Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1710 lines
43 KiB

//+-------------------------------------------------------------------------
//
// Microsoft Windows
//
// Copyright (C) Microsoft Corporation, 1997 - 1998
//
// File: clique.cpp
//
//--------------------------------------------------------------------------
//
// clique.cpp
//
#include <basetsd.h>
#include "cliqset.h"
#include "clique.h"
#include "cliqwork.h"
#include "parmio.h"
#ifdef _DEBUG // In debug mode only...
#define CONSISTENCY // Do complete consistency checking on sepsets
// #define DUMP // Perform general dumping of objects
// #define DUMPCLIQUESET // Dump extensive tables from clique tree
// #define INFERINIT // Full initial tree balancing
#endif
////////////////////////////////////////////////////////
////////////////////////////////////////////////////////
// GEDGEMBN_CLIQ: Edges between cliques and member nodes
////////////////////////////////////////////////////////
////////////////////////////////////////////////////////
GEDGEMBN_CLIQ :: GEDGEMBN_CLIQ (
GOBJMBN_CLIQUE * pgnSource,
GNODEMBN * pgndSink,
int iFcqlRole )
: GEDGEMBN( pgnSource, pgndSink ),
_iFcqlRole( iFcqlRole ),
_iMark( pgndSink->IMark() ),
_bBuilt( false )
{
}
void GEDGEMBN_CLIQ :: Build ()
{
if ( ! BBuilt() )
{
GNODEMBND * pgndd;
DynCastThrow( PgndSink(), pgndd );
// If role is "Family", this edge is used for marginalization of belief
// and creating joint distribution in clique
if ( BFamily() )
{
ReorderFamily( pgndd, _vimdFamilyReorder );
// Build the reordered marginals table for the node
MargCpd().CreateOrderedCPDFromNode( pgndd, _vimdFamilyReorder );
// Build an iterator between the CPD and the clique joint
MiterLoadClique().Build( PclqParent()->Marginals(), MargCpd() );
// Build the belief marginalization structure
MiterNodeBelief().Build( PclqParent()->Marginals(), pgndd );
}
_bBuilt = true;
}
}
void GEDGEMBN_CLIQ :: LoadCliqueFromNode ()
{
assert( _bBuilt );
MiterLoadClique().MultiplyBy( MargCpd() );
}
GEDGEMBN_CLIQ :: ~ GEDGEMBN_CLIQ()
{
}
GOBJMBN_CLIQUE * GEDGEMBN_CLIQ :: PclqParent()
{
GOBJMBN * pobj = PobjSource();
GOBJMBN_CLIQUE * pclq;
DynCastThrow( pobj, pclq );
return pclq;
}
GNODEMBN * GEDGEMBN_CLIQ :: PgndSink()
{
GOBJMBN * pobj = PobjSink();
GNODEMBN * pgnd;
DynCastThrow( pobj, pgnd );
return pgnd;
}
// Using the topological renumber of the nodes, produce
// an array correlating the old family to the new order.
// In other words, vimd[0] will be the family index of
// the node which had the lowest topological order; vimd[1]
// will be the family index of the next lowest, etc.
//
// Note that node itself is always last in either ordering.
void GEDGEMBN_CLIQ :: ReorderFamily ( GNODEMBN * pgnd, VIMD & vimd )
{
VPGNODEMBN vpgndFamily;
// Get the family (parents & self)
pgnd->GetFamily( vpgndFamily );
int cFam = vpgndFamily.size();
vimd.resize( cFam );
for ( int i = 0; i < cFam; i++ )
{
int iLow = INT_MAX;
int iFam = INT_MAX;
// Find the lowest unrecorded family member
for ( int j = 0; j < cFam; j++ )
{
GNODEMBN * pgndFam = vpgndFamily[j];
if ( pgndFam == NULL )
continue;
if ( pgndFam->IMark() < iLow )
{
iLow = pgndFam->IMark();
iFam = j;
}
}
assert( iLow != INT_MAX );
vimd[i] = iFam;
vpgndFamily[iFam] = NULL;
}
}
////////////////////////////////////////////////////////
////////////////////////////////////////////////////////
// GEDGEMBN_SEPSET: A separator marginal
////////////////////////////////////////////////////////
////////////////////////////////////////////////////////
GEDGEMBN_SEPSET :: GEDGEMBN_SEPSET (
GOBJMBN_CLIQUE * pgnSource,
GOBJMBN_CLIQUE * pgnSink )
: GEDGEMBN( pgnSource, pgnSink ),
_pmargOld( new MARGINALS ),
_pmargNew( new MARGINALS )
{
}
GEDGEMBN_SEPSET :: ~ GEDGEMBN_SEPSET()
{
delete _pmargOld;
delete _pmargNew;
}
void GEDGEMBN_SEPSET :: ExchangeMarginals ()
{
pexchange( _pmargOld, _pmargNew );
}
GOBJMBN_CLIQUE * GEDGEMBN_SEPSET :: PclqParent()
{
GOBJMBN * pobj = PobjSource();
GOBJMBN_CLIQUE * pclq;
DynCastThrow( pobj, pclq );
return pclq;
}
GOBJMBN_CLIQUE * GEDGEMBN_SEPSET :: PclqChild()
{
GOBJMBN * pobj = PobjSink();
GOBJMBN_CLIQUE * pclq;
DynCastThrow( pobj, pclq );
return pclq;
}
void GEDGEMBN_SEPSET :: GetMembers ( VPGNODEMBN & vpgnode )
{
GOBJMBN_CLIQUE * pclqSource = PclqParent();
GOBJMBN_CLIQUE * pclqSink = PclqChild();
VPGNODEMBN vpgndSink;
VPGNODEMBN vpgndSource;
pclqSource->GetMembers( vpgndSource );
pclqSink->GetMembers( vpgndSink );
assert( vpgndSink.size() > 0 );
assert( vpgndSource.size() > 0 );
// Fill the given array with the intersection of the two clique
// member node arrays. Since we cannot sort them into cliqing order
// anymore (IMark() is unreliable after cliquing), we just search
// one against the other in order to guarantee that the intersection
// result set has the same node ordering as the original sets.
int ibLast = -1;
for ( int ia = 0; ia < vpgndSink.size(); ia++ )
{
GNODEMBN * pa = vpgndSink[ia];
for ( int ib = ibLast+1; ib < vpgndSource.size(); ib++ )
{
GNODEMBN * pb = vpgndSource[ib];
if ( pa == pb )
{
vpgnode.push_back(pa);
ibLast = ib;
break;
}
}
}
#ifdef DUMP
if ( vpgnode.size() == 0 )
{
cout << "\nSEPSET INTERSECTION NULL: source clique:";
pclqSource->Dump();
cout << "\n\t\tsink clique:";
pclqSink->Dump();
cout << "\n";
cout.flush();
}
#endif
assert( vpgnode.size() > 0 );
}
void GEDGEMBN_SEPSET :: CreateMarginals ()
{
VPGNODEMBN vpgnd;
GetMembers( vpgnd );
MarginalsOld().Init( vpgnd );
MarginalsNew().Init( vpgnd );
}
void GEDGEMBN_SEPSET :: InitMarginals ()
{
assert( VerifyMarginals() );
MarginalsOld().Clear( 1.0 );
MarginalsNew().Clear( 1.0 );
if ( ! _miterParent.BBuilt() )
_miterParent.Build( PclqParent()->Marginals(), MarginalsOld() );
if ( ! _miterChild.BBuilt() )
_miterChild.Build( PclqChild()->Marginals(), MarginalsOld() );
}
bool GEDGEMBN_SEPSET :: VerifyMarginals ()
{
VPGNODEMBN vpgnd;
GetMembers( vpgnd );
VIMD vimd = MARGINALS::VimdFromVpgnd( vpgnd );
return vimd == Marginals().Vimd();
}
void GEDGEMBN_SEPSET :: UpdateRatios ()
{
MarginalsOld().UpdateRatios( MarginalsNew() );
}
void GEDGEMBN_SEPSET :: AbsorbClique ( bool bFromParentToChild )
{
MARGSUBITER * pmiterFrom;
MARGSUBITER * pmiterTo;
if ( bFromParentToChild )
{
pmiterFrom = & _miterParent;
pmiterTo = & _miterChild;
}
else
{
pmiterFrom = & _miterChild;
pmiterTo = & _miterParent;
}
// Marginalize "from" probs into the "new" marginals table
pmiterFrom->MarginalizeInto( MarginalsNew() );
// Absorb the changes into the "old" marginals table
UpdateRatios();
// Multiply the table into the "to"'s marginals
pmiterTo->MultiplyBy( MarginalsOld() );
// Finally, exchange the marginals tables
ExchangeMarginals();
}
void GEDGEMBN_SEPSET :: BalanceCliquesCollect ()
{
// Use the "new" table as a work area.
// Marginalize the child into the work area
_miterChild.MarginalizeInto( MarginalsNew() );
// Update the parent with those values
_miterParent.MultiplyBy( MarginalsNew() );
// Invert each value, so we're really dividing
MarginalsNew().Invert();
// Update the child marginals by dividing by the marginals
_miterChild.MultiplyBy( MarginalsNew() );
// Clear the "new" marginals back to 1.0.
MarginalsNew().Clear( 1.0 );
}
void GEDGEMBN_SEPSET :: BalanceCliquesDistribute ()
{
// Set the old marginals to the parent clique's values
_miterParent.MarginalizeInto( MarginalsOld() );
// Update the child marginals by those values
_miterChild.MultiplyBy( MarginalsOld() );
// "Old" marginals are left as they are
}
void GEDGEMBN_SEPSET :: UpdateParentClique ()
{
AbsorbClique( false );
}
void GEDGEMBN_SEPSET :: UpdateChildClique ()
{
AbsorbClique( true );
}
void GEDGEMBN_SEPSET :: Dump ()
{
GOBJMBN_CLIQUE * pclqParent = PclqParent();
GOBJMBN_CLIQUE * pclqChild = PclqChild();
cout << "\n=== Sepset between parent clique "
<< pclqParent->IClique()
<< " and child clique "
<< pclqChild->IClique()
<< ", \n\n\tOld marginals:";
_pmargOld->Dump();
cout << "\n\n\tNew marginals:";
_pmargNew->Dump();
cout << "\n\n";
}
bool GEDGEMBN_SEPSET :: BConsistent ()
{
// Get the sepset member list for creation of temporary marginals
VPGNODEMBN vpgnd;
GetMembers( vpgnd );
// Create the marginals for the parent clique
GOBJMBN_CLIQUE * pclqParent = PclqParent();
MARGINALS margParent;
margParent.Init( vpgnd );
pclqParent->Marginals().Marginalize( margParent );
// Create the marginals for the child clique
GOBJMBN_CLIQUE * pclqChild = PclqChild();
MARGINALS margChild;
margChild.Init( vpgnd );
pclqChild->Marginals().Marginalize( margChild );
// Are they equivalent?
bool bOK = margParent.BEquivalent( margChild, 0.00000001 );
#ifdef DUMP
if ( ! bOK )
{
cout << "\nGEDGEMBN_SEPSET::BConsistent: cliques are NOT consistent, parent clique "
<< pclqParent->IClique()
<< ", child "
<< pclqChild->IClique();
MARGINALS::Iterator itParent(margParent);
MARGINALS::Iterator itChild(margChild);
cout << "\n\tparent marginals: "
<< itParent;
cout << "\n\tchild marginals: "
<< itChild
<< "\n";
cout.flush();
}
#endif
#ifdef NEVER
MARGINALS margParent2;
margParent2.Init( vpgnd );
_miterParent.Test( margParent2 );
_miterParent.MarginalizeInto( margParent2 );
bOK = margParent.BEquivalent( margParent2, 0.00000001 );
#endif
ASSERT_THROW( bOK, EC_INTERNAL_ERROR, "inconsistent cliques" );
return bOK;
}
////////////////////////////////////////////////////////
////////////////////////////////////////////////////////
// GOBJMBN_CLIQUE: A Clique
////////////////////////////////////////////////////////
////////////////////////////////////////////////////////
GOBJMBN_CLIQUE :: GOBJMBN_CLIQUE (
int iClique,
int iInferEngID )
: _iClique( iClique ),
_iInferEngID( iInferEngID ),
_bRoot(false),
_bCollect(false)
{
}
GOBJMBN_CLIQUE :: ~ GOBJMBN_CLIQUE()
{
}
// Initialize a clique by finding all edges leading from "family"
// arcs and initializing the marginals from there.
void GOBJMBN_CLIQUE :: LoadMarginals ()
{
GNODEMBND * pgnddSink;
GEDGEMBN_CLIQ * pgedgeMbr;
// Prepare to enumerate child member arcs
GNODENUM<GOBJMBN> benumMembers(false);
benumMembers.SetETypeFollow( GEDGEMBN::ETCLIQUE );
// Enumerate child member arcs, reloading the marginals for nodes for which this
// clique is their "self" clique.
for ( benumMembers.Set( this );
benumMembers.PnodeCurrent();
benumMembers++ )
{
DynCastThrow( benumMembers.PgedgeCurrent(), pgedgeMbr );
pgedgeMbr->Build();
if ( pgedgeMbr->BFamily() )
pgedgeMbr->LoadCliqueFromNode();
}
// Enumerate child member arcs, entering evidence (clamped state) for nodes for which this
// clique is their "self"
for ( benumMembers.Set( this );
benumMembers.PnodeCurrent();
benumMembers++ )
{
DynCastThrow( benumMembers.PgedgeCurrent(), pgedgeMbr );
if ( ! pgedgeMbr->BSelf() )
continue;
DynCastThrow( benumMembers.PnodeCurrent(), pgnddSink );
// Note: ClampNode is benign when node is unclamped.
Marginals().ClampNode( pgnddSink, pgedgeMbr->Clamp() );
}
SetCollect();
}
void GOBJMBN_CLIQUE :: GetMembers ( VPGNODEMBN & vpgnode )
{
GNODENUM<GOBJMBN> benumMembers(false);
benumMembers.SetETypeFollow( GEDGEMBN::ETCLIQUE );
for ( benumMembers.Set( this );
benumMembers.PnodeCurrent();
benumMembers++ )
{
GOBJMBN * pgobj = *benumMembers;
GNODEMBN * pgnd;
DynCastThrow( pgobj, pgnd );
vpgnode.push_back( pgnd );
}
assert( vpgnode.size() > 0 );
}
void GOBJMBN_CLIQUE :: CreateMarginals ()
{
VPGNODEMBN vpgnd;
GetMembers( vpgnd );
Marginals().Init( vpgnd );
}
void GOBJMBN_CLIQUE :: InitMarginals ()
{
assert( VerifyMarginals() );
Marginals().Clear( 1.0 );
}
bool GOBJMBN_CLIQUE :: VerifyMarginals ()
{
VPGNODEMBN vpgnd;
GetMembers( vpgnd );
VIMD vimd = MARGINALS::VimdFromVpgnd( vpgnd );
return vimd == Marginals().Vimd();
}
void GOBJMBN_CLIQUE :: Dump ()
{
cout << "\n=== Clique "
<< _iClique
<< ", tree ID: "
<< _iInferEngID
<< ", root = "
<< _bRoot;
_marg.Dump();
cout << "\n\n";
}
void GOBJMBN_CLIQUE :: GetBelief ( GNODEMBN * pgnd, MDVCPD & mdvBel )
{
GNODEMBND * pgndd;
DynCastThrow( pgnd, pgndd );
Marginals().Marginalize( pgndd, mdvBel );
}
////////////////////////////////////////////////////////
////////////////////////////////////////////////////////
// GOBJMBN_CLIQSET: The graphical model junction tree
////////////////////////////////////////////////////////
////////////////////////////////////////////////////////
GOBJMBN_CLIQSET :: GOBJMBN_CLIQSET (
MBNET & model,
REAL rMaxEstimatedSize,
int iInferEngID )
: GOBJMBN_INFER_ENGINE( model, rMaxEstimatedSize, iInferEngID )
{
Clear() ;
}
void GOBJMBN_CLIQSET :: Clear ()
{
_eState = CTOR;
_cCliques = 0;
_cCliqueMemberArcs = 0;
_cSepsetArcs = 0;
_cUndirArcs = 0;
_probNorm = 1.0;
_bReset = true;
_bCollect = true;
_cqsetStat.Clear();
};
GOBJMBN_CLIQSET :: ~ GOBJMBN_CLIQSET ()
{
#ifdef DUMP
Dump();
#endif
Destroy();
}
bool GOBJMBN_CLIQSET :: BImpossible ()
{
return ProbNorm() == 0.0;
}
// Add an undirected arc iff there isn't one already.
bool GOBJMBN_CLIQSET :: BAddUndirArc ( GNODEMBN * pgndbnSource, GNODEMBN * pgndbnSink )
{
if ( pgndbnSource->BIsNeighbor( pgndbnSink ) )
return false;
#ifdef DUMP
cout << "\n\t\tADD undirected arc from "
<< pgndbnSource->ZsrefName().Szc()
<< " to "
<< pgndbnSink->ZsrefName().Szc();
#endif
Model().AddElem( new GEDGEMBN_U( pgndbnSource, pgndbnSink ) );
++_cUndirArcs;
return true;
}
void GOBJMBN_CLIQSET :: CreateUndirectedGraph ( bool bMarryParents )
{
if ( EState() >= MORAL )
return;
int cDirArcs = 0;
int cUndirArcs = 0;
int cNodes = 0;
GELEMLNK * pgelm;
#ifdef DUMP
cout << "\n\n***** MORALIZE GRAPH";
#endif
if ( EState() < MORAL )
{
// Create an undirected arc for every directed arc.
MODEL::MODELENUM mdlenum( Model() );
while ( pgelm = mdlenum.PlnkelNext() )
{
// Check that it's an edge
if ( ! pgelm->BIsEType( GELEM::EGELM_EDGE ) )
continue;
// Check that it's a directed probabilistic arc
if ( pgelm->EType() != GEDGEMBN::ETPROB )
continue;
GEDGEMBN * pgedge;
DynCastThrow( pgelm, pgedge );
GNODEMBN * pgndbnSource;
GNODEMBN * pgndbnSink;
DynCastThrow( pgedge->PnodeSource(), pgndbnSource );
DynCastThrow( pgedge->PnodeSink(), pgndbnSink );
// If the sink (child) node has been expanded,
// consider only Expansion parents
if ( pgndbnSink->BFlag( EIBF_Expanded )
&& ! pgndbnSource->BFlag( EIBF_Expansion ) )
continue;
cDirArcs++;
cUndirArcs += BAddUndirArc( pgndbnSource, pgndbnSink );
}
assert( cDirArcs == cUndirArcs ) ;
// Undirected graph has been created
_eState = UNDIR;
}
if ( !bMarryParents )
return;
#ifdef DUMP
cout << "\n\n***** MARRY PARENTS";
#endif
MODEL::MODELENUM mdlenum( Model() );
GNODENUM<GNODEMBN> benumparent(true);
benumparent.SetETypeFollow( GEDGEMBN::ETPROB );
GNODEMBN * pgndmbn;
VPGNODEMBN vpgnd;
while ( pgelm = mdlenum.PlnkelNext() )
{
if ( pgelm->EType() != EBNO_NODE )
continue;
DynCastThrow( pgelm, pgndmbn );
// Collect the parents
vpgnd.resize(0);
pgndmbn->GetParents( vpgnd );
// Marry them
int cParent = vpgnd.size();
for ( int iParent = 0; iParent < cParent - 1; iParent++ )
{
for ( int ip2 = iParent+1; ip2 < cParent ; ip2++ )
{
BAddUndirArc( vpgnd[iParent], vpgnd[ip2] );
}
}
}
// Graph is now moral
_eState = MORAL;
}
//
// Return the number of neighbors of this node which are unlinked
//
int GOBJMBN_CLIQSET :: CNeighborUnlinked ( GNODEMBN * pgndmbn, bool bLinkNeighbors )
{
int cNeighborUnlinked = 0;
// Get the array of neighbors
VPGNODEMBN vpgnode;
pgndmbn->GetNeighbors( vpgnode );
#ifdef DUMP
cout << "\n\t\tCNeighborUnlinked, called for node "
<< pgndmbn->ZsrefName().Szc();
#endif
for ( int inbor = 0; inbor < vpgnode.size(); inbor++ )
{
GNODEMBN * pgndNbor = vpgnode[inbor];
#ifdef DUMP
cout << "\n\t\t\t" << pgndNbor->ZsrefName().Szc();
int cUnlinked = 0;
#endif
if ( pgndNbor->IMark() )
continue; // Node has been eliminated already
// Check it against all other neighbors.
for ( int inbor2 = inbor + 1; inbor2 < vpgnode.size(); inbor2++ )
{
GNODEMBN * pgndNbor2 = vpgnode[inbor2];
// See if node has been eliminated already or is already a neighbor
if ( pgndNbor2->IMark() )
continue;
if ( pgndNbor->BIsNeighbor( pgndNbor2 ) )
{
assert( pgndNbor2->BIsNeighbor( pgndNbor ) );
continue;
}
#ifdef DUMP
cUnlinked++;
#endif
++cNeighborUnlinked;
if ( bLinkNeighbors )
{
BAddUndirArc( pgndNbor, pgndNbor2 );
#ifdef DUMP
cout << " ("
<< pgndNbor->ZsrefName().Szc()
<< " <-> "
<< pgndNbor2->ZsrefName().Szc()
<< ") ";
#endif
}
}
#ifdef DUMP
if ( cUnlinked )
cout << " <-- unlinked to "
<< cUnlinked
<< " neighbors";
#endif
}
#ifdef DUMP
cout << "\n\t\t---- total unlinked = " << cNeighborUnlinked;
#endif
return cNeighborUnlinked;
}
void GOBJMBN_CLIQSET :: Eliminate ( GNODEMBN * pgndmbn, CLIQSETWORK & clqsetWork )
{
#ifdef DUMP
cout << "\n\n***** ELIMINATE "
<< pgndmbn->ZsrefName().Szc();
#endif
// Add another array to the clique set and fill it with the clique menbers
clqsetWork._vvpgnd.push_back( VPGNODEMBN() );
VPGNODEMBN & vpgndClique = clqsetWork._vvpgnd[ clqsetWork._vvpgnd.size() - 1 ];
// Complete the elimination of this node and its neighbors.
CNeighborUnlinked( pgndmbn, true );
pgndmbn->IMark() = ++clqsetWork._iElimIndex;
// Start the clique with this entry.
vpgndClique.push_back( pgndmbn );
// Iterate over the neighbors, adding the unmarked ones
GNODENUM_UNDIR gnenumUndir;
for ( gnenumUndir = pgndmbn;
gnenumUndir.PnodeCurrent();
gnenumUndir++ )
{
GNODEMBN * pgndmbNeighbor = *gnenumUndir;
if ( pgndmbNeighbor->IMark() == 0 )
vpgndClique.push_back( pgndmbNeighbor );
}
#ifdef DUMP
cout << "\n\t\tNEW CLIQUE: ";
clqsetWork.DumpClique( clqsetWork._vvpgnd.size() - 1 );
#endif
assert( pgndmbn->IMark() > 0 );
}
void GOBJMBN_CLIQSET :: GenerateCliques ( CLIQSETWORK & clqsetWork )
{
// Reset marks in all nodes
Model().ClearNodeMarks();
clqsetWork._vvpgnd.clear();
#ifdef DUMP
cout << "\n\n***** GENERATE CLIQUES";
#endif
for(;;)
{
// Find the node that requires the fewest edges to turn into a clique.
GNODEMBN * pgndmbnMin = NULL;
int cNeighborMin = INT_MAX;
MODEL::MODELENUM mdlenum( Model() );
GELEMLNK * pgelm;
while ( pgelm = mdlenum.PlnkelNext() )
{
if ( pgelm->EType() != EBNO_NODE )
continue;
GNODEMBN * pgndmbn;
DynCastThrow( pgelm, pgndmbn );
if ( pgndmbn->IMark() )
continue; // Node has been eliminated already
int cNeighborUnlinked = CNeighborUnlinked( pgndmbn );
if ( cNeighborMin > cNeighborUnlinked )
{
pgndmbnMin = pgndmbn;
if ( (cNeighborMin = cNeighborUnlinked) == 0 )
break; // zero is as few neighbors as possible
}
}
if ( pgndmbnMin == NULL )
break;
// Mark the node for elimination and assign an elimination order to it. This
// number is crucial for the construction of the strong junction tree.
#ifdef DUMP
cout << "\nGenerateCliques: Eliminate "
<< pgndmbnMin->ZsrefName().Szc()
<< ", which has "
<< cNeighborMin
<< " unlinked neighbors";
#endif
Eliminate( pgndmbnMin, clqsetWork );
}
#ifdef DUMP
cout << "\n\n";
#endif
}
//
// Create the junction tree.
//
void GOBJMBN_CLIQSET :: Create ()
{
Model().CreateTopology();
ASSERT_THROW( EState() == CTOR, EC_INTERNAL_ERROR, "GOBJMBN_CLIQSET:Create already called" );
// If it hasn't been done already, create the undirected graph and moralize it.
CreateUndirectedGraph(true);
CLIQSETWORK clqsetWork(self);
clqsetWork._iElimIndex = 1;
// Triangulate the undirected graph, eliminating nodes and accumulating cliques
// along the way.
GenerateCliques( clqsetWork );
if ( clqsetWork._vvpgnd.size() == 0 )
return;
_eState = CLIQUED;
#ifdef DUMP
clqsetWork.DumpCliques();
#endif
// Provide a total ordering over the nodes based upon topological level
// MSRDEVBUG: What happened to the elimination index? Koos doesn't use it; will we?
// Renumbering here overwrites the elimination order.
clqsetWork.RenumberNodesForCliquing();
// Build the cliques
clqsetWork.BuildCliques();
// Set clique membership and topological information
clqsetWork.SetTopologicalInfo();
// Check that the running intersection property holds
ASSERT_THROW( clqsetWork.BCheckRIP(),
EC_INTERNAL_ERROR,
"GOBJMBN_CLIQSET::Create: junction tree failed RIP test" );
// See if the resulting memory allocation size would violate the size estimate
if ( _rEstMaxSize > 0.0 )
{
REAL rSizeEstimate = clqsetWork.REstimatedSize();
if ( rSizeEstimate > _rEstMaxSize )
throw GMException( EC_OVER_SIZE_ESTIMATE,
"Clique tree size violates estimated size limit" );
}
// Create the topology-- all the trees in the forest
clqsetWork.CreateTopology();
// Nuke the moral graph
DestroyDirectedGraph();
// Bind the known distributions to their target nodes;
_model.BindDistributions();
// Reset/initialize the "lazy" switches
SetReset();
// Create the marginals in the cliques and sepsets
CreateMarginals();
_eState = BUILT;
// Load and initialize the tree
Reload();
// Release the distributions from their target nodes
_model.ClearDistributions();
}
DEFINEVP(GELEMLNK);
//
// Destroy the junction tree. Allow the GOBJMBN_CLIQSET object to be reused
// for another cliquing operation later.
//
void GOBJMBN_CLIQSET :: Destroy ()
{
if ( ! Model().Pgraph() )
return;
int cCliques = 0;
int cCliqueMemberArcs = 0;
int cSepsetArcs = 0;
int cUndirArcs = 0;
int cRootCliqueArcs = 0;
VPGELEMLNK vpgelm;
GELEMLNK * pgelm;
MODEL::MODELENUM mdlenum( Model() );
while ( pgelm = mdlenum.PlnkelNext() )
{
bool bDelete = false;
int eType = pgelm->EType();
if ( pgelm->BIsEType( GELEM::EGELM_EDGE ) )
{
GEDGEMBN * pgedge;
DynCastThrow( pgelm , pgedge );
int eType = pgedge->EType();
switch ( eType )
{
case GEDGEMBN::ETPROB:
break;
case GEDGEMBN::ETCLIQUE:
// Clique membership arcs will go away automatically because
// cliques will be deleted.
++cCliqueMemberArcs;
break;
case GEDGEMBN::ETJTREE:
// Junction tree arcs will go away automatically because
// cliques will be deleted.
++cSepsetArcs;
break;
case GEDGEMBN::ETUNDIR:
// Undirected arcs must be deleted explicitly
bDelete = true;
++cUndirArcs;
break;
case GEDGEMBN::ETCLIQSET:
++cRootCliqueArcs;
break;
default:
THROW_ASSERT( EC_INTERNAL_ERROR, " GOBJMBN_CLIQSET::Destroy: Unrecognized edge object in graph" );
break;
}
}
else
if ( pgelm->BIsEType( GELEM::EGELM_NODE ) )
{
GOBJMBN * pgobj;
DynCastThrow( pgelm , pgobj );
switch ( eType )
{
case GOBJMBN::EBNO_CLIQUE:
{
++cCliques;
bDelete = true;
break;
}
case GOBJMBN::EBNO_CLIQUE_SET:
case GOBJMBN::EBNO_NODE:
case GOBJMBN::EBNO_PROP_TYPE:
case GOBJMBN::EBNO_USER:
break;
default:
THROW_ASSERT( EC_INTERNAL_ERROR, " GOBJMBN_CLIQSET::Destroy: Unrecognized node object in graph" );
break;
}
}
else
{
THROW_ASSERT( EC_INTERNAL_ERROR, " GOBJMBN_CLIQSET::Destroy: Unrecognized object in graph" );
}
if ( bDelete )
vpgelm.push_back( pgelm );
}
assert(
cCliques == _cCliques
&& cCliqueMemberArcs == _cCliqueMemberArcs
&& cSepsetArcs == _cSepsetArcs
&& cUndirArcs == _cUndirArcs
);
for ( int i = 0; i < vpgelm.size(); )
{
delete vpgelm[i++];
}
Clear();
}
void GOBJMBN_CLIQSET :: DestroyDirectedGraph ()
{
int cUndirArcs = 0;
VPGELEMLNK vpgelm;
GELEMLNK * pgelm;
MODEL::MODELENUM mdlenum( Model() );
while ( pgelm = mdlenum.PlnkelNext() )
{
if ( pgelm->BIsEType( GELEM::EGELM_EDGE ) )
{
GEDGEMBN * pgedge;
DynCastThrow( pgelm , pgedge );
int eType = pgedge->EType();
switch ( eType )
{
case GEDGEMBN::ETUNDIR:
vpgelm.push_back( pgelm );
++cUndirArcs;
break;
default:
break;
}
}
}
assert( cUndirArcs == _cUndirArcs );
_cUndirArcs = 0;
for ( int i = 0; i < vpgelm.size(); )
{
delete vpgelm[i++];
}
}
// Create and initialize all marginals tables
void GOBJMBN_CLIQSET :: CreateMarginals ()
{
assert( _eState == CLIQUED ) ;
//MSRDEVBUG: The class name qualifier should not be necessary here and below.
WalkTree( true, & GOBJMBN_CLIQSET::BCreateClique, & GOBJMBN_CLIQSET::BCreateSepset );
}
// Reset the entire tree by reloading all marginals tables
void GOBJMBN_CLIQSET :: LoadMarginals ()
{
assert( _eState == BUILT ) ;
WalkTree( true, & GOBJMBN_CLIQSET::BLoadClique, & GOBJMBN_CLIQSET::BLoadSepset );
_cqsetStat._cReload++;
}
// Apply the given member function(s) to every clique tree in the forest.
int GOBJMBN_CLIQSET :: WalkTree (
bool bDepthFirst, // Depth first or breadth first?
PFNC_JTREE pfJtree, // Function to apply to each clique
PFNC_SEPSET pfSepset ) // Function to apply to each sepset
{
int cClique = 0; // Don't count the clique set object
int cWalk = 0; // Return count of cliques visited
GNODENUM<GOBJMBN> benumChildren(false);
benumChildren.SetETypeFollow( GEDGEMBN::ETCLIQSET );
for ( benumChildren.Set( this );
benumChildren.PnodeCurrent();
benumChildren++ )
{
GOBJMBN * pgobj = *benumChildren;
assert( pgobj->EType() == GNODEMBN::EBNO_CLIQUE );
GOBJMBN_CLIQUE * pCliqueTreeRoot;
DynCastThrow( pgobj, pCliqueTreeRoot );
cWalk = bDepthFirst
? WalkDepthFirst( pCliqueTreeRoot, pfJtree, pfSepset )
: WalkBreadthFirst( pCliqueTreeRoot, pfJtree, pfSepset );
if ( cWalk < 0 )
return -1;
cClique += cWalk;
}
assert( cClique < 0 || cClique == _cCliques );
return cClique;
}
//
// Recursive depth-first walk down the tree.
//
// Apply the given member function(s), depth first from this clique.
// If application function call returns false, walk is aborted and
// -1 is returned; otherwise, count of cliques traversed is returned.
int GOBJMBN_CLIQSET :: WalkDepthFirst (
GOBJMBN_CLIQUE * pClique, // Starting point
PFNC_JTREE pfJtree, // Function to apply to each clique
PFNC_SEPSET pfSepset ) // Function to apply to each sepset
{
assert( pClique ) ;
assert( pClique->IInferEngID() == IInferEngID() ) ;
if ( pfJtree )
{
// Call the application function on the way down
if ( ! (self.*pfJtree)( *pClique, true ) )
return -1;
}
int cWalks = 1; // Count the clique we just processed above
int cWalk = 0; // Return count of cliques visited
GNODENUM<GOBJMBN_CLIQUE> benumChildren(false);
benumChildren.SetETypeFollow( GEDGEMBN::ETJTREE );
for ( benumChildren.Set( pClique );
benumChildren.PnodeCurrent();
benumChildren++ )
{
GOBJMBN_CLIQUE * pCliqueChild = NULL;
GEDGEMBN_SEPSET * pgedge = NULL;
if ( pfSepset )
{
// Call the application function on the way down
DynCastThrow( benumChildren.PgedgeCurrent(), pgedge );
if ( ! (self.*pfSepset)( *pgedge, true ) )
return -1;
}
DynCastThrow( benumChildren.PnodeCurrent(), pCliqueChild );
cWalk = WalkDepthFirst( pCliqueChild, pfJtree, pfSepset );
if ( cWalk < 0 )
return -1;
cWalks += cWalk;
if ( pfSepset )
{
assert( pgedge );
// Call the application function on the way up
if ( ! (self.*pfSepset)( *pgedge, false ) )
return -1;
}
}
if ( pfJtree )
{
// Call the application function on the way up
if ( ! (self.*pfJtree)( *pClique, false ) )
return -1;
}
return cWalks;
}
//
// Non-recursive breadth-first walk down the tree.
// No "up" actions are called using the function pointers.
//
int GOBJMBN_CLIQSET :: WalkBreadthFirst (
GOBJMBN_CLIQUE * pClique, // Starting point
PFNC_JTREE pfJtree, // Function to apply to each clique
PFNC_SEPSET pfSepset ) // Function to apply to each sepset
{
assert( pClique ) ;
assert( pClique->IInferEngID() == IInferEngID() ) ;
VPGEDGEMBN_SEPSET vpgedgeThis;
VPGEDGEMBN_SEPSET vpgedgeNext;
VPGEDGEMBN_SEPSET * pvpgedgeThis = & vpgedgeThis;
VPGEDGEMBN_SEPSET * pvpgedgeNext = & vpgedgeNext;
VPGEDGEMBN_SEPSET * pvpgedgeTemp = NULL;
GOBJMBN_CLIQUE * pgobjClique = NULL;
GEDGEMBN_SEPSET * pgedgeSepset = NULL;
// Count the cliques we process, including this one
int cWalk = 1;
// Starting clique is a special case; process it now
if ( pfJtree )
{
// Call the application function on the way down
if ( ! (self.*pfJtree)( *pClique, true ) )
return -1;
}
// Prepare an enumerator for child cliques
GNODENUM<GOBJMBN_CLIQUE> benumChildren(false);
benumChildren.SetETypeFollow( GEDGEMBN::ETJTREE );
// Since we don't have the edge that led us here, put a NULL
// in its place to start iteration
pvpgedgeNext->push_back(NULL);
// While there were entries at the last topological level...
while ( pvpgedgeNext->size() )
{
// Swap the array pointers and clear next pass array
pexchange( pvpgedgeThis, pvpgedgeNext );
pvpgedgeNext->clear();
for ( int iEdge = 0; iEdge < pvpgedgeThis->size(); iEdge++ )
{
pgedgeSepset = (*pvpgedgeThis)[iEdge];
pgobjClique = pgedgeSepset == NULL
? pClique // This is the start of iteration
: pgedgeSepset->PclqChild();
assert( pgobjClique );
// Accumulate all child cliques of this clique,
// processing as necessary
for ( benumChildren.Set( pgobjClique );
benumChildren.PnodeCurrent();
benumChildren++ )
{
GEDGEMBN_SEPSET * pgedge;
DynCastThrow( benumChildren.PgedgeCurrent(), pgedge );
if ( pfSepset )
{
// Call the sepset application function on the way down
if ( ! (self.*pfSepset)( *pgedge, true ) )
return -1;
}
if ( pfJtree )
{
// Call the clique application function on the way down
GOBJMBN_CLIQUE * pCliqueChild = pgedge->PclqChild();
if ( ! (self.*pfJtree)( *pCliqueChild, true ) )
return -1;
}
cWalk++;
pvpgedgeNext->push_back( pgedge );
}
}
}
return cWalk;
}
//
// Terminology: "Create", "Init" and "Load":
//
// 'Create' means to size the dynamic arrays;
// 'Init' means to initialize them to 1.0;
// 'Load' means to multiply in the probabilities of the clique members.
//
bool GOBJMBN_CLIQSET :: BCreateClique ( GOBJMBN_CLIQUE & clique, bool bDownwards )
{
if ( ! bDownwards )
return true;
clique.CreateMarginals();
return true;
}
bool GOBJMBN_CLIQSET :: BLoadClique ( GOBJMBN_CLIQUE & clique, bool bDownwards )
{
if ( ! bDownwards )
return true;
clique.InitMarginals();
clique.LoadMarginals();
return true;
}
bool GOBJMBN_CLIQSET :: BCreateSepset ( GEDGEMBN_SEPSET & sepset, bool bDownwards )
{
if ( ! bDownwards )
return true;
sepset.CreateMarginals();
return true;
}
bool GOBJMBN_CLIQSET :: BLoadSepset ( GEDGEMBN_SEPSET & sepset, bool bDownwards )
{
if ( ! bDownwards )
return true;
sepset.InitMarginals();
return true;
}
// Return the "family" or "self" clique for a node
GOBJMBN_CLIQUE * GOBJMBN_CLIQSET :: PCliqueFromNode (
GNODEMBN * pgnd, // Node to find clique for
bool bFamily, // "family" clique if true, "self" clique if false
GEDGEMBN_CLIQ * * ppgedgeClique ) // return pointer to edge if not NULL
{
GEDGEMBN_CLIQ::FCQLROLE fcqlRole = bFamily
? GEDGEMBN_CLIQ::FAMILY
: GEDGEMBN_CLIQ::SELF;
// Prepare to iterate over the source arcs
GNODENUM<GOBJMBN> benumMembers(true);
benumMembers.SetETypeFollow( GEDGEMBN::ETCLIQUE );
for ( benumMembers.Set( pgnd );
benumMembers.PnodeCurrent();
benumMembers++ )
{
GEDGEMBN_CLIQ * pgedgeClique;
DynCastThrow( benumMembers.PgedgeCurrent(), pgedgeClique );
GOBJMBN_CLIQUE * pgobjClique = pgedgeClique->PclqParent();
if ( pgobjClique->IInferEngID() != IInferEngID() )
continue; // not an edge for this junction tree
if ( pgedgeClique->IFcqlRole() & fcqlRole )
{
if ( ppgedgeClique )
*ppgedgeClique = pgedgeClique;
return pgedgeClique->PclqParent();
}
}
assert( false );
return NULL;
}
//
// Enter evidence for a node.
//
void GOBJMBN_CLIQSET :: EnterEvidence ( GNODEMBN * pgnd, const CLAMP & clamp )
{
// Get the pointer to the node's "self" clique and the edge leading to it
GEDGEMBN_CLIQ * pgedgeClique = NULL;
GOBJMBN_CLIQUE * pCliqueSelf = PCliqueFromNode( pgnd, false, & pgedgeClique );
ASSERT_THROW( pCliqueSelf,
EC_INTERNAL_ERROR,
"GOBJMBN_CLIQSET::EnterEvidence: can\'t find self clique" );
assert( pgedgeClique );
// Update with evidence if it has changed
if ( pgedgeClique->Clamp() != clamp )
{
// Evidence is NOT the same as the old evidence
pgedgeClique->Clamp() = clamp;
// Indicate that we must reload the tree
SetReset();
pCliqueSelf->SetCollect();
_cqsetStat._cEnterEv++;
}
}
//
// Return the evidence "clamp" for a node. It is stored in the edge
// between the node and its "self" clique: the highest clique in the tree
// of which the node is a member.
//
void GOBJMBN_CLIQSET :: GetEvidence ( GNODEMBN * pgnd, CLAMP & clamp )
{
// Get the pointer to the node's "self" clique and the edge leading to it
GEDGEMBN_CLIQ * pgedgeClique = NULL;
GOBJMBN_CLIQUE * pCliqueSelf = PCliqueFromNode( pgnd, false, & pgedgeClique );
ASSERT_THROW( pCliqueSelf,
EC_INTERNAL_ERROR,
"GOBJMBN_CLIQSET::GetEvidence: can\'t find self clique" );
assert( pgedgeClique );
clamp = pgedgeClique->Clamp();
}
void GOBJMBN_CLIQSET :: GetBelief ( GNODEMBN * pgnd, MDVCPD & mdvBel )
{
GEDGEMBN_CLIQ * pgedgeClique = NULL;
GOBJMBN_CLIQUE * pCliqueFamily = PCliqueFromNode( pgnd, true, & pgedgeClique );
ASSERT_THROW( pCliqueFamily,
EC_INTERNAL_ERROR,
"GOBJMBN_CLIQSET::GetBelief: can\'t find family clique" );
// Perform inference if necessary
Infer();
// Marginalize the clique down to one node
GNODEMBND * pgndd;
DynCastThrow( pgnd, pgndd );
pgedgeClique->MiterNodeBelief().MarginalizeBelief( mdvBel, pgndd );
_cqsetStat._cGetBel++;
}
PROB GOBJMBN_CLIQSET :: ProbNorm ()
{
// MSRDEVBUG
/*
Reset();
CollectEvidence();
*/
Infer();
_cqsetStat._cProbNorm++;
return _probNorm;
}
//
// Reload all marginals, reset the trees
//
void GOBJMBN_CLIQSET :: Reload ()
{
SetReset( true );
Reset();
}
//
// Reset all marginals, restore all clamped evidence and
// perform the initial inference pass.
//
void GOBJMBN_CLIQSET :: Reset ()
{
assert( EState() >= BUILT );
if ( ! _bReset )
return;
_probNorm = 1.0;
LoadMarginals();
SetReset( false );
// Initialize the entire tree for inference
#ifdef INFERINIT
InferInit();
#endif
SetCollect(true);
}
// Perform an inference cycle if necessary
void GOBJMBN_CLIQSET :: Infer ()
{
Reset(); // Reloads the tree if necessary
if ( ! BCollect() )
return;
#ifdef DUMPCLIQUESET
cout << "\n\n===============================================================";
cout << "\n============= Dump of clique tree before inference ===============\n";
Dump();
cout << "\n========= End Dump of clique tree before inference ===============";
cout << "\n===============================================================\n\n";
cout << "\n\nGOBJMBN_CLIQSET::Infer: begin.";
#endif
CollectEvidence();
DistributeEvidence();
#ifdef CONSISTENCY
CheckConsistency();
#endif
SetCollect( false );
#ifdef DUMPCLIQUESET
cout << "\n\n===============================================================";
cout << "\n============= Dump of clique tree after inference ===============\n";
Dump();
cout << "\n========= End Dump of clique tree after inference ===============";
cout << "\n===============================================================\n\n";
cout << "\nGOBJMBN_CLIQSET::Infer: end.\n\n";
#endif
}
// Perform initial inference collect/distribute cycle
void GOBJMBN_CLIQSET :: InferInit ()
{
#ifdef DUMPCLIQUESET
cout << "\n\n===============================================================";
cout << "\n============= Dump of clique tree before inference INIT ======\n";
Dump();
cout << "\n========= End Dump of clique tree before inference INIT ======";
cout << "\n===============================================================\n\n";
cout << "\n\nGOBJMBN_CLIQSET::InferInit: begin.";
#endif
CollectEvidenceInit();
DistributeEvidenceInit();
#ifdef DUMPCLIQUESET
cout << "\n\n===============================================================";
cout << "\n============= Dump of clique tree after inference INIT =======\n";
Dump();
cout << "\n========= End Dump of clique tree after inference INIT ========";
cout << "\n================================================================\n\n";
cout << "\nGOBJMBN_CLIQSET::InferInit: end.\n\n";
#endif
}
void GOBJMBN_CLIQSET :: CollectEvidence()
{
WalkTree( true, BCollectEvidenceAtRoot,
BCollectEvidenceAtSepset );
_cqsetStat._cCollect++;
}
void GOBJMBN_CLIQSET :: DistributeEvidence()
{
WalkTree( true, BDistributeEvidenceAtRoot,
BDistributeEvidenceAtSepset );
}
void GOBJMBN_CLIQSET :: CollectEvidenceInit ()
{
WalkTree( true, BCollectInitEvidenceAtRoot,
BCollectInitEvidenceAtSepset );
}
void GOBJMBN_CLIQSET :: DistributeEvidenceInit ()
{
WalkTree( true, BDistributeInitEvidenceAtRoot,
BDistributeInitEvidenceAtSepset );
}
void GOBJMBN_CLIQSET :: CheckConsistency ()
{
WalkTree( true, NULL, BConsistentSepset );
}
bool GOBJMBN_CLIQSET :: BConsistentSepset ( GEDGEMBN_SEPSET & sepset, bool bDownwards )
{
if ( ! bDownwards )
return true;
return sepset.BConsistent();
}
// When the collection cycle has completed for a tree, recompute the
// "prob norm" value.
bool GOBJMBN_CLIQSET :: BCollectEvidenceAtRoot ( GOBJMBN_CLIQUE & clique, bool bDownwards )
{
if ( bDownwards || ! clique.BRoot() )
return true;
// This is a root clique at the end of the collection cycle.
// Normalize the clique and maintain the norm of the the probability
// of the tree.
// MSRDEVBUG: (Explain this better!)
REAL rProb = clique.Marginals().RSum();
_probNorm *= rProb;
if ( rProb != 0.0 )
{
rProb = 1.0 / rProb;
clique.Marginals().Multiply( rProb );
}
#ifdef DUMPCLIQUESET
cout << "\nCollect Evidence (root), clique "
<< clique._iClique
<< ", root = "
<< int(clique._bRoot)
<< ", prob norm = "
<< _probNorm;
#endif
return true;
}
bool GOBJMBN_CLIQSET :: BDistributeEvidenceAtRoot ( GOBJMBN_CLIQUE & clique, bool bDownwards )
{
if ( ! bDownwards || ! clique.BRoot() )
return true;
#ifdef DUMPCLIQUESET
cout << "\nDistribute Evidence (root), clique "
<< clique._iClique
<< ", root = "
<< int(clique._bRoot);
#endif
return true;
}
bool GOBJMBN_CLIQSET :: BCollectEvidenceAtSepset ( GEDGEMBN_SEPSET & sepset, bool bDownwards )
{
GOBJMBN_CLIQUE * pCliqueChild = sepset.PclqChild();
GOBJMBN_CLIQUE * pCliqueParent = sepset.PclqParent();
if ( bDownwards )
return true;
#ifdef DUMPCLIQUESET
cout << "\nCollect Evidence (sepset), clique "
<< pCliqueChild->_iClique
<< ", root = "
<< int(pCliqueChild->_bRoot)
<< ", parent = "
<< pCliqueParent->_iClique
;
cout.flush();
#endif
if ( ! pCliqueChild->BCollect() )
return true;
pCliqueParent->SetCollect();
sepset.UpdateParentClique();
SetCollect( false );
return true;
}
bool GOBJMBN_CLIQSET :: BDistributeEvidenceAtSepset ( GEDGEMBN_SEPSET & sepset, bool bDownwards )
{
if ( ! bDownwards )
return true;
#ifdef DUMPCLIQUESET
GOBJMBN_CLIQUE * pCliqueChild = sepset.PclqChild();
GOBJMBN_CLIQUE * pCliqueParent = sepset.PclqParent();
cout << "\nDistribute Evidence (sepset), clique "
<< pCliqueParent->_iClique
<< ", root = "
<< int(pCliqueParent->_bRoot)
<< ", child = "
<< pCliqueChild->_iClique
;
cout.flush();
#endif
sepset.UpdateChildClique();
return true;
}
bool GOBJMBN_CLIQSET :: BCollectInitEvidenceAtSepset ( GEDGEMBN_SEPSET & sepset, bool bDownwards )
{
if ( bDownwards )
return true;
#ifdef DUMPCLIQUESET
GOBJMBN_CLIQUE * pCliqueChild = sepset.PclqChild();
GOBJMBN_CLIQUE * pCliqueParent = sepset.PclqParent();
cout << "\nCollect Initial Evidence (sepset), clique "
<< pCliqueChild->_iClique
<< ", root = "
<< int(pCliqueChild->_bRoot)
<< ", parent = "
<< pCliqueParent->_iClique
;
cout.flush();
#endif
sepset.BalanceCliquesCollect();
return true;
}
bool GOBJMBN_CLIQSET :: BDistributeInitEvidenceAtSepset ( GEDGEMBN_SEPSET & sepset, bool bDownwards )
{
if ( ! bDownwards )
return true;
#ifdef DUMPCLIQUESET
GOBJMBN_CLIQUE * pCliqueParent = sepset.PclqParent();
GOBJMBN_CLIQUE * pCliqueChild = sepset.PclqChild();
cout << "\nDistribute Initial Evidence (sepset), clique "
<< pCliqueParent->_iClique
<< ", root = "
<< int(pCliqueParent->_bRoot)
<< ", child = "
<< pCliqueChild->_iClique
;
cout.flush();
#endif
sepset.BalanceCliquesDistribute();
return true;
}
bool GOBJMBN_CLIQSET :: BCollectInitEvidenceAtRoot ( GOBJMBN_CLIQUE & clique, bool bDownwards )
{
if ( bDownwards || ! clique.BRoot() )
return true;
#ifdef DUMPCLIQUESET
cout << "\nCollect Initial Evidence at root, clique "
<< clique._iClique
<< ", root = "
<< int(clique._bRoot);
#endif
clique.Marginals().Normalize();
return true;
}
bool GOBJMBN_CLIQSET :: BDistributeInitEvidenceAtRoot ( GOBJMBN_CLIQUE & clique, bool bDownwards )
{
return true;
}
void GOBJMBN_CLIQSET :: Dump ()
{
WalkTree( true, BDumpClique, BDumpSepset );
MARGSUBITER::Dump();
}
bool GOBJMBN_CLIQSET :: BDumpSepset ( GEDGEMBN_SEPSET & sepset, bool bDownwards )
{
if ( ! bDownwards )
return true;
sepset.Dump();
return true;
}
bool GOBJMBN_CLIQSET :: BDumpClique ( GOBJMBN_CLIQUE & clique, bool bDownwards )
{
if ( ! bDownwards )
return true;
clique.Dump();
return true;
}
// End of CLIQUE.CPP