Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2348 lines
70 KiB

/*++
Copyright (c) 2000-2001 Microsoft Corporation
Module Name:
heaputil.cpp
Revision History:
ivanbrug oct 2000 created
--*/
#include <wmiexts.h>
#include <utilfun.h>
#include <malloc.h>
/*
#if defined(_WIN64)
#define HEAP_GRANULARITY_SHIFT 4 // Log2( HEAP_GRANULARITY )
#else
#define HEAP_GRANULARITY_SHIFT 3 // Log2( HEAP_GRANULARITY )
#endif
#define HEAP_ENTRY_BUSY 0x01
#define HEAP_ENTRY_EXTRA_PRESENT 0x02
#define HEAP_ENTRY_FILL_PATTERN 0x04
#define HEAP_ENTRY_VIRTUAL_ALLOC 0x08
#define HEAP_ENTRY_LAST_ENTRY 0x10
#define HEAP_ENTRY_SETTABLE_FLAG1 0x20
#define HEAP_ENTRY_SETTABLE_FLAG2 0x40
#define HEAP_ENTRY_SETTABLE_FLAG3 0x80
#define HEAP_ENTRY_SETTABLE_FLAGS 0xE0
typedef struct _HEAP_ENTRY {
//
// This field gives the size of the current block in allocation
// granularity units. (i.e. Size << HEAP_GRANULARITY_SHIFT
// equals the size in bytes).
//
// Except if this is part of a virtual alloc block then this
// value is the difference between the commit size in the virtual
// alloc entry and the what the user asked for.
//
USHORT Size;
//
// This field gives the size of the previous block in allocation
// granularity units. (i.e. PreviousSize << HEAP_GRANULARITY_SHIFT
// equals the size of the previous block in bytes).
//
USHORT PreviousSize;
//
// This field contains the index into the segment that controls
// the memory for this block.
//
UCHAR SegmentIndex;
//
// This field contains various flag bits associated with this block.
// Currently these are:
//
// 0x01 - HEAP_ENTRY_BUSY
// 0x02 - HEAP_ENTRY_EXTRA_PRESENT
// 0x04 - HEAP_ENTRY_FILL_PATTERN
// 0x08 - HEAP_ENTRY_VIRTUAL_ALLOC
// 0x10 - HEAP_ENTRY_LAST_ENTRY
// 0x20 - HEAP_ENTRY_SETTABLE_FLAG1
// 0x40 - HEAP_ENTRY_SETTABLE_FLAG2
// 0x80 - HEAP_ENTRY_SETTABLE_FLAG3
//
UCHAR Flags;
//
// This field contains the number of unused bytes at the end of this
// block that were not actually allocated. Used to compute exact
// size requested prior to rounding requested size to allocation
// granularity. Also used for tail checking purposes.
//
UCHAR UnusedBytes;
//
// Small (8 bit) tag indexes can go here.
//
UCHAR SmallTagIndex;
#if defined(_WIN64)
ULONGLONG Reserved1;
#endif
} HEAP_ENTRY, *PHEAP_ENTRY;
typedef struct _HEAP_UNCOMMMTTED_RANGE {
struct _HEAP_UNCOMMMTTED_RANGE *Next;
ULONG_PTR Address;
SIZE_T Size;
ULONG filler;
} HEAP_UNCOMMMTTED_RANGE, *PHEAP_UNCOMMMTTED_RANGE;
typedef struct _HEAP_SEGMENT {
HEAP_ENTRY Entry;
ULONG Signature;
ULONG Flags;
struct _HEAP *Heap;
SIZE_T LargestUnCommittedRange;
PVOID BaseAddress;
ULONG NumberOfPages;
PHEAP_ENTRY FirstEntry;
PHEAP_ENTRY LastValidEntry;
ULONG NumberOfUnCommittedPages;
ULONG NumberOfUnCommittedRanges;
PHEAP_UNCOMMMTTED_RANGE UnCommittedRanges;
USHORT AllocatorBackTraceIndex;
USHORT Reserved;
PHEAP_ENTRY LastEntryInSegment;
} HEAP_SEGMENT, *PHEAP_SEGMENT;
*/
typedef ULONG_PTR ERESOURCE_THREAD;
typedef ERESOURCE_THREAD *PERESOURCE_THREAD;
typedef struct _OWNER_ENTRY {
ERESOURCE_THREAD OwnerThread;
union {
LONG OwnerCount;
ULONG TableSize;
};
} OWNER_ENTRY, *POWNER_ENTRY;
typedef void * PKSEMAPHORE;
typedef void * PKEVENT;
typedef struct _ERESOURCE {
LIST_ENTRY SystemResourcesList;
POWNER_ENTRY OwnerTable;
SHORT ActiveCount;
USHORT Flag;
PKSEMAPHORE SharedWaiters;
PKEVENT ExclusiveWaiters;
OWNER_ENTRY OwnerThreads[2];
ULONG ContentionCount;
USHORT NumberOfSharedWaiters;
USHORT NumberOfExclusiveWaiters;
union {
PVOID Address;
ULONG_PTR CreatorBackTraceIndex;
};
KSPIN_LOCK SpinLock;
} ERESOURCE, *PERESOURCE;
//typedef void * PRTL_TRACE_BLOCK;
#include "heap.h"
#include "heappagi.h"
#define HE_VERBOSITY_FLAGS 1
#define HE_VERBOSITY_NUMERIC 2
#define HE_VERBOSITY_VTABLE 4
#if defined(_X86_)
#ifndef PAGE_SIZE
#define PAGE_SIZE 0x1000
#endif
#define USER_ALIGNMENT 8
#elif defined(_IA64_)
#ifndef PAGE_SIZE
#define PAGE_SIZE 0x2000
#endif
#define USER_ALIGNMENT 16
#elif defined(_AMD64_)
#ifndef PAGE_SIZE
#define PAGE_SIZE 0x1000
#endif
#define USER_ALIGNMENT 16
#else
#error // platform not defined
#endif
//
//
//
//
//
typedef DWORD (__stdcall * fnCallBack)(ULONG_PTR pParam1,ULONG_PTR pParam2);
DWORD g_UsedInHeap = 0;
void
PrintHeapEntry(HEAP_ENTRY * pEntry,void * pAddr)
{
BYTE varEntry[sizeof(HEAP_ENTRY)+2*sizeof(void *)];
LIST_ENTRY * pListEntry = (LIST_ENTRY *)((HEAP_ENTRY *)varEntry+1);
DWORD PrintSize = 0;
BOOL bIsPossiblePageHeap = FALSE;
if (pEntry->Flags & HEAP_ENTRY_BUSY)
{
// re-read the entry, to get if it's on the LookAside
if (ReadMemory((MEMORY_ADDRESS)pAddr,varEntry,sizeof(varEntry),NULL))
{
#ifdef WIN64
if (0xf0f0f0f0f0f0f0f0 == (ULONG_PTR)pListEntry->Blink )
#else
if (0xf0f0f0f0 == (ULONG_PTR)pListEntry->Blink )
#endif
{
PrintSize = 0xf7eef7ee;
}
else
{
PrintSize = (pEntry->Size<<HEAP_GRANULARITY_SHIFT)-pEntry->UnusedBytes;
g_UsedInHeap += PrintSize;
}
DWORD Sign = *((DWORD *)pListEntry);
//dprintf("Sign %08x\n",Sign);
if (0xabcdaaaa == Sign)
{
bIsPossiblePageHeap = TRUE;
}
}
else
{
PrintSize = (pEntry->Size<<HEAP_GRANULARITY_SHIFT)-pEntry->UnusedBytes;
g_UsedInHeap += PrintSize;
}
}
else
{
PrintSize = 0xf7eef7ee;
}
dprintf(" %p: %04x . %04x [%02x] - (%x)\n",
pAddr,pEntry->Size,pEntry->PreviousSize,pEntry->Flags,PrintSize);
if (bIsPossiblePageHeap)
{
//dprintf("Possible %p\n",(MEMORY_ADDRESS)((BYTE*)pAddr+sizeof(HEAP_ENTRY)+sizeof(DPH_BLOCK_INFORMATION)));
GetVTable((MEMORY_ADDRESS)((BYTE*)pAddr+sizeof(HEAP_ENTRY)+sizeof(DPH_BLOCK_INFORMATION)));
}
else
GetVTable((MEMORY_ADDRESS)((BYTE*)pAddr+sizeof(HEAP_ENTRY)));
};
//
//
// print the HEAP_ENTRY structure
//
DECLARE_API(he) {
INIT_API();
DEFINE_CPP_VAR( HEAP_ENTRY, varHEAP_ENTRY);
HEAP_ENTRY * pEntry = GET_CPP_VAR_PTR( HEAP_ENTRY , varHEAP_ENTRY );
memset(pEntry,0xfe,sizeof(HEAP_ENTRY));
MEMORY_ADDRESS pByte = GetExpression(args);
if (pByte)
{
if (ReadMemory((MEMORY_ADDRESS)pByte,pEntry ,sizeof(HEAP_ENTRY),NULL))
{
PrintHeapEntry(pEntry,(void *)pByte);
}
else
{
dprintf("RM %p\n",pByte);
}
} else {
dprintf("invalid HEAP_ENTRY address %s\n",args);
}
}
//
// HEAP_ENTRY list
// finds the beginning of the "list" of HEAP_ENTRYs
//
DECLARE_API(heb) {
INIT_API();
MEMORY_ADDRESS pEntry = GetExpression(args);
if (pEntry){
HEAP_ENTRY HeapEntry;
ReadMemory((MEMORY_ADDRESS)pEntry,&HeapEntry,sizeof(HeapEntry),0);
PrintHeapEntry(&HeapEntry,(void *)pEntry);
while (HeapEntry.PreviousSize)
{
pEntry = (MEMORY_ADDRESS)((HEAP_ENTRY*)pEntry - HeapEntry.PreviousSize);
if (ReadMemory((MEMORY_ADDRESS)pEntry,&HeapEntry,sizeof(HeapEntry),0))
{
PrintHeapEntry(&HeapEntry,(void *)pEntry);
}
else
{
dprintf("RM %p\n",pEntry);
break;
}
if (CheckControlC())
break;
}
dprintf(" begin %08x\n",pEntry);
} else {
dprintf("invalid address %s\n",args);
};
}
//
//
// HEAP_ENTRY forward
//
//////////////////////////////////////////////////////
DECLARE_API(hef) {
INIT_API();
DWORD BeginNum=0;
MEMORY_ADDRESS pEntry = GetExpression(args);
if (pEntry)
{
HEAP_ENTRY HeapEntry;
ReadMemory((MEMORY_ADDRESS)pEntry,&HeapEntry,sizeof(HeapEntry),0);
PrintHeapEntry(&HeapEntry,(void *)pEntry);
while (!(HeapEntry.Flags & HEAP_ENTRY_LAST_ENTRY))
{
pEntry = (MEMORY_ADDRESS)((HEAP_ENTRY*)pEntry + HeapEntry.Size);
if (ReadMemory((MEMORY_ADDRESS)pEntry,&HeapEntry,sizeof(HeapEntry),0))
{
PrintHeapEntry(&HeapEntry,(void *)pEntry);
}
else
{
dprintf("RM %p\n",pEntry);
break;
}
if (CheckControlC())
break;
}
dprintf(" end %08x\n",pEntry);
} else {
dprintf("invalid address %s\n",args);
};
}
DWORD EnumEntries(HEAP_ENTRY * pEntry,DWORD * pSize,fnCallBack CallBack,ULONG_PTR Addr){
DWORD i=0;
HEAP_ENTRY HeapEntry;
DWORD Size=0;
ReadMemory((MEMORY_ADDRESS)pEntry,&HeapEntry,sizeof(HeapEntry),0);
if (CallBack)
{
CallBack((ULONG_PTR)pEntry,Addr);
}
else
{
PrintHeapEntry(&HeapEntry,pEntry);
};
while (!(HeapEntry.Flags & HEAP_ENTRY_LAST_ENTRY))
{
if (0 == HeapEntry.Size)
{
dprintf("HEAP_ENTRY %p with zero Size\n",pEntry);
break;
}
pEntry = (HEAP_ENTRY*)pEntry + HeapEntry.Size;
if (ReadMemory((MEMORY_ADDRESS)pEntry,&HeapEntry,sizeof(HeapEntry),0))
{
if (CallBack)
{
CallBack((ULONG_PTR)pEntry,Addr);
}
else
{
PrintHeapEntry(&HeapEntry,pEntry);
};
}
else
{
dprintf("RM %p\n",pEntry);
break;
}
i++;
Size += ((HeapEntry.Size<<HEAP_GRANULARITY_SHIFT)-HeapEntry.UnusedBytes);
if (CheckControlC())
break;
}
if (pSize){
*pSize = Size;
}
return i;
}
void
PrintHEAP_SEGMENT(HEAP_SEGMENT * pSeg_OOP,
fnCallBack CallBack,
ULONG_PTR Addr)
{
DEFINE_CPP_VAR( HEAP_SEGMENT, varHEAP_SEGMENT);
HEAP_SEGMENT * pSeg = GET_CPP_VAR_PTR( HEAP_SEGMENT , varHEAP_SEGMENT );
BOOL bRet = ReadMemory((MEMORY_ADDRESS)pSeg_OOP,pSeg ,sizeof(HEAP_SEGMENT),0);
if (bRet)
{
if (!CallBack)
dprintf(" Flags %08x HEAP %p\n",pSeg->Flags,pSeg->Heap);
//SIZE_T LargestUnCommittedRange;
//PVOID BaseAddress;
//ULONG NumberOfPages;
//PHEAP_ENTRY FirstEntry;
//PHEAP_ENTRY LastValidEntry;
//ULONG NumberOfUnCommittedPages;
DWORD unComm = pSeg->NumberOfUnCommittedRanges;
//PHEAP_UNCOMMMTTED_RANGE UnCommittedRanges;
//USHORT AllocatorBackTraceIndex;
//USHORT Reserved;
//PHEAP_ENTRY LastEntryInSegment;
HEAP_UNCOMMMTTED_RANGE UncRange;
HEAP_UNCOMMMTTED_RANGE * pUncRange = pSeg->UnCommittedRanges;
HEAP_ENTRY ** pCommRange = (HEAP_ENTRY **)_alloca(sizeof(HEAP_ENTRY *)*(unComm+1));
DWORD Size=0;
DWORD Num=0;
pCommRange[0] = (HEAP_ENTRY *)pSeg->FirstEntry;
Num = EnumEntries(pCommRange[0],&Size,CallBack,Addr);
if (!CallBack)
dprintf(" - %p Size %p entries %d \n",pCommRange[0],Size,Num);
for (DWORD i=0; i<unComm; i++)
{
bRet = ReadMemory((MEMORY_ADDRESS)pUncRange,&UncRange,sizeof(UncRange),NULL);
if (bRet)
{
pUncRange = UncRange.Next;
pCommRange[1+i] = (HEAP_ENTRY *)(UncRange.Address + UncRange.Size);
if (NULL == pUncRange)
{
if ((ULONG_PTR)pCommRange[1+i] == (ULONG_PTR)pSeg->LastValidEntry)
break;
}
Num = EnumEntries(pCommRange[1+i],&Size,CallBack,Addr);
if (!CallBack)
dprintf(" - %p Size %p entries %d\n",pCommRange[1+i],Size,Num);
}
else
{
dprintf("RM %p\n",pUncRange);
}
}
} else {
dprintf("RM %p\n",pSeg_OOP);
}
}
//
//
// Dump the HEAP_SEGMENT
//
DECLARE_API(hs) {
INIT_API();
MEMORY_ADDRESS pByte = 0;
pByte = GetExpression(args);
if (pByte)
{
PrintHEAP_SEGMENT((HEAP_SEGMENT *)pByte,NULL,NULL);
}
else
{
dprintf("invalid address %s\n",args);
}
}
//
// Define heap lookaside list allocation functions.
//
struct SLIST_HEADER_
{
SLIST_HEADER_ * Next;
ULONG_PTR Align;
};
typedef struct _HEAP_LOOKASIDE {
SLIST_HEADER_ ListHead;
USHORT Depth;
USHORT MaximumDepth;
ULONG TotalAllocates;
ULONG AllocateMisses;
ULONG TotalFrees;
ULONG FreeMisses;
ULONG LastTotalAllocates;
ULONG LastAllocateMisses;
ULONG Counters[2];
#ifdef _IA64_
DWORD Pad[3];
#else
DWORD Pad;
#endif
} HEAP_LOOKASIDE, *PHEAP_LOOKASIDE;
void Dump_LookAside(ULONG_PTR pLookAside_OOP)
{
DWORD dwSize = sizeof(HEAP_LOOKASIDE) * HEAP_MAXIMUM_FREELISTS ;
BYTE * pData = new BYTE[dwSize];
if (pData)
{
if (ReadMemory(pLookAside_OOP,pData,dwSize,NULL))
{
DWORD i;
HEAP_LOOKASIDE * pLookasideArray = (HEAP_LOOKASIDE *)pData;
BYTE varHEAP_ENTRY[sizeof(HEAP_ENTRY)+sizeof(SLIST_HEADER_)];
HEAP_ENTRY * pEntry = GET_CPP_VAR_PTR( HEAP_ENTRY , varHEAP_ENTRY );
SLIST_HEADER_ * pSListEntry = (SLIST_HEADER_ *)(pEntry+1);
char Fill[8];
memset(Fill,0xf0,8);
for(i=0;i<HEAP_MAXIMUM_FREELISTS;i++)
{
ULONG_PTR pTmp;
SLIST_HEADER_ * pHead_OOP = pLookasideArray[i].ListHead.Next;
#ifdef _IA64_
pTmp = (ULONG_PTR)pHead_OOP;
pTmp>>=25;
pTmp<<=4;
pHead_OOP = (SLIST_HEADER_ *)pTmp;
#endif
dprintf(" LookAside[%x] - %p Depth %x Maximum %x\n",
i,
pHead_OOP, //pLookasideArray[i].ListHead.Next,
pLookasideArray[i].Depth,
pLookasideArray[i].MaximumDepth);
//dprintf("size %x %p\n",sizeof(HEAP_LOOKASIDE),pHead_OOP);
USHORT Depth = 0;
while(pHead_OOP)
{
HEAP_ENTRY * pEntry_OOP = (HEAP_ENTRY *)pHead_OOP-1;
if (ReadMemory((MEMORY_ADDRESS)pEntry_OOP,pEntry,sizeof(varHEAP_ENTRY),NULL))
{
ULONG_PTR pToWrite = sizeof(ULONG_PTR) + (ULONG_PTR)pHead_OOP;
WriteMemory(pToWrite,Fill,sizeof(ULONG_PTR),0);
pHead_OOP = pSListEntry->Next;
PrintHeapEntry(pEntry,pEntry_OOP);
}
else
{
dprintf("RM %d\n",GetLastError());
break;
}
Depth++;
if (Depth > pLookasideArray[i].MaximumDepth)
{
dprintf("MaximumDepth exceeded\n");
break;
}
};
}
}
else
{
dprintf("RM %d\n",GetLastError());
}
delete [] pData;
}
}
#define HEAP_FRONT_LOOKASIDE 1
#define HEAP_FRONT_LOWFRAGHEAP 2
//
// prepares the Lookaside list for dump
//
DECLARE_API(lhp)
{
INIT_API();
DEFINE_CPP_VAR( HEAP, varHEAP);
HEAP * pHeap = GET_CPP_VAR_PTR( HEAP , varHEAP );
MEMORY_ADDRESS pByte = GetExpression(args);
DWORD i;
if (pByte)
{
if (ReadMemory(pByte,pHeap ,sizeof(HEAP),NULL))
{
//dprintf("----- LookAside %p\n",pHeap->FrontEndHeap);
if (1 == pHeap->FrontEndHeapType)
Dump_LookAside((ULONG_PTR)pHeap->FrontEndHeap);
else
dprintf("_HEAP FrontEndHeapType %d not recognized \n",pHeap->FrontEndHeapType);
}
else
{
dprintf("RM %p %d\n",pByte,GetLastError());
}
}
else
{
dprintf("invalid heap address %s\n",args);
}
}
//
// Low fragmentation heap data structures
//
typedef struct _BLOCK_ENTRY : HEAP_ENTRY
{
USHORT LinkOffset;
USHORT Reserved2;
} BLOCK_ENTRY, *PBLOCK_ENTRY;
typedef struct _INTERLOCK_SEQ {
union {
struct {
union {
struct {
USHORT Depth;
USHORT FreeEntryOffset;
};
volatile ULONG OffsetAndDepth;
};
volatile ULONG Sequence;
};
volatile LONGLONG Exchg;
};
} INTERLOCK_SEQ, *PINTERLOCK_SEQ;
struct _HEAP_USERDATA_HEADER;
typedef struct _HEAP_SUBSEGMENT {
PVOID Bucket;
volatile struct _HEAP_USERDATA_HEADER * UserBlocks;
INTERLOCK_SEQ AggregateExchg;
union {
struct {
USHORT BlockSize;
USHORT FreeThreshold;
USHORT BlockCount;
UCHAR SizeIndex;
UCHAR AffinityIndex;
};
ULONG Alignment[2];
};
SINGLE_LIST_ENTRY SFreeListEntry;
volatile ULONG Lock;
} HEAP_SUBSEGMENT, *PHEAP_SUBSEGMENT;
typedef struct _HEAP_USERDATA_HEADER {
union {
SINGLE_LIST_ENTRY SFreeListEntry;
PHEAP_SUBSEGMENT SubSegment;
};
PVOID HeapHandle;
ULONG_PTR SizeIndex;
ULONG_PTR Signature;
} HEAP_USERDATA_HEADER, *PHEAP_USERDATA_HEADER;
typedef union _HEAP_BUCKET_COUNTERS{
struct {
volatile ULONG TotalBlocks;
volatile ULONG SubSegmentCounts;
};
volatile LONGLONG Aggregate64;
} HEAP_BUCKET_COUNTERS, *PHEAP_BUCKET_COUNTERS;
//
// The HEAP_BUCKET structure handles same size allocations
//
typedef struct _HEAP_BUCKET {
HEAP_BUCKET_COUNTERS Counters;
USHORT BlockUnits;
UCHAR SizeIndex;
UCHAR UseAffinity;
LONG Conversions;
} HEAP_BUCKET, *PHEAP_BUCKET;
//
// LFH heap uses zones to allocate sub-segment descriptors. This will preallocate
// a large block and then for each individual sub-segment request will move the
// water mark pointer with a non-blocking operation
//
typedef struct _LFH_BLOCK_ZONE {
LIST_ENTRY ListEntry;
PVOID FreePointer;
PVOID Limit;
} LFH_BLOCK_ZONE, *PLFH_BLOCK_ZONE;
#define FREE_CACHE_SIZE 16
typedef struct _HEAP_LOCAL_SEGMENT_INFO {
PHEAP_SUBSEGMENT Hint;
PHEAP_SUBSEGMENT ActiveSubsegment;
PHEAP_SUBSEGMENT CachedItems[ FREE_CACHE_SIZE ];
SLIST_HEADER SListHeader;
SIZE_T BusyEntries;
SIZE_T LastUsed;
} HEAP_LOCAL_SEGMENT_INFO, *PHEAP_LOCAL_SEGMENT_INFO;
#define HEAP_BUCKETS_COUNT 128
typedef struct _HEAP_LOCAL_DATA {
//
// We reserve the 128 bytes below to avoid sharing memory
// into the same cacheline on MP machines
//
UCHAR Reserved[128];
volatile PLFH_BLOCK_ZONE CrtZone;
struct _LFH_HEAP * LowFragHeap;
HEAP_LOCAL_SEGMENT_INFO SegmentInfo[HEAP_BUCKETS_COUNT];
SLIST_HEADER DeletedSubSegments;
ULONG Affinity;
ULONG Reserved1;
} HEAP_LOCAL_DATA, *PHEAP_LOCAL_DATA;
//
// Fixed size large block cache data structures & definitions
// This holds in S-Lists the blocks that can be free, but it
// delay the free until no other thread is doing a heap operation
// This helps reducing the contention on the heap lock,
// improve the scalability with a relatively low memory footprint
//
#define HEAP_LOWEST_USER_SIZE_INDEX 7
#define HEAP_HIGHEST_USER_SIZE_INDEX 18
#define HEAP_USER_ENTRIES (HEAP_HIGHEST_USER_SIZE_INDEX - HEAP_LOWEST_USER_SIZE_INDEX + 1)
typedef struct _USER_MEMORY_CACHE {
SLIST_HEADER UserBlocks[ HEAP_USER_ENTRIES ];
ULONG FreeBlocks;
ULONG Sequence;
ULONG MinDepth[ HEAP_USER_ENTRIES ];
ULONG AvailableBlocks[ HEAP_USER_ENTRIES ];
} USER_MEMORY_CACHE, *PUSER_MEMORY_CACHE;
typedef struct _LFH_HEAP {
RTL_CRITICAL_SECTION Lock;
LIST_ENTRY SubSegmentZones;
SIZE_T ZoneBlockSize;
HANDLE Heap;
LONG Conversions;
LONG ConvertedSpace;
ULONG SegmentChange; //
ULONG SegmentCreate; // Various counters (optional)
ULONG SegmentInsertInFree; //
ULONG SegmentDelete; //
USER_MEMORY_CACHE UserBlockCache;
//
// Bucket data
//
HEAP_BUCKET Buckets[HEAP_BUCKETS_COUNT];
//
// The LocalData array must be the last field in LFH structures
// The sizes of the array is choosen depending upon the
// number of processors.
//
HEAP_LOCAL_DATA LocalData[1];
} LFH_HEAP, *PLFH_HEAP;
/*
MEMORY_ADDRESS Addr = GetExpression(args);
if (NULL == Addr)
{
dprintf("unable to resolve %s\n",args);
return;
}
HEAP_USERDATA_HEADER UserData;
if (ReadMemory(Addr,&UserData,sizeof(UserData),NULL))
{
dprintf(" Next %p HeapHandle %p SizeIndex %p Signature %p\n",
UserData.SFreeListEntry.Next,
UserData.HeapHandle,
UserData.SizeIndex,
UserData.Signature);
BLOCK_ENTRY * pBlkEntry = (BLOCK_ENTRY *)((HEAP_USERDATA_HEADER*)Addr+1);
while(pBlkEntry)
{
BLOCK_ENTRY BlkEntry;
if (ReadMemory((ULONG_PTR)pBlkEntry,&BlkEntry,sizeof(BlkEntry),NULL))
{
dprintf(" %p : %08x %02x %02x %02x %02x - %04x %04x\n",
pBlkEntry,
*(DWORD *)&BlkEntry.Size,
BlkEntry.SmallTagIndex,
BlkEntry.Flags,
BlkEntry.UnusedBytes,
BlkEntry.SegmentIndex,
BlkEntry.LinkOffset,
BlkEntry.Reserved2);
GetVTable((MEMORY_ADDRESS)((BYTE*)pBlkEntry+sizeof(BLOCK_ENTRY)));
if (1 == BlkEntry.SmallTagIndex)
{
pBlkEntry = (BLOCK_ENTRY *)((HEAP_ENTRY *)pBlkEntry+BlkEntry.LinkOffset);
}
else
{
pBlkEntry = 0;
}
}
else
{
dprintf("RM %p\n",pBlkEntry);
break;
}
}
}
else
{
dprintf("RM %p\n");
}
*/
void Print_HEAP_SUBSEGMENT( HEAP_SUBSEGMENT * pSubSeg_OOP,BOOL bHere)
{
HEAP_SUBSEGMENT HeapSubSeg;
HEAP_SUBSEGMENT * pSubSegHERE = &HeapSubSeg;
if (NULL == pSubSeg_OOP) return;
if (bHere)
{
pSubSegHERE = pSubSeg_OOP;
}
else
{
if (!ReadMemory((ULONG_PTR)pSubSeg_OOP,&HeapSubSeg,sizeof(HeapSubSeg),0))
{
dprintf("RM %p\n",pSubSeg_OOP);
return;
}
}
dprintf(" - Bkt %p Blk %p D %04x F %04x S %08x\n",
pSubSegHERE->Bucket,
pSubSegHERE->UserBlocks,
pSubSegHERE->AggregateExchg.Depth,
pSubSegHERE->AggregateExchg.FreeEntryOffset,
pSubSegHERE->AggregateExchg.Sequence);
dprintf(" Bs %04x FT %04x BC %04x S %02x A %02x Lock %08x\n",
pSubSegHERE->BlockSize,
pSubSegHERE->FreeThreshold,
pSubSegHERE->BlockCount,
pSubSegHERE->SizeIndex,
pSubSegHERE->AffinityIndex,
pSubSegHERE->Lock);
if (0 == pSubSegHERE->AggregateExchg.Depth) return;
struct EntryTable : HEAP_ENTRY
{
ULONG_PTR vTable;
} Entry;
HEAP_ENTRY * pEntry_OOP = (HEAP_ENTRY *)((HEAP_USERDATA_HEADER *)pSubSegHERE->UserBlocks+1);
DWORD Count = 0;
do
{
if (ReadMemory((ULONG_PTR)pEntry_OOP,&Entry,sizeof(Entry),NULL))
{
dprintf(" %p: %04x . %04x [%02x] - (%x)\n",
pEntry_OOP,1+pSubSegHERE->SizeIndex,0,
Entry.Flags,
(sizeof(HEAP_ENTRY))*( pSubSegHERE->BlockSize)-Entry.UnusedBytes);
GetVTable(Entry.vTable);
pEntry_OOP += ( pSubSegHERE->BlockSize );
Count++;
}
else
{
dprintf("RM %p\n",pEntry_OOP);
break;
}
} while(1 == Entry.SmallTagIndex && Count < pSubSegHERE->AggregateExchg.Depth);
}
DWORD EnumListCrtZone(VOID * pZone_OOP,
VOID * pBlockZone)
{
LFH_BLOCK_ZONE CrtZone;
LFH_BLOCK_ZONE * pBlockZone_OOP = (LFH_BLOCK_ZONE *)pZone_OOP;
if (ReadMemory((ULONG_PTR)pBlockZone_OOP,&CrtZone,sizeof(CrtZone),NULL))
{
ULONG_PTR Size = (ULONG_PTR)CrtZone.FreePointer - (ULONG_PTR)pBlockZone_OOP;
BYTE * pMem = (BYTE *)HeapAlloc(GetProcessHeap(),0,Size);
if (pMem)
{
ULONG_PTR AddrCrtZone = (ULONG_PTR)pBlockZone_OOP;
if (ReadMemory(AddrCrtZone,pMem,(ULONG)Size,NULL))
{
HEAP_SUBSEGMENT * pSubSeg = (HEAP_SUBSEGMENT *)((LFH_BLOCK_ZONE *)pMem + 1);
HEAP_SUBSEGMENT * pSubSegEnd = (HEAP_SUBSEGMENT *)((BYTE *)pSubSeg+Size);
HEAP_SUBSEGMENT * pSubSeg_OOP = (HEAP_SUBSEGMENT *)((LFH_BLOCK_ZONE *)AddrCrtZone+1);
while (pSubSeg < pSubSegEnd )
{
//dprintf("SS - %p\n",pSubSeg_OOP);
Print_HEAP_SUBSEGMENT(pSubSeg,TRUE);
pSubSeg++;
pSubSeg_OOP++;
}
}
HeapFree(GetProcessHeap(),0,pMem);
}
}
else
{
dprintf("RM %p\n",pBlockZone_OOP);
}
return 0;
}
void Print_LFH(LFH_HEAP * pLFH_OOP)
{
ULONG_PTR AddrAff = GetExpression("ntdll!RtlpHeapMaxAffinity");
if (AddrAff)
{
ULONG Affinity = 0;
if (ReadMemory(AddrAff,&Affinity,sizeof(Affinity),0))
{
ULONG_PTR SizeRead = sizeof(LFH_HEAP) + Affinity*sizeof(HEAP_LOCAL_DATA);
LFH_HEAP * pLFH = (LFH_HEAP *)HeapAlloc(GetProcessHeap(),0,SizeRead);
if (NULL == pLFH) return;
if (ReadMemory((ULONG_PTR)pLFH_OOP,pLFH,(ULONG)SizeRead,0))
{
dprintf("LFH_HEAP %p\n",pLFH_OOP);
LIST_ENTRY * pListHead_oop = &pLFH_OOP->SubSegmentZones;
EnumLinkedListCB(pListHead_oop,
sizeof(LFH_BLOCK_ZONE),
FIELD_OFFSET(LFH_BLOCK_ZONE,ListEntry),
EnumListCrtZone);
/*
for (DWORD i=0;i<HEAP_USER_ENTRIES;i++)
{
dprintf(" HEAP_USERDATA_HEADER - %d\n",i);
HEAP_USERDATA_HEADER * pUsrDataHdr = (HEAP_USERDATA_HEADER *)pLFH->UserBlockCache.UserBlocks[i].Next.Next;
dprintf(" Next %p Available %x\n",pUsrDataHdr,pLFH->UserBlockCache.AvailableBlocks[i]);
HEAP_USERDATA_HEADER UsrDataHdr;
UsrDataHdr.SFreeListEntry.Next = NULL;
for (;pUsrDataHdr;pUsrDataHdr = (HEAP_USERDATA_HEADER *)UsrDataHdr.SFreeListEntry.Next)
{
if (ReadMemory((ULONG_PTR)pUsrDataHdr,&UsrDataHdr,sizeof(UsrDataHdr),NULL))
{
dprintf(" ----\n");
dprintf(" Next %p\n",UsrDataHdr.SFreeListEntry.Next);
dprintf(" HeapHandle %p\n",UsrDataHdr.HeapHandle);
dprintf(" SizeIndex %p\n",UsrDataHdr.SizeIndex);
dprintf(" Signature %p\n",UsrDataHdr.Signature);
}
else
{
dprintf("RM %p\n",pUsrDataHdr);
}
}
}
*/
//
// Buckets
//
/*
dprintf(" Buckets\n");
dprintf(" # BUnt S A Conv TotBlk SubSegCnt\n");
for (DWORD i = 0; i < HEAP_BUCKETS_COUNT; i++)
{
//+0x000 Counters : _HEAP_BUCKET
dprintf(" %02x - %04x %02x %02x %p %08x %08x\n",
i,
pLFH->Buckets[i].BlockUnits,
pLFH->Buckets[i].SizeIndex,
pLFH->Buckets[i].UseAffinity,
pLFH->Buckets[i].Conversions,
pLFH->Buckets[i].Counters.TotalBlocks,
pLFH->Buckets[i].Counters.SubSegmentCounts);
}
*/
for (DWORD i = 0; i <= Affinity; i++)
{
if (0 == i)
dprintf(" HEAP_LOCAL_DATA - NO AFFINITY\n");
else
dprintf(" HEAP_LOCAL_DATA - AFFINITY %d\n",i-1);
dprintf(" @ %p CrtZone %p LFHeap %p Affinity %x\n",
(ULONG_PTR)pLFH_OOP + (ULONG_PTR)&pLFH->LocalData[i] - (ULONG_PTR)pLFH,
pLFH->LocalData[i].CrtZone,
pLFH->LocalData[i].LowFragHeap,
pLFH->LocalData[i].Affinity);
//Print_BLOCK_ZONE((LFH_BLOCK_ZONE *)pLFH->LocalData[i].CrtZone);
HEAP_LOCAL_DATA * pLocData = &pLFH->LocalData[i];
dprintf(" # Hint Active Next BusyEntries LastUsed\n");
for (DWORD j=0;j<HEAP_BUCKETS_COUNT;j++)
{
dprintf(" %02x %p %p %p %08x %08x\n",
j,
pLocData->SegmentInfo[j].Hint,
pLocData->SegmentInfo[j].ActiveSubsegment,
pLocData->SegmentInfo[j].SListHeader, //.Next, //.next
pLocData->SegmentInfo[j].BusyEntries,
pLocData->SegmentInfo[j].LastUsed);
//Print_HEAP_SUBSEGMENT(pLocData->SegmentInfo[j].Hint,FALSE);
//Print_HEAP_SUBSEGMENT(pLocData->SegmentInfo[j].ActiveSubsegment,FALSE);
}
}
}
else
{
dprintf("RM %p\n",pLFH_OOP);
}
HeapFree(GetProcessHeap(),0,pLFH);
}
else
{
dprintf("RM %p\n",AddrAff);
}
}
else
{
dprintf("unable to resolve ntdll!RtlpHeapMaxAffinity\n");
}
}
DECLARE_API(lfhp)
{
INIT_API();
MEMORY_ADDRESS Addr = GetExpression(args);
if (NULL == Addr)
{
dprintf("unable to resolve %s\n",args);
return;
}
DEFINE_CPP_VAR( HEAP, varHEAP);
HEAP * pHeap = GET_CPP_VAR_PTR( HEAP , varHEAP );
if (ReadMemory(Addr,pHeap ,sizeof(HEAP),NULL))
{
//dprintf("----- LookAside %p\n",pHeap->FrontEndHeap);
//Dump_LookAside((ULONG_PTR)pHeap->FrontEndHeap);
if (HEAP_FRONT_LOWFRAGHEAP == pHeap->FrontEndHeapType )
{
Print_LFH((LFH_HEAP*)pHeap->FrontEndHeap);
}
else
{
dprintf("Unrecognized FrontEndHeapType %d\n",pHeap->FrontEndHeapType);
}
}
else
{
dprintf("RM %p\n",Addr);
}
}
//
//
// dump the HEAP, incomplete
//
//
DECLARE_API(hp)
{
INIT_API();
g_UsedInHeap = 0;
DEFINE_CPP_VAR( HEAP, varHEAP);
HEAP * pHeap = GET_CPP_VAR_PTR( HEAP , varHEAP );
MEMORY_ADDRESS pByte = GetExpression(args);
DWORD i;
if (pByte)
{
if (ReadMemory(pByte,pHeap ,sizeof(HEAP),NULL))
{
for (i=0;i<HEAP_MAXIMUM_SEGMENTS;i++)
{
if (pHeap->Segments[i])
PrintHEAP_SEGMENT(pHeap->Segments[i],NULL,NULL);
//dprintf(" seg %i - %p\n",i,pHeap->Segments[i]);
}
dprintf("Used Bytes %p\n",g_UsedInHeap);
}
else
{
dprintf("RM %p %d\n",pByte,GetLastError());
}
}
else
{
dprintf("invalid address %s\n",args);
}
}
//
//
//
/////////////////////////////////////////////////////////////
DWORD g_BlockSize;
ULONG_PTR * g_pBlockBlob;
ULONG g_NumMatch;
DWORD CallBackSearch(ULONG_PTR pHeapEntry_OOP,ULONG_PTR Addr)
{
if (!g_pBlockBlob)
{
dprintf("no GLOBAL search block\n");
return STATUS_NO_MEMORY;
}
HEAP_ENTRY Entry;
if (ReadMemory(pHeapEntry_OOP,&Entry,sizeof(HEAP_ENTRY),NULL))
{
HEAP_ENTRY * pEntry = (HEAP_ENTRY *)&Entry;
DWORD Size = (pEntry->Flags & HEAP_ENTRY_BUSY)?(pEntry->Size<<HEAP_GRANULARITY_SHIFT)-pEntry->UnusedBytes:0;
if (Size)
{
if (Size < g_BlockSize)
{
ULONG_PTR * pData = (ULONG_PTR *)g_pBlockBlob;
ReadMemory(pHeapEntry_OOP+sizeof(HEAP_ENTRY),pData,Size,NULL);
// here is the assumption that pointers are aligned
DWORD nTimes = Size/sizeof(ULONG_PTR);
DWORD i;
for (i=0;i<nTimes;i++)
{
if (Addr == pData[i])
{
dprintf("- %p off %p\n",pHeapEntry_OOP,sizeof(ULONG_PTR)*i);
PrintHeapEntry((HEAP_ENTRY *)pEntry,(void *)pHeapEntry_OOP);
g_NumMatch++;
}
}
}
else
{
dprintf(" entry %p too big\n",pHeapEntry_OOP);
}
}
}
else
{
dprintf("RM %p\n",pHeapEntry_OOP);
}
return 0;
}
//
//
// search the HEAP, incomplete
//
///////////////////////////////////////////////
DECLARE_API(shp)
{
INIT_API();
DEFINE_CPP_VAR( HEAP, varHEAP);
HEAP * pHeap = GET_CPP_VAR_PTR( HEAP , varHEAP );
char * pArgs = (char *)args;
while(isspace(*pArgs)) pArgs++;
MEMORY_ADDRESS pByte = GetExpression(pArgs);
while(!isspace(*pArgs)) pArgs++;
MEMORY_ADDRESS Addr = GetExpression(pArgs);
DWORD i;
if (pByte && Addr)
{
g_BlockSize = 0x10000*sizeof(HEAP_ENTRY);
g_pBlockBlob = (ULONG_PTR *)VirtualAlloc(NULL,g_BlockSize,MEM_COMMIT,PAGE_READWRITE);
if (!g_pBlockBlob)
{
dprintf("VirtualAlloc err %d\n",GetLastError());
return;
}
if (ReadMemory(pByte,pHeap ,sizeof(HEAP),NULL))
{
g_NumMatch = 0;
for (i=0;i<HEAP_MAXIMUM_SEGMENTS;i++)
{
if (pHeap->Segments[i])
PrintHEAP_SEGMENT(pHeap->Segments[i],CallBackSearch,(ULONG_PTR)Addr);
// dprintf(" seg %i - %p\n",i,pHeap->Segments[i]);
}
dprintf("%d matches found\n",g_NumMatch);
}
else
{
dprintf("RM %p %d\n",pByte,GetLastError());
}
if (g_pBlockBlob)
{
VirtualFree(g_pBlockBlob,0,MEM_RELEASE);
g_pBlockBlob = NULL;
g_BlockSize = 0;
}
}
else
{
dprintf("invalid heap address pair in%s\n",args);
}
}
//
// decode heap flags
//
/*
#define HEAP_NO_SERIALIZE 0x00000001 // winnt
#define HEAP_GROWABLE 0x00000002 // winnt
#define HEAP_GENERATE_EXCEPTIONS 0x00000004 // winnt
#define HEAP_ZERO_MEMORY 0x00000008 // winnt
#define HEAP_REALLOC_IN_PLACE_ONLY 0x00000010 // winnt
#define HEAP_TAIL_CHECKING_ENABLED 0x00000020 // winnt
#define HEAP_FREE_CHECKING_ENABLED 0x00000040 // winnt
#define HEAP_DISABLE_COALESCE_ON_FREE 0x00000080 // winnt
#define HEAP_SETTABLE_USER_VALUE 0x00000100
#define HEAP_SETTABLE_USER_FLAG1 0x00000200
#define HEAP_SETTABLE_USER_FLAG2 0x00000400
#define HEAP_SETTABLE_USER_FLAG3 0x00000800
#define HEAP_CLASS_0 0x00000000 // process heap
#define HEAP_CLASS_1 0x00001000 // private heap
#define HEAP_CLASS_2 0x00002000 // Kernel Heap
#define HEAP_CLASS_3 0x00003000 // GDI heap
#define HEAP_CLASS_4 0x00004000 // User heap
#define HEAP_CLASS_5 0x00005000 // Console heap
#define HEAP_CLASS_6 0x00006000 // User Desktop heap
#define HEAP_CLASS_7 0x00007000 // Csrss Shared heap
#define HEAP_CLASS_8 0x00008000 // Csr Port heap
*/
#define HEAP_LOCK_USER_ALLOCATED (ULONG)0x80000000
#define HEAP_VALIDATE_PARAMETERS_ENABLED (ULONG)0x40000000
#define HEAP_VALIDATE_ALL_ENABLED (ULONG)0x20000000
#define HEAP_SKIP_VALIDATION_CHECKS (ULONG)0x10000000
#define HEAP_CAPTURE_STACK_BACKTRACES (ULONG)0x08000000
#define HEAP_FLAG_PAGE_ALLOCS 0x01000000
#define HEAP_PROTECTION_ENABLED 0x02000000
#define HEAP_BREAK_WHEN_OUT_OF_VM 0x04000000
#define HEAP_NO_ALIGNMENT 0x08000000
void DecodeFlags(ULONG Flags)
{
dprintf(" Flags: %08x ",Flags);
if (Flags & HEAP_NO_SERIALIZE)
dprintf("HEAP_NO_SERIALIZE ");
if (Flags & HEAP_GROWABLE)
dprintf("HEAP_GROWABLE ");
if (Flags & HEAP_GENERATE_EXCEPTIONS)
dprintf("HEAP_GENERATE_EXCEPTIONS ");
if (Flags & HEAP_ZERO_MEMORY)
dprintf("HEAP_ZERO_MEMORY ");
if (Flags & HEAP_REALLOC_IN_PLACE_ONLY)
dprintf("HEAP_REALLOC_IN_PLACE_ONLY ");
if (Flags & HEAP_TAIL_CHECKING_ENABLED)
dprintf("HEAP_TAIL_CHECKING_ENABLED ");
if (Flags & HEAP_FREE_CHECKING_ENABLED)
dprintf("HEAP_FREE_CHECKING_ENABLED ");
if (Flags & HEAP_DISABLE_COALESCE_ON_FREE)
dprintf("HEAP_DISABLE_COALESCE_ON_FREE ");
if (Flags & HEAP_SETTABLE_USER_VALUE)
dprintf("HEAP_SETTABLE_USER_VALUE ");
if (Flags & HEAP_SETTABLE_USER_FLAG1)
dprintf("HEAP_SETTABLE_USER_FLAG1 ");
if (Flags & HEAP_SETTABLE_USER_FLAG2)
dprintf("HEAP_SETTABLE_USER_FLAG2 ");
if (Flags & HEAP_SETTABLE_USER_FLAG3)
dprintf("HEAP_SETTABLE_USER_FLAG3 ");
if (Flags & HEAP_CLASS_MASK)
dprintf("HEAP_CLASS %d",(Flags&HEAP_CLASS_MASK)>>12);
/*
if (Flags & HEAP_CLASS_1)
dprintf("HEAP_CLASS_1 ");
if (Flags & HEAP_CLASS_2)
dprintf("HEAP_CLASS_2 ");
if (Flags & HEAP_CLASS_3)
dprintf("HEAP_CLASS_3 ");
if (Flags & HEAP_CLASS_4)
dprintf("HEAP_CLASS_4 ");
if (Flags & HEAP_CLASS_5)
dprintf("HEAP_CLASS_5 ");
if (Flags & HEAP_CLASS_6)
dprintf("HEAP_CLASS_6 ");
if (Flags & HEAP_CLASS_7)
dprintf("HEAP_CLASS_7 ");
*/
//if (Flags & HEAP_CAPTURE_STACK_BACKTRACES)
// dprintf("HEAP_CAPTURE_STACK_BACKTRACES ");
if (Flags &HEAP_SKIP_VALIDATION_CHECKS)
dprintf("HEAP_SKIP_VALIDATION_CHECKS ");
if (Flags &HEAP_VALIDATE_ALL_ENABLED)
dprintf("HEAP_VALIDATE_ALL_ENABLED ");
if (Flags &HEAP_VALIDATE_PARAMETERS_ENABLED)
dprintf("HEAP_VALIDATE_PARAMETERS_ENABLED ");
if (Flags &HEAP_LOCK_USER_ALLOCATED)
dprintf("HEAP_LOCK_USER_ALLOCATED ");
if (Flags &HEAP_FLAG_PAGE_ALLOCS)
dprintf("HEAP_FLAG_PAGE_ALLOCS ");
if (Flags &HEAP_PROTECTION_ENABLED)
dprintf("HEAP_PROTECTION_ENABLED ");
if (Flags &HEAP_BREAK_WHEN_OUT_OF_VM)
dprintf("HEAP_BREAK_WHEN_OUT_OF_VM ");
if (Flags &HEAP_NO_ALIGNMENT)
dprintf("HEAP_NO_ALIGNMENT ");
//if (Flags &)
// dprintf(" ");
dprintf("\n");
}
//
// Get all the heaps
//
DECLARE_API(hps)
{
INIT_API();
PEB * pPeb = NULL;
PEB ThisPeb;
GetPeb(hCurrentProcess,&pPeb);
if(!pPeb)
{
#ifdef _WIN64
pPeb = (PEB *)0x6fbfffde000;
#else
pPeb = (PEB *)0x7ffdf000;
#endif
}
if (pPeb)
{
ReadMemory((MEMORY_ADDRESS)pPeb,&ThisPeb,sizeof(PEB),0);
void ** pHeaps = (void**)_alloca(ThisPeb.NumberOfHeaps*sizeof(void*));
DWORD i,j;
ULONG_PTR TotCommitSize = 0;
ULONG_PTR TotVirtSize = 0;
if (ReadMemory((MEMORY_ADDRESS)ThisPeb.ProcessHeaps,pHeaps,ThisPeb.NumberOfHeaps*sizeof(void*),0))
{
for(i=0;i<ThisPeb.NumberOfHeaps;i++)
{
DEFINE_CPP_VAR( HEAP, varHEAP);
HEAP * pHeap = GET_CPP_VAR_PTR( HEAP , varHEAP );
ULONG_PTR TotHeapCommitSize = 0;
ULONG_PTR TotHeapVirtSize = 0;
if (ReadMemory((MEMORY_ADDRESS)pHeaps[i],pHeap ,sizeof(HEAP),0))
{
for (j=0;j<HEAP_MAXIMUM_SEGMENTS;j++)
{
if (pHeap->Segments[j])
{
DEFINE_CPP_VAR( HEAP_SEGMENT, varHEAP_SEGMENT);
HEAP_SEGMENT * pHeapSeg = GET_CPP_VAR_PTR( HEAP_SEGMENT , varHEAP_SEGMENT );
if (ReadMemory((MEMORY_ADDRESS)pHeap->Segments[j],pHeapSeg,sizeof(HEAP_SEGMENT),0))
{
dprintf(" - %p (C %p - R %p)\n",
pHeap->Segments[j],
(pHeapSeg->NumberOfPages - pHeapSeg->NumberOfUnCommittedPages) * PAGE_SIZE,
(pHeapSeg->NumberOfPages) * PAGE_SIZE);
TotHeapCommitSize += ((pHeapSeg->NumberOfPages - pHeapSeg->NumberOfUnCommittedPages) * PAGE_SIZE);
TotHeapVirtSize += ((pHeapSeg->NumberOfPages) * PAGE_SIZE);
// now print the beggining of a committed range
dprintf(" CR %p\n",pHeapSeg->BaseAddress);
HEAP_UNCOMMMTTED_RANGE * pUncomm_OOP = pHeapSeg->UnCommittedRanges;
for (DWORD i=0;i<pHeapSeg->NumberOfUnCommittedRanges && pUncomm_OOP;i++)
{
HEAP_UNCOMMMTTED_RANGE UncommRange;
if (ReadMemory((MEMORY_ADDRESS)pUncomm_OOP,&UncommRange,sizeof(HEAP_UNCOMMMTTED_RANGE),NULL))
{
if (UncommRange.Next)
{
pUncomm_OOP = UncommRange.Next;
}
ULONG_PTR RangeAddr = (ULONG_PTR)UncommRange.Address+UncommRange.Size;
if (RangeAddr != (ULONG_PTR)pHeapSeg->LastEntryInSegment)
dprintf(" CR %p\n",RangeAddr);
}
else
{
dprintf("RM %p\n",pHeapSeg->UnCommittedRanges);
break;
}
}
}
else
{
dprintf("RM %p\n",pHeap->Segments[j]);
}
}
}
}
else
{
dprintf("RM %p\n",pHeaps[i]);
pHeap = NULL;
}
dprintf(" HEAP %p - %p\n",pHeaps[i],TotHeapCommitSize);
if (pHeap)
{
DecodeFlags(pHeap->Flags|pHeap->ForceFlags);
dprintf(" FrontEndHeapType %d\n",pHeap->FrontEndHeapType);
}
TotCommitSize += TotHeapCommitSize;
TotVirtSize += TotHeapVirtSize;
}
dprintf(" -- Tot C %p Tot R %p\n",TotCommitSize, TotVirtSize);
}
else
{
dprintf("RM %p\n",ThisPeb.ProcessHeaps);
}
}
else
{
dprintf("unable to get PEB\n");
}
}
//
// reverse heap free list
//
//////////////////
DWORD
CallBackFreeList(VOID * pStructure_OOP,
VOID * pLocalCopy)
{
HEAP_FREE_ENTRY * pFreeEntry = (HEAP_FREE_ENTRY *)pLocalCopy;
dprintf(" %p (%p,%p): %04x - %04x [%02x] %02x %02x (%x)\n",
pStructure_OOP,
pFreeEntry->FreeList.Flink,
pFreeEntry->FreeList.Blink,
pFreeEntry->Size,
pFreeEntry->PreviousSize,
pFreeEntry->Flags,
pFreeEntry->Index,
pFreeEntry->Mask,
pFreeEntry->Size*sizeof(HEAP_ENTRY));
return 0;
}
DECLARE_API( rllc )
{
INIT_API();
MEMORY_ADDRESS Addr = GetExpression(args);
if (Addr)
{
EnumReverseLinkedListCB((LIST_ENTRY *)Addr,
sizeof(HEAP_FREE_ENTRY),
FIELD_OFFSET(HEAP_FREE_ENTRY,FreeList),
CallBackFreeList);
}
else
{
dprintf("cannot resolve %s\n",args);
}
}
//
//
// Print the Free Lists of the Heap
//
/////////////////////////////////////////////////
DWORD
CallBackFreeList2(VOID * pStructure_OOP,
VOID * pLocalCopy)
{
HEAP_FREE_ENTRY * pFreeEntry = (HEAP_FREE_ENTRY *)pLocalCopy;
dprintf(" %p (%p,%p): %04x - %04x [%02x] %02x %02x (%x)",
pStructure_OOP,
pFreeEntry->FreeList.Flink,
pFreeEntry->FreeList.Blink,
pFreeEntry->Size,
pFreeEntry->PreviousSize,
pFreeEntry->Flags,
pFreeEntry->Index,
pFreeEntry->Mask,
pFreeEntry->Size*sizeof(HEAP_ENTRY));
MEMORY_ADDRESS pEntry = (MEMORY_ADDRESS)pStructure_OOP;
HEAP_ENTRY HeapEntry;
ReadMemory((MEMORY_ADDRESS)pEntry,&HeapEntry,sizeof(HeapEntry),0);
while (HeapEntry.PreviousSize)
{
pEntry = (MEMORY_ADDRESS)((HEAP_ENTRY*)pEntry - HeapEntry.PreviousSize);
if (ReadMemory((MEMORY_ADDRESS)pEntry,&HeapEntry,sizeof(HeapEntry),0))
{
}
else
{
dprintf("RM %p\n",pEntry);
break;
}
if (CheckControlC())
break;
}
dprintf(" -B %p\n",pEntry);
return 0;
}
#define EmptyFull( expr ) (( expr )?'F':'-')
DECLARE_API( hpf )
{
INIT_API();
DEFINE_CPP_VAR( HEAP, varHEAP);
HEAP * pHeap = GET_CPP_VAR_PTR( HEAP , varHEAP );
MEMORY_ADDRESS pByte = GetExpression(args);
if (pByte)
{
if (ReadMemory(pByte,pHeap ,sizeof(HEAP),NULL))
{
dprintf(" -- 00 01 02 03 04 05 06 07\n");
DWORD nBytes = HEAP_MAXIMUM_FREELISTS / 8 ;
for (DWORD i=0;i<nBytes;i++)
{
BYTE Set = pHeap->u.FreeListsInUseBytes[i];
dprintf(" %02x : %c %c %c %c %c %c %c %c\n",8*i,
EmptyFull(Set & 0x01),EmptyFull(Set & 0x02),EmptyFull(Set & 0x04),EmptyFull(Set & 0x08),
EmptyFull(Set & 0x10),EmptyFull(Set & 0x20),EmptyFull(Set & 0x40),EmptyFull(Set & 0x80));
}
dprintf(" ------------\n");
HEAP * pHeap_OOP = (HEAP *)pByte;
for (DWORD i=0;i<HEAP_MAXIMUM_FREELISTS;i++)
{
dprintf(" FreeList[%x] @ %p\n",i,&pHeap_OOP->FreeLists[i]);
EnumReverseLinkedListCB((LIST_ENTRY *)&pHeap_OOP->FreeLists[i],
sizeof(HEAP_FREE_ENTRY),
FIELD_OFFSET(HEAP_FREE_ENTRY,FreeList),
CallBackFreeList2);
}
}
else
{
dprintf("RM %p\n",pByte);
}
}
else
{
dprintf("invalid address %s\n",args);
}
}
//
// dumps the DPH_HEAP_ROOT
//
///////////////////////////////////////
DECLARE_API( php )
{
INIT_API();
char * pHeapAddr = (char *)args;
while (isspace(*pHeapAddr)) pHeapAddr++;
char * pNext = pHeapAddr;
while (!isspace(*pNext)) pNext++; // skipt the Heap Addr
if (*pNext)
{
*pNext = 0;
pNext++;
}
MEMORY_ADDRESS Addr = GetExpression(pHeapAddr);
while (isspace(*pNext)) pNext++; // skip the other spaces
MEMORY_ADDRESS SearchAddr = 0;
if (*pNext == 's' ||*pNext == 'S')
{
pNext++; // skip the 's'
if (*pNext)
{
while(isspace(*pNext)) pNext++; // skip the spaces
SearchAddr = GetExpression(pNext);
}
}
//dprintf("heap %p addr %p\n",Addr,SearchAddr);
if (Addr)
{
g_BlockSize = 0x10000*sizeof(HEAP_ENTRY);
g_pBlockBlob = NULL;
if (SearchAddr)
g_pBlockBlob = (ULONG_PTR *)VirtualAlloc(NULL,g_BlockSize,MEM_COMMIT,PAGE_READWRITE);
if (SearchAddr && !g_pBlockBlob)
{
dprintf("VirtualAlloc err %d\n",GetLastError());
return;
}
HEAP Heap;
DPH_HEAP_ROOT HeapPage;
if (0 == SearchAddr)
dprintf(" HEAP @ %p\n",Addr);
if (ReadMemory((MEMORY_ADDRESS)Addr,&Heap,sizeof(HEAP),NULL))
{
if (Heap.ForceFlags & HEAP_FLAG_PAGE_ALLOCS)
{
Addr += PAGE_SIZE;
dprintf(" DPH_HEAP_ROOT @ %p\n",Addr);
if (ReadMemory((MEMORY_ADDRESS)Addr,&HeapPage,sizeof(DPH_HEAP_ROOT),NULL))
{
DPH_HEAP_BLOCK HeapBlock;
DPH_HEAP_BLOCK * pNextBlock;
if (0 == SearchAddr)
{
pNextBlock = HeapPage.pVirtualStorageListHead;
dprintf(" - pVirtualStorageListHead\n");
while(pNextBlock)
{
if (ReadMemory((MEMORY_ADDRESS)pNextBlock,&HeapBlock,sizeof(DPH_HEAP_BLOCK),NULL))
{
dprintf(" %p - (%p) B %p S %p \n",
pNextBlock,
HeapBlock.pNextAlloc,
HeapBlock.pVirtualBlock,
HeapBlock.nVirtualBlockSize);
pNextBlock = HeapBlock.pNextAlloc;
}
else
{
pNextBlock = NULL;
}
}
}
pNextBlock = HeapPage.pBusyAllocationListHead;
if (0 == SearchAddr)
dprintf(" - pBusyAllocationListHead\n");
while(pNextBlock)
{
if (ReadMemory((MEMORY_ADDRESS)pNextBlock,&HeapBlock,sizeof(DPH_HEAP_BLOCK),NULL))
{
if (0 == SearchAddr)
{
dprintf(" %p - (%p) %x %x %x U %p S %p\n",
pNextBlock,
HeapBlock.pNextAlloc,
ULONG_PTR(HeapBlock.pVirtualBlock)/PAGE_SIZE,
HeapBlock.nVirtualBlockSize/PAGE_SIZE,
HeapBlock.nVirtualAccessSize/PAGE_SIZE,
HeapBlock.pUserAllocation,
HeapBlock.StackTrace_);
GetVTable((MEMORY_ADDRESS)HeapBlock.pUserAllocation+sizeof(DPH_BLOCK_INFORMATION));
}
else // do the real search
{
MEMORY_ADDRESS Size = (MEMORY_ADDRESS)HeapBlock.pVirtualBlock+HeapBlock.nVirtualAccessSize-(MEMORY_ADDRESS)HeapBlock.pUserAllocation;
if (ReadMemory((MEMORY_ADDRESS)HeapBlock.pUserAllocation,g_pBlockBlob,(ULONG)Size,NULL))
{
Size /= sizeof(ULONG_PTR);
BOOL bFound = FALSE;
for (ULONG_PTR j =0;j<Size;j++)
{
if (SearchAddr == g_pBlockBlob[j])
{
bFound = TRUE;
dprintf(" OFF %p\n",j*sizeof(ULONG_PTR));
}
}
if (bFound)
{
dprintf(" B %p\n",HeapBlock.pUserAllocation);
}
}
else
{
dprintf("RM %p\n",HeapBlock.pUserAllocation);
}
}
pNextBlock = HeapBlock.pNextAlloc;
}
else
{
pNextBlock = NULL;
}
}
if (0 == SearchAddr)
{
pNextBlock = HeapPage.pFreeAllocationListHead;
dprintf(" - pFreeAllocationListHead\n");
while(pNextBlock)
{
if (ReadMemory((MEMORY_ADDRESS)pNextBlock,&HeapBlock,sizeof(DPH_HEAP_BLOCK),NULL))
{
dprintf(" %p - (%p) %x %x %x U %p S %p\n",
pNextBlock,
HeapBlock.pNextAlloc,
ULONG_PTR(HeapBlock.pVirtualBlock)/PAGE_SIZE,
HeapBlock.nVirtualBlockSize/PAGE_SIZE,
HeapBlock.nVirtualAccessSize/PAGE_SIZE,
HeapBlock.pUserAllocation,
HeapBlock.StackTrace_);
pNextBlock = HeapBlock.pNextAlloc;
}
else
{
pNextBlock = NULL;
}
}
}
if (0 == SearchAddr)
{
pNextBlock = HeapPage.pAvailableAllocationListHead;
dprintf(" - pAvailableAllocationListHead\n");
while(pNextBlock)
{
if (ReadMemory((MEMORY_ADDRESS)pNextBlock,&HeapBlock,sizeof(DPH_HEAP_BLOCK),NULL))
{
dprintf(" %p - (%p) B %p S %p \n",
pNextBlock,
HeapBlock.pNextAlloc,
HeapBlock.pVirtualBlock,
HeapBlock.nVirtualBlockSize);
pNextBlock = HeapBlock.pNextAlloc;
}
else
{
pNextBlock = NULL;
}
}
}
if (0 == SearchAddr)
{
pNextBlock = HeapPage.pNodePoolListHead;
dprintf(" - pNodePoolListHead\n");
while(pNextBlock)
{
if (ReadMemory((MEMORY_ADDRESS)pNextBlock,&HeapBlock,sizeof(DPH_HEAP_BLOCK),NULL))
{
dprintf(" %p - (%p) B %p S %p \n",
pNextBlock,
HeapBlock.pNextAlloc,
HeapBlock.pVirtualBlock,
HeapBlock.nVirtualBlockSize);
pNextBlock = HeapBlock.pNextAlloc;
}
else
{
pNextBlock = NULL;
}
}
}
dprintf(" NormalHeap @ %p\n",HeapPage.NormalHeap);
if (ReadMemory((ULONG_PTR)HeapPage.NormalHeap,&Heap ,sizeof(HEAP),NULL))
{
for (DWORD h=0;h<HEAP_MAXIMUM_SEGMENTS;h++)
{
if (Heap.Segments[h])
{
if (SearchAddr)
PrintHEAP_SEGMENT(Heap.Segments[h],CallBackSearch,(ULONG_PTR)SearchAddr);
else
PrintHEAP_SEGMENT(Heap.Segments[h],NULL,NULL);
}
}
}
else
{
dprintf("RM %p\n",HeapPage.NormalHeap);
}
}
else
{
dprintf("RM %p\n",Addr);
}
}
else
{
DecodeFlags(Heap.ForceFlags|Heap.Flags);
}
}
else
{
dprintf("RM %p\n",Addr);
}
if (g_pBlockBlob)
{
VirtualFree(g_pBlockBlob,g_BlockSize,MEM_RELEASE);
g_pBlockBlob = NULL;
g_BlockSize = 0;
}
}
else
{
dprintf("unable to resolve %s\n",args);
}
}
//
//
// virtual_query helper
//
///////////////////////////////////////////////////////////////
char * GetState(DWORD State)
{
switch(State)
{
case MEM_COMMIT:
return "MEM_COMMIT";
case MEM_RESERVE:
return "MEM_RESERVE";
case MEM_FREE:
return "MEM_FREE";
};
return "";
}
char * GetType(DWORD Type)
{
switch(Type)
{
case MEM_IMAGE:
return "MEM_IMAGE";
case MEM_MAPPED:
return "MEM_MAPPED";
case MEM_PRIVATE:
return "MEM_PRIVATE";
}
return "";
}
char * GetProtect(DWORD Protect)
{
switch(Protect)
{
case PAGE_NOACCESS:
return "PAGE_NOACCESS";
case PAGE_READONLY:
return "PAGE_READONLY";
case PAGE_READWRITE:
return "PAGE_READWRITE";
case PAGE_WRITECOPY:
return "PAGE_WRITECOPY";
case PAGE_EXECUTE:
return "PAGE_EXECUTE";
case PAGE_EXECUTE_READ:
return "PAGE_EXECUTE_READ";
case PAGE_EXECUTE_READWRITE:
return "PAGE_EXECUTE_READWRITE";
case PAGE_EXECUTE_WRITECOPY:
return "PAGE_EXECUTE_WRITECOPY";
case PAGE_GUARD:
return "PAGE_GUARD";
case PAGE_NOCACHE:
return "PAGE_NOCACHE";
case PAGE_WRITECOMBINE:
return "PAGE_WRITECOMBINE";
}
return "<unk>";
}
//
//
// VirtualQueryEx
//
//
// vq -a address
// vq -f filter <all address space>
//
///////////////////////////////////////////
DECLARE_API(vq)
{
INIT_API();
MEMORY_ADDRESS pVA = 0;
MEMORY_ADDRESS Filter = (MEMORY_ADDRESS)-1;
DWORD FilterSize = 0;
BOOL bAll = TRUE;
char * pCurrent = (char *)args;
if(0 < strlen(pCurrent))
{
while (isspace(*pCurrent)) pCurrent++;
if ('-' == *pCurrent ||
'/' == *pCurrent)
{
pCurrent++;
while (isspace(*pCurrent)) pCurrent++;
if ('a' == *pCurrent)
{
pCurrent++;
while (*pCurrent && isspace(*pCurrent)) pCurrent++;
pVA = GetExpression(pCurrent);
bAll = FALSE;
}
else if ('f' == *pCurrent)
{
pCurrent++;
while (*pCurrent && isspace(*pCurrent)) pCurrent++;
Filter = GetExpression(pCurrent);
dprintf("FILTER %08x\n",Filter);
}
else if ('s' == *pCurrent)
{
pCurrent++;
while (*pCurrent && isspace(*pCurrent)) pCurrent++;
FilterSize = (DWORD)GetExpression(pCurrent);
dprintf("Size %08x\n",FilterSize);
}
else
{
dprintf("usage: -a ADDR\n"
"usage: -F Filter <all address space>\n");
}
}
}
else
{
dprintf("no param\n");
}
ULONG_PTR Tot = 0;
MEMORY_BASIC_INFORMATION MemInfo;
SIZE_T dwRet = 0;
do
{
dwRet = VirtualQueryEx(hCurrentProcess,(LPCVOID)pVA,&MemInfo,sizeof(MemInfo));
if (dwRet &&
(MemInfo.AllocationProtect & Filter) &&
(MemInfo.RegionSize > FilterSize))
{
dprintf(" Base %p Size %p Alloc %p Prot %s %s %s %s\n",
MemInfo.BaseAddress,
MemInfo.RegionSize,
MemInfo.AllocationBase,
GetProtect(MemInfo.AllocationProtect),
GetState(MemInfo.State),
GetProtect(MemInfo.Protect),
GetType(MemInfo.Type));
Tot += MemInfo.RegionSize;
}
pVA = (ULONG_PTR)MemInfo.BaseAddress + (ULONG_PTR)MemInfo.RegionSize;
if (CheckControlC())
break;
} while (dwRet && bAll);
dprintf(" Total %p\n",Tot);
}
//
//
//
//
#ifdef KDEXT_64BIT
struct _HEAP_ENTRY_64
{
WORD Size ;
WORD PreviousSize ;
BYTE SegmentIndex ;
BYTE Flags ;
BYTE UnusedBytes ;
BYTE SmallTagIndex;
ULONG64 Pointer;
};
#endif /*KDEXT_64BIT*/
DECLARE_API(hef64)
{
INIT_API();
#ifdef KDEXT_64BIT
_HEAP_ENTRY_64 HeapEntry;
ULONG64 MemAddr = GetExpression(args);
ULONG64 pVTable = 0;
if (MemAddr)
{
if (ReadMemory(MemAddr,&HeapEntry,sizeof(HeapEntry),NULL))
{
dprintf(" %p: %04x - %04x [%02x] (%x)\n",MemAddr,HeapEntry.Size,HeapEntry.PreviousSize,HeapEntry.Flags,HeapEntry.Size*sizeof(_HEAP_ENTRY_64)-HeapEntry.UnusedBytes);
GetVTable(MemAddr + sizeof(_HEAP_ENTRY_64));
MemAddr = MemAddr+HeapEntry.Size*sizeof(_HEAP_ENTRY_64);
// 0x10 is LAST_ENTRY
while(!(HeapEntry.Flags & 0x10))
{
if (ReadMemory(MemAddr,&HeapEntry,sizeof(HeapEntry),NULL))
{
dprintf(" %p: %04x - %04x [%02x] (%x)\n",MemAddr,HeapEntry.Size,HeapEntry.PreviousSize,HeapEntry.Flags,HeapEntry.Size*sizeof(_HEAP_ENTRY_64)-HeapEntry.UnusedBytes);
GetVTable(MemAddr + sizeof(_HEAP_ENTRY_64));
MemAddr = MemAddr+HeapEntry.Size*sizeof(_HEAP_ENTRY_64);
}
else
{
dprintf("RM %p\n",MemAddr);
break;
}
if (CheckControlC())
break;
}
dprintf("last %p\n",MemAddr);
}
else
{
dprintf("RM %p\n",MemAddr);
}
}
else
{
dprintf("unable to resolve %s\n",args);
}
#endif /*KDEXT_64BIT*/
}
DECLARE_API(heb64)
{
INIT_API();
#ifdef KDEXT_64BIT
_HEAP_ENTRY_64 HeapEntry;
ULONG64 MemAddr = GetExpression(args);
ULONG64 pVTable = 0;
if (MemAddr)
{
if (ReadMemory(MemAddr,&HeapEntry,sizeof(HeapEntry),NULL))
{
dprintf(" %p: %04x - %04x [%02x] (%x)\n",MemAddr,HeapEntry.Size,HeapEntry.PreviousSize,HeapEntry.Flags,HeapEntry.Size*sizeof(_HEAP_ENTRY_64)-HeapEntry.UnusedBytes);
GetVTable(MemAddr + sizeof(_HEAP_ENTRY_64));
MemAddr = MemAddr - HeapEntry.PreviousSize*sizeof(_HEAP_ENTRY_64);
// 0x10 is LAST_ENTRY
while(HeapEntry.PreviousSize)
{
if (ReadMemory(MemAddr,&HeapEntry,sizeof(HeapEntry),NULL))
{
dprintf(" %p: %04x - %04x [%02x] (%x)\n",MemAddr,HeapEntry.Size,HeapEntry.PreviousSize,HeapEntry.Flags,HeapEntry.Size*sizeof(_HEAP_ENTRY_64)-HeapEntry.UnusedBytes);
GetVTable(MemAddr + sizeof(_HEAP_ENTRY_64));
MemAddr = MemAddr - HeapEntry.PreviousSize*sizeof(_HEAP_ENTRY_64);
}
else
{
dprintf("RM %p\n",MemAddr);
break;
}
if (CheckControlC())
break;
}
dprintf("last %p\n",MemAddr);
}
else
{
dprintf("RM %p\n",MemAddr);
}
}
else
{
dprintf("unable to resolve %s\n",args);
}
#endif /*KDEXT_64BIT*/
}
DECLARE_API(hps64)
{
INIT_API();
#ifdef KDEXT_64BIT
ULONG64 Peb = GetExpression(args);
if (!Peb)
{
Peb = 0x6fbfffde000;
}
ULONG NumberOfHeapsOffset;
ULONG HeapsOffset;
ULONG SegmentsOffset;
if ( Peb &&
(0 == GetFieldOffset("ntdll!_PEB","NumberOfHeaps",&NumberOfHeapsOffset)) &&
(0 == GetFieldOffset("ntdll!_PEB","ProcessHeaps",&HeapsOffset)) &&
(0 == GetFieldOffset("ntdll!_HEAP","Segments",&SegmentsOffset)))
{
//dprintf(" %x %x\n",NumberOfHeapsOffset,HeapsOffset);
ULONG nHeaps;
ULONG64 MemAddr;
if (ReadMemory(Peb+NumberOfHeapsOffset,&nHeaps,sizeof(ULONG),NULL))
{
//dprintf("nHeaps %08x\n",nHeaps);
ReadMemory(Peb+HeapsOffset,&MemAddr,sizeof(ULONG64),NULL);
ULONG64 * pHeaps = (ULONG64 *)_alloca(sizeof(ULONG64)*(DWORD)nHeaps);
ReadMemory(MemAddr,pHeaps,sizeof(ULONG64)*(DWORD)nHeaps,NULL);
// +0x0a0 Segments : [64] 0x000006fb`f9fa0c50
ULONG64 Segments[64];
for(ULONG i=0;i<nHeaps;i++)
{
if (ReadMemory(pHeaps[i]+SegmentsOffset,Segments,sizeof(Segments),NULL))
{
for (DWORD j=0;j<64;j++)
{
if (Segments[j])
{
dprintf(" S %p\n",Segments[j]);
}
if (CheckControlC())
break;
}
}
dprintf(" %p\n",pHeaps[i]);
if (CheckControlC())
break;
}
}
else
{
dprintf("RM %p\n",Peb+NumberOfHeapsOffset);
}
}
else
{
dprintf("check symbols for ntdll.dll or validate %p as PEB\n",Peb);
}
#endif /*KDEXT_64BIT*/ }