You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
299 lines
6.7 KiB
299 lines
6.7 KiB
//----------------------------------------------------------------------------
|
|
// File trans.c
|
|
// Author Timothy David Corrie Jr. ([email protected])
|
|
// Copyright (C) 1995-96 Microsoft
|
|
// Date 01-16-95
|
|
//
|
|
//
|
|
// Description
|
|
//
|
|
// Contains sin, cos and tan for rationals
|
|
//
|
|
//
|
|
//----------------------------------------------------------------------------
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#if defined( DOS )
|
|
#include <dosstub.h>
|
|
#else
|
|
#include <windows.h>
|
|
#endif
|
|
#include <ratpak.h>
|
|
|
|
|
|
void scalerat( IN OUT PRAT *pa, IN ANGLE_TYPE angletype )
|
|
|
|
{
|
|
switch ( angletype )
|
|
{
|
|
case ANGLE_RAD:
|
|
scale2pi( pa );
|
|
break;
|
|
case ANGLE_DEG:
|
|
scale( pa, rat_360 );
|
|
break;
|
|
case ANGLE_GRAD:
|
|
scale( pa, rat_400 );
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// FUNCTION: sinrat, _sinrat
|
|
//
|
|
// ARGUMENTS: x PRAT representation of number to take the sine of
|
|
//
|
|
// RETURN: sin of x in PRAT form.
|
|
//
|
|
// EXPLANATION: This uses Taylor series
|
|
//
|
|
// n
|
|
// ___ 2j+1 j
|
|
// \ ] X -1
|
|
// \ ---------
|
|
// / (2j+1)!
|
|
// /__]
|
|
// j=0
|
|
// or,
|
|
// n
|
|
// ___ 2
|
|
// \ ] -X
|
|
// \ thisterm ; where thisterm = thisterm * ---------
|
|
// / j j+1 j (2j)*(2j+1)
|
|
// /__]
|
|
// j=0
|
|
//
|
|
// thisterm = X ; and stop when thisterm < precision used.
|
|
// 0 n
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
|
void _sinrat( PRAT *px )
|
|
|
|
{
|
|
CREATETAYLOR();
|
|
|
|
DUPRAT(pret,*px);
|
|
DUPRAT(thisterm,*px);
|
|
|
|
DUPNUM(n2,num_one);
|
|
xx->pp->sign *= -1;
|
|
|
|
do {
|
|
NEXTTERM(xx,INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2));
|
|
} while ( !SMALL_ENOUGH_RAT( thisterm ) );
|
|
|
|
DESTROYTAYLOR();
|
|
|
|
// Since *px might be epsilon above 1 or below -1, due to TRIMIT we need
|
|
// this trick here.
|
|
inbetween(px,rat_one);
|
|
|
|
// Since *px might be epsilon near zero we must set it to zero.
|
|
if ( rat_le(*px,rat_smallest) && rat_ge(*px,rat_negsmallest) )
|
|
{
|
|
DUPRAT(*px,rat_zero);
|
|
}
|
|
}
|
|
|
|
void sinrat( PRAT *px )
|
|
{
|
|
scale2pi(px);
|
|
_sinrat(px);
|
|
}
|
|
|
|
void sinanglerat( IN OUT PRAT *pa, IN ANGLE_TYPE angletype )
|
|
|
|
{
|
|
scalerat( pa, angletype );
|
|
switch ( angletype )
|
|
{
|
|
case ANGLE_DEG:
|
|
if ( rat_gt( *pa, rat_180 ) )
|
|
{
|
|
subrat(pa,rat_360);
|
|
}
|
|
divrat( pa, rat_180 );
|
|
mulrat( pa, pi );
|
|
break;
|
|
case ANGLE_GRAD:
|
|
if ( rat_gt( *pa, rat_200 ) )
|
|
{
|
|
subrat(pa,rat_400);
|
|
}
|
|
divrat( pa, rat_200 );
|
|
mulrat( pa, pi );
|
|
break;
|
|
}
|
|
_sinrat( pa );
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// FUNCTION: cosrat, _cosrat
|
|
//
|
|
// ARGUMENTS: x PRAT representation of number to take the cosine of
|
|
//
|
|
// RETURN: cosin of x in PRAT form.
|
|
//
|
|
// EXPLANATION: This uses Taylor series
|
|
//
|
|
// n
|
|
// ___ 2j j
|
|
// \ ] X -1
|
|
// \ ---------
|
|
// / (2j)!
|
|
// /__]
|
|
// j=0
|
|
// or,
|
|
// n
|
|
// ___ 2
|
|
// \ ] -X
|
|
// \ thisterm ; where thisterm = thisterm * ---------
|
|
// / j j+1 j (2j)*(2j+1)
|
|
// /__]
|
|
// j=0
|
|
//
|
|
// thisterm = 1 ; and stop when thisterm < precision used.
|
|
// 0 n
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
|
void _cosrat( PRAT *px )
|
|
|
|
{
|
|
CREATETAYLOR();
|
|
|
|
pret->pp=longtonum( 1L, nRadix );
|
|
pret->pq=longtonum( 1L, nRadix );
|
|
|
|
DUPRAT(thisterm,pret)
|
|
|
|
n2=longtonum(0L, nRadix);
|
|
xx->pp->sign *= -1;
|
|
|
|
do {
|
|
NEXTTERM(xx,INC(n2) DIVNUM(n2) INC(n2) DIVNUM(n2));
|
|
} while ( !SMALL_ENOUGH_RAT( thisterm ) );
|
|
|
|
DESTROYTAYLOR();
|
|
// Since *px might be epsilon above 1 or below -1, due to TRIMIT we need
|
|
// this trick here.
|
|
inbetween(px,rat_one);
|
|
// Since *px might be epsilon near zero we must set it to zero.
|
|
if ( rat_le(*px,rat_smallest) && rat_ge(*px,rat_negsmallest) )
|
|
{
|
|
DUPRAT(*px,rat_zero);
|
|
}
|
|
}
|
|
|
|
void cosrat( PRAT *px )
|
|
{
|
|
scale2pi(px);
|
|
_cosrat(px);
|
|
}
|
|
|
|
void cosanglerat( IN OUT PRAT *pa, IN ANGLE_TYPE angletype )
|
|
|
|
{
|
|
scalerat( pa, angletype );
|
|
switch ( angletype )
|
|
{
|
|
case ANGLE_DEG:
|
|
if ( rat_gt( *pa, rat_180 ) )
|
|
{
|
|
PRAT ptmp=NULL;
|
|
DUPRAT(ptmp,rat_360);
|
|
subrat(&ptmp,*pa);
|
|
destroyrat(*pa);
|
|
*pa=ptmp;
|
|
}
|
|
divrat( pa, rat_180 );
|
|
mulrat( pa, pi );
|
|
break;
|
|
case ANGLE_GRAD:
|
|
if ( rat_gt( *pa, rat_200 ) )
|
|
{
|
|
PRAT ptmp=NULL;
|
|
DUPRAT(ptmp,rat_400);
|
|
subrat(&ptmp,*pa);
|
|
destroyrat(*pa);
|
|
*pa=ptmp;
|
|
}
|
|
divrat( pa, rat_200 );
|
|
mulrat( pa, pi );
|
|
break;
|
|
}
|
|
_cosrat( pa );
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// FUNCTION: tanrat, _tanrat
|
|
//
|
|
// ARGUMENTS: x PRAT representation of number to take the tangent of
|
|
//
|
|
// RETURN: tan of x in PRAT form.
|
|
//
|
|
// EXPLANATION: This uses sinrat and cosrat
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
|
void _tanrat( PRAT *px )
|
|
|
|
{
|
|
PRAT ptmp=NULL;
|
|
|
|
DUPRAT(ptmp,*px);
|
|
_sinrat(px);
|
|
_cosrat(&ptmp);
|
|
if ( zerrat( ptmp ) )
|
|
{
|
|
destroyrat(ptmp);
|
|
throw( CALC_E_DOMAIN );
|
|
}
|
|
divrat(px,ptmp);
|
|
|
|
destroyrat(ptmp);
|
|
|
|
}
|
|
|
|
void tanrat( PRAT *px )
|
|
{
|
|
scale2pi(px);
|
|
_tanrat(px);
|
|
}
|
|
|
|
void tananglerat( IN OUT PRAT *pa, IN ANGLE_TYPE angletype )
|
|
|
|
{
|
|
scalerat( pa, angletype );
|
|
switch ( angletype )
|
|
{
|
|
case ANGLE_DEG:
|
|
if ( rat_gt( *pa, rat_180 ) )
|
|
{
|
|
subrat(pa,rat_180);
|
|
}
|
|
divrat( pa, rat_180 );
|
|
mulrat( pa, pi );
|
|
break;
|
|
case ANGLE_GRAD:
|
|
if ( rat_gt( *pa, rat_200 ) )
|
|
{
|
|
subrat(pa,rat_200);
|
|
}
|
|
divrat( pa, rat_200 );
|
|
mulrat( pa, pi );
|
|
break;
|
|
}
|
|
_tanrat( pa );
|
|
}
|
|
|