Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1886 lines
56 KiB

/**************************************************************************\
*
* Copyright (c) 1998 Microsoft Corporation
*
* Module Name:
*
* One-pixel-wide solid anti-aliased lines
*
* Abstract:
*
* Draws anti-aliased solid-color lines which are one pixel wide.
* Supports clipping against complex clipping regions.
*
* History:
*
* 3/31/1999 AMatos
* Created it.
* 08/17/1999 AGodfrey
* Separated aliased from antialiased.
*
\**************************************************************************/
#include "precomp.hpp"
#pragma optimize("a", on)
// Antialiased lines are usually drawn using aarasterizer.cpp
// rather than aaline.cpp. If aaline.cpp is to be used, define
// AAONEPIXELLINE_SUPPORT
#ifdef AAONEPIXELLINE_SUPPORT
//------------------------------------------------------------------------
// Global array that stores all the different options of drawing functions.
// If the order of the functions change, the offset constants must also
// change.
//------------------------------------------------------------------------
#define FUNC_X_MAJOR 0
#define FUNC_Y_MAJOR 1
#define FUNC_CLIP_OFFSET 2
typedef VOID (OnePixelLineDDAAntiAliased::*DDAFunc)(DpScanBuffer*);
DDAFunc gDrawFunctions[] = {
OnePixelLineDDAAntiAliased::DrawXMajor,
OnePixelLineDDAAntiAliased::DrawYMajor,
OnePixelLineDDAAntiAliased::DrawXMajorClip,
OnePixelLineDDAAntiAliased::DrawYMajorClip,
};
//------------------------------------------------------------------------
// Constants used for manipulating fixed point and doing all the bitwise
// operations on the aliased and antialiased DDA. I know some of these
// are already defined elsewhere, but I do it again here as it might be nice to
// keep this independent of the rest of gdiplus.
//------------------------------------------------------------------------
// Fixed point
#define RealToFix GpRealToFix4
#define FBITS 4
#define FMASK 0xf
#define FINVMASK 0xfffffff0
#define FSIZE 16
#define FHALF 8
#define FHALFMASK 7
// Antialiasing constants
#define MAXALPHA 255
#define MAXERROR 0x08000000
#define TESTABOVE 0xf8000000
#define TESTBELOW 0x07ffffff
#define MAXHALF 0x04000000
#define CONVERTALPHA 19
/**************************************************************************\
*
* Function Description:
*
* Does all the DDA setup that is common to aliased and antialiased
* lines.
*
* Arguments:
*
* [IN] point1 - end point
* [IN] point2 - end point
* [IN] drawLast - FALSE if the line is to be end-exclusive
* Return Value:
*
* Returns TRUE if the drawing should continue, meaning the line
* has non-zero length.
*
* Created:
*
* 03/31/1999 AMatos
*
\**************************************************************************/
BOOL
OnePixelLineDDAAntiAliased::SetupCommon(
GpPointF *point1,
GpPointF *point2,
BOOL drawLast
)
{
// Turn the points into fixed 28.4
INT x1 = RealToFix(point1->X);
INT x2 = RealToFix(point2->X);
REAL rDeltaX = point2->X - point1->X;
REAL rDeltaY = point2->Y - point1->Y;
if( rDeltaX == 0 && rDeltaY == 0 )
{
return FALSE;
}
INT xDir = 1;
if(rDeltaX < 0)
{
rDeltaX = -rDeltaX;
xDir = -1;
}
INT y1 = RealToFix(point1->Y);
INT y2 = RealToFix(point2->Y);
INT yDir = 1;
if( rDeltaY < 0)
{
rDeltaY = -rDeltaY;
yDir = -1;
}
Flipped = FALSE;
if( rDeltaY >= rDeltaX )
{
// y-major
InvDelta = 1.0F/rDeltaY;
// Invert the endpoints if necessary
if(yDir == -1)
{
INT tmp = y1;
y1 = y2;
y2 = tmp;
tmp = x1;
x1 = x2;
x2 = tmp;
xDir = -xDir;
Flipped = TRUE;
}
// Determine the Slope
Slope = xDir*rDeltaX*InvDelta;
// Initialize the Start and End points
IsXMajor = FALSE;
MajorStart = y1;
MajorEnd = y2;
MinorStart = x1;
MinorEnd = x2;
MinorDir = xDir;
// This will help us for the AntiAliased x-major case.
SwitchFirstLast = 1;
// Mark that we'll use the y-major functions.
DrawFuncIndex = FUNC_Y_MAJOR;
}
else
{
// x-major
InvDelta = 1.0F/rDeltaX;
// Invert the endpoints if necessary
if(xDir == -1)
{
INT tmp = x1;
x1 = x2;
x2 = tmp;
tmp = y1;
y1 = y2;
y2 = tmp;
yDir = -yDir;
Flipped = TRUE;
}
Slope = yDir*rDeltaY*InvDelta;
// Initialize the rest
IsXMajor = TRUE;
MajorStart = x1;
MajorEnd = x2;
MinorStart = y1;
MinorEnd = y2;
MinorDir = yDir;
// This will help us for the AntiAliased x-major case.
SwitchFirstLast = MinorDir;
// Mark that we'll use the x-major functions.
DrawFuncIndex = FUNC_X_MAJOR;
}
// Initialize the Deltas. In fixed point.
DMajor = MajorEnd - MajorStart;
DMinor = (MinorEnd - MinorStart)*MinorDir;
// Mark if we're drawing end-exclusive
IsEndExclusive = drawLast;
return TRUE;
}
/**************************************************************************\
*
* Function Description:
*
* Does the part of the DDA setup that is specific for anti-aliased lines.
*
* Arguments:
* Return Value:
*
* Always returns TRUE. It must return a BOOL because it must have the
* same signature as the aliased case.
*
* Created:
*
* 03/31/1999 AMatos
*
\**************************************************************************/
BOOL
OnePixelLineDDAAntiAliased::SetupAntiAliased()
{
const REAL maxError = MAXERROR;
// Find the integer major positions for the beginning and
// the end of the line.
INT major, minor;
INT majorEnd, minorEnd;
major = (MajorStart + FHALF) >> FBITS;
majorEnd = (MajorEnd + FHALF) >> FBITS;
// Check for the simple case of a one pixel long line
if(majorEnd == major)
{
AlphaFirst = (MAXALPHA*(MajorEnd - MajorStart)*MinorDir) >> FBITS;
MajorStart = major;
MajorEnd = majorEnd;
MinorStart = (MinorStart + FHALF) >> FBITS;
return TRUE;
}
// Store the fraction of the first pixel covered due to
// the start point.
FracStart = (major << FBITS) - MajorStart;
// Advance the minor coordinate to the integer major
MinorStart += GpFloor(Slope*FracStart);
// Calculate the length across the line in the minor direction
INT halfWidth = RealToFix(LineLength*InvDelta) >> 1;
// Make sure thar startX and endX don't end up being the
// same pixel, which our code does not handle. Theoretically
// this cannot happen when the width of the line is 1, but
// let's make sure it doesn't happen because of some roundoff
// Error.
if( halfWidth < FHALF )
{
halfWidth = FHALF;
}
INT endMinor = MinorEnd + MinorDir*halfWidth;
// Calculate the Error up from the Slope. It needs to be that
// way so that the Error up will work when the 0-1 interval
// is mapped to the interval 0 to 0x8000000. See comments below.
ErrorUp = GpFloor(Slope*maxError);
ErrorDown = MinorDir*MAXERROR;
// For a given aa one pixel wide line, there can be up to three pixels
// baing painted across the line. We call these the first, middle and
// last lines. So all variable with such prefixes refer to one
// of these three. firstX and lastX are the positions of these lines.
// In the x-major case, unlike the y-major, we might need to switch
// who is the first and who is the second line depending on the
// direction, so that the order that each line fills the scan
// remains the same. That's why we multiply halfWidth by yDir.
halfWidth *= SwitchFirstLast;
MinorFirst = MinorStart - halfWidth;
MinorLast = MinorStart + halfWidth;
// Calculate the initial Error. The Error is mapped so that 1 is
// taken to MAXERROR. So we find how mush we are into the
// pixel in X, which is a number between 0 and 16 (n.4). We then
// multiply this by MAXERROR and shift it from fized point. Finally we add
// MAXHALF so that the 0-1 interval is mapped to 0 to MAXERROR
// instead of from -MAXHALF and MAXHALF .
const INT convError = MAXERROR >> FBITS;
ErrorFirst = (MinorFirst - ((MinorFirst + FHALF) & FINVMASK))*
convError + MAXHALF;
ErrorLast = (MinorLast - ((MinorLast + FHALF) & FINVMASK))*
convError + MAXHALF ;
// Now calculate the alpha's for the first pixel. This is
// done from the Error. Since the Error is between
// 0 and MAXERROR-1, if we shift it back by 19 (CONVERTALPHA)
// we have a number between 0 and 255. We the multiply by
// yFrac which takes into account that the end of the line
// also cuts the coverage down. At the end we convert from
// 28.4. alphaFirst is the alpha of for the first pixel across the
// aa line, alpha Mid is for the middle if there is one, and
// AlphaLast is for the last pixel.
FracStart = FracStart + FHALF;
// Convert from 28.4 rounding
MinorFirst = (MinorFirst + FHALF) >> FBITS;
MinorLast = (MinorLast + FHALF) >> FBITS;
// Store the fraction for the last pixel
FracEnd = MajorEnd - (majorEnd << FBITS) + FHALF;
// Store the initial values in integer coordinates
MajorStart = major;
MajorEnd = majorEnd;
MinorStart = MinorFirst;
MinorEnd = (endMinor + FHALF) >> FBITS;
// Now do some initializations specific for the x-major and
// y-major cases. These can't be done in the drawing routine
// because those are reused during clipping.
if(!IsXMajor)
{
// Calculate the coverage values at the initial pixel.
AlphaFirst = ((MAXALPHA - (ErrorFirst >> CONVERTALPHA))*
FracStart) >> FBITS;
AlphaLast = ((ErrorLast >> CONVERTALPHA)*FracStart) >> FBITS;
AlphaMid = (MAXALPHA*FracStart) >> FBITS;
}
else
{
// Depending if we are going up or down, the alpha is calculated
// a different way from the coverage. In each case we want to
// estimate the coverage as the area from the current position to
// the end of the pixel, but which end varies. This is stored
// in the following biases. We don't have to do this for the
// y-major line because of the switch between first and last line
// explained above.
AlphaBiasLast = ((1 - MinorDir) >> 1)*TESTBELOW;
AlphaBiasFirst = ((1 + MinorDir) >> 1)*TESTBELOW;
AlphaFirst = ((AlphaBiasFirst - MinorDir*ErrorFirst)*FracStart) >> FBITS;
AlphaLast = ((AlphaBiasLast + MinorDir*ErrorLast)*FracStart) >> FBITS;
// If there is a middle line on the first X value, take xFrac into
// account. Otherwise, the middle line's alpha is always MAXALPHA.
if(MinorDir*(MinorLast - MinorFirst) < 2)
{
AlphaMid = MAXALPHA;
}
else
{
AlphaMid = MAXALPHA*FracStart >> FBITS;
}
// Both the first and last DDAs start with the same
// major positions, given by the first pixel.
MajorFirst = MajorLast = MajorStart;
}
return TRUE;
}
/**************************************************************************\
*
* Function Description:
*
* Draws a y major anti-aliased line. Does not support clipping, it assumes that
* it is completely inside any clipping area.
*
* Arguments:
*
* [IN] DpScanBuffer - The scan buffer for accessing the surface.
* Return Value:
*
*
* Created:
*
* 03/31/1999 AMatos
*
\**************************************************************************/
VOID
OnePixelLineDDAAntiAliased::DrawYMajor(
DpScanBuffer *scan
)
{
ARGB *buffer;
// Treat the special case where the line is just
// one pixel long.
if( MajorEnd == MajorStart)
{
buffer = scan->NextBuffer( MinorStart, MajorStart, 1);
*buffer = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaFirst));
return;
}
// Get the number of pixels not counting the last one.
// Which requires special endpoint treatment.
INT numPixels = MajorEnd - MajorStart;
BOOL endDone = FALSE;
// There can be two or three pixels across the line
INT pixelWidth = MinorLast - MinorFirst + 1;
while(numPixels)
{
numPixels--;
last_pixel:
// Get the scanline buffer buffer
buffer = scan->NextBuffer(MinorFirst, MajorStart, pixelWidth);
// Write the value of the first DDA
*buffer++ = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaFirst));
// If there is a middle line, write its value.
if(pixelWidth > 2)
{
*buffer++ = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaMid));
}
// Write the value of the last (2nd or 3rd) DDA
*buffer++ = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaLast));
// Update the errors of both DDAs
ErrorFirst+= ErrorUp;
ErrorLast += ErrorUp;
MajorStart++;
if(ErrorFirst & TESTABOVE)
{
ErrorFirst -= ErrorDown;
MinorFirst += MinorDir;
}
if(ErrorLast & TESTABOVE)
{
ErrorLast -= ErrorDown;
MinorLast += MinorDir;
}
// Calculate the new alphas for the next scan, and
// the new line width.
AlphaFirst = MAXALPHA - (ErrorFirst >> CONVERTALPHA);
AlphaLast = (ErrorLast >> CONVERTALPHA);
AlphaMid = MAXALPHA;
pixelWidth = MinorLast - MinorFirst + 1;
}
// The last scan requires special treatment since its coverage
// must be multiplied my the stored end coverage. So so this
// multiplication and go back to the body of the loop above
// to draw the last scan.
if(!endDone)
{
AlphaFirst = (AlphaFirst*FracEnd) >> FBITS;
AlphaLast = (AlphaLast*FracEnd) >> FBITS;
AlphaMid = (AlphaMid*FracEnd) >> FBITS;
endDone = TRUE;
goto last_pixel;
}
}
/**************************************************************************\
*
* Function Description:
*
* Draws a x major anti-aliased line. Does not support clipping, it assumes that
* it is completely inside any clipping area.
*
* Arguments:
*
* [IN] DpScanBuffer - The scan buffer for accessing the surface.
* Return Value:
*
*
* Created:
*
* 03/31/1999 AMatos
*
\**************************************************************************/
VOID
OnePixelLineDDAAntiAliased::DrawXMajor(
DpScanBuffer *scan
)
{
ARGB *buffer;
INT maxWidth = scan->GetSurface()->Width;
// Treat the special case where the line is just
// one pixel long.
if( MajorEnd == MajorStart)
{
buffer = scan->NextBuffer( MajorStart, MinorStart, 1);
*buffer = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaFirst));
return;
}
// For an x-major one-pixel wide line, there can be up to
// three different scans being painted for the same x
// position. But in our case we can't draw to these all at
// the same time since some surfaces can only be accessed
// one scan at a time. So the algorithm used here does all the
// drawing to one scan at each time. But on the first scan, only
// the first line should be drawn, on the second one both the
// first and middle (if there is a middle) and only then all
// the lines. So correct the Error of the last line so that
// it'll only be drawn when we are at the second or third scan line.
// Also correct the alpha since it'll also be crecremented for
// each scan line.
ErrorLast += MinorDir*(MinorLast - MinorFirst)*ErrorDown;
AlphaLast += (MinorLast - MinorFirst)*ErrorDown;
// Get the pointer to the buffer
buffer = scan->NextBuffer(MajorLast, MinorStart, maxWidth);
INT width = 0;
INT alpha;
INT middleMajor;
while(MajorLast <= MajorEnd)
{
// Fill the scan with the portion corresponding to the
// last line, which shoudl comes first on the scan. This is
// why we use the class member SwitchFirstLast, so we can decide
// based on the line direction which DDA will be the first and last
// so that the last one (paradoxically) always comes first on the
// scan. Keep doing it untill the last line chages scan. Check for
// the end to multiply by the last pixel's coverage.
while(!(ErrorLast & TESTABOVE))
{
if(MajorLast == MajorEnd)
{
AlphaLast = (AlphaLast*FracEnd) >> FBITS;
// Increment the error to correct for the
// decrementing below, since we didn't leave the
// loop because the error became above 0.
ErrorLast += ErrorDown;
}
*buffer++ = GpColor::PremultiplyWithCoverage(Color,
static_cast<BYTE>(AlphaLast >> CONVERTALPHA));
ErrorLast += ErrorUp;
AlphaLast = AlphaBiasLast + MinorDir*ErrorLast;
width++;
MajorLast++;
}
// We changed scans on the last DDA, so update the errors
ErrorLast -= ErrorDown;
AlphaLast -= MinorDir*ErrorDown;
// Fill in the middle part if there is one
middleMajor = MajorLast;
while(middleMajor < MajorFirst)
{
if( middleMajor == MajorEnd)
{
AlphaMid = (AlphaMid*FracEnd) >> FBITS;
}
*buffer++ = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaMid));
AlphaMid = MAXALPHA;
width++;
middleMajor++;
}
// Fill the scan with the portion corresponding to the
// first line, which comes last. Keep doing it untill the
// last line chages scan.
while(!(ErrorFirst & TESTABOVE))
{
if(MajorFirst == MajorEnd)
{
AlphaFirst = (AlphaFirst*FracEnd) >> FBITS;
// Since we can have at most three more scans
// increment ErrorFirst so that we never go in here again
ErrorFirst += 4*ErrorDown;
}
*buffer++ = GpColor::PremultiplyWithCoverage(
Color,
static_cast<BYTE>(AlphaFirst >> CONVERTALPHA));
ErrorFirst += ErrorUp;
AlphaFirst = AlphaBiasFirst - MinorDir*ErrorFirst;
width++;
MajorFirst++;
}
// Update the errors on the first scan
ErrorFirst -= ErrorDown;
AlphaFirst += MinorDir*ErrorDown;
// Write the buffer and update the minor variables
scan->UpdateWidth(width);
MinorStart += MinorDir;
if (MajorLast <= MajorEnd)
{
buffer = scan->NextBuffer(MajorLast, MinorStart, maxWidth);
}
width = 0;
}
scan->UpdateWidth(width);
}
/**************************************************************************\
*
* Function Description:
*
* Draws a y major line taking clipping into account. It uses the member
* variables MajorIn, MajorOut, MinorIn, MinorOut of the class as the
* clip rectangle. It advances untill the line is in the clip rectangle and
* draws untill it gets out or the end point is reached. In the first case,
* it leaves the DDA in a state so that it can be called again with another
* clipping rectangle.
*
* Arguments:
*
* [IN] DpScanBuffer - The scan buffer for accessing the surface.
* Return Value:
*
*
* Created:
*
* 03/31/1999 AMatos
*
\**************************************************************************/
VOID
OnePixelLineDDAAntiAliased::DrawYMajorClip(
DpScanBuffer *scan
)
{
ARGB *buffer;
// Treat the special case where the line is just
// one pixel long.
if( MajorEnd == MajorStart)
{
// Check if the point is inside the rectangle
if((MajorStart >= MajorIn) &&
(MajorStart <= MajorOut) &&
((MinorStart - MinorIn)*MinorDir >= 0) &&
((MinorOut - MinorStart)*MinorDir >= 0))
{
buffer = scan->NextBuffer( MinorStart, MajorStart, 1);
*buffer = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaFirst));
}
return;
}
// Align the major start coordinate with the edge of the
// cliprectangle
INT numScans = MajorIn - MajorStart;
while(numScans > 0)
{
ErrorFirst+= ErrorUp;
ErrorLast += ErrorUp;
MajorStart++;
numScans--;
if(ErrorFirst & MAXERROR)
{
ErrorFirst -= ErrorDown;
MinorFirst += MinorDir;
}
if(ErrorLast & MAXERROR)
{
ErrorLast -= ErrorDown;
MinorLast += MinorDir;
}
// Calculate the new alphas for the next line, and
// the width.
AlphaFirst = MAXALPHA - (ErrorFirst >> CONVERTALPHA);
AlphaLast = (ErrorLast >> CONVERTALPHA);
AlphaMid = MAXALPHA;
}
// Save the end values
INT saveMajor2 = MajorEnd;
INT saveFracEnd = FracEnd;
// If the end major coordinate is outside of the rectangle,
// mark that the DDA should stop at the edge
if(MajorEnd > MajorOut)
{
MajorEnd = MajorOut;
FracEnd = FSIZE;
}
// Number of pixels to draw, not counting the last
INT numPixels = MajorEnd - MajorStart;
BOOL endDone = FALSE;
// There can be two or three pixels across the line
INT pixelWidth = MinorLast - MinorFirst + 1;
// Do the DDA loop. Two loops are implemented here. The
// first one is used in the case that the x coordinate of
// the rectangle is close enough to the constant-y edges
// of the clip rectangle. In this case, it's a pain, since
// we have to check each pixel that we are writing if it's
// not outside. Thus, as soon as we notice that we are
// far from the edges we go to the other loop that doesn't
// check all that. All it checks is if it got close enough
// to the other edge, in which case it comes back to this
// loop, using the label last_part. firstOutDist, firstInDist,
// lastOutDist and lastInDist keeps track of the number of
// pixels between the first and last DDAs and the In and
// Out y-constant edges of the rectangle.
INT firstOutDist = (MinorOut - MinorFirst)*MinorDir;
last_part:
INT firstInDist = (MinorFirst - MinorIn)*MinorDir;
INT lastInDist = (MinorLast - MinorIn)*MinorDir;
INT lastOutDist = (MinorOut - MinorLast)*MinorDir;
while(numPixels > 0)
{
numPixels--;
last_pixel:
// Check if it's ok to write the first pixel
if(firstInDist >= 0 && firstOutDist >= 0)
{
buffer = scan->NextBuffer(MinorFirst, MajorStart, 1);
*buffer++ = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaFirst));
}
else
{
// If the first DDA is out, and we are going in the
// positive direction, then the whole line is out and
// we are done
if(firstOutDist < 0 && MinorDir == 1)
{
goto end;
}
}
// If the line has 3 pixels across
if(pixelWidth > 2)
{
// Check if it's ok to write the second pixel
if(firstInDist >= -MinorDir && firstOutDist >= MinorDir)
{
buffer = scan->NextBuffer(MinorFirst+1, MajorStart, 1);
*buffer++ = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaMid));
}
}
// Now check if it's ok to write the last one
if(lastInDist >= 0 && lastOutDist >= 0)
{
buffer = scan->NextBuffer(MinorLast, MajorStart, 1);
*buffer++ = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaLast));
}
else
{
// If the first DDA is out, and we are going in the
// negative direction, then the whole line is out and
// we are done
if(lastOutDist < 0 && MinorDir == -1)
{
goto end;
}
}
// Update the errors
ErrorFirst+= ErrorUp;
ErrorLast += ErrorUp;
MajorStart++;
if(ErrorFirst & TESTABOVE)
{
ErrorFirst -= ErrorDown;
MinorFirst += MinorDir;
firstInDist++;
firstOutDist--;
}
if(ErrorLast & TESTABOVE)
{
ErrorLast -= ErrorDown;
MinorLast += MinorDir;
lastInDist++;
lastOutDist--;
}
// Calculate the new alphas for the next line, and
// the width.
AlphaFirst = MAXALPHA - (ErrorFirst >> CONVERTALPHA);
AlphaLast = (ErrorLast >> CONVERTALPHA);
AlphaMid = MAXALPHA;
pixelWidth = MinorLast - MinorFirst + 1;
// Check to see if we can 'upgrade' to the next loop
if(firstInDist >= 3 && firstOutDist >= 3)
{
break;
}
}
while(numPixels > 0)
{
numPixels--;
// Get the scanline buffer buffer
buffer = scan->NextBuffer(MinorFirst, MajorStart, pixelWidth);
// Write the value of the first DDA
*buffer++ = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaFirst));
// If there is a middle line, write its value.
if(pixelWidth > 2)
{
*buffer++ = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaMid));
}
// Write the value of the last (2nd or 3rd) DDA
*buffer++ = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaLast));
// Update the DDA
ErrorFirst+= ErrorUp;
ErrorLast += ErrorUp;
MajorStart++;
if(ErrorFirst & TESTABOVE)
{
ErrorFirst -= ErrorDown;
MinorFirst += MinorDir;
firstOutDist--;
}
if(ErrorLast & TESTABOVE)
{
ErrorLast -= ErrorDown;
MinorLast += MinorDir;
}
// Calculate the new alphas for the next line, and
// the width.
AlphaFirst = MAXALPHA - (ErrorFirst >> CONVERTALPHA);
AlphaLast = (ErrorLast >> CONVERTALPHA);
AlphaMid = MAXALPHA;
pixelWidth = MinorLast - MinorFirst + 1;
// Now check if it's time to go to the other loop
// because we are too close to the out edge
if(firstOutDist < 3)
{
goto last_part;
}
}
// Now if we haven't gotten here yet, do the last pixel
// and go once more through the loop.
if(!endDone)
{
AlphaFirst = (AlphaFirst*FracEnd) >> FBITS;
AlphaLast = (AlphaLast*FracEnd) >> FBITS;
AlphaMid = (AlphaMid*FracEnd) >> FBITS;
endDone = TRUE;
goto last_pixel;
}
end:
MajorEnd = saveMajor2;
FracEnd = saveFracEnd;
}
/**************************************************************************\
*
* Function Description:
*
* Draws a x major line taking clipping into account. It uses the member
* variables MajorIn, MajorOut, MinorIn, MinorOut of the class as the
* clip rectangle. It advances untill the line is in the clip rectangle and
* draws untill it gets out or the end point is reached. In the first case,
* it leaves the DDA in a state so that it can be called again with another
* clipping rectangle.
*
* Arguments:
*
* [IN] DpScanBuffer - The scan buffer for accessing the surface.
* Return Value:
*
*
* Created:
*
* 03/31/1999 AMatos
*
\**************************************************************************/
VOID
OnePixelLineDDAAntiAliased::DrawXMajorClip(
DpScanBuffer *scan
)
{
ARGB *buffer;
INT maxWidth = scan->GetSurface()->Width;
// Treat the special case where the line is just
// one pixel long.
if( MajorEnd == MajorStart)
{
// Check to see if the point is inside the rectangle
if((MajorStart >= MajorIn) &&
(MajorStart <= MajorOut) &&
((MinorStart - MinorIn)*MinorDir >= 0) &&
((MinorOut - MinorStart)*MinorDir >= 0))
{
buffer = scan->NextBuffer( MajorStart, MinorStart, 1);
*buffer = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaFirst));
}
return;
}
// Save the real end and its fraction
INT saveMajor2 = MajorEnd;
INT saveFracEnd = FracEnd;
// If the end major coordinate is out, mark that we must stop
// before. Also make the fraction be one, since the last
// one drawn now should not have a fraction
if(MajorOut < MajorEnd)
{
MajorEnd = MajorOut;
FracEnd = FSIZE;
}
// Advance until the last DDA is in the right scan line and
// is aligned with the In y-constant edge of the rectnagle
INT numScans = (MinorIn - MinorLast)*MinorDir;
while((numScans > 0 && MajorLast <= MajorEnd) || MajorLast < MajorIn)
{
ErrorLast += ErrorUp;
if(ErrorLast & TESTABOVE)
{
ErrorLast -= ErrorDown;
MinorLast += MinorDir;
numScans--;
}
MajorLast++;
// Calculate the alpha for the current pixel
AlphaLast = AlphaBiasLast + MinorDir*ErrorLast;
}
// Do the same for the first DDA
numScans = (MinorIn - MinorFirst)*MinorDir;
while((numScans > 0 && MajorFirst <= MajorEnd) || MajorFirst < MajorIn)
{
ErrorFirst += ErrorUp;
if(ErrorFirst & TESTABOVE)
{
ErrorFirst -= ErrorDown;
MinorFirst += MinorDir;
numScans--;
}
MajorFirst++;
AlphaFirst = AlphaBiasFirst - MinorDir*ErrorFirst;
}
// If there is no middle line in the first x-position,
// make the middle alpha full, since the start coverage
// won't apply
if((MinorLast - MinorFirst) < 2)
{
AlphaMid = MAXALPHA;
}
MinorStart = MinorFirst;
// The same way that was done in the non-clipping case,
// mock arround with the error so we won't draw the
// last DDA until the first DDA is in the same scan line,
// or has caught up. We need to adjust the alpha and minor
// positions for this DDA to, so that when we start
// drawing they will have the right value
ErrorLast += MinorDir*(MinorLast - MinorFirst)*ErrorDown;
AlphaLast += (MinorLast - MinorFirst)*ErrorDown;
MinorLast -= (MinorLast - MinorFirst);
// Get the pointer to the buffer
buffer = scan->NextBuffer(MajorLast, MinorStart, maxWidth);
INT width = 0;
INT alpha;
INT middleMajor;
while(MajorLast <= MajorEnd)
{
// Fill the scan with the portion corresponding to the
// last line, which should come first. Keep doing it
// until the last line changes scan.
while(!(ErrorLast & TESTABOVE))
{
// Check if we passed or are at the last pixel
if(MajorLast >= MajorEnd)
{
if(MajorLast == MajorEnd)
{
// If we are at, just update the alpha
AlphaLast = (AlphaLast*FracEnd) >> FBITS;
}
else
{
// If we passed, we don't want to draw anymore.
// Just adjust the error, alpha and minor so they
// will be right when they are corrected after this
// loop for the next scan
ErrorLast += ErrorDown;
AlphaLast -= MinorDir*ErrorDown;
MinorLast -= MinorDir;
break;
}
}
*buffer++ = GpColor::PremultiplyWithCoverage(Color,
static_cast<BYTE>(AlphaLast >> CONVERTALPHA));
ErrorLast += ErrorUp;
AlphaLast = AlphaBiasLast + MinorDir*ErrorLast;
width++;
MajorLast++;
}
// Correct the values for the next scan
ErrorLast -= ErrorDown;
AlphaLast -= MinorDir*ErrorDown;
MinorLast += MinorDir;
// Fill in the middle part.
middleMajor = MajorLast;
while(middleMajor < MajorFirst)
{
if( middleMajor == MajorEnd)
{
AlphaMid = (AlphaMid*FracEnd) >> FBITS;
}
*buffer++ = GpColor::PremultiplyWithCoverage(Color, static_cast<BYTE>(AlphaMid));
AlphaMid = MAXALPHA;
width++;
middleMajor++;
}
// Fill the scan with the portion corresponding to the
// first line, which should come first. Keep doing it
// until the last line changes scan.
while(!(ErrorFirst & TESTABOVE))
{
// Check for the end pixel, just like we
// did for the last DDA
if(MajorFirst >= MajorEnd)
{
if(MajorFirst == MajorEnd)
{
AlphaFirst = (AlphaFirst*FracEnd) >> FBITS;
}
else
{
ErrorFirst += ErrorDown;
AlphaFirst -= MinorDir*ErrorDown;
MinorFirst -= MinorDir;
break;
}
}
*buffer++ = GpColor::PremultiplyWithCoverage(
Color,
static_cast<BYTE>(AlphaFirst >> CONVERTALPHA));
ErrorFirst += ErrorUp;
AlphaFirst = AlphaBiasFirst - MinorDir*ErrorFirst;
width++;
MajorFirst++;
}
// Correct the values for the next scan
ErrorFirst -= ErrorDown;
AlphaFirst += MinorDir*ErrorDown;
MinorFirst += MinorDir;
scan->UpdateWidth(width);
// Check to see if we have come to the end of the rectangle
// through the minor coordinate crossing the Out edge
// in the x-constant direction
if(MinorStart == MinorOut)
{
MinorStart += MinorDir;
break;
}
// Update the minor coordinate and get the next buffer
// if we aren't done yet.
MinorStart += MinorDir;
if (MajorLast <= MajorEnd)
{
buffer = scan->NextBuffer(MajorLast, MinorStart, maxWidth);
}
width = 0;
}
scan->UpdateWidth(width);
// Restore the old values
MajorEnd = saveMajor2;
FracEnd = saveFracEnd;
}
//--------------------------------------------------------------------
// Auxiliary functions
//--------------------------------------------------------------------
/**************************************************************************\
*
* Function Description:
*
* Clips the line against a rectangle. It assumes that the line endpoints
* are stored in the class in floating point format. This sets an
* order in which this function can be called. It must be after the
* SetupCommon function and before the specific setups for antialiasing
* and aliasing. This is a pain, but it's better than requirering on of
* these to have to know about clipping. The clipping here is done by
* using the Slope and InvSlope members of the class to advance the
* endpoints to the rectangle edges. Thus the function also assumes that
* Slope and InvSlope have been calculated.
*
* Arguments:
*
* [IN] clipRect - The rectangle to clip against
* Return Value:
*
*
* Created:
*
* 03/31/1999 AMatos
*
\**************************************************************************/
BOOL
OnePixelLineDDAAntiAliased::ClipRectangle(
const GpRect* clipRect
)
{
INT clipBottom, clipTop, clipLeft, clipRight;
// Set the major and minor edges ef the clipping
// region, converting to fixed point 28.4. Note that
// we don't convert to the pixel center, but to a
// that goes all the way up to the pixel edges. This
// makes a difference for antialiasing. We don't go all
// the way to the edge since some rounding rules could
// endup lihgting the next pixel outside of the clipping
// area. That's why we add/subtract 7 instead of 8.
// The right and bottom are exclusive.
INT majorMin = (clipRect->GetLeft() << FBITS) - FHALFMASK;
INT majorMax = ((clipRect->GetRight() - 1) << FBITS) + FHALFMASK;
INT minorMax = ((clipRect->GetBottom() - 1) << FBITS) + FHALFMASK;
INT minorMin = (clipRect->GetTop() << FBITS) - FHALFMASK;
if(!IsXMajor)
{
INT tmp;
tmp = majorMin;
majorMin = minorMin;
minorMin = tmp;
tmp = majorMax;
majorMax = minorMax;
minorMax = tmp;
}
// First clip in the major coordinate
BOOL minOut, maxOut;
minOut = MajorStart < majorMin;
maxOut = MajorEnd > majorMax;
if( minOut || maxOut )
{
if(MajorStart > majorMax || MajorEnd < majorMin)
{
return FALSE;
}
if(minOut)
{
MinorStart += GpFloor((majorMin - MajorStart)*Slope);
MajorStart = majorMin;
}
if(maxOut)
{
MinorEnd += GpFloor((majorMax - MajorEnd)*Slope);
MajorEnd = majorMax;
// If we clipped the last point, we don't need to be IsEndExclusive
// anymore, as the last point now is not the line's last
// point but some in the middle.
IsEndExclusive = FALSE;
}
}
// Now clip the minor coordinate
INT *pMajor1, *pMinor1, *pMajor2, *pMinor2;
if(MinorDir == 1)
{
pMajor1 = &MajorStart;
pMajor2 = &MajorEnd;
pMinor1 = &MinorStart;
pMinor2 = &MinorEnd;
}
else
{
pMajor1 = &MajorEnd;
pMajor2 = &MajorStart;
pMinor1 = &MinorEnd;
pMinor2 = &MinorStart;
}
minOut = *pMinor1 < minorMin;
maxOut = *pMinor2 > minorMax;
if(minOut || maxOut)
{
if(*pMinor1 > minorMax || *pMinor2 < minorMin)
{
return FALSE;
}
if(minOut)
{
*pMajor1 += GpFloor((minorMin - *pMinor1)*InvSlope);
*pMinor1 = minorMin;
}
if(maxOut)
{
*pMajor2 += GpFloor((minorMax - *pMinor2)*InvSlope);
*pMinor2 = minorMax;
// If we clipped the last point, we don't need to be endExclusive
// anymore, as the last point now is not the line's last
// point but some in the middle.
IsEndExclusive = FALSE;
}
}
return(TRUE);
}
/**************************************************************************\
*
* Function Description:
*
* Draws a one-pixe-wide line with a solid color. Calls on the
* OnePixelLineDDAAntiAliased class to do the actual drawing.
*
* Arguments:
*
* [IN] scan - The DpScanBuffer to access the drawing surface
* [IN] clipRect - A single rectangle that includes all the clipping
* region. If there is no clipping, should be set to NULL.
* [IN] clipRegionIn - A complex clipping region. If the clipping region is
* simple, this should be NULL, and clipRect will be used.
* [IN] point1 - line end point
* [IN] point2 - line end point
* [IN] inColor - the solid color
* [IN] drawLast - FALSE if the line is to be end-exclusive.
* [IN] antiAliased - TRUE if the line should be antialiased.
*
* Return Value:
*
* GpStatus - Ok or failure status
*
* Created:
*
* 03/31/1999 AMatos
*
\**************************************************************************/
GpStatus
DrawSolidLineOnePixelAntiAliased(
DpScanBuffer *scan,
const GpRect *clipRect,
const DpClipRegion* clipRegionIn,
GpPointF *point1,
GpPointF *point2,
ARGB inColor,
BOOL drawLast
)
{
// Take out the const for now because the Enumeration method
// is not const.
DpClipRegion *clipRegion = const_cast<DpClipRegion*>(clipRegionIn);
// Setup the common part of the DDA
OnePixelLineDDAAntiAliased dda;
if(!dda.SetupCommon(point1, point2, drawLast))
{
return Ok;
}
// Calculate the length of the line. Since we only use
// it to determine the width, it shouldn't matter that
// we convert the deltas from 28.4 before the multiplication.
INT d1 = dda.DMajor >> FBITS;
INT d2 = dda.DMinor >> FBITS;
dda.LineLength = (REAL)sqrt((double)(d1*d1 + d2*d2));
// Store the color, not premultiplied
dda.Color = inColor;
// Now handle the different clipping cases
if(!clipRect)
{
// This is easy, there is no clipping so just draw.
if(!dda.SetupAntiAliased())
{
return Ok;
}
(dda.*(gDrawFunctions[dda.DrawFuncIndex]))(scan);
return Ok;
}
else
{
// The inverse of the Slope might be needed.
// Can't use the inverse slope if the slope is zero.
if(dda.Slope==0.0F)
{
dda.InvSlope=0.0F;
}
else
{
dda.InvSlope = (1.0F/dda.Slope);
}
// First of all clip against the bounding rectangle
if(!dda.ClipRectangle(clipRect))
{
return Ok;
}
// Do the specific setup
if(!dda.SetupAntiAliased())
{
return Ok;
}
// For each clip rectangle we store it's limits in
// an array of four elements. We then index this array using
// the variables below which depend on the slope and
// direction of the line in the following way: majorIn is edge crossed
// to go into the rect in the major direction, majorOut is the edge
// crossed to go out of the rect in the major direction, and so on.
// The same for xIn, xOut, yIn, yOut.
INT majorIn, majorOut, minorIn, minorOut;
INT xIn, xOut, yIn, yOut;
// Direction to enumerate the rectangles which depends on the
// line
DpClipRegion::Direction enumDirection;
INT clipBounds[4];
// We store all our info in terms of major and minor
// direction, but to deal with cliping rectangles we
// need to know them in terms of x and y, so calculate
// xDir, yDir, the advance slope.
REAL xAdvanceRate;
INT xDir, yDir;
INT yEndLine;
// If the line crosses a span completely, (xStart, yStart)
// is the position where it enters the span and (xEnd, yEnd)
// is the position that it leaves. If it starts inside the
// span, then (xStart, yStart) is the start point
REAL yStart, xStart, xEnd, yEnd;
if(dda.IsXMajor)
{
// Calculate the in-out indices
majorIn = xIn = 0;
majorOut = xOut = 2;
if(dda.MinorDir == 1)
{
minorIn = 1;
minorOut = 3;
enumDirection = DpClipRegion::TopLeftToBottomRight;
}
else
{
minorIn = 3;
minorOut = 1;
enumDirection = DpClipRegion::BottomLeftToTopRight;
}
yIn = minorIn;
yOut = minorOut;
// Make (xStart, yStart) be the initial point
yStart = (REAL)dda.MinorStart;
xStart = (REAL)dda.MajorStart;
xAdvanceRate = dda.InvSlope;
xDir = 1;
yDir = dda.MinorDir;
yEndLine = dda.MinorEnd;
}
else
{
majorIn = yIn = 1;
majorOut = yOut = 3;
if(dda.MinorDir == 1)
{
minorIn = 0;
minorOut = 2;
enumDirection = DpClipRegion::TopLeftToBottomRight;
}
else
{
minorIn = 2;
minorOut = 0;
enumDirection = DpClipRegion::TopRightToBottomLeft;
}
xIn = minorIn;
xOut = minorOut;
// Make (xStart, yStart) be the initial point
yStart = (REAL)dda.MajorStart;
xStart = (REAL)dda.MinorStart;
xAdvanceRate = dda.Slope;
xDir = dda.MinorDir;
yDir = 1;
yEndLine = dda.MajorEnd;
}
// Update the drawing function to the correct
// slipping version
dda.DrawFuncIndex += FUNC_CLIP_OFFSET;
if(!clipRegion)
{
// In this case there is only a single rect, so just
// draw clipped to that
// Store the rectangle in an array so we can atribute the
// right values to the MajorIn, majorOut, etc... variables.
// Remember that bottom and right are exclusive.
clipBounds[0] = clipRect->GetLeft();
clipBounds[1] = clipRect->GetTop();
clipBounds[2] = clipRect->GetRight() - 1;
clipBounds[3] = clipRect->GetBottom() - 1;
dda.MajorIn = clipBounds[majorIn];
dda.MajorOut = clipBounds[majorOut];
dda.MinorIn = clipBounds[minorIn];
dda.MinorOut = clipBounds[minorOut];
(dda.*(gDrawFunctions[dda.DrawFuncIndex]))(scan);
return Ok;
}
else
{
BOOL agregating = FALSE;
INT agregateBounds[4];
// We have a complex clipping region. So what we'll do
// is clip against each individual rectangle in the
// cliping region.
clipRegion->StartEnumeration(GpFloor(yStart), enumDirection);
GpRect rect;
// Get the first rectangle.
INT numRects = 1;
clipRegion->Enumerate(&rect, numRects);
clipBounds[0] = rect.GetLeft();
clipBounds[1] = rect.GetTop();
clipBounds[2] = rect.GetRight() - 1;
clipBounds[3] = rect.GetBottom() - 1;
// Store the y position into the span
INT currSpanYMin = clipBounds[yIn];
// We need some special treatment for the case where the
// line is horizontal, since is this case it's not going
// to cross different spans. And it it's not in the current
// span, it's totally clipped out.
if(dda.IsXMajor && dda.ErrorUp == 0)
{
if(yStart >= clipBounds[1] && yStart <= clipBounds[3])
{
xStart = (REAL)dda.MajorStart;
xEnd = (REAL)dda.MajorEnd;
}
else
{
return Ok;
}
}
else
{
if(yStart < clipBounds[1] || yStart > clipBounds[3])
{
xStart = xStart + (clipBounds[yIn] - yStart)*xAdvanceRate;
yStart = (REAL)clipBounds[yIn];
}
xEnd = xStart + (clipBounds[yOut] - yStart)*xAdvanceRate;
}
yEnd = (REAL)clipBounds[yOut];
while(1)
{
// Get to the first rectangle on the span that crosses the
// line
while((xStart - clipBounds[xOut])*xDir > 0)
{
numRects = 1;
clipRegion->Enumerate(&rect, numRects);
clipBounds[0] = rect.GetLeft();
clipBounds[1] = rect.GetTop();
clipBounds[2] = rect.GetRight() - 1;
clipBounds[3] = rect.GetBottom() - 1;
if(numRects != 1)
{
goto draw_agregated;
}
if(clipBounds[yIn] != currSpanYMin)
{
goto process_next_span;
}
}
// Draw on all the rectangles that intersect the
// line
if((xStart - clipBounds[xIn])*xDir > 0 &&
(clipBounds[xOut] - xEnd)*xDir > 0)
{
if(agregating)
{
if((clipBounds[xIn] - agregateBounds[xIn])*xDir < 0)
{
agregateBounds[xIn] = clipBounds[xIn];
}
if((clipBounds[xOut] - agregateBounds[xOut])*xDir > 0)
{
agregateBounds[xOut] = clipBounds[xOut];
}
agregateBounds[yOut] = clipBounds[yOut];
}
else
{
agregateBounds[0] = clipBounds[0];
agregateBounds[1] = clipBounds[1];
agregateBounds[2] = clipBounds[2];
agregateBounds[3] = clipBounds[3];
agregating = TRUE;
}
}
else
{
if(agregating)
{
dda.MajorIn = agregateBounds[majorIn];
dda.MajorOut = agregateBounds[majorOut];
dda.MinorIn = agregateBounds[minorIn];
dda.MinorOut = agregateBounds[minorOut];
(dda.*(gDrawFunctions[dda.DrawFuncIndex]))(scan);
agregating = FALSE;
}
while((xEnd - clipBounds[xIn])*xDir > 0)
{
dda.MajorIn = clipBounds[majorIn];
dda.MajorOut = clipBounds[majorOut];
dda.MinorIn = clipBounds[minorIn];
dda.MinorOut = clipBounds[minorOut];
(dda.*(gDrawFunctions[dda.DrawFuncIndex]))(scan);
if(dda.MajorStart > dda.MajorEnd)
{
return Ok;
}
numRects = 1;
clipRegion->Enumerate(&rect, numRects);
clipBounds[0] = rect.GetLeft();
clipBounds[1] = rect.GetTop();
clipBounds[2] = rect.GetRight() - 1;
clipBounds[3] = rect.GetBottom() - 1;
if(numRects != 1)
{
goto draw_agregated;
}
if(clipBounds[yIn] != currSpanYMin)
{
goto process_next_span;
}
}
}
// Get to the next span
while(clipBounds[yIn] == currSpanYMin)
{
numRects = 1;
clipRegion->Enumerate(&rect, numRects);
clipBounds[0] = rect.GetLeft();
clipBounds[1] = rect.GetTop();
clipBounds[2] = rect.GetRight() - 1;
clipBounds[3] = rect.GetBottom() - 1;
if(numRects != 1)
{
goto draw_agregated;
}
}
process_next_span:
if((clipBounds[yIn] - yEndLine)*yDir > 0)
{
// We are done.
goto draw_agregated;
}
if((clipBounds[yIn] - yEnd)*yDir == 1)
{
xStart = xEnd;
}
else
{
if(agregating)
{
dda.MajorIn = agregateBounds[majorIn];
dda.MajorOut = agregateBounds[majorOut];
dda.MinorIn = agregateBounds[minorIn];
dda.MinorOut = agregateBounds[minorOut];
(dda.*(gDrawFunctions[dda.DrawFuncIndex]))(scan);
if(dda.MajorStart > dda.MajorEnd)
{
return Ok;
}
agregating = FALSE;
}
xStart = xStart + (clipBounds[yIn] - yStart)*xAdvanceRate;
}
yStart = (REAL)clipBounds[yIn];
xEnd = xStart + (clipBounds[yOut] - yStart)*xAdvanceRate;
yEnd = (REAL)clipBounds[yOut];
currSpanYMin = GpFloor(yStart);
}
draw_agregated:
if(agregating)
{
dda.MajorIn = agregateBounds[majorIn];
dda.MajorOut = agregateBounds[majorOut];
dda.MinorIn = agregateBounds[minorIn];
dda.MinorOut = agregateBounds[minorOut];
(dda.*(gDrawFunctions[dda.DrawFuncIndex]))(scan);
}
}
}
return Ok;
}
#endif // AAONEPIXELLINE_SUPPORT
#pragma optimize("a", off)