Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3022 lines
80 KiB

/******************************Module*Header*******************************\
* Module Name: trimesh.cxx
*
* Gradient fill inplementation
*
* Created: 21-Jun-1996
* Author: Mark Enstrom [marke]
*
* Copyright (c) 1996-1999 Microsoft Corporation
\**************************************************************************/
#include "precomp.hxx"
#include "solline.hxx"
/**************************************************************************\
* pfnDetermineTriangleFillRoutine
*
* determine scan line drawing routine for gradient fill
*
* Arguments:
*
* pSurfDst - dest surface
* *ppal - dest palette
* *pnfTriangleFill - return triangle fill routine
* *pnfRectangleFill - return gradient fill routine
*
* Return Value:
*
* status
*
* History:
*
* 2/17/1997 Mark Enstrom [marke]
*
\**************************************************************************/
BOOL
bDetermineTriangleFillRoutine(
PSURFACE pSurfDst,
XEPALOBJ *ppal,
PFN_GRADIENT *pnfTriangleFill,
PFN_GRADRECT *pnfRectangleFill
)
{
switch (pSurfDst->iFormat())
{
case BMF_1BPP:
*pnfTriangleFill = vGradientFill1;
*pnfRectangleFill = vFillGRectDIB1;
break;
case BMF_4BPP:
*pnfTriangleFill = vGradientFill4;
*pnfRectangleFill = vFillGRectDIB4;
break;
case BMF_8BPP:
*pnfTriangleFill = vGradientFill8;
*pnfRectangleFill = vFillGRectDIB8;
break;
case BMF_16BPP:
{
ULONG flR = ppal->flRed();
ULONG flG = ppal->flGre();
ULONG flB = ppal->flBlu();
if (
(flR == 0xf800) &&
(flG == 0x07e0) &&
(flB == 0x001f)
)
{
*pnfTriangleFill = vGradientFill16_565;
*pnfRectangleFill = vFillGRectDIB16_565;
}
else if (
(flR == 0x7c00) &&
(flG == 0x03e0) &&
(flB == 0x001f)
)
{
*pnfTriangleFill = vGradientFill16_555;
*pnfRectangleFill = vFillGRectDIB16_555;
}
else
{
*pnfTriangleFill = vGradientFill16Bitfields;
*pnfRectangleFill = vFillGRectDIB16Bitfields;
}
}
break;
case BMF_24BPP:
if(ppal->bIsRGB())
{
*pnfTriangleFill = vGradientFill24RGB;
*pnfRectangleFill = vFillGRectDIB24RGB;
}
else if(ppal->bIsBGR())
{
*pnfTriangleFill = vGradientFill24BGR;
*pnfRectangleFill = vFillGRectDIB24BGR;
}
else
{
*pnfTriangleFill = vGradientFill24Bitfields;
*pnfRectangleFill = vFillGRectDIB24Bitfields;
}
break;
case BMF_32BPP:
if (ppal->bIsRGB())
{
*pnfTriangleFill = vGradientFill32RGB;
*pnfRectangleFill = vFillGRectDIB32RGB;
}
else if (ppal->bIsBGR())
{
*pnfTriangleFill = vGradientFill32BGRA;
*pnfRectangleFill = vFillGRectDIB32BGRA;
}
else
{
*pnfTriangleFill = vGradientFill32Bitfields;
*pnfRectangleFill = vFillGRectDIB32Bitfields;
}
break;
}
return(TRUE);
}
/******************************Public*Routine******************************\
* vHorizontalLine
*
* Record information for horizontal line.
* Colors are recorded as fixed point 8.56
*
* Arguments:
*
* pv1 - vertex 1
* pv2 - vertex 2
* ptData - triangle data
* ptridda - dda data
*
* Return Value:
*
* none
*
* History:
*
* 11/20/1996 Mark Enstrom [marke]
*
\**************************************************************************/
VOID
vHorizontalLine(
PTRIVERTEX pv1,
PTRIVERTEX pv2,
PTRIANGLEDATA ptData,
PTRIDDA ptridda
)
{
LONG yPosition = ptridda->N0;
LONG yIndex = yPosition - ptData->y0;
//
// check if this line is whithin clipping in y
//
if (
(yPosition >= ptData->rcl.top) &&
(yPosition < ptData->rcl.bottom)
)
{
//
// find left edge
//
if (pv1->x <= pv2->x)
{
//
// left edge
//
ptData->TriEdge[yIndex].xLeft = pv1->x;
ptData->TriEdge[yIndex].llRed = ((LONGLONG)pv1->Red) << 48;
ptData->TriEdge[yIndex].llGreen = ((LONGLONG)pv1->Green) << 48;
ptData->TriEdge[yIndex].llBlue = ((LONGLONG)pv1->Blue) << 48;
ptData->TriEdge[yIndex].llAlpha = ((LONGLONG)pv1->Alpha) << 48;
//
// right edge
//
ptData->TriEdge[yIndex].xRight = pv2->x;
}
else
{
//
// left edge
//
ptData->TriEdge[yIndex].xLeft = pv2->x;
ptData->TriEdge[yIndex].llRed = pv2->Red << 48;
ptData->TriEdge[yIndex].llGreen = pv2->Green << 48;
ptData->TriEdge[yIndex].llBlue = pv2->Blue << 48;
ptData->TriEdge[yIndex].llAlpha = pv2->Alpha << 48;
//
// right edge
//
ptData->TriEdge[yIndex].xRight = pv1->x;
}
}
}
/******************************Public*Routine******************************\
* vEdgeDDA
*
* Run line DDA down an edge of the triangle recording edge
* position and color
*
* Arguments:
*
* ptData - triangle data
* ptridda - line dda information
*
* Return Value:
*
* None
*
* History:
*
* 11/20/1996 Mark Enstrom [marke]
*
\**************************************************************************/
VOID
vEdgeDDA(
PTRIANGLEDATA ptData,
PTRIDDA ptridda
)
{
LONG NumScanLines = ptridda->NumScanLines;
LONG yIndex = ptridda->yIndex;
LONGLONG llRed = ptridda->llRed;
LONGLONG llGreen = ptridda->llGreen;
LONGLONG llBlue = ptridda->llBlue;
LONGLONG llAlpha = ptridda->llAlpha;
LONG L = ptridda->L;
LONG Rb = ptridda->Rb;
//
// Scan all lines, only record lines contained by
// the clipping in ptData->rcl (y)
//
while (NumScanLines--)
{
//
// check for and record left edge
//
if (yIndex >= 0)
{
if (L < ptData->TriEdge[yIndex].xLeft)
{
ptData->TriEdge[yIndex].xLeft = L;
ptData->TriEdge[yIndex].llRed = llRed;
ptData->TriEdge[yIndex].llGreen = llGreen;
ptData->TriEdge[yIndex].llBlue = llBlue;
ptData->TriEdge[yIndex].llAlpha = llAlpha;
}
if (L > ptData->TriEdge[yIndex].xRight)
{
ptData->TriEdge[yIndex].xRight = L;
}
}
//
// inc y by one scan line, inc x(L) by integer step
// and inc error term by dR
//
yIndex++;
L += ptridda->dL;
Rb -= ptridda->dR;
//
// inc color components by y and integer x components
//
llRed += (ptridda->lldxyRed);
llGreen += (ptridda->lldxyGreen);
llBlue += (ptridda->lldxyBlue);
llAlpha += (ptridda->lldxyAlpha);
//
// check for DDA error term overflow, add one
// more step in x and color if true,
// and correct error term
//
if (Rb < 0)
{
//
// fraction step in x
//
L += ptridda->Linc;
//
// fraction step in color components
//
llRed += ptData->lldRdX;
llGreen += ptData->lldGdX;
llBlue += ptData->lldBdX;
llAlpha += ptData->lldAdX;
//
// adjust error term
//
Rb += ptridda->dN;
}
}
}
/******************************Public*Routine******************************\
* vCalulateLine
*
* calculate bounding line
*
* Arguments:
*
* pv1 - vertex 1
* pv2 - vertex 2
* ptData - triangle data
*
* Return Value:
*
* none
*
* History:
*
* 11/20/1996 Mark Enstrom [marke]
*
\**************************************************************************/
VOID
vCalculateLine(
PTRIVERTEX pv1,
PTRIVERTEX pv2,
PTRIANGLEDATA ptData
)
{
TRIDDA tridda;
//
// initial y component
//
tridda.lldxyRed = ptData->lldRdY;
tridda.lldxyGreen = ptData->lldGdY;
tridda.lldxyBlue = ptData->lldBdY;
tridda.lldxyAlpha = ptData->lldAdY;
//
// N0 = integer y starting location
// M0 = integer x starting location
// dN = integer delta y
// dM = integer delta x
//
// Arrange lines, must run DDA in positive delta y.
//
if (pv2->y >= pv1->y)
{
tridda.dN = pv2->y - pv1->y;
tridda.dM = pv2->x - pv1->x;
tridda.N0 = pv1->y;
tridda.M0 = pv1->x;
}
else
{
tridda.dN = pv1->y - pv2->y;
tridda.dM = pv1->x - pv2->x;
tridda.N0 = pv2->y;
tridda.M0 = pv2->x;
}
//
// caclulate initial color value at stating vertex
//
tridda.llRed = ptData->lldRdY * (tridda.N0 - ptData->ptColorCalcOrg.y) +
ptData->lldRdX * (tridda.M0 - ptData->ptColorCalcOrg.x) +
ptData->llRA;
tridda.llGreen = ptData->lldGdY * (tridda.N0 - ptData->ptColorCalcOrg.y) +
ptData->lldGdX * (tridda.M0 - ptData->ptColorCalcOrg.x) +
ptData->llGA;
tridda.llBlue = ptData->lldBdY * (tridda.N0 - ptData->ptColorCalcOrg.y) +
ptData->lldBdX * (tridda.M0 - ptData->ptColorCalcOrg.x) +
ptData->llBA;
tridda.llAlpha = ptData->lldAdY * (tridda.N0 - ptData->ptColorCalcOrg.y) +
ptData->lldAdX * (tridda.M0 - ptData->ptColorCalcOrg.x) +
ptData->llAA;
//
// Check for horizontal line, dN == 0 is a horizontal line.
// In this case just record the end points.
//
if (tridda.dN == 0)
{
vHorizontalLine(pv1,pv2,ptData,&tridda);
}
else
{
LONGLONG l0,Frac;
tridda.Linc = 1;
//
// yIndex is the offset into the edge array for
// the current line. Calc number of scan lines
// and maximum y position
//
tridda.yIndex = tridda.N0 - ptData->y0;
tridda.NumScanLines = tridda.dN;
LONG NMax = tridda.N0 + tridda.NumScanLines;
//
// make sure scan lines do not overrun buffer due to
// clipping
//
if (
(tridda.N0 > ptData->rcl.bottom) ||
(NMax < ptData->rcl.top)
)
{
//
// nothing to draw
//
return;
}
else if (NMax > ptData->rcl.bottom)
{
tridda.NumScanLines = tridda.NumScanLines - (NMax - ptData->rcl.bottom);
}
tridda.j = tridda.N0;
tridda.C = ((LONGLONG)tridda.M0 * (LONGLONG)tridda.dN) - ((LONGLONG)tridda.N0 * (LONGLONG)tridda.dM) -1;
tridda.C = tridda.C + tridda.dN;
LONGLONG LongL;
if (tridda.dM > 0)
{
tridda.dL = tridda.dM / tridda.dN;
tridda.dR = tridda.dM - tridda.dL * tridda.dN;
}
else if (tridda.dM < 0)
{
//
// negative divide
//
LONG dLQ,dLR;
tridda.dM = -tridda.dM;
dLQ = (tridda.dM - 1) / tridda.dN;
dLR = tridda.dM - 1 - (dLQ * tridda.dN);
tridda.dL = -(dLQ + 1);
tridda.dR = tridda.dN - dLR - 1;
}
else
{
//
// dM = 0
//
tridda.dL = 0;
tridda.dR = 0;
}
l0 = tridda.j * tridda.dL;
LongL = tridda.j * tridda.dR + tridda.C;
if (LongL > 0)
{
Frac = (LONG)(LongL/tridda.dN);
}
else if (LongL < 0)
{
LONGLONG Q = ((-LongL - 1)/tridda.dN);
Frac = -(Q + 1);
}
else
{
Frac = 0;
}
tridda.R = (LONG)(LongL - (Frac * tridda.dN));
tridda.L = (LONG)(l0 + Frac);
tridda.Rb = tridda.dN - tridda.R - 1;
//
// Calculate color steps for dx
//
tridda.lldxyRed = tridda.lldxyRed + (ptData->lldRdX * tridda.dL);
tridda.lldxyGreen = tridda.lldxyGreen + (ptData->lldGdX * tridda.dL);
tridda.lldxyBlue = tridda.lldxyBlue + (ptData->lldBdX * tridda.dL);
tridda.lldxyAlpha = tridda.lldxyAlpha + (ptData->lldAdX * tridda.dL);
//
// run edge dda
//
vEdgeDDA(ptData,&tridda);
}
}
/**************************************************************************\
* bCalulateColorGradient
*
* Calculate all color gradients
*
* Arguments:
*
* pv0,pv1,pv2 - triangle verticies
* ptData - triangel data
*
* Return Value:
*
* status
*
* History:
*
* 5/22/1997 Kirk Olnyk [kirko]
*
\**************************************************************************/
BOOL
bCalulateColorGradient(
PTRIVERTEX pv0,
PTRIVERTEX pv1,
PTRIVERTEX pv2,
PTRIANGLEDATA ptData
)
{
GRADSTRUCT g;
LONGLONG d;
LONG z;
g.x1 = pv1->x;
g.y1 = pv1->y;
g.x2 = pv2->x;
g.y2 = pv2->y;
z = pv0->x;
g.x1 -= z;
g.x2 -= z;
z = pv0->y;
g.y1 -= z;
g.y2 -= z;
g.d = g.x1 * g.y2 - g.x2 * g.y1;
LONG tx = MIN(g.x1,0);
LONG ty = MIN(g.y1,0);
g.m = MIN(tx,g.x2) + MIN(ty,g.y2);
d = (LONGLONG) ABS(g.d);
g.Q = (LONGLONG)TWO_TO_THE_48TH / d;
g.R = (LONGLONG)TWO_TO_THE_48TH % d;
ptData->ptColorCalcOrg.x = pv0->x;
ptData->ptColorCalcOrg.y = pv0->y;
bDoGradient( &ptData->lldRdX // &A
, &ptData->lldRdY // &B
, &ptData->llRA // &C
, pv0->Red // R0
, pv1->Red // R1
, pv2->Red // R2
, &g );
bDoGradient( &ptData->lldGdX
, &ptData->lldGdY
, &ptData->llGA
, pv0->Green
, pv1->Green
, pv2->Green
, &g );
bDoGradient( &ptData->lldBdX
, &ptData->lldBdY
, &ptData->llBA
, pv0->Blue
, pv1->Blue
, pv2->Blue
, &g );
bDoGradient( &ptData->lldAdX
, &ptData->lldAdY
, &ptData->llAA
, pv0->Alpha
, pv1->Alpha
, pv2->Alpha
, &g );
return(TRUE);
}
/**************************************************************************\
* MDiv64
* 64 bit mul-div
*
* Arguments:
*
* return = (a * b) / c
*
* Return Value:
*
*
*
* History:
*
* 5/22/1997 Kirk Olnyk [kirko]
*
\**************************************************************************/
LONGLONG
MDiv64(
LONGLONG a,
LONGLONG b,
LONGLONG c)
{
LONGLONG Result;
int isNegative=0;
Result = 0;
if (a != 0 && b != 0)
{
if (a < 0)
{
a = -a;
isNegative = 1;
}
else if (b < 0)
{
b = -b;
isNegative = 1;
}
a = a * b - (LONGLONG) isNegative;
Result = a / c;
if (isNegative)
{
Result = - Result - 1;
}
}
return(Result);
}
/**************************************************************************\
* bDoGradient
*
* calc color gradient for one color
*
* Arguments:
*
* pA
* pB
* pC
* g0
* g1
* g2
* pg
*
* Return Value:
*
* status
*
* History:
*
* 5/22/1997 Kirk Olnyk [kirko]
*
\**************************************************************************/
BOOL
bDoGradient(
LONGLONG *pA,
LONGLONG *pB,
LONGLONG *pC,
LONG g0,
LONG g1,
LONG g2,
GRADSTRUCT *pg
)
{
BOOL bDiv(LONGLONG*, LONGLONG, LONG);
LONGLONG a,b,c,d;
g1 = g1 - g0;
g2 = g2 - g0;
a = g1 * pg->y2 - g2 * pg->y1;
b = g2 * pg->x1 - g1 * pg->x2;
d = pg->d;
if (d < 0)
{
a = -a;
b = -b;
d = -d;
}
*pA = pg->Q * a + MDiv64(a, pg->R, d);
*pB = pg->Q * b + MDiv64(b, pg->R, d);
c = (d >> 1) + 1;
a = c * pg->R - pg->m - 1;
a /= d;
a += c * pg->Q;
a += pg->m;
*pC = a + (((LONGLONG) g0) << 48);
return(TRUE);
}
/**************************************************************************\
* lCalculateTriangleArea
*
* Arguments:
*
* pv0 - vertex
* pv1 - vertex
* pv2 - vertex
* ptData - triangle data
*
* Return Value:
*
* < 0 = negative area
* 0 = 0 area
* > 0 = positive area
*
* History:
*
* 2/26/1997 Mark Enstrom [marke]
*
\**************************************************************************/
LONG
lCalculateTriangleArea(
PTRIVERTEX pv0,
PTRIVERTEX pv1,
PTRIVERTEX pv2,
PTRIANGLEDATA ptData
)
{
LONG lRet;
//
// calc area, color gradients in x,y
//
// area = (v2-v0) X (v1 - v2)
//
LONGLONG v12x = pv1->x - pv2->x;
LONGLONG v12y = pv1->y - pv2->y;
LONGLONG v02x = pv0->x - pv2->x;
LONGLONG v02y = pv0->y - pv2->y;
LONGLONG Area = (v12y * v02x) - (v12x * v02y);
if (Area == 0)
{
lRet = 0;
}
else if (Area > 0)
{
lRet = 1;
if (ptData != NULL)
{
ptData->Area = Area;
}
}
else
{
lRet = -1;
}
return(lRet);
}
/**************************************************************************\
* LIMIT_COLOR
*
* Actual input colors are limited to 0x0000 - 0xff00
* 256 * (0x00 - 0xff)
*
* Arguments:
*
* pv - vertex
*
* History:
*
* 2/26/1997 Mark Enstrom [marke]
*
\**************************************************************************/
#define LIMIT_COLOR(pv) \
\
if (pv->Red > 0xff00) \
{ \
pv->Red = 0xff00; \
} \
\
if (pv->Green > 0xff00) \
{ \
pv->Green = 0xff00; \
} \
\
if (pv->Blue > 0xff00) \
{ \
pv->Blue = 0xff00; \
}
/******************************Public*Routine******************************\
* bCalculateTriangle
*
* if triangle is too largre, break it in into 2 triangles and call this
* routine on each (max recursion ~= 16)
*
* Calculate color gradients, then scan the three lines that make up the
* triangle. Fill out a structure that can later be used to fill in the
* interior of the triangle.
*
* Arguments:
*
* pSurfDst - destination surface
* pInV0 - vertex
* pInV1 - vertex
* pInV2 - vertex
* ptData - triangle data
* pfnG - surface gradient draw routine
*
* Return Value:
*
* status
*
* History:
*
* 17-Jul-1996 -by- Mark Enstrom [marke]
*
\**************************************************************************/
BOOL
bCalculateAndDrawTriangle(
PSURFACE pSurfDst,
PTRIVERTEX pInV0,
PTRIVERTEX pInV1,
PTRIVERTEX pInV2,
PTRIANGLEDATA ptData,
PFN_GRADIENT pfnG
)
{
BOOL bStatus = TRUE;
LONG index;
LONG lStatus;
PTRIVERTEX pv0 = pInV0;
PTRIVERTEX pv1 = pInV1;
PTRIVERTEX pv2 = pInV2;
{
PTRIVERTEX pvt;
//
// sort in y for line processing
//
if (pv0->y > pv1->y)
{
SWAP_VERTEX(pv0,pv1,pvt);
}
if (pv1->y > pv2->y)
{
SWAP_VERTEX(pv1,pv2,pvt);
}
if (pv0->y > pv1->y)
{
SWAP_VERTEX(pv0,pv1,pvt);
}
lStatus = lCalculateTriangleArea(pv0,pv1,pv2,ptData);
//
// if area is zero then this is a degenerate triangle
//
if (lStatus == 0)
{
return(FALSE);
}
else if (lStatus <0)
{
//
// negative area, swap pv1 and pv2 and recalcualte
//
SWAP_VERTEX(pv1,pv2,pvt);
lStatus = lCalculateTriangleArea(pv0,pv1,pv2,ptData);
if (lStatus == 0)
{
return(FALSE);
}
else if (lStatus <0)
{
WARNING1("Triangle Area still negative after vertex swap\n");
return(FALSE);
}
}
//
// calc min and max drawing y
//
ptData->y0 = MAX(pv0->y,ptData->rcl.top);
LONG MaxY = MAX(pv1->y,pv2->y);
ptData->y1 = MIN(MaxY,ptData->rcl.bottom);
{
//
// init ptdata
//
LONG lIndex;
for (lIndex=0;lIndex<(ptData->y1-ptData->y0);lIndex++)
{
ptData->TriEdge[lIndex].xLeft = LONG_MAX;
ptData->TriEdge[lIndex].xRight = LONG_MIN;
}
}
//
// calculate color gradients for each color. There is a little redundant
// work here with calculation of deltas. Should make this one call or
// do it in place.
//
LIMIT_COLOR(pv0);
LIMIT_COLOR(pv1);
LIMIT_COLOR(pv2);
bCalulateColorGradient(pv0,pv1,pv2,ptData);
//
// draw lines into data array
//
vCalculateLine(pv0,pv1,ptData);
vCalculateLine(pv1,pv2,ptData);
vCalculateLine(pv2,pv0,ptData);
pfnG(pSurfDst,ptData);
}
return(bStatus);
}
/**************************************************************************\
* bIsTriangleInBounds
*
* Is triangle inside bounding rect
*
* Arguments:
*
* pInV0 - vertex 0
* pInV1 - vertex 1
* pInV2 - vertex 2
* ptData - triangle data
*
* Return Value:
*
* TRUE in any of the triangle is contained in bounding rect
*
* History:
*
* 5/8/1997 Mark Enstrom [marke]
*
\**************************************************************************/
BOOL
bIsTriangleInBounds(
PTRIVERTEX pInV0,
PTRIVERTEX pInV1,
PTRIVERTEX pInV2,
PTRIANGLEDATA ptData
)
{
PRECTL prclClip = &ptData->rcl;
RECTL rclTri;
rclTri.left = MIN(pInV0->x,pInV1->x);
rclTri.right = MAX(pInV0->x,pInV1->x);
rclTri.top = MIN(pInV0->y,pInV1->y);
rclTri.bottom = MAX(pInV0->y,pInV1->y);
rclTri.left = MIN(rclTri.left,pInV2->x);
rclTri.right = MAX(rclTri.right,pInV2->x);
rclTri.top = MIN(rclTri.top,pInV2->y);
rclTri.bottom = MAX(rclTri.bottom,pInV2->y);
if ((rclTri.left >= prclClip->right) ||
(rclTri.right <= prclClip->left) ||
(rclTri.top >= prclClip->bottom) ||
(rclTri.bottom <= prclClip->top))
{
return(FALSE);
}
return(TRUE);
}
/**************************************************************************\
* bTriangleNeedSplit
* determine whether triangle needs split
*
* Arguments:
*
* pv0,pv1,pv2 - triangle vertex
*
* Return Value:
*
* TRUE if triangle needs to be split
*
* History:
*
* 5/8/1997 Mark Enstrom [marke]
*
\**************************************************************************/
BOOL
bTriangleNeedsSplit(
PTRIVERTEX pv0,
PTRIVERTEX pv1,
PTRIVERTEX pv2
)
{
//
// calc dx,dy for each leg
//
LONG dx01 = ABS(pv0->x - pv1->x);
LONG dy01 = ABS(pv0->y - pv1->y);
LONG dx02 = ABS(pv0->x - pv2->x);
LONG dy02 = ABS(pv0->y - pv2->y);
LONG dx12 = ABS(pv1->x - pv2->x);
LONG dy12 = ABS(pv1->y - pv2->y);
//
// if any length is longer than max, break triangle into two pieces
// and call this routine for each
//
if (
(
(dx01 > MAX_EDGE_LENGTH) || (dy01 > MAX_EDGE_LENGTH) ||
(dx02 > MAX_EDGE_LENGTH) || (dy02 > MAX_EDGE_LENGTH) ||
(dx12 > MAX_EDGE_LENGTH) || (dy12 > MAX_EDGE_LENGTH)
)
)
{
return(TRUE);
}
return(FALSE);
}
/**************************************************************************\
* bSplitTriangle
* Determine is triangle must be split.
* Split triangle along longest edge
*
* Arguments:
*
* pv0,pv1,pv2 - triangle
* pvNew - new vertex
* pGrad - mesh
*
* Return Value:
*
* TRUE if split, FALSE otherwise
*
* History:
*
* 5/8/1997 Mark Enstrom [marke]
*
\**************************************************************************/
BOOL
bSplitTriangle(
PTRIVERTEX pVert,
PULONG pFreeVert,
PGRADIENT_TRIANGLE pMesh,
PULONG pFreeMesh,
PULONG pRecurseLevel
)
{
BOOL bStatus = FALSE;
ULONG CurrentMesh = (*pFreeMesh) - 1;
ULONG ulTM0 = pMesh[CurrentMesh].Vertex1;
ULONG ulTM1 = pMesh[CurrentMesh].Vertex2;
ULONG ulTM2 = pMesh[CurrentMesh].Vertex3;
PTRIVERTEX pv0 = &pVert[ulTM0];
PTRIVERTEX pv1 = &pVert[ulTM1];
PTRIVERTEX pv2 = &pVert[ulTM2];
PTRIVERTEX pvT0 = pv0;
PTRIVERTEX pvT1 = pv1;
PTRIVERTEX pvT2 = pv2;
TRIVERTEX triNew;
//
// find longest edge
//
LONGLONG dx01 = ABS(pv0->x - pv1->x);
LONGLONG dy01 = ABS(pv0->y - pv1->y);
LONGLONG dx02 = ABS(pv0->x - pv2->x);
LONGLONG dy02 = ABS(pv0->y - pv2->y);
LONGLONG dx12 = ABS(pv1->x - pv2->x);
LONGLONG dy12 = ABS(pv1->y - pv2->y);
//
// determine if triangle needs to be split
//
if (
(
(dx01 > MAX_EDGE_LENGTH) || (dy01 > MAX_EDGE_LENGTH) ||
(dx02 > MAX_EDGE_LENGTH) || (dy02 > MAX_EDGE_LENGTH) ||
(dx12 > MAX_EDGE_LENGTH) || (dy12 > MAX_EDGE_LENGTH)
)
)
{
//
// make sure this is a triangle
//
if (lCalculateTriangleArea(pv0,pv1,pv2,NULL) != 0)
{
//
// Find longest edge, swap verticies so edge 0-1 is
// longest.
//
LONGLONG d01Max = dx01 * dx01 + dy01 * dy01;
LONGLONG d02Max = dx02 * dx02 + dy02 * dy02;
LONGLONG d12Max = dx12 * dx12 + dy12 * dy12;
if (d01Max > d02Max)
{
if (d01Max > d12Max)
{
//
// d01 largest, default
//
}
else
{
//
// d12 largest, swap 0 and 2
//
pvT0 = pv2;
pvT2 = pv0;
ulTM0 = pMesh[CurrentMesh].Vertex3;
ulTM2 = pMesh[CurrentMesh].Vertex1;
}
}
else
{
if (d02Max > d12Max)
{
//
// d02 largest, swap 1,2
//
pvT1 = pv2;
pvT2 = pv1;
ulTM1 = pMesh[CurrentMesh].Vertex3;
ulTM2 = pMesh[CurrentMesh].Vertex2;
}
else
{
//
// d12 largest, swap 0,2
//
pvT0 = pv2;
pvT2 = pv0;
ulTM0 = pMesh[CurrentMesh].Vertex3;
ulTM2 = pMesh[CurrentMesh].Vertex1;
}
}
//
// 2 new triangles 0,2,N and 1,2,N (float)
//
{
EFLOAT fpA,fpB;
EFLOAT fTwo;
LONG lTemp;
fTwo = (LONG)2;
fpA = pvT0->x;
fpB = pvT1->x;
fpB-=(fpA);
fpB/=(fTwo);
fpA+=(fpB);
fpA.bEfToL(triNew.x);
fpA = pvT0->y;
fpB = pvT1->y;
fpB-=(fpA);
fpB/=(fTwo);
fpA+=(fpB);
fpA.bEfToL(triNew.y);
fpA = (LONG)pvT0->Red;
fpB = (LONG)pvT1->Red;
fpB-=(fpA);
fpB/=(fTwo);
fpA+=(fpB);
fpA.bEfToL(lTemp);
triNew.Red = (USHORT)lTemp;
fpA = (LONG)pvT0->Green;
fpB = (LONG)pvT1->Green;
fpB-=(fpA);
fpB/=(fTwo);
fpA+=(fpB);
fpA.bEfToL(lTemp);
triNew.Green = (USHORT)lTemp;
fpA = (LONG)pvT0->Blue;
fpB = (LONG)pvT1->Blue;
fpB-=(fpA);
fpB/=(fTwo);
fpA+=(fpB);
fpA.bEfToL(lTemp);
triNew.Blue = (USHORT)lTemp;
fpA = (LONG)pvT0->Alpha;
fpB = (LONG)pvT1->Alpha;
fpB-=(fpA);
fpB/=(fTwo);
fpA+=(fpB);
fpA.bEfToL(lTemp);
triNew.Alpha = (USHORT)lTemp;
}
//
// add new entry to vertex array and two new entries to mesh array
//
// 0,2,New and 1,2,New
//
ULONG FreeVert = *pFreeVert;
ULONG FreeMesh = *pFreeMesh;
pVert[FreeVert] = triNew;
pMesh[FreeMesh].Vertex1 = ulTM0;
pMesh[FreeMesh].Vertex2 = ulTM2;
pMesh[FreeMesh].Vertex3 = FreeVert;
pMesh[FreeMesh+1].Vertex1 = ulTM1;
pMesh[FreeMesh+1].Vertex2 = ulTM2;
pMesh[FreeMesh+1].Vertex3 = FreeVert;
pRecurseLevel[FreeMesh] = 1;
pRecurseLevel[FreeMesh+1] = 0;
*pFreeMesh += 2;
*pFreeVert += 1;
bStatus = TRUE;
}
else
{
WARNING("bSplitTriangle:Error: triangle area = 0\n\n");
}
}
return(bStatus);
}
/**************************************************************************\
* bTriangleMesh
*
* Draw each triangle. If triangle is too big, then split.
*
* Arguments:
*
* pSurfDst - destination surface
* pxlo - xlate
* pVertex - pointer to vertex array
* nVertex - elements in vertex array
* pMesh - pointer to mesh array
* nMesh - elements in mesh array
* ulMode - draw mode
* prclClip - clip rect
* prclMeshExtents - triangle extents rect
* pptlDitherOrg - dither org
*
* Return Value:
*
* Status
*
* History:
*
* 5/22/1997 Mark Enstrom [marke]
*
\**************************************************************************/
BOOL
bTriangleMesh(
PSURFACE pSurfDst,
XLATEOBJ *pxlo,
PTRIVERTEX pVertex,
ULONG nVertex,
PGRADIENT_TRIANGLE pMesh,
ULONG nMesh,
ULONG ulMode,
PRECTL prclClip,
PRECTL prclMeshExtents,
PPOINTL pptlDitherOrg
)
{
PFN_GRADIENT pfnG;
PFN_GRADRECT pfnTemp;
BOOL bStatus = TRUE;
LONG dyTri = prclClip->bottom - prclClip->top;
PTRIANGLEDATA ptData;
//
// allocate structure to hold scan line data for all triangles
// drawn during this call
//
ptData = (PTRIANGLEDATA)PALLOCMEM(sizeof(TRIANGLEDATA) + (dyTri-1) * sizeof(TRIEDGE),'gdEg');
if (ptData)
{
//
// find a palette for the output surface
//
XEPALOBJ epal(pSurfDst->ppal());
if (!epal.bValid())
{
PDEVOBJ pdo(pSurfDst->hdev());
epal.ppalSet(pdo.ppalSurf());
}
if (epal.bValid())
{
//
// find out scan line routine to use to draw pixels
//
bDetermineTriangleFillRoutine(pSurfDst,&epal,&pfnG,&pfnTemp);
//
// Init global data
//
ptData->rcl = *prclClip;
ptData->DrawMode = ulMode;
ptData->pxlo = pxlo;
ptData->ppalDstSurf = &epal;
ptData->ptDitherOrg = *pptlDitherOrg;
//
// if triangle does not need to be split, draw each one.
// Triangles need to be split if any edge exceeds a length
// that will cause math problems.
//
if (
((prclMeshExtents->right - prclMeshExtents->left) < MAX_EDGE_LENGTH) &&
((prclMeshExtents->bottom - prclMeshExtents->top) < MAX_EDGE_LENGTH)
)
{
//
// no split needed
//
ULONG ulIndex;
for (ulIndex = 0;ulIndex<nMesh;ulIndex++)
{
PTRIVERTEX pv0 = &pVertex[pMesh[ulIndex].Vertex1];
PTRIVERTEX pv1 = &pVertex[pMesh[ulIndex].Vertex2];
PTRIVERTEX pv2 = &pVertex[pMesh[ulIndex].Vertex3];
if (bIsTriangleInBounds(pv0,pv1,pv2,ptData))
{
bStatus = bCalculateAndDrawTriangle(pSurfDst,pv0,pv1,pv2,ptData,pfnG);
}
}
}
else
{
//
// some triangles exceed maximum length, need to scan through triangles
// and split triangles that exceed maximum edge length. This routine
// works in a pseudo recursive manner, by splitting one triangle, then
// splitting one of those 2 and so on. maximum depth is:
//
// 2 * ((log(2)(max dx,dy)) - 10)
//
// 10 = log(2) MAX_EDGE_LENGTH (2^14)
// LOG(2)(2^28) = 28
//
// 2 * (28 - 14) = 28
//
ULONG ulMaxVertex = nVertex + 28;
ULONG ulMaxMesh = nMesh + 28;
PBYTE pAlloc = NULL;
ULONG ulSizeAlloc = (sizeof(TRIVERTEX) * ulMaxVertex) +
(sizeof(GRADIENT_TRIANGLE) * ulMaxMesh) +
(sizeof(ULONG) * ulMaxMesh);
pAlloc = (PBYTE)PALLOCNOZ(ulSizeAlloc,'tvtG');
if (pAlloc != NULL)
{
//
// assign buffers
//
PTRIVERTEX pTempVertex = (PTRIVERTEX)pAlloc;
PGRADIENT_TRIANGLE pTempMesh = (PGRADIENT_TRIANGLE)(pAlloc + (sizeof(TRIVERTEX) * ulMaxVertex));
PULONG pRecurse = (PULONG)((PBYTE)pTempMesh + (sizeof(GRADIENT_TRIANGLE) * ulMaxMesh));
//
// copy initial triangle information
//
memcpy(pTempVertex,pVertex,sizeof(TRIVERTEX) * nVertex);
memcpy(pTempMesh,pMesh,sizeof(TRIVERTEX) * nMesh);
memset(pRecurse,0,nMesh * sizeof(ULONG));
//
// next free location in vertex and mesh arrays
//
ASSERTGDI(nMesh > 0, "bTriangleMesh: bad nMesh\n");
ULONG FreeVertex = nVertex;
ULONG FreeMesh = nMesh;
do
{
BOOL bSplit = FALSE;
//
// always operate on the last triangle in array
//
ULONG CurrentMesh = FreeMesh - 1;
//
// validate mesh pointers
//
if (
(pTempMesh[CurrentMesh].Vertex1 >= ulMaxVertex) ||
(pTempMesh[CurrentMesh].Vertex2 >= ulMaxVertex) ||
(pTempMesh[CurrentMesh].Vertex3 >= ulMaxVertex)
)
{
RIP("Error in triangle split routine:Vertex out of range\n");
break;
}
PTRIVERTEX pv0 = &pTempVertex[pTempMesh[CurrentMesh].Vertex1];
PTRIVERTEX pv1 = &pTempVertex[pTempMesh[CurrentMesh].Vertex2];
PTRIVERTEX pv2 = &pTempVertex[pTempMesh[CurrentMesh].Vertex3];
//
// check if triangle boundary is inside clip rect
//
if (bIsTriangleInBounds(pv0,pv1,pv2,ptData))
{
bSplit = bSplitTriangle(pTempVertex,&FreeVertex,pTempMesh,&FreeMesh,pRecurse);
if (!bSplit)
{
//
// draw triangle
//
bStatus = bCalculateAndDrawTriangle(pSurfDst,pv0,pv1,pv2,ptData,pfnG);
}
else
{
//
// validate array indcies
//
if ((FreeVertex > ulMaxVertex) ||
(FreeMesh > ulMaxMesh))
{
RIP("Error in triangle split routine: indicies out of range\n");
break;
}
}
}
//
// if triangle was not split, then remove from list.
//
if (!bSplit)
{
//
// remove triangle just drawn. If this is the second triangle of a
// split, then remove the added vertex and the original triangle as
// well
//
do
{
FreeMesh--;
if (pRecurse[FreeMesh])
{
FreeVertex--;
}
} while ((FreeMesh != 0) && (pRecurse[FreeMesh] == 1));
}
} while (FreeMesh != 0);
VFREEMEM(pAlloc);
}
else
{
WARNING1("Memory allocation failed for temp triangle buffers\n");
bStatus = FALSE;
}
}
}
else
{
RIP("EngGradientFill:Error reading palette from surface\n");
bStatus = FALSE;
}
//
// free triangle data buffer
//
VFREEMEM(ptData);
}
else
{
bStatus = FALSE;
}
return(bStatus);
}
/**************************************************************************\
* vCalcRectOffsets
*
* calc params for gradient rect
*
* Arguments:
*
* pGradRect - gradietn rect data
*
* Return Value:
*
* status
*
* History:
*
* 2/14/1997 Mark Enstrom [marke]
*
\**************************************************************************/
BOOL
bCalcGradientRectOffsets(
PGRADIENTRECTDATA pGradRect
)
{
LONG yScanTop = MAX(pGradRect->rclClip.top,pGradRect->rclGradient.top);
LONG yScanBottom = MIN(pGradRect->rclClip.bottom,pGradRect->rclGradient.bottom);
LONG yScanLeft = MAX(pGradRect->rclClip.left,pGradRect->rclGradient.left);
LONG yScanRight = MIN(pGradRect->rclClip.right,pGradRect->rclGradient.right);
//
// calc actual widht, check for early out
//
pGradRect->ptDraw.x = yScanLeft;
pGradRect->ptDraw.y = yScanTop;
pGradRect->szDraw.cx = yScanRight - yScanLeft;
pGradRect->szDraw.cy = yScanBottom - yScanTop;
LONG ltemp = pGradRect->rclClip.left - pGradRect->rclGradient.left;
if (ltemp <= 0)
{
ltemp = 0;
}
pGradRect->xScanAdjust = ltemp;
ltemp = pGradRect->rclClip.top - pGradRect->rclGradient.top;
if (ltemp <= 0)
{
ltemp = 0;
}
pGradRect->yScanAdjust = ltemp;
return((pGradRect->szDraw.cx > 0) && (pGradRect->szDraw.cy > 0));
}
/**************************************************************************\
* bRectangleMesh
*
* Draw rectangle mesh
*
* Arguments:
*
* pSurfDst - destination surface
* pxlo - clip obj
* pVertex - vertex list
* nVertex - # in vertex list
* pMesh - mesh list
* nMesh - # in mesh list
* ulMode - draw mode and attributes
* prclClip - bounding rect
* pptlDitherOrg - dither org
*
* Return Value:
*
* status
*
* History:
*
* 2/17/1997 Mark Enstrom [marke]
*
\**************************************************************************/
BOOL
bRectangleMesh(
PSURFACE pSurfDst,
XLATEOBJ *pxlo,
PTRIVERTEX pVertex,
ULONG nVertex,
PGRADIENT_RECT pMesh,
ULONG nMesh,
ULONG ulMode,
PRECTL prclClip,
PPOINTL pptlDitherOrg
)
{
PFN_GRADIENT pfnTemp;
PFN_GRADRECT pfnG;
BOOL bStatus = TRUE;
LONG dyTri = prclClip->bottom - prclClip->top;
GRADIENTRECTDATA grData;
XEPALOBJ epal(pSurfDst->ppal());
if (!epal.bValid())
{
PDEVOBJ pdo(pSurfDst->hdev());
epal.ppalSet(pdo.ppalSurf());
}
if (epal.bValid())
{
//
// find out scan line routine to use to draw pixels
//
bDetermineTriangleFillRoutine(pSurfDst,&epal,&pfnTemp,&pfnG);
grData.pxlo = pxlo;
grData.ppalDstSurf = &epal;
grData.ptDitherOrg = *pptlDitherOrg;
//
// draw each rectangle
//
grData.rclClip = *prclClip;
ULONG ulIndex;
for (ulIndex=0;ulIndex<nMesh;ulIndex++)
{
ULONG ulRect0 = pMesh[ulIndex].UpperLeft;
ULONG ulRect1 = pMesh[ulIndex].LowerRight;
//
// make sure index are in array
//
if (
(ulRect0 > (nVertex-1)) ||
(ulRect1 > (nVertex-1))
)
{
bStatus = FALSE;
break;
}
TRIVERTEX tvert0 = pVertex[ulRect0];
TRIVERTEX tvert1 = pVertex[ulRect1];
PTRIVERTEX pv0 = &tvert0;
PTRIVERTEX pv1 = &tvert1;
PTRIVERTEX pvt;
//
// make sure rectangle endpoints are properly ordered
//
if (ulMode == GRADIENT_FILL_RECT_H)
{
if (pv0->x > pv1->x)
{
SWAP_VERTEX(pv0,pv1,pvt);
}
if (pv0->y > pv1->y)
{
//
// must swap y
//
LONG ltemp = pv1->y;
pv1->y = pv0->y;
pv0->y = ltemp;
}
}
else
{
if (pv0->y > pv1->y)
{
SWAP_VERTEX(pv0,pv1,pvt);
}
if (pv0->x > pv1->x)
{
//
// must swap x
//
LONG ltemp = pv1->x;
pv1->x = pv0->x;
pv0->x = ltemp;
}
}
//
// gradient definition rectangle
//
grData.rclGradient.left = pv0->x;
grData.rclGradient.top = pv0->y;
grData.rclGradient.right = pv1->x;
grData.rclGradient.bottom = pv1->y;
grData.ulMode = ulMode;
LONG dxGrad = grData.rclGradient.right - grData.rclGradient.left;
LONG dyGrad = grData.rclGradient.bottom - grData.rclGradient.top;
//
// make sure rect not empty
//
if ((dxGrad > 0) && (dyGrad > 0))
{
//
// calculate color gradients for x and y
//
grData.llRed = ((LONGLONG)pv0->Red) << 40;
grData.llGreen = ((LONGLONG)pv0->Green) << 40;
grData.llBlue = ((LONGLONG)pv0->Blue) << 40;
grData.llAlpha = ((LONGLONG)pv0->Alpha) << 40;
if (ulMode == GRADIENT_FILL_RECT_H)
{
grData.lldRdY = 0;
grData.lldGdY = 0;
grData.lldBdY = 0;
grData.lldAdY = 0;
LONGLONG lldRed = (LONGLONG)(pv1->Red) << 40;
LONGLONG lldGreen = (LONGLONG)(pv1->Green) << 40;
LONGLONG lldBlue = (LONGLONG)(pv1->Blue) << 40;
LONGLONG lldAlpha = (LONGLONG)(pv1->Alpha) << 40;
lldRed -= (LONGLONG)(pv0->Red) << 40;
lldGreen -= (LONGLONG)(pv0->Green) << 40;
lldBlue -= (LONGLONG)(pv0->Blue) << 40;
lldAlpha -= (LONGLONG)(pv0->Alpha) << 40;
grData.lldRdX = MDiv64(lldRed ,(LONGLONG)1,(LONGLONG)dxGrad);
grData.lldGdX = MDiv64(lldGreen,(LONGLONG)1,(LONGLONG)dxGrad);
grData.lldBdX = MDiv64(lldBlue ,(LONGLONG)1,(LONGLONG)dxGrad);
grData.lldAdX = MDiv64(lldAlpha,(LONGLONG)1,(LONGLONG)dxGrad);
}
else
{
grData.lldRdX = 0;
grData.lldGdX = 0;
grData.lldBdX = 0;
grData.lldAdX = 0;
LONGLONG lldRed = (LONGLONG)(pv1->Red) << 40;
LONGLONG lldGreen = (LONGLONG)(pv1->Green) << 40;
LONGLONG lldBlue = (LONGLONG)(pv1->Blue) << 40;
LONGLONG lldAlpha = (LONGLONG)(pv1->Alpha) << 40;
lldRed -= (LONGLONG)(pv0->Red) << 40;
lldGreen -= (LONGLONG)(pv0->Green) << 40;
lldBlue -= (LONGLONG)(pv0->Blue) << 40;
lldAlpha -= (LONGLONG)(pv0->Alpha) << 40;
grData.lldRdY = MDiv64(lldRed ,(LONGLONG)1,(LONGLONG)dyGrad);
grData.lldGdY = MDiv64(lldGreen,(LONGLONG)1,(LONGLONG)dyGrad);
grData.lldBdY = MDiv64(lldBlue ,(LONGLONG)1,(LONGLONG)dyGrad);
grData.lldAdY = MDiv64(lldAlpha,(LONGLONG)1,(LONGLONG)dyGrad);
}
//
// calculate common offsets
//
if (bCalcGradientRectOffsets(&grData))
{
//
// call specific drawing routine if output
// not totally clipped
//
(*pfnG)(pSurfDst,&grData);
}
}
}
}
else
{
WARNING("bRectangleMesh: can't get surface palette\n");
}
return(bStatus);
}
/******************************Public*Routine******************************\
* EngGradientFill
*
* Draw gradient fill to memory surface. If complex clipping is used, then
* draw to a temp dib and blt to destination through clip.
*
* Arguments:
*
* psoDst - destination surface
* pco - clip obj
* pVertex - vertex list
* nVertex - # in vertex list
* pMesh - mesh list
* nMesh - # in mesh list
* ulMode - draw mode and attributes
*
* Return Value:
*
* Status
*
* History:
*
* 11/20/1996 Mark Enstrom [marke]
*
\**************************************************************************/
BOOL
APIENTRY
EngGradientFill(
SURFOBJ *psoDst,
CLIPOBJ *pco,
XLATEOBJ *pxlo,
TRIVERTEX *pVertex,
ULONG nVertex,
PVOID pMesh,
ULONG nMesh,
RECTL *prclExtents,
POINTL *ptlDitherOrg,
ULONG ulMode
)
{
ASSERTGDI(psoDst != NULL, "ERROR EngGradientFill: No destination surface\n");
BOOL bStatus = TRUE;
PSURFACE pSurfDst = SURFOBJ_TO_SURFACE(psoDst);
PSURFACE pSurfDstTmp = NULL;
ULONG ulTri;
BOOL bForceDstAlloc = FALSE;
BOOL bAllocDstSurf = FALSE;
RECTL rclDstTrim;
RECTL rclDstWk;
CLIPOBJ *pcoDstWk = pco;
SURFMEM surfTmpDst;
ULONG ulIndex;
PDEVOBJ pdo(pSurfDst->hdev());
BOOL bCopyFromDst = TRUE;
ASSERTGDI(pdo.bValid(), "Invalid HDEV");
ASSERTGDI((ulMode == GRADIENT_FILL_TRIANGLE) ||
(ulMode == GRADIENT_FILL_RECT_H) ||
(ulMode == GRADIENT_FILL_RECT_V),
"Invalid gradient mode");
//
// sync with driver
//
{
pdo.vSync(psoDst,NULL,0);
}
//
// trim rclDst to clip bounding box
//
rclDstTrim = *prclExtents;
//
// clip extents to destination clip rect
//
if ((pco != NULL) && (pco->iDComplexity > DC_TRIVIAL))
{
if (rclDstTrim.left < pco->rclBounds.left)
{
rclDstTrim.left = pco->rclBounds.left;
}
if (rclDstTrim.right > pco->rclBounds.right)
{
rclDstTrim.right = pco->rclBounds.right;
}
if (rclDstTrim.top < pco->rclBounds.top)
{
rclDstTrim.top = pco->rclBounds.top;
}
if (rclDstTrim.bottom > pco->rclBounds.bottom)
{
rclDstTrim.bottom = pco->rclBounds.bottom;
}
}
//
// rclDstWk specifies size of temp surface needed (if temp surface is created)
// coordinates in this temp surface are referenced to prclExtents, even though the
// surface may be clipped to a smaller extent
//
rclDstWk = rclDstTrim;
//
// Force Complex clipping to go through temp surface
//
if ((pco != NULL) &&
(pco->iDComplexity != DC_TRIVIAL) &&
(pco->iDComplexity != DC_RECT))
{
bForceDstAlloc = TRUE;
}
//
// get a dst surface that can be written to, remember since it will have to
// be written back.
//
//
// If the gradient fill shape is a rectangle, we don't need
// to copy bits from the destination since they'll all
// be overwritten
//
if ((ulMode == GRADIENT_FILL_RECT_H) ||
(ulMode == GRADIENT_FILL_RECT_V))
{
bCopyFromDst = FALSE;
}
pSurfDstTmp = psSetupDstSurface(
pSurfDst,
&rclDstWk,
surfTmpDst,
bForceDstAlloc,
bCopyFromDst);
if (pSurfDstTmp != NULL)
{
if (pSurfDstTmp != pSurfDst)
{
bAllocDstSurf = TRUE;
}
if (bAllocDstSurf)
{
//
// drawing lies completely in temp rectangle, src surface is read
// into tmp DIB before drawing, so no clipping is needed when this
// is copied to destination surface
//
pcoDstWk = NULL;
//
// subtract rect origin
//
for (ulIndex=0;ulIndex<nVertex;ulIndex++)
{
pVertex[ulIndex].x -= rclDstTrim.left;
pVertex[ulIndex].y -= rclDstTrim.top;
}
//
// adjust dither org
//
ptlDitherOrg->x += rclDstTrim.left;
ptlDitherOrg->y += rclDstTrim.top;
}
//
// limit recorded triangle to clipped output
//
ERECTL *prclClip;
LONG dyTri = rclDstWk.bottom - rclDstWk.top;
if ((pcoDstWk == NULL) || (pcoDstWk->iDComplexity == DC_TRIVIAL))
{
prclClip = NULL;
}
else
{
prclClip = (ERECTL *)&pcoDstWk->rclBounds;
}
//
// draw gradients
//
if (ulMode == GRADIENT_FILL_TRIANGLE)
{
bStatus = bTriangleMesh(pSurfDstTmp,
pxlo,
pVertex,
nVertex,
(PGRADIENT_TRIANGLE)pMesh,
nMesh,
ulMode,
&rclDstWk,
prclExtents,
ptlDitherOrg
);
}
else
{
ASSERTGDI((ulMode == GRADIENT_FILL_RECT_H) ||
(ulMode == GRADIENT_FILL_RECT_V),
"Unhandle 'ulMode'");
bStatus = bRectangleMesh(
pSurfDstTmp,
pxlo,
pVertex,
nVertex,
(PGRADIENT_RECT)pMesh,
nMesh,
ulMode,
&rclDstWk,
ptlDitherOrg
);
}
//
// write temp destination surface to real dst
//
if (bAllocDstSurf)
{
PDEVOBJ pdoDst(pSurfDst->hdev());
ASSERTGDI(pdoDst.bValid(), "Invalid HDEV");
POINTL ptlCopy = {0,0};
(*PPFNGET(pdoDst,CopyBits,pSurfDst->flags()))(
pSurfDst->pSurfobj(),
pSurfDstTmp->pSurfobj(),
pco,
&xloIdent,
&rclDstTrim,
&ptlCopy);
//
// undo temporary offseting
//
for (ulIndex=0;ulIndex<nVertex;ulIndex++)
{
pVertex[ulIndex].x += rclDstTrim.left;
pVertex[ulIndex].y += rclDstTrim.top;
}
ptlDitherOrg->x -= rclDstTrim.left;
ptlDitherOrg->y -= rclDstTrim.top;
}
}
else
{
EngSetLastError(ERROR_NOT_ENOUGH_MEMORY);
bStatus = FALSE;
}
return(bStatus);
}
/******************************Public*Routine******************************\
* vCalcMeshExtent
*
* Verify mesh, calculate bounding rect of drawing.
*
* Arguments:
*
* pVertex - vertex array
* nVertex - number of vertex in array
* pMesh - array of rect or tri
* nMesh - number in mesh array
* ulMode - triangle or rectangle
* prclExt - return extent rect
*
* Return Value:
*
* TRUE if mesh is valid
*
* History:
*
* 12/3/1996 Mark Enstrom [marke]
*
\**************************************************************************/
BOOL
bCalcMeshExtent(
PTRIVERTEX pVertex,
ULONG nVertex,
PVOID pMesh,
ULONG nMesh,
ULONG ulMode,
RECTL *prclExt
)
{
LONG xmin = LONG_MAX;
LONG xmax = LONG_MIN;
LONG ymin = LONG_MAX;
LONG ymax = LONG_MIN;
BOOL bRet = TRUE;
ULONG ulIndex;
//
// triangle or rectangle case
//
if (
(ulMode ==GRADIENT_FILL_RECT_H) ||
(ulMode == GRADIENT_FILL_RECT_V)
)
{
//
// verify rectangle mesh, remember extents
//
PGRADIENT_RECT pGradRect = (PGRADIENT_RECT)pMesh;
for (ulIndex=0;ulIndex<nMesh;ulIndex++)
{
RECTL rcl;
ULONG vul = pGradRect->UpperLeft;
ULONG vlr = pGradRect->LowerRight;
if ((vul <= nVertex) && (vlr <= nVertex))
{
LONG VertLeftX = pVertex[vul].x;
LONG VertLeftY = pVertex[vul].y;
LONG VertRightX = pVertex[vlr].x;
LONG VertRightY = pVertex[vlr].y;
if (VertLeftX < xmin)
{
xmin = VertLeftX;
}
if (VertLeftX > xmax)
{
xmax = VertLeftX;
}
if (VertLeftY < ymin)
{
ymin = VertLeftY;
}
if (VertLeftY > ymax)
{
ymax = VertLeftY;
}
if (VertRightX < xmin)
{
xmin = VertRightX;
}
if (VertRightX > xmax)
{
xmax = VertRightX;
}
if (VertRightY < ymin)
{
ymin = VertRightY;
}
if (VertRightY > ymax)
{
ymax = VertRightY;
}
}
else
{
//
// error in mesh/vertex array, return null
// bounding rect
//
prclExt->left = 0;
prclExt->right = 0;
prclExt->top = 0;
prclExt->bottom = 0;
return(FALSE);
}
pGradRect++;
}
}
else if (ulMode == GRADIENT_FILL_TRIANGLE)
{
//
// verify triangle mesh, remember extents
//
PGRADIENT_TRIANGLE pGradTri = (PGRADIENT_TRIANGLE)pMesh;
for (ulIndex=0;ulIndex<nMesh;ulIndex++)
{
LONG lVertex[3];
LONG vIndex;
lVertex[0] = pGradTri->Vertex1;
lVertex[1] = pGradTri->Vertex2;
lVertex[2] = pGradTri->Vertex3;
for (vIndex=0;vIndex<3;vIndex++)
{
ULONG TriVertex = lVertex[vIndex];
if (TriVertex < nVertex)
{
LONG VertX = pVertex[TriVertex].x;
LONG VertY = pVertex[TriVertex].y;
if (VertX < xmin)
{
xmin = VertX;
}
if (VertX > xmax)
{
xmax = VertX;
}
if (VertY < ymin)
{
ymin = VertY;
}
if (VertY > ymax)
{
ymax = VertY;
}
}
else
{
//
// error in mesh/vertex array, return null
// bounding rect
//
prclExt->left = 0;
prclExt->right = 0;
prclExt->top = 0;
prclExt->bottom = 0;
return(FALSE);
}
}
pGradTri++;
}
}
else
{
bRet = FALSE;
}
//
// are any parameter out of coordinate space bounds 2^28
//
LONG lIntMax = 0x08000000;
LONG lIntMin = -lIntMax;
if (
(xmin < lIntMin) || (xmin > lIntMax) ||
(xmax < lIntMin) || (xmax > lIntMax) ||
(ymin < lIntMin) || (ymin > lIntMax) ||
(ymax < lIntMin) || (ymax > lIntMax)
)
{
prclExt->left = 0;
prclExt->right = 0;
prclExt->top = 0;
prclExt->bottom = 0;
return(FALSE);
}
prclExt->left = xmin;
prclExt->right = xmax;
prclExt->top = ymin;
prclExt->bottom = ymax;
return(bRet);
}
/******************************Public*Routine******************************\
* GreGradientFill
*
* Arguments:
*
* hdc - dc
* pLocalVertex - Position and color
* nVertex - number of vertex
* pLocalMesh - each three USHORTs define 1 triangle
* nMesh - Number of triangles
* ulMode - drawing mode (rect/tri) and options
*
* Return Value:
*
* Status
*
* History:
*
* 23-Jun-1997 Added rotation support for rectangles -by- Ori Gershony [orig]
*
* 16-Jul-1996 -by- Mark Enstrom [marke]
*
\**************************************************************************/
BOOL
GreGradientFill(
HDC hdc,
PTRIVERTEX pLocalVertex,
ULONG nVertex,
PVOID pLocalMesh,
ULONG nMesh,
ULONG ulMode
)
{
GDITraceHandle(GreGradientFill, "(%X, %p, %u, %p, %u, %u)\n", (va_list)&hdc,
hdc);
BOOL bStatus = FALSE;
PTRIVERTEX pLocalVertexTmp=NULL;
PVOID pLocalMeshTmp=NULL;
//
// limit ulMode (direct from user)
//
ulMode &= GRADIENT_FILL_OP_FLAG;
//
// validate DST DC
//
DCOBJ dcoDst(hdc);
if (dcoDst.bValid())
{
//
// lock device
//
DEVLOCKBLTOBJ dlo;
if (dlo.bLock(dcoDst))
{
EXFORMOBJ xoDst(dcoDst, WORLD_TO_DEVICE);
//
// Break each rotated rectangle into two triangles. This will double
// the number of vertices used (4 per two triangles).
//
if (xoDst.bRotation() &&
((ulMode == GRADIENT_FILL_RECT_H) || (ulMode == GRADIENT_FILL_RECT_V)))
{
//
// Allocate two triangles for each rectangle
//
ULONG ulSizeM = nMesh * 2 * sizeof(GRADIENT_TRIANGLE);
ULONG ulSizeV = nVertex * 2 * sizeof(TRIVERTEX);
//
// Let's make sure nMesh and nVertex are not so high as to cause overflow--this
// can cause us to allocate too small a buffer and then commit an access
// violation. Also make sure we have enough memory.
//
if ((nVertex > MAXULONG/2) ||
(nMesh > MAXULONG/2) ||
((nVertex * 2) > (MAXIMUM_POOL_ALLOC / sizeof(TRIVERTEX))) ||
((nMesh * 2) > ((MAXIMUM_POOL_ALLOC - ulSizeV) / (sizeof(GRADIENT_TRIANGLE)))))
{
WARNING("GreGradientFill: can't allocate input buffer\n");
EngSetLastError(ERROR_NOT_ENOUGH_MEMORY);
return(FALSE);
}
//
// Allocate memory and assign to the pointers
//
pLocalVertexTmp = (PTRIVERTEX)PALLOCNOZ(ulSizeV + ulSizeM,'pmtG');
if (!pLocalVertexTmp)
{
EngSetLastError(ERROR_NOT_ENOUGH_MEMORY);
return FALSE;
}
pLocalMeshTmp = (PVOID)((PBYTE)pLocalVertexTmp + ulSizeV);
//
// First copy the old Vertices
//
ULONG vertexNum;
for (vertexNum=0; vertexNum < nVertex; vertexNum++)
{
((PTRIVERTEX)pLocalVertexTmp)[vertexNum] = ((PTRIVERTEX) pLocalVertex)[vertexNum];
}
//
// Now walk the rectangle list and generate triangles/vertices as needed:
//
// v1 vertexNum
// *------------------*
// | |
// | |
// *------------------*
// vertexNum+1 v2
//
for (ULONG rectNum=0; rectNum < nMesh; rectNum++)
{
ULONG v1,v2;
v1 = ((PGRADIENT_RECT)pLocalMesh)[rectNum].UpperLeft;
v2 = ((PGRADIENT_RECT)pLocalMesh)[rectNum].LowerRight;
if ((v1 >= nVertex) || (v2 >= nVertex))
{
WARNING("GreGradientFill: vertex is out of range\n");
EngSetLastError(ERROR_INVALID_PARAMETER);
VFREEMEM(pLocalVertexTmp);
return(FALSE);
}
pLocalVertexTmp[vertexNum].x = pLocalVertex[v2].x;
pLocalVertexTmp[vertexNum].y = pLocalVertex[v1].y;
pLocalVertexTmp[vertexNum+1].x = pLocalVertex[v1].x;
pLocalVertexTmp[vertexNum+1].y = pLocalVertex[v2].y;
if (ulMode == GRADIENT_FILL_RECT_V)
{
//
// vertexNum has same color as v1, vertexNum+1 has same color as v2
//
pLocalVertexTmp[vertexNum].Red = pLocalVertex[v1].Red;
pLocalVertexTmp[vertexNum].Green = pLocalVertex[v1].Green;
pLocalVertexTmp[vertexNum].Blue = pLocalVertex[v1].Blue;
pLocalVertexTmp[vertexNum].Alpha = pLocalVertex[v1].Alpha;
pLocalVertexTmp[vertexNum+1].Red = pLocalVertex[v2].Red;
pLocalVertexTmp[vertexNum+1].Green = pLocalVertex[v2].Green;
pLocalVertexTmp[vertexNum+1].Blue = pLocalVertex[v2].Blue;
pLocalVertexTmp[vertexNum+1].Alpha = pLocalVertex[v2].Alpha;
}
else
{
//
// vertexNum has same color as v2, vertexNum+1 has same color as v1
//
pLocalVertexTmp[vertexNum].Red = pLocalVertex[v2].Red;
pLocalVertexTmp[vertexNum].Green = pLocalVertex[v2].Green;
pLocalVertexTmp[vertexNum].Blue = pLocalVertex[v2].Blue;
pLocalVertexTmp[vertexNum].Alpha = pLocalVertex[v2].Alpha;
pLocalVertexTmp[vertexNum+1].Red = pLocalVertex[v1].Red;
pLocalVertexTmp[vertexNum+1].Green = pLocalVertex[v1].Green;
pLocalVertexTmp[vertexNum+1].Blue = pLocalVertex[v1].Blue;
pLocalVertexTmp[vertexNum+1].Alpha = pLocalVertex[v1].Alpha;
}
//
// Now add vertices for the two triangles
//
((PGRADIENT_TRIANGLE)pLocalMeshTmp)[rectNum*2].Vertex1 = v1;
((PGRADIENT_TRIANGLE)pLocalMeshTmp)[rectNum*2].Vertex2 = vertexNum;
((PGRADIENT_TRIANGLE)pLocalMeshTmp)[rectNum*2].Vertex3 = vertexNum+1;
((PGRADIENT_TRIANGLE)pLocalMeshTmp)[rectNum*2+1].Vertex1 = v2;
((PGRADIENT_TRIANGLE)pLocalMeshTmp)[rectNum*2+1].Vertex2 = vertexNum;
((PGRADIENT_TRIANGLE)pLocalMeshTmp)[rectNum*2+1].Vertex3 = vertexNum+1;
vertexNum += 2;
}
//
// Now modify the arguments so that this change is transparent to the rest of the code
//
pLocalMesh = pLocalMeshTmp;
pLocalVertex = pLocalVertexTmp;
ulMode = GRADIENT_FILL_TRIANGLE;
nVertex = vertexNum;
nMesh *= 2;
}
//
// should be able to rotate triangle with no problem. Rotated
// rectangles should have already been converted to triangles.
//
ULONG ulIndex;
ERECTL erclDst(POS_INFINITY,POS_INFINITY,NEG_INFINITY,NEG_INFINITY);
//
// Translate to device space. Use integer points, not fixed point
//
for (ulIndex=0;ulIndex<nVertex;ulIndex++)
{
EPOINTL eptl(pLocalVertex[ulIndex].x,pLocalVertex[ulIndex].y);
xoDst.bXform(eptl);
//Shift all the points one pixel to the right to include the right edge of the rect.
if(MIRRORED_DC(dcoDst.pdc)) {
++eptl.x;
}
pLocalVertex[ulIndex].x = eptl.x + dcoDst.eptlOrigin().x;
pLocalVertex[ulIndex].y = eptl.y + dcoDst.eptlOrigin().y;
}
//
// verify mesh and calc mesh extents
//
bStatus = bCalcMeshExtent(pLocalVertex,nVertex,pLocalMesh,nMesh,ulMode,&erclDst);
if (bStatus)
{
//
// set up clipping, check if totally excluded
//
ECLIPOBJ eco(dcoDst.prgnEffRao(), erclDst);
if (!(eco.erclExclude().bEmpty()))
{
//
// Accumulate bounds. We can do this before knowing if the operation is
// successful because bounds can be loose.
//
//
if (dcoDst.fjAccum())
{
ERECTL erclBound = erclDst;
//
// erclDst is adjusted from DC origin,
// so that it should be substracted.
//
erclBound -= dcoDst.eptlOrigin();
dcoDst.vAccumulate(erclBound);
}
SURFACE *pSurfDst;
if ((pSurfDst = dcoDst.pSurface()) != NULL)
{
PDEVOBJ pdo(pSurfDst->hdev());
DEVEXCLUDEOBJ dxo(dcoDst,&erclDst,&eco);
EXLATEOBJ xlo;
XLATEOBJ *pxlo;
//
// Inc the target surface uniqueness
//
INC_SURF_UNIQ(pSurfDst);
if ((pdo.bPrinter()) || (pSurfDst->iFormat() <= BMF_8BPP))
{
//
// 16bpp or greater does not require a translation object.
//
// color translate is from RGB (PAL_BGR) 32 to device
//
XEPALOBJ palDst(pSurfDst->ppal());
XEPALOBJ palDstDC(dcoDst.ppal());
XEPALOBJ palSrc(gppalRGB);
bStatus = xlo.bInitXlateObj(
dcoDst.pdc->hcmXform(),
dcoDst.pdc->GetICMMode(),
palSrc,
palDst,
palDstDC,
palDstDC,
dcoDst.pdc->crTextClr(),
dcoDst.pdc->crBackClr(),
0
);
pxlo = xlo.pxlo();
}
else
{
pxlo = NULL;
}
//
// must have window offset for dither org
//
POINTL ptlDitherOrg = dcoDst.pdc->eptlOrigin();
ptlDitherOrg.x = -ptlDitherOrg.x;
ptlDitherOrg.y = -ptlDitherOrg.y;
//
// call driver/engine drawing
//
PFN_DrvGradientFill pfnGradientFill;
if (pSurfDst->iFormat() == BMF_8BPP)
{
// Drivers can't really support GradientFill at
// 8BPP. Instead of calling them and running
// the risk of having them mess up, let's call
// the engine instead.
pfnGradientFill = EngGradientFill;
}
else
{
pfnGradientFill =
PPFNGET(pdo,GradientFill, pSurfDst->flags());
}
bStatus = bStatus && (*pfnGradientFill)(
pSurfDst->pSurfobj(),
&eco,
pxlo,
pLocalVertex,
nVertex,
pLocalMesh,
nMesh,
&erclDst,
&ptlDitherOrg,
ulMode
);
}
else
{
bStatus = TRUE;
}
}
else
{
bStatus = TRUE;
}
}
else
{
WARNING1("GreGradientFill: Invalid mesh or vertex\n");
}
}
else
{
bStatus = dcoDst.bFullScreen();
}
}
else
{
bStatus = FALSE;
}
//
// If allocated memory to convert rectangles to triangles, free it before
// leaving this function.
//
if (pLocalVertexTmp)
{
VFREEMEM(pLocalVertexTmp);
}
return(bStatus);
}
/******************************Public*Routine******************************\
* NtGdiTriangleMesh
*
* Kernel mode stub for GradientFill
*
* Arguments:
*
* hdc - dc
* pLocalVertex - Position and color
* nVertex - number of vertex
* pLocalMesh - triangle or rectangle mesh
* nMesh - Number of triangles
* ulMode - drawing mode (rect/tri) and options
*
* Return Value:
*
* Status
*
* History:
*
* 17-Jul-1996 -by- Mark Enstrom [marke]
*
\**************************************************************************/
BOOL
NtGdiGradientFill(
HDC hdc,
PTRIVERTEX pVertex,
ULONG nVertex,
PVOID pMesh,
ULONG nMesh,
ULONG ulMode
)
{
PTRIVERTEX pLocalVertex;
PVOID pLocalMesh;
//
// make sure ulMode is not being mis-used
//
if ((ulMode & ~GRADIENT_FILL_OP_FLAG) != 0)
{
WARNING("NtGdiGradientFill: illegal parameter\n");
EngSetLastError(ERROR_INVALID_PARAMETER);
return(FALSE);
}
ulMode &= GRADIENT_FILL_OP_FLAG;
//
// validate parameters, make sure one of the mode
// flags is set, but no invalid mode is set
//
if (
(pVertex == NULL) || (pMesh == NULL) ||
(nVertex == 0) || (nMesh == 0) ||
(nVertex >= 0x80000000) || (nMesh >= 0x80000000) ||
(
(ulMode != GRADIENT_FILL_RECT_H) &&
(ulMode != GRADIENT_FILL_RECT_V) &&
(ulMode != GRADIENT_FILL_TRIANGLE)
)
)
{
WARNING("NtGdiGradientFill: illegal parameter\n");
EngSetLastError(ERROR_INVALID_PARAMETER);
return(FALSE);
}
//
// attempt to allocate a buffer to copy entire vertex and mesh array
//
if (nVertex > (MAXIMUM_POOL_ALLOC / sizeof(TRIVERTEX)))
{
WARNING("NtGdiGradientFill: nVertex is too large\n");
EngSetLastError(ERROR_INVALID_PARAMETER);
return(FALSE);
}
ULONG ulSizeV = nVertex * sizeof(TRIVERTEX);
ULONG ulSizeM;
BOOL bRet = TRUE;
if (ulMode == GRADIENT_FILL_TRIANGLE)
{
if (nMesh > ((MAXIMUM_POOL_ALLOC - ulSizeV) / (sizeof(GRADIENT_TRIANGLE))))
{
WARNING("NtGdiGradientFill: nMesh is too large\n");
EngSetLastError(ERROR_INVALID_PARAMETER);
return(FALSE);
}
ulSizeM = nMesh * sizeof(GRADIENT_TRIANGLE);
}
else
{
if (nMesh > ((MAXIMUM_POOL_ALLOC - ulSizeV) / (sizeof(GRADIENT_RECT))))
{
WARNING("NtGdiGradientFill: nMesh is too large\n");
EngSetLastError(ERROR_INVALID_PARAMETER);
return(FALSE);
}
ulSizeM = nMesh * sizeof(GRADIENT_RECT);
}
//
// alloc memory for data buffers
//
if ((ulSizeM + ulSizeV) >= MAXIMUM_POOL_ALLOC)
{
WARNING("NtGdiGradientFill: can't allocate input buffer\n");
EngSetLastError(ERROR_NOT_ENOUGH_MEMORY);
return(FALSE);
}
pLocalVertex = (PTRIVERTEX)PALLOCNOZ(ulSizeV + ulSizeM,'pmtG');
if (pLocalVertex)
{
pLocalMesh = (PVOID)((PBYTE)pLocalVertex + ulSizeV);
//
// probe then copy buffers
//
__try
{
ProbeForRead(pVertex,ulSizeV,sizeof(BYTE));
RtlCopyMemory(pLocalVertex,pVertex,ulSizeV);
ProbeForRead(pMesh,ulSizeM,sizeof(BYTE));
RtlCopyMemory(pLocalMesh,pMesh,ulSizeM);
}
__except(EXCEPTION_EXECUTE_HANDLER)
{
WARNINGX(2);
bRet = FALSE;
}
if (bRet)
{
bRet = GreGradientFill(
hdc,
pLocalVertex,
nVertex,
pLocalMesh,
nMesh,
ulMode
);
}
VFREEMEM(pLocalVertex);
}
else
{
EngSetLastError(ERROR_NOT_ENOUGH_MEMORY);
bRet = FALSE;
}
return(bRet);
}