Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

861 lines
20 KiB

/*++
Copyright (C) 1996-2001 Microsoft Corporation
Module Name:
Abstract:
History:
--*/
#include "precomp.h"
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include <wbemcli.h>
#include "cimval.h"
BOOL SecondsToInterval( long double ldbSeconds, LPWSTR wszText, size_t cchSize )
{
int nDay, nHour, nMinute, nSecond, nMicro;
nDay = int(ldbSeconds / 86400);
ldbSeconds -= nDay * 86400;
nHour = int(ldbSeconds / 3600);
ldbSeconds -= nHour * 3600;
nMinute = int(ldbSeconds / 60);
ldbSeconds -= nMinute * 60;
nSecond = int(ldbSeconds);
ldbSeconds -= nSecond;
nMicro = int(ldbSeconds * 1000000);
if(FAILED(StringCchPrintfW( wszText, cchSize, L"%08.8d%02.2d%02.2d%02.2d.%06.6d:000",
nDay, nHour, nMinute, nSecond, nMicro )))
return FALSE;
return TRUE;
}
// this should be a WBEM common thing ...
BOOL FileTimeToDateTime( FILETIME* pft, LPWSTR wszText, size_t cchSize )
{
SYSTEMTIME st;
__int64 llnss = *(__int64*)pft;
if ( !FileTimeToSystemTime( pft, &st ) )
{
return FALSE;
}
//
// have to account for microseconds as well (probably a much better way
// to do this.)
//
st.wMilliseconds = 0;
FILETIME ft;
if ( !SystemTimeToFileTime( &st, &ft ) )
{
return FALSE;
}
__int64 llnss2 = *(__int64*)&ft;
int nMicro = int((llnss - llnss2)/10);
if (FAILED(StringCchPrintfW( wszText, cchSize,
L"%04.4d%02.2d%02.2d%02.2d%02.2d%02.2d.%06.6d+000",
st.wYear, st.wMonth, st.wDay, st.wHour,
st.wMinute, st.wSecond, nMicro )))
return FALSE;
return TRUE;
}
BOOL SecondsToDateTime( long double ldbSeconds, LPWSTR wszText, size_t cchSize )
{
FILETIME* pft;
__int64 llnss = __int64(ldbSeconds * 10000000);
pft = (FILETIME*)&llnss;
return FileTimeToDateTime( pft, wszText, cchSize );
}
BOOL IntervalToSeconds( LPCWSTR wszText, long double& rldbSeconds )
{
int nDay, nHour, nMinute, nSecond, nMicro;
int nRes = swscanf( wszText, L"%8d%2d%2d%2d.%6d",
&nDay, &nHour, &nMinute, &nSecond, &nMicro );
if ( nRes != 5 )
{
return FALSE;
}
rldbSeconds = nSecond + 60*nMinute + 3600*nHour + 86400*nDay;
rldbSeconds += nMicro / 1000000.0;
return TRUE;
}
BOOL DateTimeToSeconds( LPCWSTR wszText, long double& rldbSeconds )
{
WORD nYear, nMonth, nDay, nHour, nMinute, nSecond, nMicro, nOffset;
WCHAR wchSep;
int nRes = swscanf( wszText, L"%4d%2d%2d%2d%2d%2d.%6d%c%3d",
&nYear, &nMonth, &nDay, &nHour, &nMinute,
&nSecond, &nMicro, &wchSep, &nOffset );
if(nRes != 9)
{
return FALSE;
}
int nSign;
if( wchSep == L'+' )
{
nSign = -1;
}
else if ( wchSep == L'-' )
{
nSign = 1;
}
else
{
return FALSE;
}
// Convert it to SYSTEMTIME
// ========================
SYSTEMTIME st;
st.wYear = nYear;
st.wMonth = nMonth;
st.wDay = nDay;
st.wHour = nHour;
st.wMinute = nMinute;
st.wSecond = nSecond;
st.wMilliseconds = 0;
//
// convert SYSTEMTIME to FILETIME
//
FILETIME ft;
if ( !SystemTimeToFileTime( &st, &ft ) )
{
return FALSE;
}
rldbSeconds = (long double)*(__int64*)&ft;
rldbSeconds += nMicro*10;
rldbSeconds /= 10000000;
// Now adjust for the offset
// =========================
rldbSeconds += nSign * nOffset * 60;
return TRUE;
}
BOOL DMTFToSeconds( LPCWSTR wszText, long double& rldbSeconds )
{
if( wcslen(wszText) != 25 )
{
return FALSE;
}
if ( wszText[21] != ':' )
{
return DateTimeToSeconds( wszText, rldbSeconds );
}
return IntervalToSeconds( wszText, rldbSeconds );
}
CCimValue::CCimValue( ) : m_eType( e_Int ), m_iVal( 0 ) { }
HRESULT CCimValue::GetValue( VARIANT& rvValue, ULONG lCimType )
{
VariantInit( &rvValue );
WCHAR achBuff[255];
BOOL bRes;
switch( lCimType )
{
case CIM_SINT8:
case CIM_SINT16:
case CIM_SINT32:
case CIM_BOOLEAN:
CoerceToInt();
V_VT(&rvValue) = VT_I4;
V_I4(&rvValue) = m_iVal;
break;
case CIM_UINT8:
case CIM_UINT16:
case CIM_UINT32:
CoerceToUnsignedInt();
V_VT(&rvValue) = VT_I4;
V_I4(&rvValue) = m_uiVal;
break;
case CIM_SINT64:
case CIM_STRING:
CoerceToLong();
_i64tow( m_lVal, achBuff, 10 );
V_VT(&rvValue) = VT_BSTR;
V_BSTR(&rvValue) = SysAllocString(achBuff);
break;
case CIM_REAL32:
CoerceToFloat();
V_VT(&rvValue) = VT_R4;
V_R4(&rvValue) = m_fVal;
break;
case CIM_REAL64:
CoerceToDouble();
V_VT(&rvValue) = VT_R8;
V_R8(&rvValue) = m_dbVal;
break;
case CIM_UINT64:
CoerceToUnsignedLong();
_ui64tow( m_ulVal, achBuff, 10 );
V_VT(&rvValue) = VT_BSTR;
V_BSTR(&rvValue) = SysAllocString(achBuff);
break;
case CIM_INTERVAL:
CoerceToLongDouble();
bRes = SecondsToInterval( m_ldbVal, achBuff, 255 );
if ( !bRes ) { return WBEM_E_TYPE_MISMATCH; }
V_VT(&rvValue) = VT_BSTR;
V_BSTR(&rvValue) = SysAllocString(achBuff);
break;
case CIM_DATETIME:
CoerceToLongDouble();
bRes = SecondsToDateTime( m_ldbVal, achBuff, 255 );
if ( !bRes ) { return WBEM_E_TYPE_MISMATCH; }
V_VT(&rvValue) = VT_BSTR;
V_BSTR(&rvValue) = SysAllocString(achBuff);
break;
default:
return WBEM_E_TYPE_MISMATCH;
};
return WBEM_S_NO_ERROR;
}
HRESULT CCimValue::SetValue( VARIANT& rvValue, ULONG lCimType )
{
HRESULT hr;
VARIANT vValue;
VariantInit( &vValue );
if ( lCimType == CIM_EMPTY )
{
//
// must be a numeric value.
//
switch( V_VT(&rvValue) )
{
case VT_R4:
m_eType = e_Float;
m_fVal = V_R4(&rvValue);
break;
case VT_R8:
m_eType = e_Double;
m_dbVal = V_R8(&rvValue);
break;
case VT_BSTR:
m_lVal = (__int64)_wtoi64( V_BSTR(&rvValue) );
break;
default:
hr = VariantChangeType( &vValue, &rvValue, 0, VT_I4 );
if ( FAILED(hr) ) return WBEM_E_TYPE_MISMATCH;
m_eType = e_Int;
m_iVal = V_I4(&vValue);
};
return WBEM_S_NO_ERROR;
}
switch( lCimType )
{
case CIM_SINT8:
case CIM_SINT16:
case CIM_SINT32:
case CIM_BOOLEAN:
hr = VariantChangeType( &vValue, &rvValue, 0, VT_I4 );
if ( FAILED(hr) ) return WBEM_E_TYPE_MISMATCH;
m_eType = e_Int;
m_iVal = V_I4(&vValue);
break;
case CIM_UINT8:
case CIM_UINT16:
case CIM_UINT32:
hr = VariantChangeType( &vValue, &rvValue, 0, VT_UI4 );
if ( FAILED(hr) ) return WBEM_E_TYPE_MISMATCH;
m_eType = e_UnsignedInt;
m_uiVal = V_UI4(&vValue);
break;
case CIM_SINT64:
case CIM_STRING:
if ( V_VT(&rvValue) == VT_BSTR )
{
m_lVal = _wtoi64( V_BSTR(&rvValue) );
}
else
{
return WBEM_E_TYPE_MISMATCH;
}
m_eType = e_Long;
break;
case CIM_UINT64:
if ( V_VT(&rvValue) == VT_BSTR )
{
m_ulVal = (unsigned __int64)_wtoi64( V_BSTR(&rvValue) );
}
else
{
return WBEM_E_TYPE_MISMATCH;
}
m_eType = e_UnsignedLong;
break;
case CIM_REAL32:
hr = VariantChangeType( &vValue, &rvValue, 0, VT_R4 );
if ( FAILED(hr) ) return WBEM_E_TYPE_MISMATCH;
m_eType = CCimValue::e_Float;
m_fVal = V_R4(&vValue);
break;
case CIM_REAL64:
hr = VariantChangeType( &vValue, &rvValue, 0, VT_R8 );
if ( FAILED(hr) ) return WBEM_E_TYPE_MISMATCH;
m_eType = CCimValue::e_Double;
m_dbVal = V_R8(&vValue);
break;
case CIM_DATETIME:
case CIM_INTERVAL:
if ( V_VT(&rvValue) == VT_BSTR )
{
BOOL bRes = DMTFToSeconds( V_BSTR(&rvValue), m_ldbVal );
if ( !bRes )
{
return WBEM_E_TYPE_MISMATCH;
}
}
else
{
return WBEM_E_TYPE_MISMATCH;
}
m_eType = e_LongDouble;
break;
default:
return WBEM_E_TYPE_MISMATCH;
};
return WBEM_S_NO_ERROR;
}
void CCimValue::CoerceToLongDouble()
{
switch( m_eType )
{
case e_Int:
m_ldbVal = (long double)m_iVal;
break;
case e_UnsignedInt:
m_ldbVal = (long double)m_uiVal;
break;
case e_Float:
m_ldbVal = (long double)m_fVal;
break;
case e_Double:
m_ldbVal = (long double)m_dbVal;
break;
case e_Long:
m_ldbVal = (long double)m_lVal;
break;
case e_UnsignedLong:
m_ldbVal = (long double)(__int64)m_ulVal;
break;
};
m_eType = e_LongDouble;
}
void CCimValue::CoerceToDouble()
{
switch( m_eType )
{
case e_Int:
m_dbVal = (double)m_iVal;
break;
case e_UnsignedInt:
m_dbVal = (double)m_uiVal;
break;
case e_Float:
m_dbVal = (double)m_fVal;
break;
case e_LongDouble:
m_dbVal = (double)m_ldbVal;
break;
case e_Long:
m_dbVal = (double)m_lVal;
break;
case e_UnsignedLong:
m_dbVal = (double)(__int64)m_ulVal;
break;
};
m_eType = e_Double;
}
void CCimValue::CoerceToFloat()
{
switch( m_eType )
{
case e_Int:
m_fVal = (float)m_iVal;
break;
case e_UnsignedInt:
m_fVal = (float)m_uiVal;
break;
case e_LongDouble:
m_fVal = (float)m_ldbVal;
break;
case e_Double:
m_fVal = (float)m_dbVal;
break;
case e_Long:
m_fVal = (float)m_lVal;
break;
case e_UnsignedLong:
m_fVal = (float)(__int64)m_ulVal;
break;
};
m_eType = e_Float;
}
void CCimValue::CoerceToUnsignedLong()
{
switch( m_eType )
{
case e_Int:
m_ulVal = (unsigned __int64)m_iVal;
break;
case e_UnsignedInt:
m_ulVal = (unsigned __int64)m_uiVal;
break;
case e_Float:
m_ulVal = (unsigned __int64)m_fVal;
break;
case e_Double:
m_ulVal = (unsigned __int64)m_dbVal;
break;
case e_Long:
m_ulVal = (unsigned __int64)m_lVal;
break;
case e_LongDouble:
m_ulVal = (unsigned __int64)m_ldbVal;
break;
};
m_eType = e_UnsignedLong;
}
void CCimValue::CoerceToLong()
{
switch( m_eType )
{
case e_Int:
m_lVal = (__int64)m_iVal;
break;
case e_UnsignedInt:
m_lVal = (__int64)m_uiVal;
break;
case e_Float:
m_lVal = (__int64)m_fVal;
break;
case e_Double:
m_lVal = (__int64)m_dbVal;
break;
case e_UnsignedLong:
m_lVal = (__int64)m_ulVal;
break;
case e_LongDouble:
m_lVal = (__int64)m_ldbVal;
break;
};
m_eType = e_Long;
}
void CCimValue::CoerceToUnsignedInt()
{
switch( m_eType )
{
case e_Int:
m_uiVal = (unsigned __int32)m_iVal;
break;
case e_Float:
m_uiVal = (unsigned __int32)m_fVal;
break;
case e_Double:
m_uiVal = (unsigned __int32)m_dbVal;
break;
case e_Long:
m_uiVal = (unsigned __int32)m_lVal;
break;
case e_UnsignedLong:
m_uiVal = (unsigned __int32)m_ulVal;
break;
case e_LongDouble:
m_uiVal = (unsigned __int32)m_ldbVal;
break;
};
m_eType = e_UnsignedInt;
}
void CCimValue::CoerceToInt()
{
switch( m_eType )
{
case e_Long:
m_iVal = (__int32)m_lVal;
break;
case e_UnsignedInt:
m_iVal = (__int32)m_uiVal;
break;
case e_Float:
m_iVal = (__int32)m_fVal;
break;
case e_Double:
m_iVal = (__int32)m_dbVal;
break;
case e_UnsignedLong:
m_iVal = (__int32)m_ulVal;
break;
case e_LongDouble:
m_iVal = (__int32)m_ldbVal;
break;
};
m_eType = e_Int;
}
void HandleConversion( CCimValue& rValA, CCimValue& rValB )
{
if ( rValA.m_eType == rValB.m_eType )
{
return;
}
if ( rValA.m_eType == CCimValue::e_LongDouble )
{
rValB.CoerceToLongDouble();
return;
}
if ( rValB.m_eType == CCimValue::e_LongDouble )
{
rValA.CoerceToLongDouble();
return;
}
if ( rValA.m_eType == CCimValue::e_Double )
{
rValB.CoerceToDouble();
return;
}
if ( rValB.m_eType == CCimValue::e_Double )
{
rValA.CoerceToDouble();
return;
}
if ( rValA.m_eType == CCimValue::e_Float )
{
rValB.CoerceToFloat();
return;
}
if ( rValB.m_eType == CCimValue::e_Float )
{
rValA.CoerceToFloat();
return;
}
if ( rValA.m_eType == CCimValue::e_UnsignedLong )
{
rValB.CoerceToUnsignedLong();
return;
}
if ( rValB.m_eType == CCimValue::e_UnsignedLong )
{
rValA.CoerceToUnsignedLong();
return;
}
if ( rValA.m_eType == CCimValue::e_Long &&
rValB.m_eType == CCimValue::e_UnsignedInt ||
rValB.m_eType == CCimValue::e_Long &&
rValA.m_eType == CCimValue::e_UnsignedInt )
{
rValA.CoerceToUnsignedLong();
rValB.CoerceToUnsignedLong();
return;
}
if ( rValA.m_eType == CCimValue::e_Long )
{
rValB.CoerceToLong();
return;
}
if ( rValB.m_eType == CCimValue::e_Long )
{
rValA.CoerceToLong();
return;
}
if ( rValA.m_eType == CCimValue::e_UnsignedInt )
{
rValB.CoerceToUnsignedInt();
return;
}
if ( rValB.m_eType == CCimValue::e_UnsignedInt )
{
rValA.CoerceToUnsignedInt();
return;
}
// this means both must be e_Int, but our check in the beginning
// should have handled this...
assert( 0 );
}
CCimValue operator+ ( CCimValue ValA, CCimValue ValB )
{
HandleConversion( ValA, ValB );
assert( ValA.m_eType == ValB.m_eType );
switch( ValA.m_eType )
{
case CCimValue::e_Int:
ValA.m_iVal += ValB.m_iVal;
break;
case CCimValue::e_UnsignedInt:
ValA.m_uiVal += ValB.m_uiVal;
break;
case CCimValue::e_Float:
ValA.m_fVal += ValB.m_fVal;
break;
case CCimValue::e_Double:
ValA.m_dbVal += ValB.m_dbVal;
break;
case CCimValue::e_LongDouble:
ValA.m_ldbVal += ValB.m_ldbVal;
break;
case CCimValue::e_Long:
ValA.m_lVal += ValB.m_lVal;
break;
case CCimValue::e_UnsignedLong:
ValA.m_ulVal += ValB.m_ulVal;
break;
default:
assert(0);
};
return ValA;
}
CCimValue operator- ( CCimValue ValA, CCimValue ValB )
{
HandleConversion( ValA, ValB );
assert( ValA.m_eType == ValB.m_eType );
switch( ValA.m_eType )
{
case CCimValue::e_Int:
ValA.m_iVal -= ValB.m_iVal;
break;
case CCimValue::e_UnsignedInt:
ValA.m_uiVal -= ValB.m_uiVal;
break;
case CCimValue::e_Float:
ValA.m_fVal -= ValB.m_fVal;
break;
case CCimValue::e_Double:
ValA.m_dbVal -= ValB.m_dbVal;
break;
case CCimValue::e_Long:
ValA.m_lVal -= ValB.m_lVal;
break;
case CCimValue::e_UnsignedLong:
ValA.m_ulVal -= ValB.m_ulVal;
break;
case CCimValue::e_LongDouble:
ValA.m_ldbVal -= ValB.m_ldbVal;
break;
default:
assert(0);
};
return ValA;
}
CCimValue operator* ( CCimValue ValA, CCimValue ValB )
{
HandleConversion( ValA, ValB );
assert( ValA.m_eType == ValB.m_eType );
switch( ValA.m_eType )
{
case CCimValue::e_Int:
ValA.m_iVal *= ValB.m_iVal;
break;
case CCimValue::e_UnsignedInt:
ValA.m_uiVal *= ValB.m_uiVal;
break;
case CCimValue::e_Float:
ValA.m_fVal *= ValB.m_fVal;
break;
case CCimValue::e_Double:
ValA.m_dbVal *= ValB.m_dbVal;
break;
case CCimValue::e_Long:
ValA.m_lVal *= ValB.m_lVal;
break;
case CCimValue::e_UnsignedLong:
ValA.m_ulVal *= ValB.m_ulVal;
break;
case CCimValue::e_LongDouble:
ValA.m_ldbVal *= ValB.m_ldbVal;
break;
default:
assert(0);
};
return ValA;
}
CCimValue operator/ ( CCimValue ValA, CCimValue ValB )
{
HandleConversion( ValA, ValB );
assert( ValA.m_eType == ValB.m_eType );
//
// will raise a structured exception if div by 0.
// caller is expected to handle this..
//
switch( ValA.m_eType )
{
case CCimValue::e_Int:
if ( ValB.m_iVal == 0 ) throw CX_DivideByZeroException();
ValA.m_iVal /= ValB.m_iVal;
break;
case CCimValue::e_UnsignedInt:
if ( ValB.m_uiVal == 0 ) throw CX_DivideByZeroException();
ValA.m_uiVal /= ValB.m_uiVal;
break;
case CCimValue::e_Float:
if ( ValB.m_fVal == 0 ) throw CX_DivideByZeroException();
ValA.m_fVal /= ValB.m_fVal;
break;
case CCimValue::e_Double:
if ( ValB.m_dbVal == 0 ) throw CX_DivideByZeroException();
ValA.m_dbVal /= ValB.m_dbVal;
break;
case CCimValue::e_Long:
if ( ValB.m_lVal == 0 ) throw CX_DivideByZeroException();
ValA.m_lVal /= ValB.m_lVal;
break;
case CCimValue::e_UnsignedLong:
if ( ValB.m_ulVal == 0 ) throw CX_DivideByZeroException();
ValA.m_ulVal /= ValB.m_ulVal;
break;
case CCimValue::e_LongDouble:
if ( ValB.m_ldbVal == 0 ) throw CX_DivideByZeroException();
ValA.m_ldbVal /= ValB.m_ldbVal;
break;
default:
assert(0);
};
return ValA;
}
CCimValue operator% ( CCimValue ValA, CCimValue ValB )
{
HandleConversion( ValA, ValB );
assert( ValA.m_eType == ValB.m_eType );
//
// will raise a structured exception if div by 0.
// caller is expected to handle this..
//
switch( ValA.m_eType )
{
case CCimValue::e_Int:
if ( ValB.m_iVal == 0 ) throw CX_DivideByZeroException();
ValA.m_iVal %= ValB.m_iVal;
break;
case CCimValue::e_UnsignedInt:
if ( ValB.m_uiVal == 0 ) throw CX_DivideByZeroException();
ValA.m_uiVal %= ValB.m_uiVal;
break;
case CCimValue::e_Float:
case CCimValue::e_Double:
case CCimValue::e_LongDouble:
throw CX_InvalidFloatingPointOperationException();
case CCimValue::e_Long:
if ( ValB.m_lVal == 0 ) throw CX_DivideByZeroException();
ValA.m_lVal %= ValB.m_lVal;
break;
case CCimValue::e_UnsignedLong:
if ( ValB.m_ulVal == 0 ) throw CX_DivideByZeroException();
ValA.m_ulVal %= ValB.m_ulVal;
break;
default:
assert(0);
};
return ValA;
}