Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3419 lines
105 KiB

// Copyright (c) 1997, Microsoft Corporation, all rights reserved
//
// cm.c
// RAS L2TP WAN mini-port/call-manager driver
// Call Manager routines
//
// 01/07/97 Steve Cobb
#include "l2tpp.h"
#include "cm.tmh"
// Debug counts of client oddities that should not be happening.
//
ULONG g_ulUnexpectedInCallCompletes = 0;
ULONG g_ulCallsNotClosable = 0;
ULONG g_ulCompletingVcCorruption = 0;
//-----------------------------------------------------------------------------
// Local prototypes (alphabetically)
//-----------------------------------------------------------------------------
VOID
BuildCallParametersShell(
IN ADAPTERCB* pAdapter,
IN ULONG ulIpAddress,
IN ULONG ulBufferLength,
OUT CHAR* pBuffer,
OUT CO_AF_TAPI_INCOMING_CALL_PARAMETERS UNALIGNED** ppTiParams,
OUT LINE_CALL_INFO** ppTcInfo,
OUT L2TP_CALL_PARAMETERS** ppLcParams );
VOID
CallSetupComplete(
IN VCCB* pVc );
TUNNELCB*
CreateTunnelCb(
IN ADAPTERCB* pAdapter );
VOID
InactiveCallCleanUp(
IN VCCB* pVc );
VOID
IncomingCallCompletePassive(
IN TUNNELWORK* pWork,
IN TUNNELCB* pTunnel,
IN VCCB* pVc,
IN ULONG_PTR* punpArgs );
VOID
DereferenceAf(
IN ADAPTERCB* pAdapter );
VOID
DeregisterSapPassive(
IN NDIS_WORK_ITEM* pWork,
IN VOID* pContext );
VOID
LockIcs(
IN VCCB* pVc,
IN BOOLEAN fGrace );
NDIS_STATUS
QueryCmInformation(
IN ADAPTERCB* pAdapter,
IN VCCB* pVc,
IN NDIS_OID Oid,
IN PVOID InformationBuffer,
IN ULONG InformationBufferLength,
OUT PULONG BytesWritten,
OUT PULONG BytesNeeded );
VOID
ReferenceAf(
IN ADAPTERCB* pAdapter );
VOID
RegisterSapPassive(
IN NDIS_WORK_ITEM* pWork,
IN VOID* pContext );
VOID
SetupVcComplete(
IN TUNNELCB* pTunnel,
IN VCCB* pVc );
VOID
TimerQTerminateComplete(
IN TIMERQ* pTimerQ,
IN VOID* pContext );
VOID
TunnelTqTerminateComplete(
IN TIMERQ* pTimerQ,
IN VOID* pContext );
VOID
UnlockIcs(
IN VCCB* pVc,
IN BOOLEAN fGrace );
//-----------------------------------------------------------------------------
// Call-manager handlers and completers
//-----------------------------------------------------------------------------
NDIS_STATUS
LcmCmOpenAf(
IN NDIS_HANDLE CallMgrBindingContext,
IN PCO_ADDRESS_FAMILY AddressFamily,
IN NDIS_HANDLE NdisAfHandle,
OUT PNDIS_HANDLE CallMgrAfContext )
// Standard 'CmCmOpenAfHandler' routine called by NDIS when a client
// requests to open an address family. See DDK doc.
//
{
ADAPTERCB* pAdapter;
NDIS_HANDLE hExistingAf;
TRACE( TL_I, TM_Cm, ( "LcmCmOpenAf" ) );
pAdapter = (ADAPTERCB* )CallMgrBindingContext;
if (pAdapter->ulTag != MTAG_ADAPTERCB)
{
ASSERT( !"Atag?" );
return NDIS_STATUS_INVALID_DATA;
}
if (AddressFamily->AddressFamily != CO_ADDRESS_FAMILY_TAPI_PROXY
|| AddressFamily->MajorVersion != NDIS_MajorVersion
|| AddressFamily->MinorVersion != NDIS_MinorVersion)
{
return NDIS_STATUS_BAD_VERSION;
}
// Save NDIS's AF handle in the adapter control block. Interlock just in
// case multiple clients attempt to open the AF, though don't expect this.
//
hExistingAf =
InterlockedCompareExchangePointer(
&pAdapter->NdisAfHandle, NdisAfHandle, NULL );
if (hExistingAf)
{
// Our AF has already been opened. Don't accept another open since
// only only one would be able to register a SAP anyway. This way we
// don't have to be in the business of tracking multiple AF handles.
//
ASSERT( !"AF exists?" );
return NDIS_STATUS_FAILURE;
}
ReferenceAdapter( pAdapter );
ReferenceAf( pAdapter );
// Since we support only a single address family, just return the adapter
// as the address family context.
//
*CallMgrAfContext = (PNDIS_HANDLE )pAdapter;
TRACE( TL_I, TM_Cm, ( "LcmCmOpenAf OK" ) );
return NDIS_STATUS_SUCCESS;
}
NDIS_STATUS
LcmCmCloseAf(
IN NDIS_HANDLE CallMgrAfContext )
// Standard 'CmCloseAfHandler' routine called by NDIS when a client
// requests to close an address family. See DDK doc.
//
{
ADAPTERCB* pAdapter;
TRACE( TL_I, TM_Cm, ( "LcmCmCloseAf" ) );
pAdapter = (ADAPTERCB* )CallMgrAfContext;
if (pAdapter->ulTag != MTAG_ADAPTERCB)
{
ASSERT( !"Atag?" );
return NDIS_STATUS_INVALID_DATA;
}
// This dereference will eventually lead to us calling
// NdisMCmCloseAfComplete.
//
DereferenceAf( pAdapter );
TRACE( TL_V, TM_Cm, ( "LcmCmCloseAf pending" ) );
return NDIS_STATUS_PENDING;
}
NDIS_STATUS
LcmCmRegisterSap(
IN NDIS_HANDLE CallMgrAfContext,
IN PCO_SAP Sap,
IN NDIS_HANDLE NdisSapHandle,
OUT PNDIS_HANDLE CallMgrSapContext )
// Standard 'LcmCmRegisterSapHandler' routine called by NDIS when the a
// client registers a service access point. See DDK doc.
//
{
NDIS_STATUS status;
ADAPTERCB* pAdapter;
BOOLEAN fSapExists;
BOOLEAN fInvalidSapData;
TRACE( TL_I, TM_Cm, ( "LcmCmRegSap" ) );
pAdapter = (ADAPTERCB* )CallMgrAfContext;
// Our SAP context is just the address of the owning adapter control
// block. Set it now before scheduling work as NDIS doesn't handle the
// case of SAP completion correctly otherwise (though it should).
//
*CallMgrSapContext = (NDIS_HANDLE )pAdapter;
if (pAdapter->ulTag != MTAG_ADAPTERCB)
{
ASSERT( !"Atag?" );
return NDIS_STATUS_INVALID_DATA;
}
NdisAcquireSpinLock( &pAdapter->lockSap );
{
if (pAdapter->NdisSapHandle)
{
fSapExists = TRUE;
}
else
{
// Save NDIS's SAP handle in the adapter control block.
//
fSapExists = FALSE;
// Extract the SAP line and address IDs and store for
// regurgitation in incoming call dispatches.
//
if (Sap->SapType == AF_TAPI_SAP_TYPE
&& Sap->SapLength >= sizeof(CO_AF_TAPI_SAP))
{
CO_AF_TAPI_SAP* pSap;
pSap = (CO_AF_TAPI_SAP* )(Sap->Sap);
pAdapter->ulSapLineId = pSap->ulLineID;
if (pSap->ulAddressID == 0xFFFFFFFF)
{
// This means "any ID is OK" but when indicated back up
// NDPROXY doesn't recognize this code, so translate it to
// 0 here.
//
pAdapter->ulSapAddressId = 0;
}
else
{
pAdapter->ulSapAddressId = pSap->ulAddressID;
}
pAdapter->NdisSapHandle = NdisSapHandle;
fInvalidSapData = FALSE;
}
else
{
fInvalidSapData = TRUE;
}
}
}
NdisReleaseSpinLock( &pAdapter->lockSap );
if (fSapExists)
{
TRACE( TL_A, TM_Cm, ( "SAP exists?" ) );
WPLOG( LL_A, LM_Cm, ( "SAP exists?" ) );
return NDIS_STATUS_SAP_IN_USE;
}
if (fInvalidSapData)
{
TRACE( TL_A, TM_Cm, ( "SAP data?" ) );
WPLOG( LL_A, LM_Cm, ( "SAP data?" ) );
return NDIS_STATUS_INVALID_DATA;
}
// TDI setup must be done at PASSIVE IRQL so schedule a routine to do it.
//
status = ScheduleWork( pAdapter, RegisterSapPassive, pAdapter );
if (status != NDIS_STATUS_SUCCESS)
{
NdisAcquireSpinLock( &pAdapter->lockSap );
{
pAdapter->NdisSapHandle = NULL;
}
NdisReleaseSpinLock( &pAdapter->lockSap );
return status;
}
TRACE( TL_V, TM_Cm, ( "LcmCmRegSap pending" ) );
return NDIS_STATUS_PENDING;
}
VOID
RegisterSapPassive(
IN NDIS_WORK_ITEM* pWork,
IN VOID* pContext )
// An NDIS_PROC routine to complete the registering of a SAP begun in
// LcmCmRegisterSap.
//
{
NDIS_STATUS status;
ADAPTERCB* pAdapter;
NDIS_HANDLE hSap;
TRACE( TL_N, TM_Cm, ( "RegSapPassive" ) );
// Unpack context information then free the work item.
//
pAdapter = (ADAPTERCB* )pContext;
ASSERT( pAdapter->ulTag == MTAG_ADAPTERCB );
FREE_NDIS_WORK_ITEM( pAdapter, pWork );
// Open the TDI transport and start receiving datagrams.
//
status = TdixOpen( &pAdapter->tdix );
NdisAcquireSpinLock( &pAdapter->lockSap );
{
hSap = pAdapter->NdisSapHandle;
if (status == NDIS_STATUS_SUCCESS)
{
// Mark the SAP active allowing references to be taken, and take
// the initial reference for SAP registry, plus those for address
// family and adapter.
//
SetFlags( &pAdapter->ulFlags, ACBF_SapActive );
ASSERT( pAdapter->lSapRef == 0 );
TRACE( TL_N, TM_Ref, ( "RefSap-ish to 1" ) );
pAdapter->lSapRef = 1;
ReferenceAdapter( pAdapter );
ReferenceAf( pAdapter );
}
else
{
// Failed to get TDI set up, so NULL the SAP handle in the adapter
// control block.
//
TRACE( TL_A, TM_Cm, ( "TdixOpen=$%08x?", status ) );
WPLOG( LL_A, LM_Cm, ( "TdixOpen=$%08x?", status ) );
pAdapter->NdisSapHandle = NULL;
}
}
NdisReleaseSpinLock( &pAdapter->lockSap );
// Remove the reference for scheduled work. Do this before telling NDIS
// the SAP completed because if it failed it can call Halt and unload the
// driver before we run again here which gives a C4 bugcheck.
//
DereferenceAdapter( pAdapter );
// Report result to client.
//
TRACE( TL_I, TM_Cm, ( "NdisMCmRegSapComp" ) );
NdisMCmRegisterSapComplete( status, hSap, (NDIS_HANDLE )pAdapter );
TRACE( TL_I, TM_Cm, ( "NdisMCmRegSapComp done" ) );
}
NDIS_STATUS
LcmCmDeregisterSap(
NDIS_HANDLE CallMgrSapContext )
// Standard 'CmDeregisterSapHandler' routine called by NDIS when the a
// client has requested to de-register a service access point. See DDK
// doc.
//
{
NDIS_STATUS status;
ADAPTERCB* pAdapter;
TRACE( TL_I, TM_Cm, ( "LcmCmDeregSap" ) );
pAdapter = (ADAPTERCB* )CallMgrSapContext;
if (pAdapter->ulTag != MTAG_ADAPTERCB)
{
ASSERT( !"Atag?" );
return NDIS_STATUS_INVALID_DATA;
}
NdisAcquireSpinLock( &pAdapter->lockSap );
{
if (ReadFlags( &pAdapter->ulFlags ) & ACBF_SapActive)
{
ASSERT( pAdapter->NdisSapHandle );
ClearFlags( &pAdapter->ulFlags, ACBF_SapActive );
status = NDIS_STATUS_PENDING;
}
else
{
TRACE( TL_A, TM_Cm, ( "No SAP active?" ) );
WPLOG( LL_A, LM_Cm, ( "No SAP active?" ) );
status = NDIS_STATUS_FAILURE;
}
}
NdisReleaseSpinLock( &pAdapter->lockSap );
if (status == NDIS_STATUS_PENDING)
{
// Remove the reference for SAP registry. Eventually, the SAP
// references will fall to 0 and DereferenceSap will schedule
// DeregisterSapPassive to complete the de-registry.
//
DereferenceSap( pAdapter );
}
TRACE( TL_V, TM_Cm, ( "LcmCmDeregSap=$%08x", status ) );
return status;
}
VOID
DeregisterSapPassive(
IN NDIS_WORK_ITEM* pWork,
IN VOID* pContext )
// An NDIS_PROC routine to complete the de-registering of a SAP begun in
// LcmCmDeregisterSap.
//
{
ADAPTERCB* pAdapter;
NDIS_HANDLE hOldSap;
TRACE( TL_I, TM_Cm, ( "DeregSapPassive" ) );
// Unpack context information then free the work item.
//
pAdapter = (ADAPTERCB* )pContext;
ASSERT( pAdapter->ulTag == MTAG_ADAPTERCB );
FREE_NDIS_WORK_ITEM( pAdapter, pWork );
// Stop receiving datagrams (at least on behalf of this SAP) and
// deregister the SAP.
//
NdisAcquireSpinLock( &pAdapter->lockSap );
{
hOldSap = pAdapter->NdisSapHandle;
pAdapter->NdisSapHandle = NULL;
}
NdisReleaseSpinLock( &pAdapter->lockSap );
TdixClose( &pAdapter->tdix );
// Remove the adapter references for the NdisSapHandle and for scheduled
// work. Remove the address family reference for the NdisSapHandle. Do
// all this before telling NDIS the deregister has completed because it
// can call Halt and unload the driver before we run again here giving a
// C4 bugcheck.
//
DereferenceAdapter( pAdapter );
DereferenceAdapter( pAdapter );
DereferenceAf( pAdapter );
// Report result to client.
//
TRACE( TL_I, TM_Cm, ( "NdisMCmDeregSapComp" ) );
NdisMCmDeregisterSapComplete( NDIS_STATUS_SUCCESS, hOldSap );
TRACE( TL_I, TM_Cm, ( "NdisMCmDeregSapComp done" ) );
}
NDIS_STATUS
LcmCmCreateVc(
IN NDIS_HANDLE ProtocolAfContext,
IN NDIS_HANDLE NdisVcHandle,
OUT PNDIS_HANDLE ProtocolVcContext )
// Standard 'CmCreateVc' routine called by NDIS in response to a
// client's request to create a virtual circuit. This
// call must return synchronously.
//
{
NDIS_STATUS status;
ADAPTERCB* pAdapter;
VCCB* pVc;
pAdapter = (ADAPTERCB* )ProtocolAfContext;
if (pAdapter->ulTag != MTAG_ADAPTERCB)
{
ASSERT( !"Atag?" );
return NDIS_STATUS_INVALID_DATA;
}
// Allocate and zero a VC control block, then make any non-zero
// initializations.
//
pVc = ALLOC_VCCB( pAdapter );
if (!pVc)
{
WPLOG( LL_A, LM_Res, ( "Failed to allocate VCCB!" ) );
return NDIS_STATUS_RESOURCES;
}
NdisZeroMemory( pVc, sizeof(*pVc) );
TRACE( TL_I, TM_Cm, ( "LcmCmCreateVc $%p", pVc ) );
WPLOG( LL_M, LM_Cm, ( "New CALL %p", pVc ) );
// Zero the back pointer to the tunnel control block (above) and
// initialize the detached link since clean-up may be required before this
// block is ever linked into a tunnel chain.
//
InitializeListHead( &pVc->linkVcs );
InitializeListHead( &pVc->linkRequestingVcs );
InitializeListHead( &pVc->linkCompletingVcs );
// Set a marker for easier memory dump browsing.
//
pVc->ulTag = MTAG_VCCB;
// Save a back pointer to the adapter for use in LcmCmDeleteVc later.
//
ReferenceAdapter( pAdapter );
pVc->pAdapter = pAdapter;
// Initialize the VC and call spinlock and send/receive lists.
//
NdisAllocateSpinLock( &pVc->lockV );
NdisAllocateSpinLock( &pVc->lockCall );
InitializeListHead( &pVc->listSendsOut );
InitializeListHead( &pVc->listOutOfOrder );
// Save the NDIS handle of this VC for use in indications to NDIS later.
//
pVc->NdisVcHandle = NdisVcHandle;
// Initialize the estimated round trip time and send timeout per the
// suggestions in the draft/RFC.
//
pVc->ulRoundTripMs = L2TP_LnsDefaultPpd * 100;
pVc->ulSendTimeoutMs = pVc->ulRoundTripMs;
// Initialize link capabilities to the defaults for the adapter.
//
{
NDIS_WAN_CO_INFO* pwci = &pAdapter->info;
NDIS_WAN_CO_GET_LINK_INFO* pwcgli = &pVc->linkinfo;
NdisZeroMemory( &pVc->linkinfo, sizeof(pVc->linkinfo) );
pwcgli->MaxSendFrameSize = pwci->MaxFrameSize;
pwcgli->MaxRecvFrameSize = pwci->MaxFrameSize;
pwcgli->SendFramingBits = pwci->FramingBits;
pwcgli->RecvFramingBits = pwci->FramingBits;
pwcgli->SendACCM = pwci->DesiredACCM;
pwcgli->RecvACCM = pwci->DesiredACCM;
}
// Default send window, "slow started". This is typically adjusted based
// on peer's Receive Window AVP when the call is created.
//
pVc->ulSendWindow = pAdapter->info.MaxSendWindow >> 1;
if (pVc->ulSendWindow == 0)
{
pVc->ulSendWindow = 1;
}
// The VC control block's address is the VC context we return to NDIS.
//
*ProtocolVcContext = (NDIS_HANDLE )pVc;
// Add a reference to the control block and the associated address family
// that is removed by LmpCoDeleteVc.
//
ReferenceVc( pVc );
ReferenceAf( pAdapter );
TRACE( TL_V, TM_Cm, ( "LcmCmCreateVc=0" ) );
return NDIS_STATUS_SUCCESS;
}
NDIS_STATUS
LcmCmDeleteVc(
IN NDIS_HANDLE ProtocolVcContext )
// Standard 'CmDeleteVc' routine called by NDIS in response to a
// client's request to delete a virtual circuit. This
// call must return synchronously.
//
{
VCCB* pVc;
TRACE( TL_I, TM_Cm, ( "LcmCmDelVc($%p)", ProtocolVcContext ) );
pVc = (VCCB* )ProtocolVcContext;
if (pVc->ulTag != MTAG_VCCB)
{
ASSERT( !"Vtag?" );
WPLOG( LL_A, LM_Cm, ( "VC %p invalid tag?", pVc ) );
return NDIS_STATUS_INVALID_DATA;
}
// This flag catches attempts by the client to delete the VC twice.
//
if (ReadFlags( &pVc->ulFlags ) & VCBF_VcDeleted)
{
TRACE( TL_A, TM_Cm, ( "VC $%p re-deleted?", pVc ) );
WPLOG( LL_A, LM_Cm, ( "VC %p re-deleted?", pVc ) );
return NDIS_STATUS_FAILURE;
}
WPLOG( LL_M, LM_Cm, ( "Free CALL %p, Cid %d, Peer's Cid %d", pVc, pVc->usCallId, pVc->usAssignedCallId ) );
SetFlags( &pVc->ulFlags, VCBF_VcDeleted );
// Remove the references added by LcmCmCreateVc.
//
DereferenceAf( pVc->pAdapter );
DereferenceVc( pVc );
TRACE( TL_V, TM_Cm, ( "LcmCmDelVc=0" ) );
return NDIS_STATUS_SUCCESS;
}
NDIS_STATUS
LcmCmMakeCall(
IN NDIS_HANDLE CallMgrVcContext,
IN OUT PCO_CALL_PARAMETERS CallParameters,
IN NDIS_HANDLE NdisPartyHandle,
OUT PNDIS_HANDLE CallMgrPartyContext )
// Standard 'CmMakeCallHandler' routine called by NDIS when the a client
// has requested to connect to a remote end-point. See DDK doc.
//
{
NDIS_STATUS status;
CO_SPECIFIC_PARAMETERS* pMSpecifics;
CO_AF_TAPI_MAKE_CALL_PARAMETERS UNALIGNED* pTmParams;
LINE_CALL_PARAMS* pTcParams;
L2TP_CALL_PARAMETERS* pLcParams;
VCCB* pVc;
TUNNELCB* pTunnel;
ADAPTERCB* pAdapter;
ULONG ulIpAddress;
BOOLEAN fDefaultLcParams;
BOOLEAN fExclusiveTunnel;
TRACE( TL_I, TM_Cm, ( "LcmCmMakeCall" ) );
pVc = (VCCB* )CallMgrVcContext;
if (pVc->ulTag != MTAG_VCCB)
{
ASSERT( "!Vtag?" );
WPLOG( LL_A, LM_Cm, ( "Vtag? %p?", pVc ) );
return NDIS_STATUS_INVALID_DATA;
}
pAdapter = pVc->pAdapter;
// L2TP has no concept of point-to-multi-point "parties".
//
if (CallMgrPartyContext)
{
*CallMgrPartyContext = NULL;
}
// Validate call parameters.
//
do
{
// Validate base call parameters.
//
{
// L2TP provides switched VCs only.
//
if (CallParameters->Flags &
(PERMANENT_VC | BROADCAST_VC | MULTIPOINT_VC))
{
status = NDIS_STATUS_NOT_SUPPORTED;
break;
}
// We're supposed to set CALL_PARAMETERS_CHANGED on return if we
// changed the call parameters, leaving a catch-22 if caller
// already has it set. Also, for TAPI address family, media call
// parameters must be present, though call manager call parameters
// are not.
//
if ((CallParameters->Flags & CALL_PARAMETERS_CHANGED)
|| !CallParameters->MediaParameters)
{
status = NDIS_STATUS_INVALID_DATA;
break;
}
pMSpecifics = &CallParameters->MediaParameters->MediaSpecific;
if (pMSpecifics->Length < sizeof(CO_AF_TAPI_MAKE_CALL_PARAMETERS))
{
status = NDIS_STATUS_INVALID_DATA;
break;
}
pTmParams =
(CO_AF_TAPI_MAKE_CALL_PARAMETERS UNALIGNED* )&pMSpecifics->Parameters;
if (pTmParams->LineCallParams.Length < sizeof(LINE_CALL_PARAMS))
{
status = NDIS_STATUS_INVALID_DATA;
break;
}
pTcParams = (LINE_CALL_PARAMS* )
(((CHAR UNALIGNED* )&pTmParams->LineCallParams)
+ pTmParams->LineCallParams.Offset);
}
// Validate call parameters.
//
{
CHAR* pszAddress;
// Caller must provide a destination IP address. The address is
// ANSI as are all non-format-coded strings to/from TAPI.
//
pszAddress =
StrDupNdisVarDataDescStringToA( &pTmParams->DestAddress );
if (!pszAddress)
{
status = NDIS_STATUS_RESOURCES;
break;
}
ulIpAddress = IpAddressFromDotted( pszAddress );
FREE_NONPAGED( pszAddress );
if (ulIpAddress == 0 ||
IPADDR_IS_BROADCAST(ulIpAddress) ||
IPADDR_IS_MULTICAST(ulIpAddress))
{
status = NDIS_STATUS_INVALID_ADDRESS;
break;
}
// Reject if unknown WAN-type bits are set.
//
if (pTcParams->ulMediaMode
& ~(LINEMEDIAMODE_DATAMODEM | LINEMEDIAMODE_DIGITALDATA))
{
status = NDIS_STATUS_INVALID_DATA;
break;
}
}
// Validate L2TP call parameters.
//
// When caller doesn't provide L2TP-specific parameters a local block
// with default values is substituted for the convenience of the rest
// of the code.
//
{
if (pTcParams->ulDevSpecificSize == sizeof(*pLcParams))
{
pLcParams = (L2TP_CALL_PARAMETERS* )
((CHAR* )pTcParams) + pTcParams->ulDevSpecificOffset;
fDefaultLcParams = FALSE;
}
else
{
pLcParams =
(L2TP_CALL_PARAMETERS* )ALLOC_NONPAGED(
sizeof(*pLcParams), MTAG_L2TPPARAMS );
if (!pLcParams)
{
WPLOG( LL_A, LM_Res, ( "Failed to allocate L2TP_CALL_PARAMETERS") );
status = NDIS_STATUS_RESOURCES;
break;
}
fDefaultLcParams = TRUE;
NdisZeroMemory( pLcParams, sizeof(*pLcParams) );
pLcParams->ulPhysicalChannelId = 0xFFFFFFFF;
}
}
status = NDIS_STATUS_SUCCESS;
}
while (FALSE);
if (status != NDIS_STATUS_SUCCESS)
{
return status;
}
// Stash the call parameters in the VC block. Simultaneous MakeCalls on
// the same VC is a client error, but it's easy to guard against so do
// that here.
//
if (InterlockedCompareExchangePointer(
&pVc->pMakeCall, CallParameters, NULL ))
{
ASSERT( !"Double MakeCall?" );
if (fDefaultLcParams)
{
FREE_NONPAGED( pLcParams );
}
return NDIS_STATUS_CALL_ACTIVE;
}
pVc->pTmParams = pTmParams;
pVc->pTcParams = pTcParams;
pVc->pLcParams = pLcParams;
// This VC's call is now cleanable, i.e. the base call clean up routine,
// InactiveCallCleanUp, will now eventually be called.
//
do
{
// Convert parameter and configuration information to VC flags where
// appropriate.
//
{
ULONG ulMask = 0;
if (CallParameters->MediaParameters->Flags
& RECEIVE_TIME_INDICATION)
{
ulMask |= VCBF_IndicateTimeReceived;
}
if (pAdapter->ulFlags & ACBF_OutgoingRoleLac)
{
ulMask |= VCBF_IncomingFsm;
}
if (fDefaultLcParams)
{
ulMask |= VCBF_DefaultLcParams;
}
if (ulMask)
{
SetFlags( &pVc->ulFlags, ulMask );
}
}
// Take the next progressively increasing call serial number string.
//
NdisInterlockedIncrement( &pAdapter->ulCallSerialNumber );
// Reserve a Call-ID slot in the adapter's table.
//
status = ReserveCallIdSlot( pVc );
if (status != NDIS_STATUS_SUCCESS)
{
break;
}
// Create a new or find an existing tunnel control block for caller's
// specified IP address in the adapter's list. The returned block is
// linked to the adapter and referenced. The reference is the one for
// linkage in the list, i.e. case (a).
//
fExclusiveTunnel = (BOOLEAN )
((fDefaultLcParams)
? !!(pAdapter->ulFlags & ACBF_ExclusiveTunnels)
: !!(pLcParams->ulFlags & L2TPCPF_ExclusiveTunnel));
pTunnel = SetupTunnel( pAdapter, ulIpAddress, 0, 0, fExclusiveTunnel );
if (!pTunnel)
{
status = NDIS_STATUS_RESOURCES;
break;
}
NdisAcquireSpinLock( &pTunnel->lockT );
{
if (ReadFlags( &pTunnel->ulFlags ) & TCBF_Closing)
{
// This is unlikely because SetupTunnel only finds non-closing
// tunnels, but this check and linkage must occur atomically
// under 'lockT'. New VCs must not be linked onto closing
// tunnels.
//
status = NDIS_STATUS_TAPI_DISCONNECTMODE_UNKNOWN;
}
else
{
// The call has an open operation pending and can accept close
// requests.
//
SetFlags( &pVc->ulFlags,
VCBF_ClientOpenPending
| VCBF_CallClosableByClient
| VCBF_CallClosableByPeer );
NdisAcquireSpinLock( &pTunnel->lockVcs );
{
// Set the back pointer to it's tunnel. The associated
// tunnel reference was taken by SetupTunnel above.
//
pVc->pTunnel = pTunnel;
// Link the VC into the tunnel's list of associated VCs.
//
InsertTailList( &pTunnel->listVcs, &pVc->linkVcs );
}
NdisReleaseSpinLock( &pTunnel->lockVcs );
}
}
NdisReleaseSpinLock( &pTunnel->lockT );
}
while (FALSE);
if (status != NDIS_STATUS_SUCCESS)
{
CallCleanUp( pVc );
return status;
}
// Schedule FsmOpenTunnel to kick off the combination of tunnel and call
// creation state machines that will eventually call NdisMakeCallComplete
// to notify caller of the result. A happy side effect of the scheduling
// is that the callback will occur at PASSIVE IRQL, the level at which TDI
// clients must run.
//
pVc->state = CS_WaitTunnel;
ScheduleTunnelWork(
pTunnel, pVc, FsmOpenTunnel,
0, 0, 0, 0, FALSE, FALSE );
TRACE( TL_V, TM_Cm, ( "LcmCmMakeCall pending" ) );
return NDIS_STATUS_PENDING;
}
NDIS_STATUS
LcmCmCloseCall(
IN NDIS_HANDLE CallMgrVcContext,
IN NDIS_HANDLE CallMgrPartyContext,
IN PVOID CloseData,
IN UINT Size )
// Standard 'CmCloseCallHandler' routine called by NDIS when the a client
// has requested to tear down a call. See DDK doc.
//
{
NDIS_STATUS status;
ADAPTERCB* pAdapter;
VCCB* pVc;
ULONG ulFlags;
BOOLEAN fCallClosable;
TRACE( TL_I, TM_Cm, ( "LcmCmCloseCall($%p)", CallMgrVcContext ) );
pVc = (VCCB* )CallMgrVcContext;
if (pVc->ulTag != MTAG_VCCB)
{
ASSERT( !"Vtag?" );
return NDIS_STATUS_INVALID_DATA;
}
pAdapter = pVc->pAdapter;
NdisAcquireSpinLock( &pVc->lockV );
{
ulFlags = ReadFlags( &pVc->ulFlags );
if (ulFlags & VCBF_WaitCloseCall)
{
// Note that we got the close from the client we were expecting.
// This is helpful information when debugging, but is not
// otherwise used.
//
ClearFlags( &pVc->ulFlags, VCBF_WaitCloseCall );
}
if (ulFlags & VCBF_CallClosableByClient)
{
fCallClosable = TRUE;
// Accepting this close makes the call no longer closable by
// client or peer. Any peer operation that was pending is
// cleared, and a client close becomes pending. It is possible to
// have both a client open and close pending at the same time.
//
ClearFlags( &pVc->ulFlags,
(VCBF_CallClosableByClient
| VCBF_CallClosableByPeer
| VCBF_PeerClosePending
| VCBF_PeerOpenPending) );
SetFlags( &pVc->ulFlags, VCBF_ClientClosePending );
// If a client open is pending, it fails.
//
if (ulFlags & VCBF_ClientOpenPending)
{
pVc->status = NDIS_STATUS_TAPI_DISCONNECTMODE_NORMAL;
}
// Close the call, being graceful if possible.
//
ASSERT( pVc->pTunnel );
ScheduleTunnelWork(
pVc->pTunnel, pVc, FsmCloseCall,
(ULONG_PTR )CRESULT_Administrative, (ULONG_PTR )GERR_None,
0, 0, FALSE, FALSE );
}
else
{
TRACE( TL_A, TM_Cm, ( "Call not closable!" ) );
WPLOG( LL_A, LM_Cm, ( "Call not closable, pVc = %p!", pVc ) );
fCallClosable = FALSE;
}
}
NdisReleaseSpinLock( &pVc->lockV );
if (!fCallClosable)
{
// The call is not in a closable state. Just fail the request
// immediately. Since the docs say the call must return PENDING, this
// is done by calling the completion routine here, in typical NDIS
// fashion.
//
++g_ulCallsNotClosable;
TRACE( TL_A, TM_Cm, ( "Call NdisMCmCloseCallComp(FAIL)!" ) );
WPLOG( LL_A, LM_Cm, ( "Call NdisMCmCloseCallComp(FAIL)!" ) );
NdisMCmCloseCallComplete(
NDIS_STATUS_FAILURE, pVc->NdisVcHandle, NULL );
TRACE( TL_I, TM_Cm, ( "NdisMCmCloseCallComp done" ) );
// Careful, client may have deleted the VC, so 'pVc' must not be
// referenced hereafter.
//
}
TRACE( TL_V, TM_Cm, ( "LcmCmCloseCall pending" ) );
return NDIS_STATUS_PENDING;
}
VOID
LcmCmIncomingCallComplete(
IN NDIS_STATUS Status,
IN NDIS_HANDLE CallMgrVcContext,
IN PCO_CALL_PARAMETERS CallParameters )
// Standard 'CmIncomingCallCompleteHandler' routine called by NDIS when
// a client has responded to the call-managers's previously dispatched
// incoming call. See DDK doc.
//
{
VCCB* pVc;
TRACE( TL_I, TM_Cm, ( "LcmCmInCallComp($%p,s=$%08x)", CallMgrVcContext, Status ) );
pVc = (VCCB* )CallMgrVcContext;
if (pVc->ulTag != MTAG_VCCB)
{
ASSERT( !"VTag" );
return;
}
// The work is scheduled to avoid a possible recursive loop of completing
// VCs that could overrun the stack. See bug 370996.
//
ASSERT( pVc->pTunnel );
ScheduleTunnelWork(
pVc->pTunnel, pVc, IncomingCallCompletePassive,
(ULONG )Status, 0, 0, 0, FALSE, FALSE );
TRACE( TL_V, TM_Cm, ( "LcmCmInCallComp done" ) );
}
VOID
IncomingCallCompletePassive(
IN TUNNELWORK* pWork,
IN TUNNELCB* pTunnel,
IN VCCB* pVc,
IN ULONG_PTR* punpArgs )
// A PTUNNELWORK routine to complete an LcmCmIncomingCallComplete.
//
// This routine is called only at PASSIVE IRQL.
//
{
NDIS_STATUS status;
ADAPTERCB* pAdapter;
TRACE( TL_N, TM_Cm, ( "InCallCompApc" ) );
// Unpack context information then free the work item.
//
pAdapter = pVc->pAdapter;
status = (NDIS_STATUS )(punpArgs[ 0 ]);
FREE_TUNNELWORK( pAdapter, pWork );
// Guard against a double-complete error by the client.
//
if (ReadFlags( &pVc->ulFlags ) & VCBF_WaitInCallComplete)
{
ClearFlags( &pVc->ulFlags, VCBF_WaitInCallComplete );
if (status != NDIS_STATUS_SUCCESS)
{
pVc->usResult = CRESULT_Busy;
pVc->usError = GERR_None;
// Turn off the "call NdisMCmDispatchIncomingCloseCall if peer
// terminates the call" flag. It was turned on even though peer
// pended, per JameelH.
//
ClearFlags( &pVc->ulFlags, VCBF_VcDispatched );
WPLOG( LL_A, LM_Cm, ( "Failed pVc = %p,s= %08x!)", pVc, status ) );
}
SetupVcComplete( pTunnel, pVc );
}
else
{
ASSERT( !"Not expecting InCallComp?" );
++g_ulUnexpectedInCallCompletes;
}
// Remove the VC and call references covering the dispatched incoming
// call.
//
DereferenceCall( pVc );
DereferenceVc( pVc );
}
VOID
LcmCmActivateVcComplete(
IN NDIS_STATUS Status,
IN NDIS_HANDLE CallMgrVcContext,
IN PCO_CALL_PARAMETERS CallParameters )
// Standard 'CmActivateVcCompleteHandler' routine called by NDIS when the
// mini-port has completed the call-manager's previous request to activate
// a virtual circuit. See DDK doc.
//
{
ASSERT( !"LcmCmActVcComp?" );
}
VOID
LcmCmDeactivateVcComplete(
IN NDIS_STATUS Status,
IN NDIS_HANDLE CallMgrVcContext )
// Standard 'CmDeactivateVcCompleteHandler' routine called by NDIS when
// the mini-port has completed the call-manager's previous request to
// de-activate a virtual circuit. See DDK doc.
//
{
ASSERT( !"LcmCmDeactVcComp?" );
}
NDIS_STATUS
LcmCmModifyCallQoS(
IN NDIS_HANDLE CallMgrVcContext,
IN PCO_CALL_PARAMETERS CallParameters )
// Standard 'CmModifyQoSCallHandler' routine called by NDIS when a client
// requests a modification in the quality of service provided by the
// virtual circuit. See DDK doc.
//
{
TRACE( TL_N, TM_Cm, ( "LcmCmModQoS" ) );
// There is no useful concept of quality of service for IP media.
//
return NDIS_STATUS_NOT_SUPPORTED;
}
NDIS_STATUS
LcmCmRequest(
IN NDIS_HANDLE CallMgrAfContext,
IN NDIS_HANDLE CallMgrVcContext,
IN NDIS_HANDLE CallMgrPartyContext,
IN OUT PNDIS_REQUEST NdisRequest )
// Standard 'CmRequestHandler' routine called by NDIS in response to a
// client's request for information from the call manager.
//
{
ADAPTERCB* pAdapter;
VCCB* pVc;
NDIS_STATUS status;
TRACE( TL_I, TM_Cm, ( "LcmCmReq" ) );
pAdapter = (ADAPTERCB* )CallMgrAfContext;
if (pAdapter->ulTag != MTAG_ADAPTERCB)
{
ASSERT( !"Atag?" );
return NDIS_STATUS_INVALID_DATA;
}
pVc = (VCCB* )CallMgrVcContext;
if (pVc && pVc->ulTag != MTAG_VCCB)
{
ASSERT( !"Vtag?" );
return NDIS_STATUS_INVALID_DATA;
}
switch (NdisRequest->RequestType)
{
case NdisRequestQueryInformation:
{
status = QueryCmInformation(
pAdapter,
pVc,
NdisRequest->DATA.QUERY_INFORMATION.Oid,
NdisRequest->DATA.QUERY_INFORMATION.InformationBuffer,
NdisRequest->DATA.QUERY_INFORMATION.InformationBufferLength,
&NdisRequest->DATA.QUERY_INFORMATION.BytesWritten,
&NdisRequest->DATA.QUERY_INFORMATION.BytesNeeded );
break;
}
case NdisRequestSetInformation:
{
TRACE( TL_A, TM_Cm,
( "CmSetOID=%d?", NdisRequest->DATA.SET_INFORMATION.Oid ) );
status = NDIS_STATUS_NOT_SUPPORTED;
break;
}
default:
{
status = NDIS_STATUS_NOT_SUPPORTED;
TRACE( TL_A, TM_Cm, ( "CmType=%d?", NdisRequest->RequestType ) );
break;
}
}
return status;
}
//-----------------------------------------------------------------------------
// Call utility routines (alphabetically)
// Some are used externally
//-----------------------------------------------------------------------------
VOID
ActivateCallIdSlot(
IN VCCB* pVc )
// Sets the address of the VC, 'pVc', in the adapter's table of Call-IDs
// enabling receives on the Call-ID.
//
{
ADAPTERCB* pAdapter;
pAdapter = pVc->pAdapter;
if (pVc->usCallId > 0 && pVc->usCallId <= pAdapter->usMaxVcs)
{
ASSERT( pAdapter->ppVcs[ pVc->usCallId - 1 ] == (VCCB* )-1 );
NdisAcquireSpinLock( &pAdapter->lockVcs );
{
pAdapter->ppVcs[ pVc->usCallId - 1 ] = pVc;
}
NdisReleaseSpinLock( &pAdapter->lockVcs );
}
}
VOID
BuildCallParametersShell(
IN ADAPTERCB* pAdapter,
IN ULONG ulIpAddress,
IN ULONG ulBufferLength,
OUT CHAR* pBuffer,
OUT CO_AF_TAPI_INCOMING_CALL_PARAMETERS UNALIGNED ** ppTiParams,
OUT LINE_CALL_INFO** ppTcInfo,
OUT L2TP_CALL_PARAMETERS** ppLcParams )
// Loads caller's buffer 'pBuffer' of length 'ulBufferLength' bytes with a
// CO_CALL_PARAMETERS structure containing default values. Loads caller's
// '*ppTiParams', '*ppTcInfo', and '*ppLcParams' with shortcut pointers to
// the TAPI call and L2TP specific structures within the built
// CO_CALL_PARAMETERS. 'PAdapter' is the adapter context. 'pUlIpAddress'
// is the IP address of the peer in network byte order.
//
{
CO_CALL_PARAMETERS* pCp;
CO_CALL_MANAGER_PARAMETERS* pCmp;
CO_MEDIA_PARAMETERS* pMp;
CO_AF_TAPI_INCOMING_CALL_PARAMETERS UNALIGNED * pTip;
LINE_CALL_INFO* pLci;
L2TP_CALL_PARAMETERS* pLcp;
CHAR* pszCallerId;
ULONG ulLciTotalSize;
ULONG ulMediaSpecificSize;
ULONG ulBytesPerSec;
WCHAR* pszCallerID;
NdisZeroMemory( pBuffer, ulBufferLength );
pCp = (CO_CALL_PARAMETERS* )pBuffer;
pCmp = (PCO_CALL_MANAGER_PARAMETERS ) ( (PUCHAR)(pCp + 1) + sizeof(PVOID) );
(ULONG_PTR) pCmp &= ~( (ULONG_PTR) sizeof(PVOID) - 1 );
pCp->CallMgrParameters = pCmp;
pMp = (PCO_MEDIA_PARAMETERS ) ( (PUCHAR) (pCmp + 1) + sizeof(PVOID) );
(ULONG_PTR) pMp &= ~( (ULONG_PTR) sizeof(PVOID) - 1 );
pCp->MediaParameters = pMp;
// This needs to be dynamic based on speed reported by TDI.
//
ulBytesPerSec = L2TP_LanBps / 8;
pCmp->Transmit.TokenRate = ulBytesPerSec;
pCmp->Transmit.PeakBandwidth = ulBytesPerSec;
pCmp->Transmit.MaxSduSize = L2TP_MaxFrameSize;
pCmp->Receive.TokenRate = ulBytesPerSec;
pCmp->Receive.PeakBandwidth = ulBytesPerSec;
pCmp->Receive.MaxSduSize = L2TP_MaxFrameSize;
ulLciTotalSize =
sizeof(*pLci)
+ sizeof(PVOID)
+ sizeof(*pLcp)
+ ((L2TP_MaxDottedIpLen + 1) * sizeof(WCHAR));
ulMediaSpecificSize = sizeof(*pTip) + sizeof(PVOID) + ulLciTotalSize;
pTip =
(CO_AF_TAPI_INCOMING_CALL_PARAMETERS UNALIGNED* )pMp->MediaSpecific.Parameters;
pLci = (LINE_CALL_INFO*) ( (PUCHAR) (pTip + 1) + sizeof(PVOID) );
(ULONG_PTR) pLci &= ~( (ULONG_PTR) sizeof(PVOID) - 1 );
pLcp = (L2TP_CALL_PARAMETERS*) ( (PUCHAR) (pLci + 1) + sizeof(PVOID) );
(ULONG_PTR) pLcp &= ~( (ULONG_PTR) sizeof(PVOID) - 1 );
pMp->ReceiveSizeHint = L2TP_MaxFrameSize;
pMp->MediaSpecific.Length = ulMediaSpecificSize;
pTip->LineCallInfo.Length = (USHORT )ulLciTotalSize;
pTip->LineCallInfo.MaximumLength = (USHORT )ulLciTotalSize;
pTip->LineCallInfo.Offset = (ULONG) ((CHAR*) pLci - (CHAR*) &pTip->LineCallInfo);
pLci->ulTotalSize = ulLciTotalSize;
pLci->ulNeededSize = ulLciTotalSize;
pLci->ulUsedSize = ulLciTotalSize;
pLci->ulLineDeviceID = pAdapter->ulSapLineId;
pLci->ulAddressID = pAdapter->ulSapAddressId;
pLci->ulDevSpecificSize = sizeof(*pLcp);
pLci->ulDevSpecificOffset = (ULONG) ((CHAR*) pLcp - (CHAR*) pLci);
pLci->ulBearerMode = LINEBEARERMODE_DATA;
pLci->ulCallerIDOffset = pLci->ulDevSpecificOffset + pLci->ulDevSpecificSize;
pszCallerID = (WCHAR*)(((CHAR* )pLci) + pLci->ulCallerIDOffset);
DottedFromIpAddress( ulIpAddress, (CHAR* )pszCallerID, TRUE );
pLci->ulCallerIDSize = (StrLenW( pszCallerID ) + 1) * sizeof(WCHAR);
pLci->ulCallerIDFlags = LINECALLPARTYID_ADDRESS;
pLcp->ulPhysicalChannelId = 0xFFFFFFFF;
// Fill in shortcut outputs.
//
*ppTiParams = pTip;
*ppTcInfo = pLci;
*ppLcParams = pLcp;
}
VOID
CallCleanUp(
IN VCCB* pVc )
// De-associates the VC from the tunnel, preparing for and de-activating
// the call.
//
{
NDIS_STATUS status;
ULONG ulFlags;
ulFlags = ReadFlags( &pVc->ulFlags );
TRACE( TL_I, TM_Cm, ( "CallCleanUp(pV=$%p,cid=%d,act=%d)",
pVc, (ULONG )pVc->usCallId, !!(ulFlags & VCBF_VcActivated) ) );
ASSERT( pVc->ulTag == MTAG_VCCB );
if (ReadFlags( &pVc->ulFlags ) & VCBF_VcActivated)
{
TRACE( TL_I, TM_Cm, ( "NdisMCmDeactVc" ) );
status = NdisMCmDeactivateVc( pVc->NdisVcHandle );
TRACE( TL_I, TM_Cm, ( "NdisMCmDeactVc=$%x", status ) );
ASSERT( status == NDIS_STATUS_SUCCESS );
ClearFlags( &pVc->ulFlags, VCBF_VcActivated );
DereferenceCall( pVc );
// The above actions lead to the call reference eventually going to 0,
// at which time clean up resumes in DereferenceCall.
//
}
else
{
InactiveCallCleanUp( pVc );
}
}
VOID
CallSetupComplete(
IN VCCB* pVc )
// Clean up 'pVc' allocations used only at call setup, if any.
//
{
if (InterlockedExchangePointer( &pVc->pMakeCall, NULL ))
{
ASSERT( pVc->pTmParams );
ASSERT( pVc->pTcParams );
ASSERT( pVc->pLcParams );
if (ReadFlags( &pVc->ulFlags ) & VCBF_DefaultLcParams)
{
// Caller did not provide any LcParams. Free the 'default' version we
// created for convenience.
//
FREE_NONPAGED( pVc->pLcParams );
}
pVc->pTmParams = NULL;
pVc->pTcParams = NULL;
pVc->pLcParams = NULL;
}
UnlockIcs( pVc, FALSE );
}
VOID
CloseCall(
IN TUNNELWORK* pWork,
IN TUNNELCB* pTunnel,
IN VCCB* pVc,
IN ULONG_PTR* punpArgs )
// A PTUNNELWORK routine to close the call on 'pVc'.
//
// This routine is called only at PASSIVE IRQL.
//
{
BOOLEAN fCompleteVcs;
TRACE( TL_I, TM_Fsm, ( "CloseCall(pV=$%p)", pVc ) );
// No context information so just free the work item.
//
FREE_TUNNELWORK( pTunnel->pAdapter, pWork );
// Close down the call.
//
NdisAcquireSpinLock( &pTunnel->lockT );
{
NdisAcquireSpinLock( &pVc->lockV );
{
fCompleteVcs = CloseCall2(
pTunnel, pVc, TRESULT_Shutdown, GERR_None );
}
NdisReleaseSpinLock( &pVc->lockV );
if (fCompleteVcs)
{
CompleteVcs( pTunnel );
}
}
NdisReleaseSpinLock( &pTunnel->lockT );
}
BOOLEAN
CloseCall2(
IN TUNNELCB* pTunnel,
IN VCCB* pVc,
IN USHORT usResult,
IN USHORT usError )
// Close the call on VC 'pVc' of tunnel 'pTunnel'. 'UsResult' and
// 'usError' are the TRESULT_* and GERR_* codes to be reported in the
// StopCCN message, if applicable.
//
// Returns true if caller should call CompleteVcs after releasing 'lockV'
// or false if not.
//
// IMPORTANT: Caller must hold 'lockT' and 'lockV'.
//
{
ULONG ulFlags;
// Check if another path has completed the VC already. If so, there's no
// reason to continue. Without the local tunnel cancel optimization
// below, this check can be removed entirely and everything safely falls
// through. This check should include all "non-completing" conditions in
// CallTransitionComplete.
//
ulFlags = ReadFlags( &pVc->ulFlags );
if (!(ulFlags & VCBM_Pending))
{
if (!(ulFlags & VCBF_CallClosableByPeer))
{
TRACE( TL_A, TM_Cm, ( "Not closable" ) );
WPLOG( LL_A, LM_Cm, ( "pVc = %p not closable!", pVc ) );
return FALSE;
}
}
// For locally initiated tunnels, check if this VC is the only one on the
// tunnel, and if so, close the tunnel directly which slams this call.
// Without this, the call closure would still bring down the tunnel.
// However, the tunnel would complete it's transition normally, then be
// dropped. This speeds things up a little, giving quick response in the
// case where user cancels an attempt to connect to a wrong address or
// non-responsive server.
//
if (!(ReadFlags( &pTunnel->ulFlags) & TCBF_PeerInitiated))
{
BOOLEAN fMultipleVcs;
NdisAcquireSpinLock( &pTunnel->lockVcs );
{
fMultipleVcs =
(pTunnel->listVcs.Flink != pTunnel->listVcs.Blink);
}
NdisReleaseSpinLock( &pTunnel->lockVcs );
if (!fMultipleVcs)
{
ScheduleTunnelWork(
pTunnel, NULL, FsmCloseTunnel,
(ULONG_PTR )usResult,
(ULONG_PTR )usError,
0, 0, FALSE, FALSE );
return FALSE;
}
}
// Slam the call closed.
//
CallTransitionComplete( pTunnel, pVc, CS_Idle );
return TRUE;
}
VOID
CloseTunnel(
IN TUNNELWORK* pWork,
IN TUNNELCB* pTunnel,
IN VCCB* pVc,
IN ULONG_PTR* punpArgs )
// A PTUNNELWORK routine to slam closed tunnel 'pTunnel'. See also
// FsmCloseTunnel, which is often more appropriate.
//
// This routine is called only at PASSIVE IRQL.
//
{
TRACE( TL_I, TM_Fsm, ( "CloseTunnel(pT=$%p)", pTunnel ) );
// No context information so just free the work item.
//
FREE_TUNNELWORK( pTunnel->pAdapter, pWork );
// Close down the tunnel.
//
NdisAcquireSpinLock( &pTunnel->lockT );
{
CloseTunnel2( pTunnel );
}
NdisReleaseSpinLock( &pTunnel->lockT );
}
VOID
CloseTunnel2(
IN TUNNELCB* pTunnel )
// Close the tunnel 'pTunnel'.
//
// IMPORTANT: Caller must hold 'lockT'.
//
{
SetFlags( &pTunnel->ulFlags, TCBF_Closing );
TunnelTransitionComplete( pTunnel, CCS_Idle );
CompleteVcs( pTunnel );
}
VOID
CompleteVcs(
IN TUNNELCB* pTunnel )
// Complete the pending operation for each of the VCs on the completing
// list of tunnel 'pTunnel'.
//
// IMPORTANT: Caller must hold 'lockT'. This routine may release and
// re-acquire 'lockT'.
//
{
while (!IsListEmpty( &pTunnel->listCompletingVcs ))
{
LIST_ENTRY* pLink;
VCCB* pVc;
NDIS_STATUS status;
LINKSTATUSINFO info;
ULONG ulFlags;
NDIS_STATUS statusVc;
if (pTunnel->listCompletingVcs.Flink->Flink
== pTunnel->listCompletingVcs.Flink)
{
// This is a hack to work around a rare listCompletingVcs
// corruption problem whose cause has me baffled. When the
// problem occurs, a VCCB with it's link initialized appears in
// the list. This code removes the corrupted case hopefully
// resulting in exactly the same state as the normal path in the
// "else" clause.
//
pLink = pTunnel->listCompletingVcs.Flink;
InitializeListHead( &pTunnel->listCompletingVcs );
ASSERT( FALSE );
++g_ulCompletingVcCorruption;
}
else
{
// Pop the next completing VC from the list.
//
pLink = RemoveHeadList( &pTunnel->listCompletingVcs );
}
InitializeListHead( pLink );
// Take a reference covering use of the VC pointer obtained from the
// completing list.
//
pVc = CONTAINING_RECORD( pLink, VCCB, linkCompletingVcs );
ReferenceVc( pVc );
ASSERT(ReadFlags(&pVc->ulFlags) & VCBF_CompPending);
ClearFlags( &pVc->ulFlags, VCBF_CompPending );
TRACE( TL_V, TM_Cm, ( "CompleteVc $%p", pVc ) );
NdisAcquireSpinLock( &pVc->lockV );
{
// Note the pending flags then clear them, to ensure that all
// pending operations are completed exactly once. This is
// necessary since ClientOpen and ClientClose events may be
// pending simultaneously. (Thanks a lot NDIS guys).
//
ulFlags = ReadFlags( &pVc->ulFlags );
ClearFlags( &pVc->ulFlags, VCBM_Pending );
// Convert client close pending to client close completion,
// for reference later when call references reach zero. The
// flag determines if NdisMCmCloseCallComplete must be called.
//
if (ulFlags & VCBF_ClientClosePending)
{
SetFlags( &pVc->ulFlags, VCBF_ClientCloseCompletion );
}
// Before releasing the lock, make "safe" copies of any VC
// parameters we might need.
//
TransferLinkStatusInfo( pVc, &info );
statusVc = pVc->status;
}
NdisReleaseSpinLock( &pVc->lockV );
NdisReleaseSpinLock( &pTunnel->lockT );
{
if (ulFlags & VCBF_PeerOpenPending)
{
TRACE( TL_N, TM_Cm, ( "PeerOpen complete, s=$%x", statusVc ) );
if (statusVc == NDIS_STATUS_SUCCESS)
{
// Peer initiated call succeeded.
//
ASSERT( ulFlags & VCBF_VcDispatched );
TRACE( TL_I, TM_Cm, ( "NdisMCmDispCallConn" ) );
NdisMCmDispatchCallConnected( pVc->NdisVcHandle );
TRACE( TL_I, TM_Cm, ( "NdisMCmDispCallConn done" ) );
IndicateLinkStatus( pVc, &info );
CallSetupComplete( pVc );
}
else
{
// Peer initiated call failed.
//
if (ulFlags & VCBF_VcDispatched)
{
SetFlags( &pVc->ulFlags, VCBF_WaitCloseCall );
TRACE( TL_A, TM_Cm, ( "Call NdisMCmDispInCloseCall(s=$%x)", statusVc ) );
NdisMCmDispatchIncomingCloseCall(
statusVc, pVc->NdisVcHandle, NULL, 0 );
TRACE( TL_I, TM_Cm,
( "NdisMCmDispInCloseCall done" ) );
// Client will call NdisClCloseCall which will get
// our LcmCloseCall handler called to clean up
// call setup, de-activate and delete the VC, as
// necessary.
//
}
else
{
// Return the VC to "just created" state.
//
CallCleanUp( pVc );
}
}
}
else if (ulFlags & VCBF_ClientOpenPending)
{
TRACE( TL_N, TM_Cm, ( "ClientOpen complete, s=$%x", statusVc ) );
if (statusVc == NDIS_STATUS_SUCCESS)
{
// Client initiated open, i.e. MakeCall, succeeded.
//
// Activating the VC is a CoNDIS preliminary to reporting
// the MakeCall complete. For L2TP, all it does is get
// the NDIS state flags set correctly.
//
TRACE( TL_I, TM_Cm, ( "Call NdisMCmActivateVc" ) );
ASSERT( pVc->pMakeCall );
status = NdisMCmActivateVc(
pVc->NdisVcHandle, pVc->pMakeCall );
TRACE( TL_I, TM_Cm, ( "NdisMCmActivateVc=$%x", status ) );
ASSERT( status == NDIS_STATUS_SUCCESS );
{
BOOLEAN fCallActive;
SetFlags( &pVc->ulFlags, VCBF_VcActivated );
fCallActive = ReferenceCall( pVc );
ASSERT( fCallActive );
}
}
// Update the call parameters
pVc->pMakeCall->CallMgrParameters->Transmit.PeakBandwidth =
pVc->pMakeCall->CallMgrParameters->Transmit.TokenRate =
pVc->pMakeCall->CallMgrParameters->Receive.PeakBandwidth =
pVc->pMakeCall->CallMgrParameters->Receive.TokenRate = pVc->ulConnectBps / 8;
TRACE( TL_I, TM_Cm, ( "Call NdisMCmMakeCallComp(s=$%x)", statusVc ) );
ASSERT( pVc->pMakeCall );
NdisMCmMakeCallComplete(
statusVc, pVc->NdisVcHandle, NULL, NULL, pVc->pMakeCall );
TRACE( TL_I, TM_Cm, ( "NdisMCmMakeCallComp done" ) );
if (statusVc == NDIS_STATUS_SUCCESS)
{
IndicateLinkStatus( pVc, &info );
CallSetupComplete( pVc );
}
else
{
// Return the VC to "just created" state.
//
InactiveCallCleanUp( pVc );
}
}
else if (ulFlags & VCBF_PeerClosePending )
{
TRACE( TL_N, TM_Cm, ( "PeerClose complete, s=$%x", statusVc ) );
// Peer initiated close completed.
//
SetFlags( &pVc->ulFlags, VCBF_WaitCloseCall );
TRACE( TL_I, TM_Cm, ( "Call NdisMCmDispInCloseCall(s=$%x)", statusVc ) );
NdisMCmDispatchIncomingCloseCall(
statusVc, pVc->NdisVcHandle, NULL, 0 );
TRACE( TL_I, TM_Cm, ( "NdisMCmDispInCloseCall done" ) );
// Client will call NdisClCloseCall while processing the above
// which will get our LcmCloseCall handler called to
// de-activate and delete the VC, as necessary.
//
}
else if (ulFlags & VCBF_ClientClosePending)
{
// This section eventually runs for all successful unclosed
// calls, whether peer or client initiated or closed.
//
TRACE( TL_N, TM_Cm, ( "ClientClose complete" ) );
// Deactivate the VC and return all sent packets to the client
// above. These events will eventually lead to the call being
// dereferenced to zero, at which time the close is completed,
// and if peer initiated, the VC is deleted.
//
// Note: When MakeCall is cancelled by a Close request, these
// actions occur during the InactiveCallCleanUp in the
// ClientOpenPending completion code handling, rather
// than the CallCleanUp (which leads to
// InactiveCallCleanUp) here. In this case, this block
// does NOT run even though the ClientClosePending flag
// is set. Consider this before adding code here.
//
CallCleanUp( pVc );
}
}
NdisAcquireSpinLock( &pTunnel->lockT );
// Remove the reference for use of the VC pointer from the completing
// list.
//
DereferenceVc( pVc );
}
}
TUNNELCB*
CreateTunnelCb(
IN ADAPTERCB* pAdapter )
// Allocates and initializes a tunnel control block from the pool
// associated with 'pAdapter'. Tunnels are created unreferenced.
//
// Returns the allocated control block or NULL if allocation failed. The
// allocated block must eventually be freed with FREE_TUNNELCB, typically
// via DereferenceTunnel.
//
// IMPORTANT: Caller must hold the 'pAdapter->lockTunnels'.
//
{
TUNNELCB* pTunnel;
pTunnel = ALLOC_TUNNELCB( pAdapter );
if (pTunnel)
{
NdisZeroMemory( pTunnel, sizeof(*pTunnel ) );
InitializeListHead( &pTunnel->linkTunnels );
InitializeListHead( &pTunnel->listRequestingVcs );
InitializeListHead( &pTunnel->listCompletingVcs );
InitializeListHead( &pTunnel->listSendsOut );
InitializeListHead( &pTunnel->listOutOfOrder );
InitializeListHead( &pTunnel->listVcs );
InitializeListHead( &pTunnel->listWork );
NdisAllocateSpinLock( &pTunnel->lockT );
NdisAllocateSpinLock( &pTunnel->lockWork );
pTunnel->ulTag = MTAG_TUNNELCB;
pTunnel->state = CCS_Idle;
// Choose the next non-zero sequential tunnel identifier.
//
pTunnel->usTunnelId = GetNextTunnelId( pAdapter );
// Default send window, "slow started". This is typically adjusted
// based on peer's Receive Window AVP when the tunnel is created, but
// if he doesn't include one this default is used.
//
pTunnel->ulSendWindow = pAdapter->info.MaxSendWindow >> 1;
if (pTunnel->ulSendWindow == 0)
{
pTunnel->ulSendWindow = 1;
}
// Initialize the estimated round trip time and send timeout per the
// suggestions in the draft/RFC.
//
pTunnel->ulRoundTripMs = pAdapter->ulInitialSendTimeoutMs;
pTunnel->ulSendTimeoutMs = pTunnel->ulRoundTripMs;
pTunnel->ulMediaSpeed = L2TP_LanBps;
pTunnel->pTimerQ = ALLOC_TIMERQ( pAdapter );
if (!pTunnel->pTimerQ)
{
WPLOG( LL_A, LM_Res, ( "Failed to allocate TIMERQ") );
pTunnel->ulTag = MTAG_FREED;
FREE_TUNNELCB( pAdapter, pTunnel );
return NULL;
}
TimerQInitialize( pTunnel->pTimerQ );
++pAdapter->ulTimers;
if (pAdapter->pszPassword)
{
UNALIGNED ULONG* pul;
// Password specified so peer should be authenticated. Choose a
// random challenge to send to peer.
//
pul = (UNALIGNED ULONG* )(pTunnel->achChallengeToSend);
NdisGetCurrentSystemTime( (LARGE_INTEGER* )pul );
pul[ 1 ] = PtrToUlong( pAdapter );
pul[ 2 ] = PtrToUlong( pTunnel );
pul[ 3 ] = PtrToUlong( &pul );
}
ReferenceAdapter( pAdapter );
pTunnel->pAdapter = pAdapter;
TRACE( TL_I, TM_Cm, ( "New TCB =$%p", pTunnel ) );
WPLOG( LL_I, LM_Cm, ( "New TCB =$%p", pTunnel ) );
}
return pTunnel;
}
VOID
DereferenceAf(
IN ADAPTERCB* pAdapter )
// Removes a reference from the address family of adapter control block
// 'pAdapter', and when frees the block when the last reference is
// removed.
//
{
LONG lRef;
lRef = NdisInterlockedDecrement( &pAdapter->lAfRef );
TRACE( TL_N, TM_Ref, ( "DerefAf to %d", lRef ) );
ASSERT( lRef >= 0 );
if (lRef == 0)
{
// Tell NDIS it's close is complete.
//
TRACE( TL_I, TM_Cm, ( "NdisMCmCloseAfComp" ) );
NdisMCmCloseAddressFamilyComplete(
NDIS_STATUS_SUCCESS, pAdapter->NdisAfHandle );
TRACE( TL_I, TM_Cm, ( "NdisMCmCloseAfComp done" ) );
// Remove the reference for the NdisAfHandle.
//
InterlockedExchangePointer( &pAdapter->NdisAfHandle, NULL );
DereferenceAdapter( pAdapter );
}
}
VOID
DereferenceCall(
IN VCCB* pVc )
// Removes a reference from the call active on 'pVc', invoking call clean
// up when the value reaches zero.
//
{
LONG lRef;
NDIS_STATUS status;
ADAPTERCB* pAdapter;
LIST_ENTRY* pLink;
pAdapter = pVc->pAdapter;
NdisAcquireSpinLock( &pVc->lockCall );
{
lRef = --pVc->lCallRef;
TRACE( TL_N, TM_Ref, ( "DerefC to %d", pVc->lCallRef ) );
}
NdisReleaseSpinLock( &pVc->lockCall );
if (lRef == 0)
{
InactiveCallCleanUp( pVc );
}
}
VOID
DereferenceSap(
IN ADAPTERCB* pAdapter )
// Removes a reference from the SAP active on 'pAdapter', invoking
// Deregiter SAP completion handling when the value reaches zero.
//
{
LONG lRef;
NDIS_STATUS status;
NdisAcquireSpinLock( &pAdapter->lockSap );
{
lRef = --pAdapter->lSapRef;
TRACE( TL_N, TM_Ref, ( "DerefSap to %d", pAdapter->lSapRef ) );
}
NdisReleaseSpinLock( &pAdapter->lockSap );
if (lRef == 0)
{
status = ScheduleWork( pAdapter, DeregisterSapPassive, pAdapter );
}
}
LONG
DereferenceTunnel(
IN TUNNELCB* pTunnel )
// Dereference the tunnel control block 'pTunnel'. If no longer
// referenced, unlink, undo any TDIX reference, and free the tunnel
// control block.
//
// This routine will not try to acquire 'lockT' or any 'lockV'.
//
// Returns the reference count after the dereference.
//
{
ADAPTERCB* pAdapter;
LIST_ENTRY* pLink;
LONG lRef;
pAdapter = pTunnel->pAdapter;
NdisAcquireSpinLock( &pAdapter->lockTunnels );
{
lRef = --(pTunnel->lRef);
TRACE( TL_N, TM_Ref, ( "DerefTcb to %d", lRef ) );
ASSERT( lRef >= 0 );
if (lRef == 0)
{
if (!(ReadFlags( &pTunnel->ulFlags )
& (TCBF_PeerInitiated | TCBF_Closing)))
{
// We initiated this tunnel and all it's calls have terminated
// gracefully. Initiate a graceful tunnel closing exchange.
// We'll wind up back here with TCBF_Closing set.
//
ReferenceTunnel( pTunnel, TRUE );
ScheduleTunnelWork(
pTunnel, NULL, FsmCloseTunnel,
(ULONG_PTR )TRESULT_General,
(ULONG_PTR )GERR_None,
0, 0, TRUE, FALSE );
}
else if (pTunnel->linkTunnels.Flink != &pTunnel->linkTunnels)
{
// The graceful closing exchange has completed or none is
// indicated. Time to stop all activity on the tunnel.
//
// Remove the tunnel from the adapter's list of active
// tunnels. Initialize the list link so it won't be done
// again following the APCed TDIX clean up below. Since there
// are no VC references on the tunnel, no further receive path
// events will touch this control block.
//
RemoveEntryList( &pTunnel->linkTunnels );
InitializeListHead( &pTunnel->linkTunnels );
if (ReadFlags( &pTunnel->ulFlags ) & TCBF_HostRouteAdded)
{
// Undo the host route we added.
//
ReferenceTunnel( pTunnel, TRUE );
ScheduleTunnelWork(
pTunnel, NULL, DeleteHostRoute,
0, 0, 0, 0, TRUE, FALSE );
}
if (ReadFlags( &pTunnel->ulFlags ) & TCBF_TdixReferenced)
{
// Undo our TDI extension context reference.
//
ReferenceTunnel( pTunnel, TRUE );
ScheduleTunnelWork(
pTunnel, NULL, CloseTdix,
0, 0, 0, 0, TRUE, FALSE );
}
}
lRef = pTunnel->lRef;
}
}
NdisReleaseSpinLock( &pAdapter->lockTunnels );
if (lRef > 0)
{
return lRef;
}
TRACE( TL_N, TM_Res, ( "Freeing TCB..." ) );
// Stop the timer queue, which causes a TE_Terminate event for any timers
// still running.
//
TimerQTerminate(
pTunnel->pTimerQ, TunnelTqTerminateComplete, pAdapter );
// No references and all PASSIVE IRQL termination completed. Finish
// cleaning up the tunnel control block.
//
ASSERT( !pTunnel->pTqiHello );
ASSERT( IsListEmpty( &pTunnel->listVcs ) );
ASSERT( IsListEmpty( &pTunnel->listRequestingVcs ) );
ASSERT( IsListEmpty( &pTunnel->listCompletingVcs ) );
ASSERT( IsListEmpty( &pTunnel->listWork ) );
ASSERT( IsListEmpty( &pTunnel->listSendsOut ) );
ASSERT( IsListEmpty( &pTunnel->listOutOfOrder ) );
WPLOG( LL_M, LM_Res, ( "Free TUNNEL %p to %!IPADDR!, Tid %d, Peer's Tid %d ",
pTunnel, pTunnel->address.ulIpAddress, pTunnel->usTunnelId, pTunnel->usAssignedTunnelId ) );
// Free the tunnel control block.
//
pTunnel->ulTag = MTAG_FREED;
FREE_TUNNELCB( pAdapter, pTunnel );
TRACE( TL_I, TM_Res, ( "TCB freed $%p", pTunnel ) );
DereferenceAdapter( pAdapter );
return 0;
}
VOID
DereferenceVc(
IN VCCB* pVc )
// Removes a reference to the VC control block 'pVc', and when frees the
// block when the last reference is removed.
//
{
LONG lRef;
lRef = NdisInterlockedDecrement( &pVc->lRef );
TRACE( TL_N, TM_Ref, ( "DerefV to %d", lRef ) );
ASSERT( lRef >= 0 );
if (lRef == 0)
{
ADAPTERCB* pAdapter;
pAdapter = pVc->pAdapter;
// Can make these assumptions because NDIS will not call the delete-VC
// handler while the VC is active. All the nasty VC clean up occurs
// before the VC is deactivated and the call closed.
//
ASSERT( IsListEmpty( &pVc->listSendsOut ) );
ASSERT( IsListEmpty( &pVc->listOutOfOrder ) );
ASSERT( !pVc->pTqiDelayedAck );
ASSERT( pVc->ulTag == MTAG_VCCB );
pVc->ulTag = MTAG_FREED;
FREE_VCCB( pAdapter, pVc );
DereferenceAdapter( pAdapter );
TRACE( TL_I, TM_Mp, ( "VCB freed $%p", pVc ) );
}
}
VOID
InactiveCallCleanUp(
IN VCCB* pVc )
// Cleans up a deactivated call. To clean up a call that might be active,
// use CallCleanUp instead. Returns the VC to "just created" state, in
// case client decides to make another call without deleting the VC.
//
{
NDIS_STATUS status;
ULONG ulFlags;
BOOLEAN fVcCreated;
ADAPTERCB* pAdapter;
TUNNELCB* pTunnel;
BOOLEAN fForceGarbageCollect;
TRACE( TL_I, TM_Cm, ( "InactiveCallCleanUp(pV=$%p)", pVc ) );
pAdapter = pVc->pAdapter;
// Release any call parameter allocations and the call-ID slot, if any.
//
CallSetupComplete( pVc );
fForceGarbageCollect = ReleaseCallIdSlot( pVc );
// Disassociate the VC from the tunnel. It is possible the no tunnel is
// associated, though only if short of memory.
//
pTunnel = pVc->pTunnel;
if (!pTunnel)
{
TRACE( TL_A, TM_Cm, ( "Inactive VC w/o tunnel" ) );
return;
}
NdisAcquireSpinLock( &pTunnel->lockT );
{
RemoveEntryList( &pVc->linkRequestingVcs );
InitializeListHead( &pVc->linkRequestingVcs );
NdisAcquireSpinLock( &pTunnel->lockVcs );
{
pVc->pTunnel = NULL;
RemoveEntryList( &pVc->linkVcs );
InitializeListHead( &pVc->linkVcs );
}
NdisReleaseSpinLock( &pTunnel->lockVcs );
}
NdisReleaseSpinLock( &pTunnel->lockT );
// Flush queues, timers, and statistics.
//
NdisAcquireSpinLock( &pVc->lockV );
{
LIST_ENTRY* pLink;
ulFlags = ReadFlags( &pVc->ulFlags );
ASSERT( !(ulFlags & VCBF_VcActivated) );
// Terminate any delayed acknowledge timer.
//
if (pVc->pTqiDelayedAck)
{
TimerQTerminateItem( pTunnel->pTimerQ, pVc->pTqiDelayedAck );
pVc->pTqiDelayedAck = NULL;
}
// Flush any payloads from the "out" list.
//
while (!IsListEmpty( &pVc->listSendsOut ))
{
PAYLOADSENT* pPs;
pLink = RemoveHeadList( &pVc->listSendsOut );
InitializeListHead( pLink );
pPs = CONTAINING_RECORD( pLink, PAYLOADSENT, linkSendsOut );
TRACE( TL_I, TM_Cm, ( "Flush pPs=$%p", pPs ) );
// Terminate the timer. Doesn't matter if the terminate fails as
// the expire handler will fail to get a call reference and do
// nothing.
//
ASSERT( pPs->pTqiSendTimeout );
TimerQTerminateItem( pTunnel->pTimerQ, pPs->pTqiSendTimeout );
// Remove the context reference for linkage in the "out" queue.
//
pPs->status = NDIS_STATUS_FAILURE;
DereferencePayloadSent( pPs );
}
// Discard any out-of-order packets.
//
while (!IsListEmpty( &pVc->listOutOfOrder ))
{
PAYLOADRECEIVED* pPr;
pLink = RemoveHeadList( &pVc->listOutOfOrder );
InitializeListHead( pLink );
pPr = CONTAINING_RECORD(
pLink, PAYLOADRECEIVED, linkOutOfOrder );
TRACE( TL_I, TM_Cm, ( "Flush pPr=$%p", pPr ) );
FreeBufferToPool(
&pAdapter->poolFrameBuffers, pPr->pBuffer, TRUE );
FREE_PAYLOADRECEIVED( pAdapter, pPr );
}
// Update the global statistics by adding in the values tabulated for
// this call. Also prints the statistics in some trace modes.
//
UpdateGlobalCallStats( pVc );
}
NdisReleaseSpinLock( &pVc->lockV );
// Dereference the tunnel. Careful, this makes 'pTunnel' invalid from
// this point forward.
//
DereferenceTunnel( pTunnel );
// Return the VC to "just created" state.
//
pVc->usAssignedCallId = 0;
pVc->state = CS_Idle;
ClearFlags( &pVc->ulFlags, 0xFFFFFFFF );
pVc->usResult = 0;
pVc->usError = 0;
pVc->status = NDIS_STATUS_SUCCESS;
pVc->ulConnectBps = 0;
pVc->usNs = 0;
pVc->ulMaxSendWindow = 0;
pVc->ulAcksSinceSendTimeout = 0;
pVc->lDeviationMs = 0;
pVc->usNr = 0;
NdisZeroMemory( &pVc->stats, sizeof(pVc->stats) );
pVc->ulRoundTripMs = pAdapter->ulInitialSendTimeoutMs;
pVc->ulSendTimeoutMs = pVc->ulRoundTripMs;
pVc->ulSendWindow = pAdapter->info.MaxSendWindow >> 1;
if (pVc->ulSendWindow == 0)
{
pVc->ulSendWindow = 1;
}
if (ulFlags & VCBF_ClientCloseCompletion)
{
TRACE( TL_I, TM_Cm, ( "NdisMCmCloseCallComp(OK)" ) );
NdisMCmCloseCallComplete(
NDIS_STATUS_SUCCESS, pVc->NdisVcHandle, NULL );
TRACE( TL_I, TM_Cm, ( "NdisMCmCloseCallComp done" ) );
// Careful, if this was a client created VC, client may have deleted
// it, so 'pVc' must not be referenced hereafter in that case.
//
}
// When peer initiates the call, we create the VC and so delete it
// here. Otherwise, client created it and we leave it to him to
// delete it when he's ready.
//
if (ulFlags & VCBF_VcCreated)
{
NDIS_STATUS retStatus;
TRACE( TL_I, TM_Recv, ( "NdisMCmDelVc" ) );
retStatus = NdisMCmDeleteVc( pVc->NdisVcHandle );
TRACE( TL_I, TM_Recv, ( "NdisMCmDelVc=$%x", retStatus ) );
ASSERT( retStatus == NDIS_STATUS_SUCCESS );
LcmCmDeleteVc( pVc );
// Careful, 'pVc' has been deleted and must not be referenced
// hereafter.
//
}
// Create garbage collection events on all the pools if it was determined
// above to be an appropriate time to do so, i.e. we just deactivated the
// last active VC.
//
if (fForceGarbageCollect)
{
CollectBufferPoolGarbage( &pAdapter->poolFrameBuffers );
CollectBufferPoolGarbage( &pAdapter->poolHeaderBuffers );
CollectPacketPoolGarbage( &pAdapter->poolPackets );
}
}
VOID
LockIcs(
IN VCCB* pVc,
IN BOOLEAN fGrace )
// Lock the 'pVc->pInCallSetup' pointer. If 'fGrace' is set, the "grace
// period" reference is locked, and if not the "alloc" reference is
// locked. See also UnlockIcs.
//
{
SetFlags( &pVc->ulFlags, (fGrace) ? VCBF_IcsGrace : VCBF_IcsAlloc );
}
NDIS_STATUS
QueryCmInformation(
IN ADAPTERCB* pAdapter,
IN VCCB* pVc,
IN NDIS_OID Oid,
IN PVOID InformationBuffer,
IN ULONG InformationBufferLength,
OUT PULONG BytesWritten,
OUT PULONG BytesNeeded )
// Handle Call Manager QueryInformation requests. Arguments are as for
// the standard NDIS 'MiniportQueryInformation' handler except this
// routine does not count on being serialized with respect to other
// requests.
//
{
#define L2TP_MaxLineName 64
typedef struct
L2TP_CO_TAPI_LINE_CAPS
{
CO_TAPI_LINE_CAPS caps;
WCHAR achLineName[ L2TP_MaxLineName + 1 ];
}
L2TP_CO_TAPI_LINE_CAPS;
NDIS_STATUS status;
ULONG ulInfo;
VOID* pInfo;
ULONG ulInfoLen;
ULONG extension;
ULONG ulPortIndex;
CO_TAPI_CM_CAPS cmcaps;
L2TP_CO_TAPI_LINE_CAPS l2tpcaps;
CO_TAPI_ADDRESS_CAPS addrcaps;
CO_TAPI_CALL_DIAGNOSTICS diags;
status = NDIS_STATUS_SUCCESS;
// The cases in this switch statement find or create a buffer containing
// the requested information and point 'pInfo' at it, noting it's length
// in 'ulInfoLen'. Since many of the OIDs return a ULONG, a 'ulInfo'
// buffer is set up as the default.
//
ulInfo = 0;
pInfo = &ulInfo;
ulInfoLen = sizeof(ulInfo);
switch (Oid)
{
case OID_CO_TAPI_CM_CAPS:
{
TRACE( TL_N, TM_Cm, ( "QCm(OID_CO_TAPI_CM_CAPS)" ) );
NdisZeroMemory( &cmcaps, sizeof(cmcaps) );
// The LINE and ADDRESS CAPS OIDs will be requested after this
// one.
//
cmcaps.ulCoTapiVersion = CO_TAPI_VERSION;
cmcaps.ulNumLines = 1;
// caps.ulFlags = 0;
pInfo = &cmcaps;
ulInfoLen = sizeof(cmcaps);
break;
}
case OID_CO_TAPI_LINE_CAPS:
{
ULONG ulLineNameLen;
WCHAR* pszLineName;
CO_TAPI_LINE_CAPS* pInCaps;
LINE_DEV_CAPS* pldc;
TRACE( TL_N, TM_Cm, ( "QCm(OID_CO_TAPI_LINE_CAPS)" ) );
if (InformationBufferLength < sizeof(L2TP_CO_TAPI_LINE_CAPS))
{
status = NDIS_STATUS_INVALID_DATA;
ulInfoLen = 0;
break;
}
ASSERT( InformationBuffer );
pInCaps = (CO_TAPI_LINE_CAPS* )InformationBuffer;
NdisZeroMemory( &l2tpcaps, sizeof(l2tpcaps) );
pldc = &l2tpcaps.caps.LineDevCaps;
l2tpcaps.caps.ulLineID = pInCaps->ulLineID;
pldc->ulTotalSize = pInCaps->LineDevCaps.ulTotalSize;
pldc->ulNeededSize =
(ULONG )((CHAR* )(&l2tpcaps + 1)
- (CHAR* )(&l2tpcaps.caps.LineDevCaps));
pldc->ulUsedSize = pldc->ulNeededSize;
// pldc->ulProviderInfoSize = 0;
// pldc->ulProviderInfoOffset = 0;
// pldc->ulSwitchInfoSize = 0;
// pldc->ulSwitchInfoOffset = 0;
pldc->ulPermanentLineID = l2tpcaps.caps.ulLineID;
// Pass the DriverDesc from the registry as the line name. TAPI
// requires that this be a localizable string.
//
if (pAdapter->pszDriverDesc)
{
pszLineName = pAdapter->pszDriverDesc;
}
else
{
pszLineName = L"L2TP";
}
ulLineNameLen = StrLenW( pszLineName ) + 1;
if (ulLineNameLen > L2TP_MaxLineName)
{
ulLineNameLen = L2TP_MaxLineName;
}
NdisMoveMemory(
l2tpcaps.achLineName, pszLineName,
ulLineNameLen * sizeof(WCHAR) );
l2tpcaps.achLineName[ ulLineNameLen ] = L'\0';
pldc->ulLineNameSize = ulLineNameLen * sizeof(WCHAR);
pldc->ulLineNameOffset = (ULONG )
((CHAR* )l2tpcaps.achLineName - (CHAR* )pldc);
pldc->ulStringFormat = STRINGFORMAT_UNICODE;
// pldc->ulAddressModes = 0;
pldc->ulNumAddresses = 1;
pldc->ulBearerModes = LINEBEARERMODE_DATA;
pldc->ulMaxRate = L2TP_LanBps;
pldc->ulMediaModes = LINEMEDIAMODE_UNKNOWN | LINEMEDIAMODE_DIGITALDATA;
// pldc->ulGenerateToneModes = 0;
// pldc->ulGenerateToneMaxNumFreq = 0;
// pldc->ulGenerateDigitModes = 0;
// pldc->ulMonitorToneMaxNumFreq = 0;
// pldc->ulMonitorToneMaxNumEntries = 0;
// pldc->ulMonitorDigitModes = 0;
// pldc->ulGatherDigitsMinTimeout = 0;
// pldc->ulGatherDigitsMaxTimeout = 0;
// pldc->ulMedCtlDigitMaxListSize = 0;
// pldc->ulMedCtlMediaMaxListSize = 0;
// pldc->ulMedCtlToneMaxListSize = 0;
// pldc->ulMedCtlCallStateMaxListSize = 0;
// pldc->ulDevCapFlags = 0;
pldc->ulMaxNumActiveCalls = 1;
// pldc->ulAnswerMode = 0;
// pldc->ulRingModes = 0;
// pldc->ulLineStates = 0;
// pldc->ulUUIAcceptSize = 0;
// pldc->ulUUIAnswerSize = 0;
// pldc->ulUUIMakeCallSize = 0;
// pldc->ulUUIDropSize = 0;
// pldc->ulUUISendUserUserInfoSize = 0;
// pldc->ulUUICallInfoSize = 0;
// pldc->MinDialParams = 0;
// pldc->MaxDialParams = 0;
// pldc->DefaultDialParams = 0;
// pldc->ulNumTerminals = 0;
// pldc->ulTerminalCapsSize = 0;
// pldc->ulTerminalCapsOffset = 0;
// pldc->ulTerminalTextEntrySize = 0;
// pldc->ulTerminalTextSize = 0;
// pldc->ulTerminalTextOffset = 0;
// pldc->ulDevSpecificSize = 0;
// pldc->ulDevSpecificOffset = 0;
// pldc->ulLineFeatures;
// pldc->ulSettableDevStatus;
// pldc->ulDeviceClassesSize;
// pldc->ulDeviceClassesOffset;
// pldc->PermanentLineGuid;
pldc->ulAddressTypes = LINEADDRESSTYPE_IPADDRESS;
// pldc->ProtocolGuid;
// pldc->ulAvailableTracking;
pInfo = &l2tpcaps;
ulInfoLen = sizeof(l2tpcaps);
break;
}
case OID_CO_TAPI_ADDRESS_CAPS:
{
CO_TAPI_ADDRESS_CAPS* pInCaps;
LINE_ADDRESS_CAPS* plac;
TRACE( TL_N, TM_Cm, ( "QCm(OID_CO_TAPI_ADDRESS_CAPS)" ) );
if (InformationBufferLength < sizeof(CO_TAPI_ADDRESS_CAPS))
{
status = NDIS_STATUS_INVALID_DATA;
ulInfoLen = 0;
break;
}
ASSERT( InformationBuffer );
pInCaps = (CO_TAPI_ADDRESS_CAPS* )InformationBuffer;
NdisZeroMemory( &addrcaps, sizeof(addrcaps) );
addrcaps.ulLineID = pInCaps->ulLineID;
addrcaps.ulAddressID = pInCaps->ulAddressID;
plac = &addrcaps.LineAddressCaps;
plac->ulTotalSize = sizeof(LINE_ADDRESS_CAPS);
plac->ulNeededSize = sizeof(LINE_ADDRESS_CAPS);
plac->ulUsedSize = sizeof(LINE_ADDRESS_CAPS);
plac->ulLineDeviceID = addrcaps.ulLineID;
// plac->ulAddressSize = 0;
// plac->ulAddressOffset = 0;
// plac->ulDevSpecificSize = 0;
// plac->ulDevSpecificOffset = 0;
// plac->ulAddressSharing = 0;
// plac->ulAddressStates = 0;
// plac->ulCallInfoStates = 0;
// plac->ulCallerIDFlags = 0;
// plac->ulCalledIDFlags = 0;
// plac->ulConnectedIDFlags = 0;
// plac->ulRedirectionIDFlags = 0;
// plac->ulRedirectingIDFlags = 0;
// plac->ulCallStates = 0;
// plac->ulDialToneModes = 0;
// plac->ulBusyModes = 0;
// plac->ulSpecialInfo = 0;
// plac->ulDisconnectModes = 0;
plac->ulMaxNumActiveCalls = (ULONG )pAdapter->usMaxVcs;
// plac->ulMaxNumOnHoldCalls = 0;
// plac->ulMaxNumOnHoldPendingCalls = 0;
// plac->ulMaxNumConference = 0;
// plac->ulMaxNumTransConf = 0;
// plac->ulAddrCapFlags = 0;
// plac->ulCallFeatures = 0;
// plac->ulRemoveFromConfCaps = 0;
// plac->ulRemoveFromConfState = 0;
// plac->ulTransferModes = 0;
// plac->ulParkModes = 0;
// plac->ulForwardModes = 0;
// plac->ulMaxForwardEntries = 0;
// plac->ulMaxSpecificEntries = 0;
// plac->ulMinFwdNumRings = 0;
// plac->ulMaxFwdNumRings = 0;
// plac->ulMaxCallCompletions = 0;
// plac->ulCallCompletionConds = 0;
// plac->ulCallCompletionModes = 0;
// plac->ulNumCompletionMessages = 0;
// plac->ulCompletionMsgTextEntrySize = 0;
// plac->ulCompletionMsgTextSize = 0;
// plac->ulCompletionMsgTextOffset = 0;
pInfo = &addrcaps;
ulInfoLen = sizeof(addrcaps);
break;
}
case OID_CO_TAPI_GET_CALL_DIAGNOSTICS:
{
TRACE( TL_N, TM_Cm, ( "QCm(OID_CO_TAPI_GET_CALL_DIAGS)" ) );
if (!pVc)
{
status = NDIS_STATUS_INVALID_DATA;
ulInfoLen = 0;
break;
}
NdisZeroMemory( &diags, sizeof(diags) );
diags.ulOrigin =
(ReadFlags( &pVc->ulFlags ) & VCBF_PeerInitiatedCall)
? LINECALLORIGIN_EXTERNAL
: LINECALLORIGIN_OUTBOUND;
diags.ulReason = LINECALLREASON_DIRECT;
pInfo = &diags;
ulInfoLen = sizeof(diags);
break;
}
default:
{
TRACE( TL_A, TM_Cm, ( "QCm-OID=$%08x?", Oid ) );
status = NDIS_STATUS_NOT_SUPPORTED;
ulInfoLen = 0;
break;
}
}
if (ulInfoLen > InformationBufferLength)
{
// Caller's buffer is too small. Tell him what he needs.
//
*BytesNeeded = ulInfoLen;
status = NDIS_STATUS_INVALID_LENGTH;
}
else
{
// Copy the found result to caller's buffer.
//
if (ulInfoLen > 0)
{
NdisMoveMemory( InformationBuffer, pInfo, ulInfoLen );
DUMPDW( TL_N, TM_Mp, pInfo, ulInfoLen );
}
*BytesNeeded = *BytesWritten = ulInfoLen;
}
return status;
}
VOID
ReferenceAf(
IN ADAPTERCB* pAdapter )
// Adds areference to the address family of adapter block, 'pAdapter'.
//
{
LONG lRef;
lRef = NdisInterlockedIncrement( &pAdapter->lAfRef );
TRACE( TL_N, TM_Ref, ( "RefAf to %d", lRef ) );
}
BOOLEAN
ReferenceCall(
IN VCCB* pVc )
// Returns true if a reference is added to the active call on VC control
// block, 'pVc', or false if no reference was added because no call is
// active.
//
{
BOOLEAN fActive;
NdisAcquireSpinLock( &pVc->lockCall );
{
if (ReadFlags( &pVc->ulFlags ) & VCBF_VcActivated)
{
fActive = TRUE;
++pVc->lCallRef;
TRACE( TL_N, TM_Ref, ( "RefC to %d", pVc->lCallRef ) );
}
else
{
TRACE( TL_N, TM_Ref, ( "RefC denied" ) );
fActive = FALSE;
}
}
NdisReleaseSpinLock( &pVc->lockCall );
return fActive;
}
BOOLEAN
ReferenceSap(
IN ADAPTERCB* pAdapter )
// Returns true if a reference is added to the active SAP on adapter
// 'pAdapter', or false if no reference was added because no SAP is
// active.
//
{
BOOLEAN fActive;
NdisAcquireSpinLock( &pAdapter->lockSap );
{
if (ReadFlags( &pAdapter->ulFlags ) & ACBF_SapActive)
{
fActive = TRUE;
++pAdapter->lSapRef;
TRACE( TL_N, TM_Ref, ( "RefSap to %d", pAdapter->lSapRef ) );
}
else
{
TRACE( TL_N, TM_Ref, ( "RefSap denied" ) );
fActive = FALSE;
}
}
NdisReleaseSpinLock( &pAdapter->lockSap );
return fActive;
}
LONG
ReferenceTunnel(
IN TUNNELCB* pTunnel,
IN BOOLEAN fHaveLockTunnels )
// Reference the tunnel control block 'pTunnel'. 'FHaveLockTunnels' is
// set when the caller holds 'ADAPTERCB.lockTunnels'.
//
// Returns the reference count after the reference.
//
{
LONG lRef;
ADAPTERCB* pAdapter;
if (!fHaveLockTunnels)
{
pAdapter = pTunnel->pAdapter;
NdisAcquireSpinLock( &pAdapter->lockTunnels );
}
lRef = ++(pTunnel->lRef);
TRACE( TL_N, TM_Ref, ( "RefT to %d", lRef ) );
if (!fHaveLockTunnels)
{
NdisReleaseSpinLock( &pAdapter->lockTunnels );
}
return lRef;
}
VOID
ReferenceVc(
IN VCCB* pVc )
// Adds a reference to the VC control block 'pVc'.
//
{
LONG lRef;
lRef = NdisInterlockedIncrement( &pVc->lRef );
TRACE( TL_N, TM_Ref, ( "RefV to %d", lRef ) );
TRACE( TL_N, TM_Ref, ( "pVc = %p, RefV to %d", pVc, lRef ) );
}
BOOLEAN
ReleaseCallIdSlot(
IN VCCB* pVc )
// Releases 'pVc's reserved Call-ID slot in the adapter's VC table.
//
// Returns true if a release occurs and results in all slots being
// available, false otherwise.
//
{
ADAPTERCB* pAdapter;
USHORT usCallId;
BOOLEAN fAllSlotsAvailable;
pAdapter = pVc->pAdapter;
usCallId = pVc->usCallId;
pVc->usCallId = 0;
fAllSlotsAvailable = FALSE;
if (usCallId > 0 && usCallId <= pAdapter->usMaxVcs)
{
NdisAcquireSpinLock( &pAdapter->lockVcs );
{
pAdapter->ppVcs[ usCallId - 1 ] = NULL;
++(pAdapter->lAvailableVcSlots);
if (pAdapter->lAvailableVcSlots >= (LONG )pAdapter->usMaxVcs)
{
fAllSlotsAvailable = TRUE;
}
}
NdisReleaseSpinLock( &pAdapter->lockVcs );
}
return fAllSlotsAvailable;
}
NDIS_STATUS
ReserveCallIdSlot(
IN VCCB* pVc )
// Reserves a Call-ID slot for 'pVc' in the adapter's table.
//
// Returns NDIS_STATUS_SUCCESS if successful, or an error code.
//
{
NDIS_STATUS status;
ADAPTERCB* pAdapter;
VCCB** ppVc;
USHORT i;
pAdapter = pVc->pAdapter;
NdisAcquireSpinLock( &pAdapter->lockVcs );
{
// At this point, we have a VC for the received call request that's
// been successfully activated and dispatched to the client. Reserve
// a Call-ID in the adapter's look-up table.
//
if (pAdapter->lAvailableVcSlots > 0)
{
for (i = 0, ppVc = pAdapter->ppVcs;
i < pAdapter->usMaxVcs;
++i, ++ppVc)
{
if (!*ppVc)
{
// The -1 reserves the ID. If/when the call negotiation
// completes successfully it will be changed to the
// address of the VCCB. Call-IDs are 1-based because L2TP
// reserves Call-ID 0 to mean the tunnel itself.
//
*ppVc = (VCCB* )-1;
pVc->usCallId = i + 1;
break;
}
}
ASSERT( i < pAdapter->usMaxVcs );
--(pAdapter->lAvailableVcSlots);
status = NDIS_STATUS_SUCCESS;
}
else
{
// No Call-ID slots available. This means the client accepted the
// VC even though it put us over our configured limit. Something
// is mismatched in the configuration. Assign a Call-ID above the
// table size for use only in terminating the call gracefully.
//
TRACE( TL_N, TM_Misc, ( "No Call-ID slots?" ) );
pVc->usCallId = GetNextTerminationCallId( pAdapter );
status = NDIS_STATUS_NOT_ACCEPTED;
}
}
NdisReleaseSpinLock( &pAdapter->lockVcs );
return status;
}
TUNNELCB*
SetupTunnel(
IN ADAPTERCB* pAdapter,
IN ULONG ulIpAddress,
IN USHORT usUdpPort,
IN USHORT usAssignedTunnelId,
IN BOOLEAN fExclusive )
// Sets up a tunnel to remote peer with IP address 'ulIpAddress' and
// prepares it for sending or receiving messages. 'PAdapter' is the
// owning adapter control block. 'UlIpAddress' is the remote peer's IP
// address in network byte-order. 'UsAssignedTunnelId', if non-0,
// indicates the assigned Tunnel-ID that must match in addition to the IP
// address. If 'FExclusive' is clear an existing tunnel to the peer is
// acceptable. If set, a new tunnel is created even if a matching one
// already exists.
//
// Returns the address of the tunnel control block if successful, or NULL
// if not. If successful the block is already linked into the adapters
// list of active tunnels and referenced, i.e. DereferenceTunnel must be
// called during clean-up.
//
{
TUNNELCB* pTunnel;
TRACE( TL_V, TM_Misc, ( "SetupTunnel" ) );
NdisAcquireSpinLock( &pAdapter->lockTunnels );
{
// If an existing tunnel would be acceptable, find the first existing
// tunnel with peer's IP address and, if non-0, assigned Tunnel-ID.
// Typically, none will be found and we go on to create a new one
// anyway.
//
pTunnel = (fExclusive)
? NULL
: TunnelCbFromIpAddressAndAssignedTunnelId(
pAdapter, ulIpAddress, usUdpPort, usAssignedTunnelId );
if (!pTunnel)
{
pTunnel = CreateTunnelCb( pAdapter );
if (!pTunnel)
{
WPLOG( LL_A, LM_Res, ( "Failed to allocate TCB!" ) );
NdisReleaseSpinLock( &pAdapter->lockTunnels );
return NULL;
}
WPLOG( LL_M, LM_Cm, ( "New TUNNEL %p to %!IPADDR!", pTunnel, ulIpAddress) );
// Associate peer's IP address with the tunnel.
//
pTunnel->address.ulIpAddress = ulIpAddress;
// Link the block into the adapter's list of active tunnels.
//
InsertHeadList(
&pAdapter->listTunnels, &pTunnel->linkTunnels );
}
else
{
TRACE( TL_A, TM_Cm, ( "Existing Tunnel %p", pTunnel ) );
WPLOG( LL_M, LM_Cm, ( "Existing TUNNEL %p to %!IPADDR!", pTunnel, ulIpAddress) );
}
// Reference the tunnel control block. Hereafter, clean-up must
// include a call to DereferenceTunnel.
//
ReferenceTunnel( pTunnel, TRUE );
}
NdisReleaseSpinLock( &pAdapter->lockTunnels );
return pTunnel;
}
VOID
SetupVcAsynchronously(
IN TUNNELCB* pTunnel,
IN ULONG ulIpAddress,
IN CHAR* pBuffer,
IN CONTROLMSGINFO* pControl )
// Called by ReceiveControl to set up a VC for the incoming call described
// in 'pInfo', 'pControl', and 'pBuffer' using the necessary asynchronous
// CoNdis calls.
//
{
NDIS_STATUS status;
ADAPTERCB* pAdapter;
VCCB* pVc;
INCALLSETUP* pIcs;
NDIS_HANDLE NdisVcHandle;
ULONG ulMask;
BOOLEAN fTunnelClosing;
BOOLEAN fCallActive;
TRACE( TL_V, TM_Misc, ( "SetupVcAsync" ) );
pAdapter = pTunnel->pAdapter;
// Call our own CreateVc handler directly to allocate and initialize the
// incoming call's VC.
//
status = LcmCmCreateVc( pAdapter, NULL, &pVc );
if (status != NDIS_STATUS_SUCCESS)
{
ScheduleTunnelWork(
pTunnel, NULL, FsmCloseTunnel,
(ULONG_PTR )TRESULT_GeneralWithError,
(ULONG_PTR )GERR_NoResources,
0, 0, FALSE, FALSE );
FreeBufferToPool( &pAdapter->poolFrameBuffers, pBuffer, TRUE );
return;
}
// Allocate an "incoming call setup" context and initialize it from the
// receive buffer information arguments.
//
pIcs = ALLOC_INCALLSETUP( pAdapter );
if (!pIcs)
{
WPLOG( LL_A, LM_Res, ( "Failed to allocate INCALLSETUP!" ) );
LcmCmDeleteVc( pVc );
ScheduleTunnelWork(
pTunnel, NULL, FsmCloseTunnel,
(ULONG_PTR )TRESULT_GeneralWithError,
(ULONG_PTR )GERR_NoResources,
0, 0, FALSE, FALSE );
FreeBufferToPool( &pAdapter->poolFrameBuffers, pBuffer, TRUE );
return;
}
pIcs->pBuffer = pBuffer;
NdisMoveMemory( &pIcs->control, pControl, sizeof(pIcs->control) );
BuildCallParametersShell(
pAdapter, ulIpAddress,
sizeof(pIcs->achCallParams), pIcs->achCallParams,
&pVc->pTiParams, &pVc->pTcInfo, &pVc->pLcParams );
LockIcs( pVc, FALSE );
pVc->pInCall = pIcs;
// Default is success with errors filled in if they occur.
//
pVc->usResult = 0;
pVc->usError = GERR_None;
// Mark the call as initiated by the peer so we know which notifications
// to give when the result is known.
//
ulMask = (VCBF_PeerInitiatedCall | VCBF_PeerOpenPending);
if (*(pControl->pusMsgType) == CMT_ICRQ)
{
ulMask |= VCBF_IncomingFsm;
}
SetFlags( &pVc->ulFlags, ulMask );
// Add a tunnel reference for this call on this VC, set the back pointer
// to the owning tunnel, and link the VC into the tunnel's list of
// associated VCs.
//
ReferenceTunnel( pTunnel, FALSE );
NdisAcquireSpinLock( &pTunnel->lockT );
{
if (ReadFlags( &pTunnel->ulFlags ) & TCBF_Closing)
{
// This is unlikely because SetupTunnel only finds non-closing
// tunnels, but this check and linkage must occur atomically under
// 'lockT'. New VCs must not be linked onto closing tunnels.
//
fTunnelClosing = TRUE;
}
else
{
fTunnelClosing = FALSE;
NdisAcquireSpinLock( &pTunnel->lockVcs );
{
pVc->pTunnel = pTunnel;
InsertTailList( &pTunnel->listVcs, &pVc->linkVcs );
}
NdisReleaseSpinLock( &pTunnel->lockVcs );
}
}
NdisReleaseSpinLock( &pTunnel->lockT );
if (fTunnelClosing)
{
CallSetupComplete( pVc );
LcmCmDeleteVc( pVc );
FreeBufferToPool( &pAdapter->poolFrameBuffers, pBuffer, TRUE );
DereferenceTunnel( pTunnel );
return;
}
// Peer MUST provide a Call-ID to pass back in the L2TP header of call
// control and payload packets.
//
if (!pControl->pusAssignedCallId || *(pControl->pusAssignedCallId) == 0)
{
TRACE( TL_A, TM_Misc, ( "No assigned CID?" ) );
WPLOG( LL_A, LM_Misc, ( "Failure - Peer doesn't provide a Call-ID!" ) );
pVc->usResult = CRESULT_GeneralWithError;
pVc->usError = GERR_BadCallId;
SetupVcComplete( pTunnel, pVc );
return;
}
// Check if the request has a chance of succeeding before getting the
// client involved.
//
if (!(ReadFlags( &pVc->ulFlags ) & VCBF_IncomingFsm))
{
// Fail requests to our LAC requiring asynchronous PPP framing or an
// analog or digital WAN connection. NDISWAN doesn't provide
// asynchronous PPP framing, and we don't currently support non-LAN
// WAN relays.
//
if (!pControl->pulFramingType
|| !(*(pControl->pulFramingType) & FBM_Sync))
{
TRACE( TL_A, TM_Misc, ( "Not sync framing type?" ) );
WPLOG( LL_A, LM_Misc, ( "Failure - Not supported framing type!" ) );
if (!(pAdapter->ulFlags & ACBF_IgnoreFramingMismatch))
{
pVc->usResult = CRESULT_NoFacilitiesPermanent;
pVc->usError = GERR_None;
SetupVcComplete( pTunnel, pVc );
return;
}
}
if (pControl->pulBearerType
&& *(pControl->pulBearerType) != 0)
{
TRACE( TL_A, TM_Misc, ( "Cannot do bearer type" ) );
WPLOG( LL_A, LM_Misc, ( "Failure - Not supported bearer type!" ) );
pVc->usResult = CRESULT_NoFacilitiesPermanent;
pVc->usError = GERR_None;
SetupVcComplete( pTunnel, pVc );
return;
}
}
// Tell NDIS to notify the client of the new VC and give us it's handle.
//
ASSERT( pAdapter->NdisAfHandle );
TRACE( TL_I, TM_Cm, ( "NdisMCmCreateVc" ) );
status = NdisMCmCreateVc(
pAdapter->MiniportAdapterHandle,
pAdapter->NdisAfHandle,
pVc,
&pVc->NdisVcHandle );
if (status != NDIS_STATUS_SUCCESS)
{
TRACE( TL_I, TM_Cm, ( "NdisMCmCreateVc=$%x,h=$%p", status, pVc->NdisVcHandle ) );
WPLOG( LL_A, LM_Cm, ( "NdisMCmCreateVc failed, pVc = %p, s= %08x!", pVc, status ) );
pVc->usResult = CRESULT_GeneralWithError;
pVc->usError = GERR_NoResources;
SetupVcComplete( pTunnel, pVc );
return;
}
SetFlags( &pVc->ulFlags, VCBF_VcCreated );
// Tell NDIS the VC is active.
//
TRACE( TL_I, TM_Cm, ( "NdisMCmActivateVc" ) );
status = NdisMCmActivateVc(
pVc->NdisVcHandle, (PCO_CALL_PARAMETERS )pVc->pInCall->achCallParams );
if (status != NDIS_STATUS_SUCCESS )
{
TRACE( TL_A, TM_Cm, ( "NdisMCmActivateVc=$%x", status ) );
WPLOG( LL_A, LM_Cm, ( "NdisMCmActivateVc failed, pVc = %p, s= %08x", pVc, status ) );
pVc->usResult = CRESULT_GeneralWithError;
pVc->usError = GERR_NoResources;
SetupVcComplete( pTunnel, pVc );
return;
}
// Mark that the call is active, a state where both client and peer close
// requests should be accepted.
//
SetFlags( &pVc->ulFlags,
(VCBF_VcActivated
| VCBF_CallClosableByClient
| VCBF_CallClosableByPeer) );
fCallActive = ReferenceCall( pVc );
ASSERT( fCallActive );
// Tell NDIS to tell the client about the call. The dispatched flag is
// set here rather in the completion because, according to JameelH, it is
// valid to call NdisMCmDispatchIncomingCloseCall even if client pends on
// the dispatch. A reference on the SAP must be held during the operation
// since it uses the NdisSapHandle. The reference is released as soon as
// the call returns. A VC reference is taken to prevent the VC from being
// deleted before the completion handler is called. The VC reference is
// removed by the completion handler.
//
if (!ReferenceSap( pAdapter ))
{
pVc->usResult = CRESULT_NoFacilitiesTemporary;
pVc->usError = GERR_None;
SetupVcComplete( pTunnel, pVc );
return;
}
fCallActive = ReferenceCall( pVc );
ReferenceVc( pVc );
ASSERT( fCallActive );
SetFlags( &pVc->ulFlags, VCBF_WaitInCallComplete );
TRACE( TL_I, TM_Cm, ( "Call NdisMCmDispInCall" ) );
WPLOG( LL_M, LM_Cm, ( "Incoming CALL %p on TUNNEL %p", pVc, pTunnel) );
status = NdisMCmDispatchIncomingCall(
pAdapter->NdisSapHandle,
pVc->NdisVcHandle,
(CO_CALL_PARAMETERS* )pVc->pInCall->achCallParams );
TRACE( TL_I, TM_Cm, ( "NdisMCmDispInCall=$%x", status ) );
DereferenceSap( pAdapter );
if (status == NDIS_STATUS_SUCCESS
|| status == NDIS_STATUS_PENDING)
{
SetFlags( &pVc->ulFlags, VCBF_VcDispatched );
}
if (status != NDIS_STATUS_PENDING)
{
LcmCmIncomingCallComplete( status, pVc, NULL );
}
// Next stop is our LcmCmIncomingCallComplete handler which will call
// SetupVcComplete with client's reported status.
//
}
VOID
SetupVcComplete(
IN TUNNELCB* pTunnel,
IN VCCB* pVc )
// Called when the asynchronous incoming call VC setup result is known.
// 'PVc' is the non-NULL set up VC, with 'usResult' and 'usError' fields
// indicating the status thus far. 'PTunnel' is the associated tunnel.
//
{
NDIS_STATUS status;
ADAPTERCB* pAdapter;
BOOLEAN fCallerFreesBuffer;
ULONG ulcpVcs;
VCCB** ppVcs;
TRACE( TL_V, TM_Misc, ( "SetupVcComp,pVc=%p,cid=%d,r=%d,e=%d",
pVc, (ULONG )pVc->usCallId, (ULONG )pVc->usResult, (ULONG )pVc->usError ) );
pAdapter = pVc->pAdapter;
// Lock up 'pInCall' because as soon as the call is activated the call can
// be torn down and 'pInCall' destroyed. See also comments in UnlockIcs.
//
LockIcs( pVc, TRUE );
{
// OK, we're done trying to to set up the VC asynchronously. A VCCB
// and INCALLSETUP were successfully allocated, which is the minimum
// required to be graceful with peer. Reserve a Call-ID in the
// adapter's look-up table.
//
status = ReserveCallIdSlot( pVc );
if (status == NDIS_STATUS_SUCCESS)
{
ActivateCallIdSlot( pVc );
}
else
{
pVc->usResult = CRESULT_Busy;
pVc->usError = GERR_None;
}
// Duplicate the tail of the receive path processing that would have
// occurred if we'd not been forced to go asynchronous.
//
NdisAcquireSpinLock( &pTunnel->lockT );
{
fCallerFreesBuffer =
ReceiveControlExpected(
pTunnel, pVc,
pVc->pInCall->pBuffer, &pVc->pInCall->control );
CompleteVcs( pTunnel );
}
NdisReleaseSpinLock( &pTunnel->lockT );
if (fCallerFreesBuffer)
{
FreeBufferToPool(
&pVc->pAdapter->poolFrameBuffers,
pVc->pInCall->pBuffer, TRUE );
}
DBG_else
{
ASSERT( FALSE );
}
}
UnlockIcs( pVc, TRUE );
}
VOID
TunnelTqTerminateComplete(
IN TIMERQ* pTimerQ,
IN VOID* pContext )
// TIMERQTERMINATECOMPLETE handler for 'TUNNELCB.pTimerQ'.
//
{
ADAPTERCB* pAdapter;
pAdapter = (ADAPTERCB* )pContext;
--pAdapter->ulTimers;
FREE_TIMERQ( pAdapter, pTimerQ );
}
VOID
UnlockIcs(
IN VCCB* pVc,
IN BOOLEAN fGrace )
// Unlock the 'pVc->pInCallSetup' pointer. If 'fGrace' is set, the "grace
// period" reference is unlocked, and if not the "alloc" reference is
// unlocked. If both references are gone, then do the actual cleanup.
//
// Note: Regular reference counts don't work well here because there are
// several possible causes of the "alloc" unlock and they are not
// necessarily mutually exclusive. However, we need to prevent the
// 'pInCall' pointer from being freed until the incoming call
// response has been sent out, which in turn requires knowledge of
// whether the "activate for receive" succeeded.
//
{
INCALLSETUP *pInCall = NULL;
ADAPTERCB *pAdapter;
ClearFlags( &pVc->ulFlags, (fGrace) ? VCBF_IcsGrace : VCBF_IcsAlloc );
if (!(ReadFlags( &pVc->ulFlags ) & (VCBF_IcsGrace | VCBF_IcsAlloc)))
{
NdisAcquireSpinLock(&pVc->lockV);
if(pVc->pInCall)
{
pInCall = pVc->pInCall;
pAdapter = pVc->pAdapter;
pVc->pInCall = NULL;
pVc->pTmParams = NULL;
pVc->pTcParams = NULL;
pVc->pLcParams = NULL;
}
NdisReleaseSpinLock(&pVc->lockV);
if(pInCall != NULL)
{
FREE_INCALLSETUP( pAdapter, pInCall );
}
}
#if 0
if (!(ReadFlags( &pVc->ulFlags ) & (VCBF_IcsGrace | VCBF_IcsAlloc))
&& pVc->pInCall)
{
FREE_INCALLSETUP( pAdapter, pInCall );
pVc->pInCall = NULL;
pVc->pTmParams = NULL;
pVc->pTcParams = NULL;
pVc->pLcParams = NULL;
}
#endif
}