CCapIDContainer(&capabilities_list[i]->capability_id, &rc);
if ((pExpCapData->pCapID != NULL) && (rc == GCC_NO_ERROR))
{
/*
* The identifier object was successfully created so fill in the
* rest of the ApplicationCapabilityData structure.
*/
switch (pExpCapData->eCapType)
{
case GCC_UNSIGNED_MINIMUM_CAPABILITY:
pExpCapData->nUnsignedMinimum = capabilities_list[i]->capability_class.nMinOrMax;
break;
case GCC_UNSIGNED_MAXIMUM_CAPABILITY:
pExpCapData->nUnsignedMaximum = capabilities_list[i]->capability_class.nMinOrMax;
break;
}
/*
* Add this expected capability to the list.
*/
invoke_specifier->ExpectedCapItemList.Append(pExpCapData);
}
else
{
delete pExpCapData;
rc = GCC_ALLOCATION_FAILURE;
break;
}
}
else
{
rc = GCC_ALLOCATION_FAILURE;
break;
}
}
return rc;
}
/*
* GCCError CInvokeSpecifierListContainer::SavePDUCapabilities (
* INVOKE_SPECIFIER *invoke_specifier,
* PSetOfExpectedCapabilities capabilities_set)
*
* Private member function of CInvokeSpecifierListContainer.
*
* Function Description:
* This routine is used to save the list of application capabilities passed
* in as "PDU" data in the internal list of expected capability data
* which is held in the internal info. structure.
*
* Formal Parameters:
* invoke_specifier (i) Internal structure used to hold invoke data.
* capabilities_set (i) List of PDU capabilities to save.
*
* Return Value:
* None.
*
* Side Effects:
* None.
*
* Caveats:
* None.
*/
GCCError CInvokeSpecifierListContainer::SavePDUCapabilities(
INVOKE_SPECIFIER *invoke_specifier,
PSetOfExpectedCapabilities capabilities_set)
{
GCCError rc = GCC_NO_ERROR;
APP_CAP_ITEM *pExpCapData;
while ((capabilities_set != NULL) && (rc == GCC_NO_ERROR))
{
/*
* Create and fill in the new expected capability.
*/
DBG_SAVE_FILE_LINE
pExpCapData = new APP_CAP_ITEM((GCCCapabilityType) capabilities_set->value.capability_class.choice);
if (pExpCapData != NULL)
{
/*
* Create the CCapIDContainer object used to hold the
* capability ID data internally. Make sure creation is successful.
*/
DBG_SAVE_FILE_LINE
pExpCapData->pCapID = new CCapIDContainer(&capabilities_set->value.capability_id, &rc);
if (pExpCapData->pCapID == NULL || rc != GCC_NO_ERROR)
{
rc = GCC_ALLOCATION_FAILURE;
delete pExpCapData;
}
}
else
{
rc = GCC_ALLOCATION_FAILURE;
}
/*
* The capability ID was saved successfully, so go ahead and insert
* the expected capability data structure into the internal list.
* Fill in the capability class data.
*/
if (rc == GCC_NO_ERROR)
{
invoke_specifier->ExpectedCapItemList.Append(pExpCapData);
/*
* Save the capability type and value.
*/
switch (capabilities_set->value.capability_class.choice)
{
case UNSIGNED_MINIMUM_CHOSEN:
pExpCapData->nUnsignedMinimum = capabilities_set->value.capability_class.u.unsigned_minimum;
break;
case UNSIGNED_MAXIMUM_CHOSEN:
pExpCapData->nUnsignedMaximum = capabilities_set->value.capability_class.u.unsigned_maximum;
break;
}
}
capabilities_set = capabilities_set->next;
}
return rc;
}
/*
* UINT CInvokeSpecifierListContainer::GetApplicationCapability (
* APP_CAP_ITEM *capability_info_data,
* PGCCApplicationCapability api_capability,
* LPSTR memory)
*
* Private member function of CInvokeSpecifierListContainer.
*
* Function Description:
* This routine is used to fill in an API GCCApplicationCapability
* structure from an internal info structure.
*
* Formal Parameters:
* capability_info_data (i) Internal capability data to convert into
* API data.
* api_capability (o) Structure to hold data in API form.
* memory (o) Memory used to hold bulk data referenced by
* the API structure.
*
* Return Value:
* None.
*
* Side Effects:
* None.
*
* Caveats:
* None.
*/
UINT CInvokeSpecifierListContainer::GetApplicationCapability(
APP_CAP_ITEM *pExpCapData,
PGCCApplicationCapability api_capability,
LPBYTE memory)
{
UINT data_length = 0;
/*
* Call the CapabilityID object to retrieve the capability ID data.
*/
data_length = pExpCapData->pCapID->GetGCCCapabilityIDData(
&api_capability->capability_id,
memory);
/*
* Fill in the remaining fields for the GCCApplicationCapability structure.
*/
api_capability->capability_class.eType = pExpCapData->eCapType;
switch (pExpCapData->eCapType)
{
case GCC_UNSIGNED_MINIMUM_CAPABILITY:
api_capability->capability_class.nMinOrMax = pExpCapData->nUnsignedMinimum;
break;
case GCC_UNSIGNED_MAXIMUM_CAPABILITY:
api_capability->capability_class.nMinOrMax = pExpCapData->nUnsignedMaximum;
break;
}
/*
* Fill in the number of entities. Note, however, that this field will not
* be used in this context.
*/
api_capability->number_of_entities = 0;
return (data_length);
}
/*
* GCCError CInvokeSpecifierListContainer::ConvertInvokeSpecifierInfoToPDU(
* INVOKE_SPECIFIER *specifier_info_ptr,
* PApplicationProtocolEntityList ape_list_ptr)
*
* Private member function of CInvokeSpecifierListContainer.
*
* Function Description:
* This routine converts the invoke specifier from the internal form which
* is an "INVOKE_SPECIFIER" structure into the "PDU" structure form of
* a "ApplicationInvokeSpecifier".
*
* Formal Parameters:
* specifier_info_ptr (i) Internal structure holding data to convert.
* ape_list_ptr (o) PDU structure to hold converted data.
*
* Return Value:
* None.
*
* Side Effects:
* None.
*
* Caveats:
* None.
*/
GCCError CInvokeSpecifierListContainer::ConvertInvokeSpecifierInfoToPDU (
INVOKE_SPECIFIER *specifier_info_ptr,
PApplicationProtocolEntityList ape_list_ptr)
{
GCCError rc = GCC_NO_ERROR;
PSetOfExpectedCapabilities new_capability_set_ptr;
PSetOfExpectedCapabilities old_capability_set_ptr = NULL;
/*
* Initialize the invoke specifier bit mask to zero.
*/
ape_list_ptr->value.bit_mask = 0;
/*
* Fill in the session key PDU data using the CSessKeyContainer object.
*/
rc = specifier_info_ptr->session_key->GetSessionKeyDataPDU(&ape_list_ptr->value.session_key);
/*
* Fill in the capabilities list if any exist.
*/
if ((rc == GCC_NO_ERROR) && (specifier_info_ptr->ExpectedCapItemList.GetCount() != 0))
{
APP_CAP_ITEM *pExpCapData;
ape_list_ptr->value.bit_mask |= EXPECTED_CAPABILITY_SET_PRESENT;
/*
* Set the pointer to the capability set to NULL so that it will be
* set equal to the first SetOfExpectedCapabilities created inside the
* iterator loop.
*/
ape_list_ptr->value.expected_capability_set = NULL;
/*
* Iterate through the list of APP_CAP_ITEM structures,
* converting each into "PDU" form and saving the pointers in the
* "SetOfExpectedCapabilities.
*/
specifier_info_ptr->ExpectedCapItemList.Reset();
while (NULL != (pExpCapData = specifier_info_ptr->ExpectedCapItemList.Iterate()))
{
DBG_SAVE_FILE_LINE
new_capability_set_ptr = new SetOfExpectedCapabilities;
/*
* If an allocation failure occurs, call the routine which will
* iterate through the list freeing any data which had been
* allocated.
*/
if (new_capability_set_ptr == NULL)
{
ERROR_OUT(("CInvokeSpecifierListContainer::ConvertToPDU: alloc error, cleaning up"));
rc = GCC_ALLOCATION_FAILURE;
FreeApplicationInvokeSpecifierListPDU();
break;
}
/*
* The first time through, set the PDU structure pointer equal
* to the first SetOfExpectedCapabilities created. On
* subsequent loops, set the structure's "next" pointer equal to
* the new structure.
*/
if (ape_list_ptr->value.expected_capability_set == NULL)
{
ape_list_ptr->value.expected_capability_set = new_capability_set_ptr;
}
else
{
old_capability_set_ptr->next = new_capability_set_ptr;
}
old_capability_set_ptr = new_capability_set_ptr;
/*
* Initialize the new "next" pointer to NULL.
*/
new_capability_set_ptr->next = NULL;
if (ConvertExpectedCapabilityDataToPDU(pExpCapData, new_capability_set_ptr) != GCC_NO_ERROR)
{
ERROR_OUT(("CInvokeSpecifierListContainer::ConvertToPDU: Error converting Capability to PDU"));
rc = GCC_ALLOCATION_FAILURE;
break;
}
}
}
/*
* Fill in the channel type if one is specified.
*/
if (specifier_info_ptr->startup_channel_type != MCS_NO_CHANNEL_TYPE_SPECIFIED)
{
ape_list_ptr->value.bit_mask |= INVOKE_STARTUP_CHANNEL_PRESENT;
switch (specifier_info_ptr->startup_channel_type)
{
case MCS_STATIC_CHANNEL:
ape_list_ptr->value.invoke_startup_channel = CHANNEL_TYPE_STATIC;
break;
case MCS_DYNAMIC_MULTICAST_CHANNEL:
ape_list_ptr->value.invoke_startup_channel = DYNAMIC_MULTICAST;
break;
case MCS_DYNAMIC_PRIVATE_CHANNEL:
ape_list_ptr->value.invoke_startup_channel = DYNAMIC_PRIVATE;
break;
case MCS_DYNAMIC_USER_ID_CHANNEL:
ape_list_ptr->value.invoke_startup_channel = DYNAMIC_USER_ID;
break;
}
}
/*
* Fill in the invoke flag.
*/
ape_list_ptr->value.invoke_is_mandatory = (ASN1bool_t)specifier_info_ptr->must_be_invoked;
return rc;
}
/*
* GCCError CInvokeSpecifierListContainer::ConvertExpectedCapabilityDataToPDU(
* APP_CAP_ITEM *info_ptr,
* PSetOfExpectedCapabilities pdu_ptr)
*
* Private member function of CInvokeSpecifierListContainer.
*
* Function Description:
* This routine converts the capability ID from the internal form which
* is an APP_CAP_ITEM structure into the "PDU" structure form
* of a "SetOfExpectedCapabilities".
*
* Formal Parameters:
* info_ptr (i) Internal structure holding data to convert.
* pdu_ptr (o) PDU structure to hold converted data.
*
* Return Value:
* None.
*
* Side Effects:
* None.
*
* Caveats:
* None.
*/
GCCError CInvokeSpecifierListContainer::ConvertExpectedCapabilityDataToPDU (
APP_CAP_ITEM *pExpCapData,
PSetOfExpectedCapabilities pdu_ptr)
{
GCCError rc = GCC_NO_ERROR;
/*
* Retrieve the capability ID data from the internal
* CCapIDContainer object.
*/
rc = pExpCapData->pCapID->GetCapabilityIdentifierDataPDU(&pdu_ptr->value.capability_id);
/*
* Fill in the capability class.
*/
if (rc == GCC_NO_ERROR)
{
switch (pExpCapData->eCapType)
{
case GCC_LOGICAL_CAPABILITY:
pdu_ptr->value.capability_class.choice = LOGICAL_CHOSEN;
break;
case GCC_UNSIGNED_MINIMUM_CAPABILITY:
pdu_ptr->value.capability_class.choice = UNSIGNED_MINIMUM_CHOSEN;
pdu_ptr->value.capability_class.u.unsigned_minimum = pExpCapData->nUnsignedMinimum;
break;
case GCC_UNSIGNED_MAXIMUM_CAPABILITY:
pdu_ptr->value.capability_class.choice = UNSIGNED_MAXIMUM_CHOSEN;
pdu_ptr->value.capability_class.u.unsigned_maximum = pExpCapData->nUnsignedMaximum;
break;
}
}
return rc;
}