Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1094 lines
31 KiB

/*******************************************************************************
* DXVector.h *
*------------*
* Description:
* This is the header file for the matrix classes.
*
;begin_internal
*-------------------------------------------------------------------------------
* Created By: Paul Nash Date: 05/13/99
* Copyright (C) 1997 Microsoft Corporation
* All Rights Reserved
*
*-------------------------------------------------------------------------------
* Revisions:
*
;end_internal
*******************************************************************************/
#ifndef __DXTPRIV_H_
#define __DXTPRIV_H_
#ifndef _INC_MATH
#include <math.h>
#endif
#ifndef _INC_CRTDBG
#include <crtdbg.h>
#endif
//=== Class, Enum, Struct and Union Declarations ===================
class CDXMatrix4x4F;
//=== Enumerated Set Definitions ===================================
//=== Function Type Definitions ====================================
float det4x4( CDXMatrix4x4F *pIn );
float det3x3( float a1, float a2, float a3, float b1, float b2, float b3,
float c1, float c2, float c3 );
float det2x2( float a, float b, float c, float d );
/*** CDX2DXForm ************
* This class implements basic matrix operation based on the GDI XFORM
* structure.
*/
//const DX2DXFORM g_DX2DXFORMIdentity = { 1., 0., 0., 1., 0., 0., DX2DXO_IDENTITY };
class CDX2DXForm : public DX2DXFORM
{
/*=== Methods =======*/
public:
/*--- Constructors ---*/
CDX2DXForm() { SetIdentity(); }
CDX2DXForm( const CDX2DXForm& Other ) { memcpy( this, &Other, sizeof(*this) ); }
CDX2DXForm( const DX2DXFORM& Other ) { memcpy( this, &Other, sizeof(*this) ); }
/*--- methods ---*/
void DetermineOp( void );
void Set( const DX2DXFORM& Other ) { memcpy( this, &Other, sizeof(*this) ); DetermineOp(); }
void ZeroMatrix( void ) { memset( this, 0, sizeof( *this ) ); }
void SetIdentity( void ) {
eM11 = 1.;
eM12 = 0.;
eM21 = 0.;
eM22 = 1.;
eDx = 0.;
eDy = 0.;
eOp = DX2DXO_IDENTITY;
}
BOOL IsIdentity() const { return eOp == DX2DXO_IDENTITY; }
void Scale( float sx, float sy );
void Rotate( float Rotation );
void Translate( float dx, float dy );
BOOL Invert();
void TransformBounds( const DXBNDS& Bnds, DXBNDS& ResultBnds ) const;
void TransformPoints( const DXFPOINT InPnts[], DXFPOINT OutPnts[], ULONG ulCount ) const;
void GetMinMaxScales( float& MinScale, float& MaxScale );
/*--- operators ---*/
DXFPOINT operator*( const DXFPOINT& v ) const;
CDX2DXForm operator*( const CDX2DXForm& Other ) const;
};
//=== CDX2DXForm methods ==============================================================
inline void CDX2DXForm::DetermineOp( void )
{
if( ( eM12 == 0. ) && ( eM21 == 0. ) )
{
if( ( eM11 == 1. ) && ( eM22 == 1. ) )
{
eOp = ( ( eDx == 0 ) && ( eDy == 0 ) )?(DX2DXO_IDENTITY):(DX2DXO_TRANSLATE);
}
else
{
eOp = ( ( eDx == 0 ) && ( eDy == 0 ) )?(DX2DXO_SCALE):(DX2DXO_SCALE_AND_TRANS);
}
}
else
{
eOp = ( ( eDx == 0 ) && ( eDy == 0 ) )?(DX2DXO_GENERAL):(DX2DXO_GENERAL_AND_TRANS);
}
} /* CDX2DXForm::DetermineOp */
inline float DXSq( float f ) { return f * f; }
// This function computes the Min and Max scale that a matrix represents.
// In other words, what is the maximum/minimum length that a line of length 1
// could get stretched/shrunk to if the line was transformed by this matrix.
//
// The function uses eigenvalues; and returns two float numbers. Both are
// non-negative; and MaxScale >= MinScale.
//
inline void CDX2DXForm::GetMinMaxScales( float& MinScale, float& MaxScale )
{
if( ( eM12 == 0. ) && ( eM21 == 0. ) )
{
// Let MinScale = abs(eM11)
if (eM11 < 0)
MinScale = -eM11;
else
MinScale = eM11;
// Let MaxScale = abs(eM22)
if (eM22 < 0)
MaxScale = -eM22;
else
MaxScale = eM22;
// Swap Min/Max if necessary
if (MinScale > MaxScale)
{
float flTemp = MinScale;
MinScale = MaxScale;
MaxScale = flTemp;
}
}
else
{
float t1 = DXSq(eM11) + DXSq(eM12) + DXSq(eM21) + DXSq(eM22);
if( t1 == 0. )
{
MinScale = MaxScale = 0;
}
else
{
float t2 = (float)sqrt( (DXSq(eM12 + eM21) + DXSq(eM11 - eM22)) *
(DXSq(eM12 - eM21) + DXSq(eM11 + eM22)) );
// Due to floating point error; t1 may end up less than t2;
// but that would mean that the min scale was small (relative
// to max scale)
if (t1 <= t2)
MinScale = 0;
else
MinScale = (float)sqrt( (t1 - t2) * .5f );
MaxScale = (float)sqrt( (t1 + t2) * .5f );
}
}
} /* CDX2DXForm::GetMinMaxScales */
inline void CDX2DXForm::Rotate( float Rotation )
{
double Angle = Rotation * (3.1415926535/180.0);
float CosZ = (float)cos( Angle );
float SinZ = (float)sin( Angle );
if (CosZ > 0.0F && CosZ < 0.0000005F)
{
CosZ = .0F;
}
if (SinZ > -0.0000005F && SinZ < .0F)
{
SinZ = .0F;
}
float M11 = ( CosZ * eM11 ) + ( SinZ * eM21 );
float M21 = (-SinZ * eM11 ) + ( CosZ * eM21 );
float M12 = ( CosZ * eM12 ) + ( SinZ * eM22 );
float M22 = (-SinZ * eM12 ) + ( CosZ * eM22 );
eM11 = M11; eM21 = M21; eM12 = M12; eM22 = M22;
DetermineOp();
} /* CDX2DXForm::Rotate */
inline void CDX2DXForm::Scale( float sx, float sy )
{
eM11 *= sx;
eM12 *= sx;
eDx *= sx;
eM21 *= sy;
eM22 *= sy;
eDy *= sy;
DetermineOp();
} /* CDX2DXForm::Scale */
inline void CDX2DXForm::Translate( float dx, float dy )
{
eDx += dx;
eDy += dy;
DetermineOp();
} /* CDX2DXForm::Translate */
inline void CDX2DXForm::TransformBounds( const DXBNDS& Bnds, DXBNDS& ResultBnds ) const
{
ResultBnds = Bnds;
if( eOp != DX2DXO_IDENTITY )
{
ResultBnds.u.D[DXB_X].Min = (long)(( eM11 * Bnds.u.D[DXB_X].Min ) + ( eM12 * Bnds.u.D[DXB_Y].Min ) + eDx);
ResultBnds.u.D[DXB_X].Max = (long)(( eM11 * Bnds.u.D[DXB_X].Max ) + ( eM12 * Bnds.u.D[DXB_Y].Max ) + eDx);
ResultBnds.u.D[DXB_Y].Min = (long)(( eM21 * Bnds.u.D[DXB_X].Min ) + ( eM22 * Bnds.u.D[DXB_Y].Min ) + eDy);
ResultBnds.u.D[DXB_Y].Max = (long)(( eM21 * Bnds.u.D[DXB_X].Max ) + ( eM22 * Bnds.u.D[DXB_Y].Max ) + eDy);
}
} /* CDX2DXForm::TransformBounds */
inline void CDX2DXForm::TransformPoints( const DXFPOINT InPnts[], DXFPOINT OutPnts[], ULONG ulCount ) const
{
ULONG i;
switch( eOp )
{
case DX2DXO_IDENTITY:
memcpy( OutPnts, InPnts, ulCount * sizeof( DXFPOINT ) );
break;
case DX2DXO_TRANSLATE:
for( i = 0; i < ulCount; ++i )
{
OutPnts[i].x = InPnts[i].x + eDx;
OutPnts[i].y = InPnts[i].y + eDy;
}
break;
case DX2DXO_SCALE:
for( i = 0; i < ulCount; ++i )
{
OutPnts[i].x = InPnts[i].x * eM11;
OutPnts[i].y = InPnts[i].y * eM22;
}
break;
case DX2DXO_SCALE_AND_TRANS:
for( i = 0; i < ulCount; ++i )
{
OutPnts[i].x = (InPnts[i].x * eM11) + eDx;
OutPnts[i].y = (InPnts[i].y * eM22) + eDy;
}
break;
case DX2DXO_GENERAL:
for( i = 0; i < ulCount; ++i )
{
OutPnts[i].x = ( InPnts[i].x * eM11 ) + ( InPnts[i].y * eM12 );
OutPnts[i].y = ( InPnts[i].x * eM21 ) + ( InPnts[i].y * eM22 );
}
break;
case DX2DXO_GENERAL_AND_TRANS:
for( i = 0; i < ulCount; ++i )
{
OutPnts[i].x = ( InPnts[i].x * eM11 ) + ( InPnts[i].y * eM12 ) + eDx;
OutPnts[i].y = ( InPnts[i].x * eM21 ) + ( InPnts[i].y * eM22 ) + eDy;
}
break;
default:
_ASSERT( 0 ); // invalid operation id
}
} /* CDX2DXForm::TransformPoints */
inline DXFPOINT CDX2DXForm::operator*( const DXFPOINT& v ) const
{
DXFPOINT NewPnt;
NewPnt.x = ( v.x * eM11 ) + ( v.y * eM12 ) + eDx;
NewPnt.y = ( v.x * eM21 ) + ( v.y * eM22 ) + eDy;
return NewPnt;
} /* CDX2DXForm::operator* */
inline CDX2DXForm CDX2DXForm::operator*( const CDX2DXForm& Other ) const
{
DX2DXFORM x;
x.eM11 = ( eM11 * Other.eM11 ) + ( eM12 * Other.eM21 );
x.eM12 = ( eM11 * Other.eM12 ) + ( eM12 * Other.eM22 );
x.eDx = ( eM11 * Other.eDx ) + ( eM12 * Other.eDy ) + eDx;
x.eM21 = ( eM21 * Other.eM11 ) + ( eM22 * Other.eM21 );
x.eM22 = ( eM21 * Other.eM12 ) + ( eM22 * Other.eM22 );
x.eDy = ( eM21 * Other.eDx ) + ( eM22 * Other.eDy ) + eDy;
return x;
} /* CDX2DXForm::operator*= */
inline BOOL CDX2DXForm::Invert()
{
switch( eOp )
{
case DX2DXO_IDENTITY:
break;
case DX2DXO_TRANSLATE:
eDx = -eDx;
eDy = -eDy;
break;
case DX2DXO_SCALE:
if (eM11 == 0.0 || eM22 == 0.0)
return false;
eM11 = 1.0f / eM11;
eM22 = 1.0f / eM22;
break;
case DX2DXO_SCALE_AND_TRANS:
{
if (eM11 == 0.0f || eM22 == 0.0f)
return false;
// Our old equation was F = aG + b
// The inverse is G = F/a - b/a where a is eM11 and b is eDx
float flOneOverA = 1.0f / eM11;
eDx = -eDx * flOneOverA;
eM11 = flOneOverA;
// Our old equation was F = aG + b
// The inverse is G = F/a - b/a where a is eM22 and b is eDy
flOneOverA = 1.0f / eM22;
eDy = -eDy * flOneOverA;
eM22 = flOneOverA;
break;
}
case DX2DXO_GENERAL:
case DX2DXO_GENERAL_AND_TRANS:
{
// The inverse of A= |a b| is | d -c|*(1/Det) where Det is the determinant of A
// |c d| |-b a|
// Det(A) = ad - bc
// Compute determininant
float flDet = (eM11 * eM22 - eM12 * eM21);
if (flDet == 0.0f)
return FALSE;
float flCoef = 1.0f / flDet;
// Remember old value of eM11
float flM11Original = eM11;
eM11 = flCoef * eM22;
eM12 = -flCoef * eM12;
eM21 = -flCoef * eM21;
eM22 = flCoef * flM11Original;
// If we have a translation; then we need to
// compute new values for that translation
if (eOp == DX2DXO_GENERAL_AND_TRANS)
{
// Remember original value of eDx
float eDxOriginal = eDx;
eDx = -eM11 * eDx - eM12 * eDy;
eDy = -eM21 * eDxOriginal - eM22 * eDy;
}
}
break;
default:
_ASSERT( 0 ); // invalid operation id
}
// We don't need to call DetermineOp here
// because the op doesn't change when inverted
// i.e. a scale remains a scale, etc.
return true;
} /* CDX2DXForm::Invert */
/*** CDXMatrix4x4F ************
* This class implements basic matrix operation based on a 4x4 array.
*/
//const float g_DXMat4X4Identity[4][4] =
//{
// { 1.0, 0. , 0. , 0. },
// { 0. , 1.0, 0. , 0. },
// { 0. , 0. , 1.0, 0. },
// { 0. , 0. , 0. , 1.0 }
//};
class CDXMatrix4x4F
{
public:
/*=== Member Data ===*/
float m_Coeff[4][4];
/*=== Methods =======*/
public:
/*--- Constructors ---*/
CDXMatrix4x4F() { SetIdentity(); }
CDXMatrix4x4F( const CDXMatrix4x4F& Other )
{ CopyMemory( (void *)&m_Coeff, (void *)&Other.m_Coeff, sizeof(m_Coeff) ); }
CDXMatrix4x4F( DX2DXFORM& XForm );
/*--- operations ---*/
void ZeroMatrix( void ) { memset( m_Coeff, 0, sizeof( m_Coeff ) ); }
void SetIdentity( void ) {
memset( m_Coeff, 0, sizeof( m_Coeff ) );
m_Coeff[0][0] = m_Coeff[1][1] = m_Coeff[2][2] = m_Coeff[3][3] = 1.0;
}
void SetCoefficients( float Coeff[4][4] ) { memcpy( m_Coeff, Coeff, sizeof( m_Coeff )); }
void GetCoefficients( float Coeff[4][4] ) { memcpy( Coeff, m_Coeff, sizeof( m_Coeff )); }
//BOOL IsIdentity();
void Scale( float sx, float sy, float sz );
void Rotate( float rx, float ry, float rz );
void Translate( float dx, float dy, float dz );
BOOL Invert();
BOOL GetInverse( CDXMatrix4x4F *pIn );
void Transpose();
void GetTranspose( CDXMatrix4x4F *pIn );
void GetAdjoint( CDXMatrix4x4F *pIn );
HRESULT InitFromSafeArray( SAFEARRAY *psa );
HRESULT GetSafeArray( SAFEARRAY **ppsa ) const;
void TransformBounds( DXBNDS& Bnds, DXBNDS& ResultBnds );
/*--- operators ---*/
CDXDVec operator*( CDXDVec& v) const;
CDXCVec operator*( CDXCVec& v) const;
CDXMatrix4x4F operator*(CDXMatrix4x4F Matrix) const;
void operator*=(CDXMatrix4x4F Matrix) const;
void CDXMatrix4x4F::operator=(const CDXMatrix4x4F srcMatrix);
void CDXMatrix4x4F::operator+=(const CDXMatrix4x4F otherMatrix);
void CDXMatrix4x4F::operator-=(const CDXMatrix4x4F otherMatrix);
BOOL CDXMatrix4x4F::operator==(const CDXMatrix4x4F otherMatrix) const;
BOOL CDXMatrix4x4F::operator!=(const CDXMatrix4x4F otherMatrix) const;
};
inline CDXMatrix4x4F::CDXMatrix4x4F( DX2DXFORM& XForm )
{
SetIdentity();
m_Coeff[0][0] = XForm.eM11;
m_Coeff[0][1] = XForm.eM12;
m_Coeff[1][0] = XForm.eM21;
m_Coeff[1][1] = XForm.eM22;
m_Coeff[0][3] = XForm.eDx;
m_Coeff[1][3] = XForm.eDy;
}
// Additional Operations
inline void CDXMatrix4x4F::operator=(const CDXMatrix4x4F srcMatrix)
{
CopyMemory( (void *)m_Coeff, (const void *)srcMatrix.m_Coeff, sizeof(srcMatrix.m_Coeff) );
} /* CDXMatrix4x4F::operator= */
inline BOOL CDXMatrix4x4F::operator==(const CDXMatrix4x4F otherMatrix) const
{
return !memcmp( (void *)m_Coeff, (const void *)otherMatrix.m_Coeff, sizeof(otherMatrix.m_Coeff) );
} /* CDXMatrix4x4F::operator== */
inline BOOL CDXMatrix4x4F::operator!=(const CDXMatrix4x4F otherMatrix) const
{
return memcmp( (void *)m_Coeff, (const void *)otherMatrix.m_Coeff, sizeof(otherMatrix.m_Coeff) );
} /* CDXMatrix4x4F::operator!= */
inline void CDXMatrix4x4F::operator+=(const CDXMatrix4x4F otherMatrix)
{
for( int i = 0; i < 4; i++ )
for( int j = 0; j < 4; j++ )
m_Coeff[i][j] += otherMatrix.m_Coeff[i][j];
} /* CDXMatrix4x4F::operator+= */
inline void CDXMatrix4x4F::operator-=(const CDXMatrix4x4F otherMatrix)
{
for( int i = 0; i < 4; i++ )
for( int j = 0; j < 4; j++ )
m_Coeff[i][j] -= otherMatrix.m_Coeff[i][j];
} /* CDXMatrix4x4F::operator-= */
inline CDXDVec CDXMatrix4x4F::operator*(CDXDVec& v) const
{
CDXDVec t;
float temp;
temp = v[0]*m_Coeff[0][0]+v[1]*m_Coeff[1][0]+v[2]*m_Coeff[2][0]+v[3]*m_Coeff[3][0];
t[0] = (long)((temp < 0) ? temp -= .5 : temp += .5);
temp = v[0]*m_Coeff[0][1]+v[1]*m_Coeff[1][1]+v[2]*m_Coeff[2][1]+v[3]*m_Coeff[3][1];
t[1] = (long)((temp < 0) ? temp -= .5 : temp += .5);
temp = v[0]*m_Coeff[0][2]+v[1]*m_Coeff[1][2]+v[2]*m_Coeff[2][2]+v[3]*m_Coeff[3][2];
t[2] = (long)((temp < 0) ? temp -= .5 : temp += .5);
temp = v[0]*m_Coeff[0][3]+v[1]*m_Coeff[1][3]+v[2]*m_Coeff[2][3]+v[3]*m_Coeff[3][3];
t[3] = (long)((temp < 0) ? temp -= .5 : temp += .5);
return t;
} /* CDXMatrix4x4F::operator*(DXDVEC) */
inline CDXCVec CDXMatrix4x4F::operator*(CDXCVec& v) const
{
CDXCVec t;
t[0] = v[0]*m_Coeff[0][0]+v[1]*m_Coeff[1][0]+v[2]*m_Coeff[2][0]+v[3]*m_Coeff[3][0];
t[1] = v[0]*m_Coeff[0][1]+v[1]*m_Coeff[1][1]+v[2]*m_Coeff[2][1]+v[3]*m_Coeff[3][1];
t[2] = v[0]*m_Coeff[0][2]+v[1]*m_Coeff[1][2]+v[2]*m_Coeff[2][2]+v[3]*m_Coeff[3][2];
t[3] = v[0]*m_Coeff[0][3]+v[1]*m_Coeff[1][3]+v[2]*m_Coeff[2][3]+v[3]*m_Coeff[3][3];
return t;
} /* CDXMatrix4x4F::operator*(DXCVEC) */
inline CDXMatrix4x4F CDXMatrix4x4F::operator*(CDXMatrix4x4F Mx) const
{
CDXMatrix4x4F t;
int i, j;
for( i = 0; i < 4; i++ )
{
for( j = 0; j < 4; j++ )
{
t.m_Coeff[i][j] = m_Coeff[i][0] * Mx.m_Coeff[0][j] +
m_Coeff[i][1] * Mx.m_Coeff[1][j] +
m_Coeff[i][2] * Mx.m_Coeff[2][j] +
m_Coeff[i][3] * Mx.m_Coeff[3][j];
}
}
return t;
} /* CDXMatrix4x4F::operator*(CDXMatrix4x4F) */
inline void CDXMatrix4x4F::operator*=(CDXMatrix4x4F Mx) const
{
CDXMatrix4x4F t;
int i, j;
for( i = 0; i < 4; i++ )
{
for( j = 0; j < 4; j++ )
{
t.m_Coeff[i][j] = m_Coeff[i][0] * Mx.m_Coeff[0][j] +
m_Coeff[i][1] * Mx.m_Coeff[1][j] +
m_Coeff[i][2] * Mx.m_Coeff[2][j] +
m_Coeff[i][3] * Mx.m_Coeff[3][j];
}
}
CopyMemory( (void *)m_Coeff, (void *)t.m_Coeff, sizeof(m_Coeff) );
} /* CDXMatrix4x4F::operator*=(CDXMatrix4x4F) */
inline void CDXMatrix4x4F::Scale( float sx, float sy, float sz )
{
if( sx != 1. )
{
m_Coeff[0][0] *= sx;
m_Coeff[0][1] *= sx;
m_Coeff[0][2] *= sx;
m_Coeff[0][3] *= sx;
}
if( sy != 1. )
{
m_Coeff[1][0] *= sy;
m_Coeff[1][1] *= sy;
m_Coeff[1][2] *= sy;
m_Coeff[1][3] *= sy;
}
if( sz != 1. )
{
m_Coeff[2][0] *= sz;
m_Coeff[2][1] *= sz;
m_Coeff[2][2] *= sz;
m_Coeff[2][3] *= sz;
}
} /* CDXMatrix4x4F::Scale */
inline void CDXMatrix4x4F::Translate( float dx, float dy, float dz )
{
float a, b, c, d;
a = b = c = d = 0;
if( dx != 0. )
{
a += m_Coeff[0][0]*dx;
b += m_Coeff[0][1]*dx;
c += m_Coeff[0][2]*dx;
d += m_Coeff[0][3]*dx;
}
if( dy != 0. )
{
a += m_Coeff[1][0]*dy;
b += m_Coeff[1][1]*dy;
c += m_Coeff[1][2]*dy;
d += m_Coeff[1][3]*dy;
}
if( dz != 0. )
{
a += m_Coeff[2][0]*dz;
b += m_Coeff[2][1]*dz;
c += m_Coeff[2][2]*dz;
d += m_Coeff[2][3]*dz;
}
m_Coeff[3][0] += a;
m_Coeff[3][1] += b;
m_Coeff[3][2] += c;
m_Coeff[3][3] += d;
} /* CDXMatrix4x4F::Translate */
inline void CDXMatrix4x4F::Rotate( float rx, float ry, float rz )
{
const float l_dfCte = (const float)(3.1415926535/180.0);
float lAngleY = 0.0;
float lAngleX = 0.0;
float lAngleZ = 0.0;
float lCosX = 1.0;
float lSinX = 0.0;
float lCosY = 1.0;
float lSinY = 0.0;
float lCosZ = 1.0;
float lSinZ = 0.0;
// calculate rotation angle sines and cosines
if( rx != 0 )
{
lAngleX = rx * l_dfCte;
lCosX = (float)cos(lAngleX);
lSinX = (float)sin(lAngleX);
if (lCosX > 0.0F && lCosX < 0.0000005F)
{
lCosX = .0F;
}
if (lSinX > -0.0000005F && lSinX < .0F)
{
lSinX = .0F;
}
}
if( ry != 0 )
{
lAngleY = ry * l_dfCte;
lCosY = (float)cos(lAngleY);
lSinY = (float)sin(lAngleY);
if (lCosY > 0.0F && lCosY < 0.0000005F)
{
lCosY = .0F;
}
if (lSinY > -0.0000005F && lSinY < .0F)
{
lSinY = .0F;
}
}
if( rz != 0 )
{
lAngleZ = rz * l_dfCte;
lCosZ = (float)cos(lAngleZ);
lSinZ = (float)sin(lAngleZ);
if (lCosZ > 0.0F && lCosZ < 0.0000005F)
{
lCosZ = .0F;
}
if (lSinZ > -0.0000005F && lSinZ < .0F)
{
lSinZ = .0F;
}
}
float u, v;
int i;
//--- X Rotation
for( i = 0; i < 4; i++ )
{
u = m_Coeff[1][i];
v = m_Coeff[2][i];
m_Coeff[1][i] = lCosX*u+lSinX*v;
m_Coeff[2][i] = -lSinX*u+lCosX*v;
}
//--- Y Rotation
for( i = 0; i < 4; i++ )
{
u = m_Coeff[0][i];
v = m_Coeff[2][i];
m_Coeff[0][i] = lCosY*u-lSinY*v;
m_Coeff[2][i] = lSinY*u+lCosY*v;
}
//--- Z Rotation
for( i = 0; i < 4; i++ )
{
u = m_Coeff[0][i];
v = m_Coeff[1][i];
m_Coeff[0][i] = lCosZ*u+lSinZ*v;
m_Coeff[1][i] = -lSinZ*u+lCosZ*v;
}
}
/*
inline BOOL CDXMatrix4x4F::IsIdentity()
{
return !memcmp( m_Coeff, g_DXMat4X4Identity, sizeof(g_DXMat4X4Identity) );
} /* CDXMatrix4x4F::IsIdentity */
/*
Uses Gaussian elimination to invert the 4 x 4 non-linear matrix in t and
return the result in Mx. The matrix t is destroyed in the process.
*/
inline BOOL CDXMatrix4x4F::Invert()
{
int i,j,k,Pivot;
float PValue;
CDXMatrix4x4F Mx;
Mx.SetIdentity();
/* Find pivot element. Use partial pivoting by row */
for( i = 0;i < 4; i++ )
{
Pivot = 0;
for( j = 0; j < 4; j++ )
{
if( fabs(m_Coeff[i][j]) > fabs(m_Coeff[i][Pivot]) ) Pivot = j;
}
if( m_Coeff[i][Pivot] == 0.0 )
{
ZeroMatrix(); /* Singular Matrix */
return FALSE;
}
/* Normalize */
PValue = m_Coeff[i][Pivot];
for( j = 0; j < 4; j++ )
{
m_Coeff[i][j] /= PValue;
Mx.m_Coeff[i][j] /= PValue;
}
/* Zeroing */
for( j = 0; j < 4; j++ )
{
if( j != i )
{
PValue = m_Coeff[j][Pivot];
for( k = 0; k < 4; k++ )
{
m_Coeff[j][k] -= PValue*m_Coeff[i][k];
Mx.m_Coeff[j][k] -= PValue*Mx.m_Coeff[i][k];
}
}
}
}
/* Reorder rows */
for( i = 0; i < 4; i++ )
{
if( m_Coeff[i][i] != 1.0 )
{
for( j = i + 1; j < 4; j++ )
if( m_Coeff[j][i] == 1.0 ) break;
if( j >= 4 )
{
ZeroMatrix();
return FALSE;
}
//--- swap rows i and j of original
for( k = 0; k < 4; k++ )
{
m_Coeff[i][k] += m_Coeff[j][k];
m_Coeff[j][k] = m_Coeff[i][k] - m_Coeff[j][k];
m_Coeff[i][k] -= m_Coeff[j][k];
}
//--- swap rows i and j of result
for( k = 0; k < 4; k++ )
{
Mx.m_Coeff[i][k] += Mx.m_Coeff[j][k];
Mx.m_Coeff[j][k] = Mx.m_Coeff[i][k] - Mx.m_Coeff[j][k];
Mx.m_Coeff[i][k] -= Mx.m_Coeff[j][k];
}
}
}
*this = Mx;
return TRUE;
} /* CDXMatrix4x4F::Invert */
inline void CDXMatrix4x4F::Transpose()
{
float temp;
temp = m_Coeff[0][1];
m_Coeff[0][1] = m_Coeff[1][0];
m_Coeff[1][0] = temp;
temp = m_Coeff[0][2];
m_Coeff[0][2] = m_Coeff[2][0];
m_Coeff[2][0] = temp;
temp = m_Coeff[0][3];
m_Coeff[0][3] = m_Coeff[3][0];
m_Coeff[3][0] = temp;
temp = m_Coeff[1][2];
m_Coeff[1][2] = m_Coeff[2][1];
m_Coeff[2][1] = temp;
temp = m_Coeff[1][3];
m_Coeff[1][3] = m_Coeff[3][1];
m_Coeff[3][1] = temp;
temp = m_Coeff[2][3];
m_Coeff[2][3] = m_Coeff[3][2];
m_Coeff[3][2] = temp;
} /* CDXMatrix4x4F::Transpose */
inline void CDXMatrix4x4F::GetTranspose( CDXMatrix4x4F *m )
{
float temp;
(*this) = *m;
temp = m_Coeff[0][1];
m_Coeff[0][1] = m_Coeff[1][0];
m_Coeff[1][0] = temp;
temp = m_Coeff[0][2];
m_Coeff[0][2] = m_Coeff[2][0];
m_Coeff[2][0] = temp;
temp = m_Coeff[0][3];
m_Coeff[0][3] = m_Coeff[3][0];
m_Coeff[3][0] = temp;
temp = m_Coeff[1][2];
m_Coeff[1][2] = m_Coeff[2][1];
m_Coeff[2][1] = temp;
temp = m_Coeff[1][3];
m_Coeff[1][3] = m_Coeff[3][1];
m_Coeff[3][1] = temp;
temp = m_Coeff[2][3];
m_Coeff[2][3] = m_Coeff[3][2];
m_Coeff[3][2] = temp;
} /* CDXMatrix4x4F::Transpose */
/*
Matrix Inversion
by Richard Carling
from "Graphics Gems", Academic Press, 1990
*/
#define SMALL_NUMBER 1.e-8
/*
* inverse( original_matrix, inverse_matrix )
*
* calculate the inverse of a 4x4 matrix
*
* -1
* A = ___1__ adjoint A
* det A
*/
inline BOOL CDXMatrix4x4F::GetInverse( CDXMatrix4x4F *pIn )
{
int i, j;
float det;
/* calculate the adjoint matrix */
GetAdjoint( pIn );
/* calculate the 4x4 determinant
* if the determinant is zero,
* then the inverse matrix is not unique.
*/
det = det4x4( pIn );
if( fabs( det ) < SMALL_NUMBER )
{
// Non-singular matrix, no inverse!
return FALSE;;
}
/* scale the adjoint matrix to get the inverse */
for( i = 0; i < 4; i++ )
for( j = 0; j < 4; j++ )
m_Coeff[i][j] = m_Coeff[i][j] / det;
return TRUE;
}
/*
* adjoint( original_matrix, inverse_matrix )
*
* calculate the adjoint of a 4x4 matrix
*
* Let a denote the minor determinant of matrix A obtained by
* ij
*
* deleting the ith row and jth column from A.
*
* i+j
* Let b = (-1) a
* ij ji
*
* The matrix B = (b ) is the adjoint of A
* ij
*/
inline void CDXMatrix4x4F::GetAdjoint( CDXMatrix4x4F *pIn )
{
float a1, a2, a3, a4, b1, b2, b3, b4;
float c1, c2, c3, c4, d1, d2, d3, d4;
/* assign to individual variable names to aid */
/* selecting correct values */
a1 = pIn->m_Coeff[0][0]; b1 = pIn->m_Coeff[0][1];
c1 = pIn->m_Coeff[0][2]; d1 = pIn->m_Coeff[0][3];
a2 = pIn->m_Coeff[1][0]; b2 = pIn->m_Coeff[1][1];
c2 = pIn->m_Coeff[1][2]; d2 = pIn->m_Coeff[1][3];
a3 = pIn->m_Coeff[2][0]; b3 = pIn->m_Coeff[2][1];
c3 = pIn->m_Coeff[2][2]; d3 = pIn->m_Coeff[2][3];
a4 = pIn->m_Coeff[3][0]; b4 = pIn->m_Coeff[3][1];
c4 = pIn->m_Coeff[3][2]; d4 = pIn->m_Coeff[3][3];
/* row column labeling reversed since we transpose rows & columns */
m_Coeff[0][0] = det3x3( b2, b3, b4, c2, c3, c4, d2, d3, d4);
m_Coeff[1][0] = - det3x3( a2, a3, a4, c2, c3, c4, d2, d3, d4);
m_Coeff[2][0] = det3x3( a2, a3, a4, b2, b3, b4, d2, d3, d4);
m_Coeff[3][0] = - det3x3( a2, a3, a4, b2, b3, b4, c2, c3, c4);
m_Coeff[0][1] = - det3x3( b1, b3, b4, c1, c3, c4, d1, d3, d4);
m_Coeff[1][1] = det3x3( a1, a3, a4, c1, c3, c4, d1, d3, d4);
m_Coeff[2][1] = - det3x3( a1, a3, a4, b1, b3, b4, d1, d3, d4);
m_Coeff[3][1] = det3x3( a1, a3, a4, b1, b3, b4, c1, c3, c4);
m_Coeff[0][2] = det3x3( b1, b2, b4, c1, c2, c4, d1, d2, d4);
m_Coeff[1][2] = - det3x3( a1, a2, a4, c1, c2, c4, d1, d2, d4);
m_Coeff[2][2] = det3x3( a1, a2, a4, b1, b2, b4, d1, d2, d4);
m_Coeff[3][2] = - det3x3( a1, a2, a4, b1, b2, b4, c1, c2, c4);
m_Coeff[0][3] = - det3x3( b1, b2, b3, c1, c2, c3, d1, d2, d3);
m_Coeff[1][3] = det3x3( a1, a2, a3, c1, c2, c3, d1, d2, d3);
m_Coeff[2][3] = - det3x3( a1, a2, a3, b1, b2, b3, d1, d2, d3);
m_Coeff[3][3] = det3x3( a1, a2, a3, b1, b2, b3, c1, c2, c3);
}
/*
* float = det4x4( matrix )
*
* calculate the determinant of a 4x4 matrix.
*/
inline float det4x4( CDXMatrix4x4F *pIn )
{
float ans;
float a1, a2, a3, a4, b1, b2, b3, b4, c1, c2, c3, c4, d1, d2, d3, d4;
/* assign to individual variable names to aid selecting */
/* correct elements */
a1 = pIn->m_Coeff[0][0]; b1 = pIn->m_Coeff[0][1];
c1 = pIn->m_Coeff[0][2]; d1 = pIn->m_Coeff[0][3];
a2 = pIn->m_Coeff[1][0]; b2 = pIn->m_Coeff[1][1];
c2 = pIn->m_Coeff[1][2]; d2 = pIn->m_Coeff[1][3];
a3 = pIn->m_Coeff[2][0]; b3 = pIn->m_Coeff[2][1];
c3 = pIn->m_Coeff[2][2]; d3 = pIn->m_Coeff[2][3];
a4 = pIn->m_Coeff[3][0]; b4 = pIn->m_Coeff[3][1];
c4 = pIn->m_Coeff[3][2]; d4 = pIn->m_Coeff[3][3];
ans = a1 * det3x3( b2, b3, b4, c2, c3, c4, d2, d3, d4 )
- b1 * det3x3( a2, a3, a4, c2, c3, c4, d2, d3, d4 )
+ c1 * det3x3( a2, a3, a4, b2, b3, b4, d2, d3, d4 )
- d1 * det3x3( a2, a3, a4, b2, b3, b4, c2, c3, c4 );
return ans;
}
/*
* float = det3x3( a1, a2, a3, b1, b2, b3, c1, c2, c3 )
*
* calculate the determinant of a 3x3 matrix
* in the form
*
* | a1, b1, c1 |
* | a2, b2, c2 |
* | a3, b3, c3 |
*/
inline float det3x3( float a1, float a2, float a3,
float b1, float b2, float b3,
float c1, float c2, float c3 )
{
float ans;
ans = a1 * det2x2( b2, b3, c2, c3 )
- b1 * det2x2( a2, a3, c2, c3 )
+ c1 * det2x2( a2, a3, b2, b3 );
return ans;
}
/*
* float = det2x2( float a, float b, float c, float d )
*
* calculate the determinant of a 2x2 matrix.
*/
inline float det2x2( float a, float b, float c, float d )
{
float ans = a * d - b * c;
return ans;
}
inline HRESULT CDXMatrix4x4F::InitFromSafeArray( SAFEARRAY * /*pSA*/ )
{
HRESULT hr = S_OK;
#if 0
long *pData;
if( !pSA || ( pSA->cDims != 1 ) ||
( pSA->cbElements != sizeof(float) ) ||
( pSA->rgsabound->lLbound != 1 ) ||
( pSA->rgsabound->cElements != 8 )
)
{
hr = E_INVALIDARG;
}
else
{
hr = SafeArrayAccessData(pSA, (void **)&pData);
if( SUCCEEDED( hr ) )
{
for( int i = 0; i < 4; ++i )
{
m_Bounds[i].Min = pData[i];
m_Bounds[i].Max = pData[i+4];
m_Bounds[i].SampleRate = SampleRate;
}
hr = SafeArrayUnaccessData( pSA );
}
}
#endif
return hr;
} /* CDXMatrix4x4F::InitFromSafeArray */
inline HRESULT CDXMatrix4x4F::GetSafeArray( SAFEARRAY ** /*ppSA*/ ) const
{
HRESULT hr = S_OK;
#if 0
SAFEARRAY *pSA;
if( !ppSA )
{
hr = E_POINTER;
}
else
{
SAFEARRAYBOUND rgsabound;
rgsabound.lLbound = 1;
rgsabound.cElements = 16;
if( !(pSA = SafeArrayCreate( VT_I4, 1, &rgsabound ) ) )
{
hr = E_OUTOFMEMORY;
}
else
{
long *pData;
hr = SafeArrayAccessData( pSA, (void **)&pData );
if( SUCCEEDED( hr ) )
{
for( int i = 0; i < 4; ++i )
{
pData[i] = m_Bounds[i].Min;
pData[i+4] = m_Bounds[i].Max;
}
hr = SafeArrayUnaccessData( pSA );
}
}
if( SUCCEEDED( hr ) )
{
*ppSA = pSA;
}
}
#endif
return hr;
} /* CDXMatrix4x4F::GetSafeArray */
inline void CDXMatrix4x4F::TransformBounds( DXBNDS& /*Bnds*/, DXBNDS& /*ResultBnds*/ )
{
} /* CDXMatrix4x4F::TransformBounds */
#endif // __DXTPRIV_H_