Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1009 lines
26 KiB

// list standard header
#pragma once
#ifndef _LIST_
#define _LIST_
#include <functional>
#include <memory>
#include <stdexcept>
#pragma pack(push,8)
#pragma warning(push,3)
_STD_BEGIN
// TEMPLATE CLASS _List_nod
template<class _Ty,
class _Alloc>
class _List_nod
{ // base class for _List_ptr to hold allocator _Alnod
protected:
struct _Node;
friend struct _Node;
typedef typename _Alloc::_TEMPLATE_MEMBER
rebind<_Node>::other::pointer _Genptr;
struct _Node
{ // list node
_Node(_Genptr _Nextarg, _Genptr _Prevarg, const _Ty& _Myvalarg)
: _Next(_Nextarg), _Prev(_Prevarg), _Myval(_Myvalarg)
{ // construct a node with value
}
_Genptr _Next; // successor node, or first element if head
_Genptr _Prev; // predecessor node, or last element if head
_Ty _Myval; // the stored value, unused if head
};
_List_nod(_Alloc _Al)
: _Alnod(_Al)
{ // construct allocator from _Al
}
typename _Alloc::_TEMPLATE_MEMBER rebind<_Node>::other
_Alnod; // allocator object for nodes
};
// TEMPLATE CLASS _List_ptr
template<class _Ty,
class _Alloc>
class _List_ptr
: public _List_nod<_Ty, _Alloc>
{ // base class for _List_val to hold allocator _Alptr
protected:
typedef typename _List_nod<_Ty, _Alloc>::_Node _Node;
typedef typename _Alloc::_TEMPLATE_MEMBER
rebind<_Node>::other::pointer _Nodeptr;
_List_ptr(_Alloc _Al)
: _List_nod<_Ty, _Alloc>(_Al), _Alptr(_Al)
{ // construct base, and allocator from _Al
}
typename _Alloc::_TEMPLATE_MEMBER rebind<_Nodeptr>::other
_Alptr; // allocator object for pointers to nodes
};
// TEMPLATE CLASS _List_val
template<class _Ty,
class _Alloc>
class _List_val
: public _List_ptr<_Ty, _Alloc>
{ // base class for list to hold allocator _Alval
protected:
typedef typename _Alloc::_TEMPLATE_MEMBER rebind<_Ty>::other _Alty;
_List_val(_Alloc _Al = _Alloc())
: _List_ptr<_Ty, _Alloc>(_Al), _Alval(_Al)
{ // construct base, and allocator from _Al
}
_Alty _Alval; // allocator object for values stored in nodes
};
// TEMPLATE CLASS list
template<class _Ty,
class _Ax = allocator<_Ty> >
class list
: public _List_val<_Ty, _Ax>
{ // bidirectional linked list
public:
typedef list<_Ty, _Ax> _Myt;
typedef _List_val<_Ty, _Ax> _Mybase;
typedef typename _Mybase::_Alty _Alloc;
protected:
typedef typename _List_nod<_Ty, _Alloc>::_Genptr _Genptr;
typedef typename _List_nod<_Ty, _Alloc>::_Node _Node;
typedef _POINTER_X(_Node, _Alloc) _Nodeptr;
typedef _REFERENCE_X(_Nodeptr, _Alloc) _Nodepref;
typedef typename _Alloc::reference _Vref;
static _Nodepref _Next(_Nodeptr _Pnode)
{ // return reference to successor pointer in node
return ((_Nodepref)(*_Pnode)._Next);
}
static _Nodepref _Prev(_Nodeptr _Pnode)
{ // return reference to predecessor pointer in node
return ((_Nodepref)(*_Pnode)._Prev);
}
static _Vref _Myval(_Nodeptr _Pnode)
{ // return reference to value in node
return ((_Vref)(*_Pnode)._Myval);
}
public:
typedef _Alloc allocator_type;
typedef typename _Alloc::size_type size_type;
typedef typename _Alloc::difference_type _Dift;
typedef _Dift difference_type;
typedef typename _Alloc::pointer _Tptr;
typedef typename _Alloc::const_pointer _Ctptr;
typedef _Tptr pointer;
typedef _Ctptr const_pointer;
typedef typename _Alloc::reference _Reft;
typedef _Reft reference;
typedef typename _Alloc::const_reference const_reference;
typedef typename _Alloc::value_type value_type;
// CLASS const_iterator
class const_iterator;
friend class const_iterator;
class const_iterator
: public _Bidit<_Ty, _Dift, _Ctptr, const_reference>
{ // iterator for nonmutable list
public:
typedef bidirectional_iterator_tag iterator_category;
typedef _Ty value_type;
typedef _Dift difference_type;
typedef _Ctptr pointer;
typedef const_reference reference;
const_iterator()
: _Ptr(0)
{ // construct with null node pointer
}
const_iterator(_Nodeptr _Pnode)
: _Ptr(_Pnode)
{ // construct with node pointer _Pnode
}
const_reference operator*() const
{ // return designated value
return (_Myval(_Ptr));
}
_Ctptr operator->() const
{ // return pointer to class object
return (&**this);
}
const_iterator& operator++()
{ // preincrement
_Ptr = _Next(_Ptr);
return (*this);
}
const_iterator operator++(int)
{ // postincrement
const_iterator _Tmp = *this;
++*this;
return (_Tmp);
}
const_iterator& operator--()
{ // predecrement
_Ptr = _Prev(_Ptr);
return (*this);
}
const_iterator operator--(int)
{ // postdecrement
const_iterator _Tmp = *this;
--*this;
return (_Tmp);
}
bool operator==(const const_iterator& _Right) const
{ // test for iterator equality
return (_Ptr == _Right._Ptr);
}
bool operator!=(const const_iterator& _Right) const
{ // test for iterator inequality
return (!(*this == _Right));
}
_Nodeptr _Mynode() const
{ // return node pointer
return (_Ptr);
}
protected:
_Nodeptr _Ptr; // pointer to node
};
// CLASS iterator
class iterator;
friend class iterator;
class iterator
: public const_iterator
{ // iterator for mutable list
public:
typedef bidirectional_iterator_tag iterator_category;
typedef _Ty value_type;
typedef _Dift difference_type;
typedef _Tptr pointer;
typedef _Reft reference;
iterator()
: const_iterator(0)
{ // construct with null node
}
iterator(_Nodeptr _Pnode)
: const_iterator(_Pnode)
{ // construct with node pointer _Pnode
}
reference operator*() const
{ // return designated value
return (_Myval(_Ptr));
}
_Tptr operator->() const
{ // return pointer to class object
return (&**this);
}
iterator& operator++()
{ // preincrement
_Ptr = _Next(_Ptr);
return (*this);
}
iterator operator++(int)
{ // postincrement
iterator _Tmp = *this;
++*this;
return (_Tmp);
}
iterator& operator--()
{ // predecrement
_Ptr = _Prev(_Ptr);
return (*this);
}
iterator operator--(int)
{ // postdecrement
iterator _Tmp = *this;
--*this;
return (_Tmp);
}
};
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
list()
: _Mybase(), _Myhead(_Buynode()), _Mysize(0)
{ // construct empty list
}
explicit list(const _Alloc& _Al)
: _Mybase(_Al), _Myhead(_Buynode()), _Mysize(0)
{ // construct empty list, allocator
}
explicit list(size_type _Count)
: _Mybase(), _Myhead(0), _Mysize(0)
{ // construct list from _Count * _Ty()
_Ty _Val = _Ty(); // may throw
_Myhead = _Buynode();
_Construct_n(_Count, _Val);
}
list(size_type _Count, const _Ty& _Val)
: _Mybase(), _Myhead(_Buynode()), _Mysize(0)
{ // construct list from _Count * _Val
_Construct_n(_Count, _Val);
}
list(size_type _Count, const _Ty& _Val, const _Alloc& _Al)
: _Mybase(_Al), _Myhead(_Buynode()), _Mysize(0)
{ // construct list, allocator from _Count * _Val
_Construct_n(_Count, _Val);
}
list(const _Myt& _Right)
: _Mybase(_Right._Alval),
_Myhead(_Buynode()), _Mysize(0)
{ // construct list by copying _Right
_TRY_BEGIN
insert(begin(), _Right.begin(), _Right.end());
_CATCH_ALL
_Tidy();
_RERAISE;
_CATCH_END
}
template<class _Iter>
list(_Iter _First, _Iter _Last)
: _Mybase(), _Myhead(_Buynode()), _Mysize(0)
{ // construct list from [_First, _Last)
_Construct(_First, _Last, _Iter_cat(_First));
}
template<class _Iter>
list(_Iter _First, _Iter _Last, const _Alloc& _Al)
: _Mybase(_Al), _Myhead(_Buynode()), _Mysize(0)
{ // construct list, allocator from [_First, _Last)
_Construct(_First, _Last, _Iter_cat(_First));
}
template<class _Iter>
void _Construct(_Iter _Count, _Iter _Val, _Int_iterator_tag)
{ // construct list from _Count * _Val
_Construct_n((size_type)_Count, (_Ty)_Val);
}
template<class _Iter>
void _Construct(_Iter _First, _Iter _Last, input_iterator_tag)
{ // construct list from [_First, _Last), input iterators
_TRY_BEGIN
insert(begin(), _First, _Last);
_CATCH_ALL
_Tidy();
_RERAISE;
_CATCH_END
}
void _Construct_n(size_type _Count, const _Ty& _Val)
{ // construct from _Count * _Val
_TRY_BEGIN
_Insert_n(begin(), _Count, _Val);
_CATCH_ALL
_Tidy();
_RERAISE;
_CATCH_END
}
~list()
{ // destroy the object
_Tidy();
}
_Myt& operator=(const _Myt& _Right)
{ // assign _Right
if (this != &_Right)
assign(_Right.begin(), _Right.end());
return (*this);
}
iterator begin()
{ // return iterator for beginning of mutable sequence
return (iterator(_Myhead == 0 ? 0 : _Next(_Myhead)));
}
const_iterator begin() const
{ // return iterator for beginning of nonmutable sequence
return (const_iterator(_Myhead == 0 ? 0 : _Next(_Myhead)));
}
iterator end()
{ // return iterator for end of mutable sequence
return (iterator(_Myhead));
}
const_iterator end() const
{ // return iterator for end of nonmutable sequence
return (const_iterator(_Myhead));
}
reverse_iterator rbegin()
{ // return iterator for beginning of reversed mutable sequence
return (reverse_iterator(end()));
}
const_reverse_iterator rbegin() const
{ // return iterator for beginning of reversed nonmutable sequence
return (const_reverse_iterator(end()));
}
reverse_iterator rend()
{ // return iterator for end of reversed mutable sequence
return (reverse_iterator(begin()));
}
const_reverse_iterator rend() const
{ // return iterator for end of reversed nonmutable sequence
return (const_reverse_iterator(begin()));
}
void resize(size_type _Newsize)
{ // determine new length, padding with _Ty() elements as needed
resize(_Newsize, _Ty());
}
void resize(size_type _Newsize, _Ty _Val)
{ // determine new length, padding with _Val elements as needed
if (size() < _Newsize)
_Insert_n(end(), _Newsize - size(), _Val);
else
while (_Newsize < size())
pop_back();
}
size_type size() const
{ // return length of sequence
return (_Mysize);
}
size_type max_size() const
{ // return maximum possible length of sequence
return (this->_Alval.max_size());
}
bool empty() const
{ // test if sequence is empty
return (_Mysize == 0);
}
allocator_type get_allocator() const
{ // return allocator object for values
return (this->_Alval);
}
reference front()
{ // return first element of mutable sequence
return (*begin());
}
const_reference front() const
{ // return first element of nonmutable sequence
return (*begin());
}
reference back()
{ // return last element of mutable sequence
return (*(--end()));
}
const_reference back() const
{ // return last element of nonmutable sequence
return (*(--end()));
}
void push_front(const _Ty& _Val)
{ // insert element at beginning
_Insert(begin(), _Val);
}
void pop_front()
{ // erase element at beginning
erase(begin());
}
void push_back(const _Ty& _Val)
{ // insert element at end
_Insert(end(), _Val);
}
void pop_back()
{ // erase element at end
erase(--end());
}
template<class _Iter>
void assign(_Iter _First, _Iter _Last)
{ // assign [_First, _Last)
_Assign(_First, _Last, _Iter_cat(_First));
}
template<class _Iter>
void _Assign(_Iter _Count, _Iter _Val, _Int_iterator_tag)
{ // assign _Count * _Val
_Assign_n((size_type)_Count, (_Ty)_Val);
}
template<class _Iter>
void _Assign(_Iter _First, _Iter _Last, input_iterator_tag)
{ // assign [_First, _Last), input iterators
erase(begin(), end());
insert(begin(), _First, _Last);
}
void assign(size_type _Count, const _Ty& _Val)
{ // assign _Count * _Val
_Assign_n(_Count, _Val);
}
iterator insert(iterator _Where, const _Ty& _Val)
{ // insert _Val at _Where
_Insert(_Where, _Val);
return (--_Where);
}
void _Insert(iterator _Where, const _Ty& _Val)
{ // insert _Val at _Where
_Nodeptr _Pnode = _Where._Mynode();
_Nodeptr _Newnode = _Buynode(_Pnode, _Prev(_Pnode), _Val);
_Incsize(1);
_Prev(_Pnode) = _Newnode;
_Next(_Prev(_Newnode)) = _Newnode;
}
void insert(iterator _Where, size_type _Count, const _Ty& _Val)
{ // insert _Count * _Val at _Where
_Insert_n(_Where, _Count, _Val);
}
template<class _Iter>
void insert(iterator _Where, _Iter _First, _Iter _Last)
{ // insert [_First, _Last) at _Where
_Insert(_Where, _First, _Last, _Iter_cat(_First));
}
template<class _Iter>
void _Insert(iterator _Where, _Iter _Count, _Iter _Val,
_Int_iterator_tag)
{ // insert _Count * _Val at _Where
_Insert_n(_Where, (size_type)_Count, (_Ty)_Val);
}
template<class _Iter>
void _Insert(iterator _Where, _Iter _First, _Iter _Last,
input_iterator_tag)
{ // insert [_First, _Last) at _Where, input iterators
size_type _Num = 0;
_TRY_BEGIN
for (; _First != _Last; ++_First, ++_Num)
_Insert(_Where, *_First);
_CATCH_ALL
for (; 0 < _Num; --_Num)
{ // undo inserts
iterator _Before = _Where;
erase(--_Before);
}
_RERAISE;
_CATCH_END
}
template<class _Iter>
void _Insert(iterator _Where, _Iter _First, _Iter _Last,
forward_iterator_tag)
{ // insert [_First, _Last) at _Where, forward iterators
_Iter _Next = _First;
_TRY_BEGIN
for (; _First != _Last; ++_First)
_Insert(_Where, *_First);
_CATCH_ALL
for (; _Next != _First; ++_Next)
{ // undo inserts
iterator _Before = _Where;
erase(--_Before);
}
_RERAISE;
_CATCH_END
}
iterator erase(iterator _Where)
{ // erase element at _Where
_Nodeptr _Pnode = (_Where++)._Mynode();
if (_Pnode != _Myhead)
{ // not list head, safe to erase
_Next(_Prev(_Pnode)) = _Next(_Pnode);
_Prev(_Next(_Pnode)) = _Prev(_Pnode);
this->_Alnod.destroy(_Pnode);
this->_Alnod.deallocate(_Pnode, 1);
--_Mysize;
}
return (_Where);
}
iterator erase(iterator _First, iterator _Last)
{ // erase [_First, _Last)
while (_First != _Last)
erase(_First++);
return (_First);
}
void clear()
{ // erase all
erase(begin(), end());
}
void swap(_Myt& _Right)
{ // exchange contents with _Right
if (this->_Alval == _Right._Alval)
{ // same allocator, swap control information
std::swap(_Myhead, _Right._Myhead);
std::swap(_Mysize, _Right._Mysize);
}
else
{ // different allocator, do multiple assigns
iterator _Where = begin();
splice(_Where, _Right);
_Right.splice(_Right.begin(), *this, _Where, end());
}
}
void splice(iterator _Where, _Myt& _Right)
{ // splice all of _Right at _Where
if (this != &_Right && !_Right.empty())
{ // worth splicing, do it
_Splice(_Where, _Right, _Right.begin(), _Right.end(),
_Right._Mysize);
}
}
void splice(iterator _Where, _Myt& _Right, iterator _First)
{ // splice _Right [_First, _First + 1) at _Where
iterator _Last = _First;
if (_First != _Right.end() && _Where != _First && _Where != ++_Last)
{ // worth splicing, do it
_Splice(_Where, _Right, _First, _Last, 1);
}
}
void splice(iterator _Where, _Myt& _Right,
iterator _First, iterator _Last)
{ // splice _Right [_First, _Last) at _Where
if (_First != _Last && _Where != _Last)
{ // worth splicing, do it
size_type _Count = 0;
if (this == &_Right)
; // just rearrange this list
else if (_First == _Right.begin() && _Last == _Right.end())
_Count = _Right.size(); // splice in whole list
else
_Distance(_First, _Last, _Count); // splice in partial list
_Splice(_Where, _Right, _First, _Last, _Count);
}
}
void remove(const _Ty& _Val)
{ // erase each element matching _Val
iterator _Last = end();
for (iterator _First = begin(); _First != _Last; )
if (*_First == _Val)
erase(_First++);
else
++_First;
}
template<class _Pr1>
void remove_if(_Pr1 _Pred)
{ // erase each element satisfying _Pr1
iterator _Last = end();
for (iterator _First = begin(); _First != _Last; )
if (_Pred(*_First))
erase(_First++);
else
++_First;
}
void unique()
{ // erase each element matching previous
iterator _First = begin(), _Last = end();
if (_First != _Last)
for (iterator _Next = _First; ++_Next != _Last; _Next = _First)
if (*_First == *_Next)
erase(_Next);
else
_First = _Next;
}
template<class _Pr2>
void unique(_Pr2 _Pred)
{ // erase each element satisfying _Pred with previous
iterator _First = begin(), _Last = end();
if (_First != _Last)
for (iterator _Next = _First; ++_Next != _Last; _Next = _First)
if (_Pred(*_First, *_Next))
erase(_Next);
else
_First = _Next;
}
void merge(_Myt& _Right)
{ // merge in elements from _Right, both ordered by operator<
if (&_Right != this)
{ // safe to merge, do it
iterator _First1 = begin(), _Last1 = end();
iterator _First2 = _Right.begin(), _Last2 = _Right.end();
while (_First1 != _Last1 && _First2 != _Last2)
if (*_First2 < *_First1)
{ // splice in an element from _Right
iterator _Mid2 = _First2;
_Splice(_First1, _Right, _First2, ++_Mid2, 1);
_First2 = _Mid2;
}
else
++_First1;
if (_First2 != _Last2)
_Splice(_Last1, _Right, _First2, _Last2,
_Right._Mysize); // splice remainder of _Right
}
}
template<class _Pr3>
void merge(_Myt& _Right, _Pr3 _Pred)
{ // merge in elements from _Right, both ordered by _Pred
if (&_Right != this)
{ // safe to merge, do it
iterator _First1 = begin(), _Last1 = end();
iterator _First2 = _Right.begin(), _Last2 = _Right.end();
while (_First1 != _Last1 && _First2 != _Last2)
if (_Pred(*_First2, *_First1))
{ // splice in an element from _Right
iterator _Mid2 = _First2;
_Splice(_First1, _Right, _First2, ++_Mid2, 1);
_First2 = _Mid2;
}
else
++_First1;
if (_First2 != _Last2)
_Splice(_Last1, _Right, _First2, _Last2,
_Right._Mysize); // splice remainder of _Right
}
}
void sort()
{ // order sequence, using operator<
if (2 <= size())
{ // worth sorting, do it
const size_t _MAXBINS = 25;
_Myt _Templist(this->_Alval), _Binlist[_MAXBINS + 1];
size_t _Maxbin = 0;
while (!empty())
{ // sort another element, using bins
_Templist.splice(_Templist.begin(), *this, begin());
size_t _Bin;
for (_Bin = 0; _Bin < _Maxbin && !_Binlist[_Bin].empty();
++_Bin)
{ // merge into ever larger bins
_Binlist[_Bin].merge(_Templist);
_Binlist[_Bin].swap(_Templist);
}
if (_Bin == _MAXBINS)
_Binlist[_Bin - 1].merge(_Templist);
else
{ // spill to new bin, while they last
_Binlist[_Bin].swap(_Templist);
if (_Bin == _Maxbin)
++_Maxbin;
}
}
for (size_t _Bin = 1; _Bin < _Maxbin; ++_Bin)
_Binlist[_Bin].merge(_Binlist[_Bin - 1]); // merge up
swap(_Binlist[_Maxbin - 1]); // replace from last bin
}
}
template<class _Pr3>
void sort(_Pr3 _Pred)
{ // order sequence, using _Pred
if (2 <= size())
{ // worth sorting, do it
const size_t _MAXBINS = 25;
_Myt _Templist(this->_Alval), _Binlist[_MAXBINS + 1];
size_t _Maxbin = 0;
while (!empty())
{ // sort another element, using bins
_Templist.splice(_Templist.begin(), *this, begin());
size_t _Bin;
for (_Bin = 0; _Bin < _Maxbin && !_Binlist[_Bin].empty();
++_Bin)
{ // merge into ever larger bins
_Binlist[_Bin].merge(_Templist, _Pred);
_Binlist[_Bin].swap(_Templist);
}
if (_Bin == _MAXBINS)
_Binlist[_Bin - 1].merge(_Templist, _Pred);
else
{ // spill to new bin, while they last
_Binlist[_Bin].swap(_Templist);
if (_Bin == _Maxbin)
++_Maxbin;
}
}
for (size_t _Bin = 1; _Bin < _Maxbin; ++_Bin)
_Binlist[_Bin].merge(_Binlist[_Bin - 1],
_Pred); // merge up
swap(_Binlist[_Maxbin - 1]); // replace with last bin
}
}
void reverse()
{ // reverse sequence
if (2 <= size())
{ // worth doing
iterator _Last = end();
for (iterator _Next = ++begin(); _Next != _Last; )
{ // move next element to beginning
iterator _Before = _Next;
_Splice(begin(), *this, _Before, ++_Next, 1);
}
}
}
protected:
void _Assign_n(size_type _Count, const _Ty& _Val)
{ // assign _Count * _Val
_Ty _Tmp = _Val; // in case _Val is in sequence
erase(begin(), end());
_Insert_n(begin(), _Count, _Tmp);
}
_Nodeptr _Buynode()
{ // allocate a head node and set links
_Nodeptr _Pnode = this->_Alnod.allocate(1, (void *)0);
int _Linkcnt = 0;
_TRY_BEGIN
this->_Alptr.construct(&_Next(_Pnode), _Pnode);
++_Linkcnt;
this->_Alptr.construct(&_Prev(_Pnode), _Pnode);
_CATCH_ALL
if (0 < _Linkcnt)
this->_Alptr.destroy(&_Next(_Pnode));
this->_Alnod.deallocate(_Pnode, 1);
_RERAISE;
_CATCH_END
return (_Pnode);
}
_Nodeptr _Buynode(_Nodeptr _Next, _Nodeptr _Prev, const _Ty& _Val)
{ // allocate a node and set links
_Nodeptr _Pnode = this->_Alnod.allocate(1, (void *)0);
_TRY_BEGIN
new ((void *)_Pnode) _Node(_Next, _Prev, _Val);
_CATCH_ALL
this->_Alnod.deallocate(_Pnode, 1);
_RERAISE;
_CATCH_END
return (_Pnode);
}
void _Tidy()
{ // free all storage
erase(begin(), end());
this->_Alptr.destroy(&_Next(_Myhead));
this->_Alptr.destroy(&_Prev(_Myhead));
this->_Alnod.deallocate(_Myhead, 1);
_Myhead = 0, _Mysize = 0;
}
void _Insert_n(iterator _Where, size_type _Count, const _Ty& _Val)
{ // insert _Count * _Val at _Where
size_type _Countsave = _Count;
_TRY_BEGIN
for (; 0 < _Count; --_Count)
_Insert(_Where, _Val);
_CATCH_ALL
for (; _Count < _Countsave; ++_Count)
{ // undo inserts
iterator _Before = _Where;
erase(--_Before);
}
_RERAISE;
_CATCH_END
}
void _Splice(iterator _Where, _Myt& _Right,
iterator _First, iterator _Last, size_type _Count)
{ // splice _Right [_First, _Last) before _Where
if (this->_Alval == _Right._Alval)
{ // same allocator, just relink
if (this != &_Right)
{ // splicing from another list, adjust counts
_Incsize(_Count);
_Right._Mysize -= _Count;
}
_Next(_Prev(_First._Mynode())) = _Last._Mynode();
_Next(_Prev(_Last._Mynode())) = _Where._Mynode();
_Next(_Prev(_Where._Mynode())) = _First._Mynode();
_Nodeptr _Pnode = _Prev(_Where._Mynode());
_Prev(_Where._Mynode()) = _Prev(_Last._Mynode());
_Prev(_Last._Mynode()) = _Prev(_First._Mynode());
_Prev(_First._Mynode()) = _Pnode;
}
else
{ // different allocator, copy nodes then erase source
insert(_Where, _First, _Last);
_Right.erase(_First, _Last);
}
}
void _Incsize(size_type _Count)
{ // alter element count, with checking
if (max_size() - size() < _Count)
_THROW(length_error, "list<T> too long");
_Mysize += _Count;
}
_Nodeptr _Myhead; // pointer to head node
size_type _Mysize; // number of elements
};
// list TEMPLATE FUNCTIONS
template<class _Ty, class _Alloc> inline
bool operator==(const list<_Ty, _Alloc>& _Left,
const list<_Ty, _Alloc>& _Right)
{ // test for list equality
return (_Left.size() == _Right.size()
&& equal(_Left.begin(), _Left.end(), _Right.begin()));
}
template<class _Ty, class _Alloc> inline
bool operator!=(const list<_Ty, _Alloc>& _Left,
const list<_Ty, _Alloc>& _Right)
{ // test for list inequality
return (!(_Left == _Right));
}
template<class _Ty, class _Alloc> inline
bool operator<(const list<_Ty, _Alloc>& _Left,
const list<_Ty, _Alloc>& _Right)
{ // test if _Left < _Right for lists
return (lexicographical_compare(_Left.begin(), _Left.end(),
_Right.begin(), _Right.end()));
}
template<class _Ty, class _Alloc> inline
bool operator>(const list<_Ty, _Alloc>& _Left,
const list<_Ty, _Alloc>& _Right)
{ // test if _Left > _Right for lists
return (_Right < _Left);
}
template<class _Ty, class _Alloc> inline
bool operator<=(const list<_Ty, _Alloc>& _Left,
const list<_Ty, _Alloc>& _Right)
{ // test if _Left <= _Right for lists
return (!(_Right < _Left));
}
template<class _Ty, class _Alloc> inline
bool operator>=(const list<_Ty, _Alloc>& _Left,
const list<_Ty, _Alloc>& _Right)
{ // test if _Left >= _Right for lists
return (!(_Left < _Right));
}
template<class _Ty, class _Alloc> inline
void swap(list<_Ty, _Alloc>& _Left, list<_Ty, _Alloc>& _Right)
{ // swap _Left and _Right lists
_Left.swap(_Right);
}
_STD_END
#pragma warning(pop)
#pragma pack(pop)
#endif /* _LIST_ */
/*
* Copyright (c) 1992-2001 by P.J. Plauger. ALL RIGHTS RESERVED.
* Consult your license regarding permissions and restrictions.
*/
/*
* This file is derived from software bearing the following
* restrictions:
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this
* software and its documentation for any purpose is hereby
* granted without fee, provided that the above copyright notice
* appear in all copies and that both that copyright notice and
* this permission notice appear in supporting documentation.
* Hewlett-Packard Company makes no representations about the
* suitability of this software for any purpose. It is provided
* "as is" without express or implied warranty.
V3.10:0009 */