Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1045 lines
25 KiB

//++
//
// Module name:
//
// i64fwasm.s
//
// Author:
//
// Arad Rostampour ([email protected]) Mar-21-99
//
// Description:
//
// Assembly routines for calling into SAL, PAL, and setting up translation registers
//
//--
#include "ksia64.h"
.sdata
//
// HalpSalSpinLock:
//
// HAL private spinlock protecting generic SAL calls.
//
.align 128
HalpSalSpinLock::
data8 0
//
// HalpSalStateInfoSpinLock:
//
// HAL private spinlock protecting specific SAL STATE_INFO calls.
//
.align 128
HalpSalStateInfoSpinLock::
data8 0
//
// HalpMcaSpinLock
//
// HAL private spinlock protecting HAL internal MCA data structures and operations.
// Including operations at IRQL DISPATCH_LEVEL and higher.
//
.align 128
HalpMcaSpinLock::
data8 0
//
// HalpInitSpinLock
//
// HAL private spinlock protecting HAL internal INIT data structures and operations.
// Including operations at IRQL DISPATCH_LEVEL and higher.
//
.align 128
HalpInitSpinLock::
data8 0
//
// HalpCmcSpinLock
//
// HAL private spinlock protecting HAL internal CMC data structures and operations.
// Including operations at IRQL DISPATCH_LEVEL and higher.
//
.align 128
HalpCmcSpinLock::
data8 0
//
// HalpCpeSpinLock
//
// HAL private spinlock protecting HAL internal CPE data structures and operations.
// Including operations at IRQL DISPATCH_LEVEL and higher.
//
.align 128
HalpCpeSpinLock::
data8 0
//
// Definitions used in this file
//
// Bits to set for the Mode argument in the HalpSetupTranslationRegisters call
#define SET_DTR_BIT 1
#define SET_ITR_BIT 0
// TR for PAL is:
// ed=1, PPN=0 (to be ORed in), RWX privledge only for ring 0, dirty/accessed bit set,
// cacheable memory, present bit set.
#define HAL_SAL_PAL_TR_ATTRIB TR_VALUE(1,0,3,0,1,1,0,1)
#define HAL_TR_ATTRIBUTE_PPN_MASK 0x0000FFFFFFFFF000
.file "i64fwasm.s"
// These globals are defined in i64fw.c
.global HalpSalProcPointer
.global HalpSalProcGlobalPointer
.global HalpPhysSalProcPointer
.global HalpPhysSalProcGlobalPointer
.global HalpVirtPalProcPointer
.global HalpPhysPalProcPointer
//++
//
// SAL_PAL_RETURN_VALUES
// HalpSalProc(
// LONGLONG a0, /* SAL function ID */
// LONGLONG a1, /* SAL argument */
// LONGLONG a2, /* SAL argument */
// LONGLONG a3, /* SAL argument */
// LONGLONG a4, /* SAL argument */
// LONGLONG a5, /* SAL argument */
// LONGLONG a6, /* SAL argument */
// LONGLONG a7 /* SAL argument */
// );
//
// Routine Description:
// This is a simple assembly wrapper that jumps directly to the SAL code. The ONLY
// caller should be HalpSalCall. Other users must use the HalpSalCall API for
// calling into the SAL.
//
// Return Values:
// r8->r11 contain the 4 64-bit return values for SAL, r8 is the status
//--
NESTED_ENTRY(HalpSalProc)
NESTED_SETUP(8,3,8,0)
// copy args to outs
mov out0 = a0
mov out1 = a1
mov out2 = a2
mov out3 = a3
mov out4 = a4
mov out5 = a5
mov out6 = a6
mov out7 = a7
;;
// Simply load the address and branch to it
addl t1 = @gprel(HalpSalProcPointer), gp
addl t2 = @gprel(HalpSalProcGlobalPointer), gp
;;
mov loc2 = gp
ld8 t0 = [t1]
;;
ld8 gp = [t2]
mov bt0 = t0
rsm 1 << PSR_I // disable interrupts
;;
// br.sptk.many bt0
br.call.sptk brp = bt0
;;
mov gp = loc2
ssm 1 << PSR_I // enable interrupts
;;
NESTED_RETURN
NESTED_EXIT(HalpSalProc)
//++
//
// SAL_PAL_RETURN_VALUES
// HalpSalProcPhysicalEx(
// LONGLONG a0, /* SAL function ID */
// LONGLONG a1, /* SAL argument */
// LONGLONG a2, /* SAL argument */
// LONGLONG a3, /* SAL argument */
// LONGLONG a4, /* SAL argument */
// LONGLONG a5, /* SAL argument */
// LONGLONG a6, /* SAL argument */
// LONGLONG a7, /* SAL argument */
// LONGLONG stack,
// LONGLONG bsp
// );
//
// Routine Description
// This routine calls SAL in physical mode. The only caller should be
// HalpSalCall.
//
//--
NESTED_ENTRY(HalpSalProcPhysicalEx)
NESTED_SETUP(8,2,8,0)
//
// Define our register aliases.
//
rSaveGP = t22
rSaveEP = t21
rSaveA7 = t20
rSaveA6 = t19
rSaveA5 = t18
rSaveA4 = t17
rSaveA3 = t16
rSaveA2 = t15
rSaveA1 = t14
rSaveA0 = t13
rSaveSp = t12
rSaveBSP = t11
rSavePfs = t10
rSaveBrp = t9
rSaveRSC = t8
rSaveRNAT = t7
rSavePSR = t6
rNewSp = t5
rNewBSP = t4
rT3 = t3
rT2 = t2
rT1 = t1
//
// Pull the sp and bsp arguments off of the stack.
//
add rT1 = 24, sp
add rT2 = 16, sp
;;
ld8 rNewBSP = [rT1]
ld8 rNewSp = [rT2]
;;
//
// Move our arguments off of the register stack and into static
// registers.
//
mov rSaveA0 = a0
mov rSaveA1 = a1
mov rSaveA2 = a2
mov rSaveA3 = a3
mov rSaveA4 = a4
mov rSaveA5 = a5
mov rSaveA6 = a6
mov rSaveA7 = a7
//
// Save copies of a few registers that will be overwritten later on.
//
mov rSaveSp = sp
mov rSavePfs = ar.pfs
mov rSaveBrp = brp
//
// Load the physical addresses of the SAL entry point and gp.
//
add rT1 = @gprel(HalpPhysSalProcPointer), gp
add rT2 = @gprel(HalpPhysSalProcGlobalPointer), gp
;;
ld8 rSaveEP = [rT1]
ld8 rSaveGP = [rT2]
;;
//
// Allocate a zero sized frame so that flushrs will move the current
// register stack out to memory.
//
alloc rT1 = 0,0,0,0
;;
//
// Flush the RSE.
//
flushrs
;;
//
// Save bits [31:0] and [36:35] of the current psr value.
//
mov rSavePSR = psr
//
// The .bn bit of the current psr wasn't copied to rSavePSR by the
// above operation. Manually set it here so that we don't rfi
// to the wrong register bank.
//
movl rT2 = (1 << PSR_BN)
;;
or rSavePSR = rT2, rSavePSR
//
// Disable interrupts.
//
rsm (1 << PSR_I)
//
// Move the RSE into enforced lazy mode by manipulating ar.rsc.
//
mov rSaveRSC = ar.rsc
mov rT1 = RSC_KERNEL_DISABLED
;;
mov ar.rsc = rT1
;;
//
// Save the current backing store pointer (BSP) and RSE NAT collection
// value.
//
mov rSaveBSP = ar.bsp
mov rSaveRNAT = ar.rnat
;;
//
// Turn off psr.ic in preparation for the rfi.
//
rsm (1 << PSR_IC)
;;
//
// Build a new psr value in rT1 by using our original psr value with
// .it, .dt, .rt, and .i disabled.
//
movl rT1 = (1 << PSR_IT) \
| (1 << PSR_RT) \
| (1 << PSR_DT) \
| (1 << PSR_I)
movl rT2 = 0xffffffffffffffff
;;
xor rT1 = rT1, rT2
;;
and rT1 = rT1, rSavePSR
//
// Make sure all of our previous psr changes take effect.
//
srlz.i
;;
//
// Load our physical mode psr into cr.ipsr.
//
mov cr.ipsr = rT1
//
// Make sure the cfm isn't corrupted when we do the rfi.
//
mov cr.ifs = zero
;;
//
// Load the physical address of our continuation label into cr.iip.
//
movl rT2 = HalpSalProcContinuePhysical
;;
tpa rT2 = rT2
;;
mov cr.iip = rT2
;;
//
// Do an rfi to physical mode.
//
rfi
;;
HalpSalProcContinuePhysical:
//
// Switch to the physical mode stack and backing store. Note that
// bspstore can only be written when the RSE is in enforced lazy
// mode.
//
mov sp = rNewSp
mov ar.bspstore = rNewBSP
;;
mov ar.rnat = zero
;;
//
// Restore the default kernel rsc mode.
//
mov ar.rsc = RSC_KERNEL
;;
//
// Allocate a new stack frame on the new bsp.
//
alloc rT1 = ar.pfs,0,8,8,0
//
// Save the registers that aren't preserved across the procedure
// call on the register stack.
//
mov loc0 = rSavePSR
mov loc1 = rSaveRNAT
mov loc2 = rSaveRSC
mov loc3 = rSaveBrp
mov loc4 = rSavePfs
mov loc5 = rSaveBSP
mov loc6 = rSaveSp
mov loc7 = gp
;;
//
// Load the arguments for SAL_PROC.
//
mov out0 = rSaveA0
mov out1 = rSaveA1
mov out2 = rSaveA2
mov out3 = rSaveA3
mov out4 = rSaveA4
mov out5 = rSaveA5
mov out6 = rSaveA6
mov out7 = rSaveA7
//
// Load the physical address of our return label into brp.
//
movl rT1 = HalpSalProcPhysicalReturnAddress
;;
tpa rT1 = rT1
;;
mov brp = rT1
//
// Load the entry point and gp of SAL_PROC.
//
mov bt0 = rSaveEP
mov gp = rSaveGP
;;
//
// Call the SAL.
//
br.call.sptk brp = bt0
;;
HalpSalProcPhysicalReturnAddress:
//
// Move our saved state off of the register stack and back to
// static registers.
//
mov rSavePSR = loc0
mov rSaveRNAT = loc1
mov rSaveRSC = loc2
mov rSaveBrp = loc3
mov rSavePfs = loc4
mov rSaveBSP = loc5
mov rSaveSp = loc6
mov gp = loc7
;;
//
// Stop all RSE accesses and create an empty frame on top of the
// current one.
//
mov ar.rsc = RSC_KERNEL_DISABLED
;;
alloc rT1 = 0,0,0,0
;;
//
// Restore our saved bspstore and rnat values.
//
mov ar.bspstore = rSaveBSP
;;
mov ar.rnat = rSaveRNAT
//
// Restore the stack pointer.
//
mov sp = rSaveSp
;;
//
// Turn off psr.ic in preparation for the rfi back to virtual
// mode.
//
rsm (1 << PSR_IC)
;;
movl rT1 = HalpSalProcCompletePhysical
;;
//
// Make sure our psr change has taken effect.
//
srlz.i
;;
//
// Load our continuation label address into cr.iip and our saved
// psr value into cr.ipsr. Also set cr.ifs so that CFM won't be
// corrupted by the rfi.
//
mov cr.iip = rT1
mov cr.ipsr = rSavePSR
mov cr.ifs = zero
;;
//
// Do an rfi back to virtual mode.
//
rfi
;;
HalpSalProcCompletePhysical:
//
// Restore our RSC state.
//
mov ar.rsc = rSaveRSC
;;
//
// Restore our saved PFS value along with our return pointer and
// return to the caller.
//
mov ar.pfs = rSavePfs
mov brp = rSaveBrp
;;
br.ret.sptk brp
NESTED_EXIT(HalpSalProcPhysicalEx)
//++
//
// SAL_PAL_RETURN_VALUES
// HalpPalProc(
// LONGLONG a0, /* PAL function ID */
// LONGLONG a1, /* PAL argument */
// LONGLONG a2, /* PAL argument */
// LONGLONG a3 /* PAL argument */
// );
//
// Routine Description
// This routine sets up the correct registers for input into PAL depending on
// if the call uses static or stacked registers, turns off interrupts, ensures
// the correct bank registers are being used and calls into the PAL. The ONLY
// caller should be HalpPalCall. Other users must use the HalpPalCall API for
// calling into the PAL.
//
// Return Values:
// r8->r11 contain the 4 64-bit return values for PAL, r8 is the status
//--
NESTED_ENTRY(HalpPalProc)
NESTED_SETUP(4,3,4,0)
PROLOGUE_END
// For both the static and stacked register conventions, load r28 with FunctionID
mov r28 = a0
// If static register calling convention (1-255, 512-767), copy arguments to r29->r31
// Otherwise, copy to out0->out3 so they are in r32->r35 in PAL_PROC
mov t0 = a0
;;
shr t0 = t0, 8
;;
tbit.z pt0, pt1 = t0, 0
;;
//
// Static proc: do br not call
//
(pt0) mov r29 = a1
(pt0) mov r30 = a2
(pt0) mov r31 = a3
//
// Stacked call
//
(pt1) mov out0 = a0
(pt1) mov out1 = a1
(pt1) mov out2 = a2
(pt1) mov out3 = a3
// Load up the address of PAL_PROC and call it
addl t1 = @gprel(HalpVirtPalProcPointer), gp
;;
ld8 t0 = [t1]
;;
mov bt0 = t0
// Call into PAL_PROC
(pt0) addl t1 = @ltoff(PalReturn), gp
;;
(pt0) ld8 t0 = [t1]
;;
(pt0) mov brp = t0
;;
// Disable interrupts
DISABLE_INTERRUPTS(loc2)
;;
srlz.d
;;
(pt0) br.sptk.many bt0
;;
(pt1) br.call.sptk brp = bt0
;;
PalReturn:
// Restore the interrupt state
RESTORE_INTERRUPTS(loc2)
;;
NESTED_RETURN
NESTED_EXIT(HalpPalProc)
//++
//
// SAL_PAL_RETURN_VALUES
// HalpPalProcPhysicalStatic(
// LONGLONG a0, /* PAL function ID */
// LONGLONG a1, /* PAL argument */
// LONGLONG a2, /* PAL argument */
// LONGLONG a3 /* PAL argument */
// );
//
// Routine Description
// This routine sets up the correct registers for input into PAL turns off interrupts,
// ensures the correct bank registers are being used and calls into the PAL in PHYSICAL
// mode since some of the calls require it. The ONLY caller should be HalpPalCall.
// Other users must use the HalpPalCall API for calling into the PAL.
//
// Return Values:
// r8->r11 contain the 4 64-bit return values for PAL, r8 is the status
//--
NESTED_ENTRY(HalpPalProcPhysicalStatic)
NESTED_SETUP(4,5,0,0)
//
// Aliases
//
rSaveGP = t21
rSaveEP = t20
// r28 = t19 is reserved for PAL calling convention.
rSavePSR = t18
rSaveRSC = loc3
rT3 = t3
rT2 = t2
rT1 = t1
add rT3 = @gprel(HalpPhysPalProcPointer), gp
;;
ld8 rSaveEP = [rT3]
;;
//
// Flush RSE and Turn Off interrupts
//
flushrs
mov rSavePSR = psr
movl rT2 = (1 << PSR_BN)
mov rSaveRSC = ar.rsc
mov rT1 = RSC_KERNEL_DISABLED
;;
or rSavePSR = rT2, rSavePSR // psr.bn stays on
rsm (1 << PSR_I)
mov ar.rsc = rT1
;;
// Turn Off Interrupt Collection
rsm (1 << PSR_IC)
//
// IC = 0; I = 0;
//
//
// IIP = HalpPalProcContinuePhysicalStatic: IPSR is physical
//
movl rT1 = (1 << PSR_IT) | (1 << PSR_RT) | (1 << PSR_DT) | (1 << PSR_I)
movl rT2 = 0xffffffffffffffff
;;
xor rT1 = rT1, rT2
;;
and rT1 = rT1, rSavePSR // rT1 = old PSR & zero it, dt, rt, i
srlz.i
;;
mov cr.ipsr = rT1
mov cr.ifs = zero
;;
movl rT2 = HalpPalProcContinuePhysicalStatic
;;
tpa rT2 = rT2 // phys address of new ip
;;
mov cr.iip = rT2
;;
rfi
;;
//
// Now in physical mode, ic = 1, i = 0
//
HalpPalProcContinuePhysicalStatic:
// Setup Arguments
mov bt0 = rSaveEP
mov loc2 = rSavePSR // save PSR value
mov r28 = a0
mov r29 = a1
mov r30 = a2
mov r31 = a3
;;
movl rT1 = HalpPalProcPhysicalStaticReturnAddress
;;
tpa rT1 = rT1
;;
mov brp = rT1
;;
br.cond.sptk bt0
;;
HalpPalProcPhysicalStaticReturnAddress:
rsm (1 << PSR_IC)
;;
movl rT1 = HalpPalProcCompletePhysicalStatic
;;
srlz.i
;;
mov ar.rsc = rSaveRSC
mov cr.iip = rT1
mov cr.ipsr = loc2
mov cr.ifs = zero
;;
rfi
;;
//
// Now in virtual mode, ic = 1, i = 1
//
HalpPalProcCompletePhysicalStatic:
//
// Restore pfs, brp and return
//
NESTED_RETURN
NESTED_EXIT(HalpPalProcPhysicalStatic)
//++
//
// SAL_PAL_RETURN_VALUES
// HalpPalProcPhysicalStacked(
// LONGLONG a0, /* PAL function ID */
// LONGLONG a1, /* PAL argument */
// LONGLONG a2, /* PAL argument */
// LONGLONG a3, /* PAL argument */
// LONGLONG StackPointer,
// LONGLONG BackingStorePointer
// );
//
// Routine Description
// This routine calls PAL in physical mode for the stacked calling
// convention. The ONLY caller should be HalpPalCall. Other users must
// use the HalpPalCall API for calling into the PAL.
//
//--
NESTED_ENTRY(HalpPalProcPhysicalStacked)
NESTED_SETUP(6,2,0,0)
//
// Aliases
//
rSaveGP = t21
rSaveEP = t20
// r28 = t19 is reserved for PAL calling convention.
rSaveA3 = t18
rSaveA2 = t17
rSaveA1 = t16
rSaveA0 = t15
rSaveSp = t14
rSaveBSP = t13
rSavePfs = t12
rSaveBrp = t11
rSaveRSC = t10
rSaveRNAT = t9
rSavePSR = t8
rNewSp = t7
rNewBSP = t6
rT3 = t3
rT2 = t2
rT1 = t1
// Save Arguments in static Registers
mov rSaveA0 = a0
mov rSaveA1 = a1
mov rSaveA2 = a2
mov rSaveA3 = a3
mov rSaveSp = sp
mov rSavePfs = ar.pfs
mov rSaveBrp = brp
//
// Setup Physical sp, bsp
//
add rT3 = @gprel(HalpPhysPalProcPointer), gp
;;
mov rNewSp = a4
mov rNewBSP = a5
ld8 rSaveEP = [rT3]
;;
// tpa rSaveEP = rSaveEP
// Allocate a zero-sized frame
// ;;
alloc rT1 = 0,0,0,0
// Flush RSE and Turn Off interrupts
;;
flushrs
;;
mov rSavePSR = psr
movl rT2 = (1 << PSR_BN)
;;
or rSavePSR = rT2, rSavePSR // psr.bn stays on
rsm (1 << PSR_I)
mov rSaveRSC = ar.rsc
// Flush RSE to enforced lazy mode by clearing both RSC.mode bits
mov rT1 = RSC_KERNEL_DISABLED
;;
mov ar.rsc = rT1
;;
//
// save RSC, RNAT, BSP, PSR, SP in the allocated space during initialization
//
mov rSaveBSP = ar.bsp
mov rSaveRNAT = ar.rnat
;;
// Turn Off Interrupt Collection
rsm (1 << PSR_IC)
;;
//
// IC = 0; I = 0;
//
//
// IIP = HalpPalProcContinuePhysicalStacked: IPSR is physical
//
movl rT1 = (1 << PSR_IT) | (1 << PSR_RT) | (1 << PSR_DT) | (1 << PSR_I)
movl rT2 = 0xffffffffffffffff
;;
xor rT1 = rT1, rT2
;;
and rT1 = rT1, rSavePSR // rT1 = old PSR & zero it, dt, rt, i
srlz.i
;;
mov cr.ipsr = rT1
mov cr.ifs = zero
;;
movl rT2 = HalpPalProcContinuePhysicalStacked
;;
tpa rT2 = rT2 // phys address of new ip
;;
mov cr.iip = rT2
;;
rfi
;;
//
// Now in physical mode, ic = 1, i = 0
//
HalpPalProcContinuePhysicalStacked:
//
// Switch to new bsp, sp
//
mov sp = rNewSp
mov ar.bspstore = rNewBSP
;;
mov ar.rnat = zero
;;
//
// Enable RSC
//
mov ar.rsc = RSC_KERNEL
;;
//
// Allocate frame on new bsp
//
alloc rT1 = ar.pfs,0,7,4,0
//
// Save caller's state in register stack
//
mov loc0 = rSaveRNAT
mov loc1 = rSaveSp
mov loc2 = rSaveBSP
mov loc3 = rSaveRSC
mov loc4 = rSaveBrp
mov loc5 = rSavePfs
mov loc6 = rSavePSR
;;
// Setup Arguments
mov r28 = rSaveA0
mov out0 = rSaveA0
mov out1 = rSaveA1
mov out2 = rSaveA2
mov out3 = rSaveA3
movl rT1 = HalpPalProcPhysicalStackedReturnAddress
;;
tpa rT1 = rT1
;;
mov brp = rT1
// mov gp = rSaveGP
mov bt0 = rSaveEP
;;
br.call.sptk brp = bt0
;;
HalpPalProcPhysicalStackedReturnAddress:
//
// In physical mode: switch to virtual
//
//
// Restore saved state
//
mov rSaveRNAT = loc0
mov rSaveSp = loc1
mov rSaveBSP = loc2
mov rSaveRSC = loc3
mov rSaveBrp = loc4
mov rSavePfs = loc5
mov rSavePSR = loc6
;;
//
// Restore BSP, SP
//
;;
mov ar.rsc = RSC_KERNEL_DISABLED
;;
alloc rT1 = 0,0,0,0
;;
mov ar.bspstore = rSaveBSP
;;
mov ar.rnat = rSaveRNAT
mov sp = rSaveSp
;;
rsm (1 << PSR_IC)
;;
movl rT1 = HalpPalProcCompletePhysicalStacked
;;
srlz.i
;;
mov cr.iip = rT1
mov cr.ipsr = rSavePSR
mov cr.ifs = zero
;;
rfi
;;
//
// Now in virtual mode, ic = 1, i = 1
//
HalpPalProcCompletePhysicalStacked:
//
// Restore psf, brp and return
//
mov ar.rsc = rSaveRSC
;;
mov ar.pfs = rSavePfs
mov brp = rSaveBrp
;;
br.ret.sptk brp
NESTED_EXIT(HalpPalProcPhysicalStacked)