Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

6481 lines
204 KiB

//++
//
// Module Name:
// trap.s
//
// Abstract:
// Low level interruption handlers
//
// Author:
// Bernard Lint 12-Jun-1995
//
// Environment:
// Kernel mode only
//
// Revision History:
//
//
// Open Design Issues:
//
//--
#if DBG // interruption logging is enabled in checked and free builds
#define INTERRUPTION_LOGGING 1
#endif // DBG
#include "ksia64.h"
.file "trap.s"
.explicit
//
// Globals imported:
//
PublicFunction(KeBugCheckEx)
PublicFunction(KiApcInterrupt)
PublicFunction(KiCheckForSoftwareInterrupt)
PublicFunction(KiDispatchException)
PublicFunction(KiExternalInterruptHandler)
PublicFunction(KiFloatTrap)
PublicFunction(KiFloatFault)
PublicFunction(KiGeneralExceptions)
PublicFunction(KiUnimplementedAddressTrap)
PublicFunction(KiNatExceptions)
PublicFunction(KiMemoryFault)
PublicFunction(KiOtherBreakException)
PublicFunction(KiPanicHandler)
PublicFunction(KiSingleStep)
PublicFunction(KiUnalignedFault)
PublicFunction(PsConvertToGuiThread)
PublicFunction(ExpInterlockedPopEntrySListFault)
PublicFunction(KiDebugFault)
PublicFunction(KeSetLowPsrBit)
PublicFunction(KiIA32ExceptionVectorHandler)
PublicFunction(KiIA32InterruptionVectorHandler)
PublicFunction(KiIA32InterceptionVectorHandler)
.global KiSystemServiceHandler
.global KeServiceDescriptorTableShadow
.global KeGdiFlushUserBatch
.global KdDebuggerEnabled
.global MiDefaultPpe
.global MiNatPte
.global KiIA64RseNumOfMaxDirty
#include "icecap.h"
#ifdef _CAPKERN
PublicFunction(_CAP_ThreadID)
PublicFunction(_CAP_SetCPU)
#endif
// For Conditional Interrupt Logging
#define UserSystemcallBit 61
#define ExternalInterruptBit 62
.global KiVectorLogMask
//
// Register aliases used throughout the entire module
//
//
// Banked general registers
//
// h16-h23 can only be used when psr.ic=1.
//
// h24-h31 can only be used when psr.ic=0 (these are reserved for tlb
// and pal/machine check handlers when psr.ic=1).
//
//
// Shown below are aliases of bank 0 registers used in the low level handlers
// by macros ALLOCATE_TRAP_FRAME, SAVE_INTERRUPTION_RESOURCES, and
// RETURN_FROM_INTERRUPTION. When the code in the macros are changes, these
// register aliases must be reviewed.
//
rHIPSR = h16
rHpT2 = h16
rHIIPA = h17
rHRSC = h17
rHDfhPFS = h17 // used to preserve pfs in KiDisabledFpRegisterVector
rHIIP = h18
rHFPSR = h18
rHRNAT2 = h18
rHOldPreds = h19
rHBrp = h19
rHInitBStore= h19
rHIFS = h20
rHPFS = h20
rHBSP = h20
rHISR = h21
rHUNAT = h21
rHBSPSTORE = h21
rHpT3 = h21
rHSp = h22
rHDfhBrp = h22 // used to preserve brp in KiDisabledFpRegisterVector
rHRNAT = h22
rHpT4 = h22
rHpT1 = h23
rTH3 = h24
rHHandler = h25
rTH1 = h26
rTH2 = h27
rHIIM = h28
rHIFA = h28
rHEPCVa = h29
rHVector = h29
rHEPCVa2 = h30
rPanicCode = h30
rTH4 = h31
//
// General registers used through out module
//
pApc = ps0 // User Apc Pending
pUser = ps1 // mode on entry was user
pKrnl = ps2 // mode on entry was kernel
pUstk = ps3
pKstk = ps4
pEM = ps5 // EM ISA on kernel entry
pIA = ps6 // X86 ISA on kernel entry
pKDbg = ps7 // Kernel debug Active
pUDbg = ps8 // Kernel debug Active
//
// Kernel registers used through out module
//
rkHandler = k6 // specific exception handler
//
// Macro definitions for this module only
//
//
// Define vector/exception entry/exit macros.
// N.B. All HANDLER_ENTRY functions go into .nsc section with
// KiNormalSystemCall being the first.
//
#define HANDLER_ENTRY(Name) \
.##global Name; \
.##proc Name; \
Name::
#define HANDLER_ENTRY_EX(Name, Handler) \
.##global Name; \
.##proc Name; \
.##type Handler, @function; \
.##personality Handler; \
Name::
#define VECTOR_ENTRY(Offset, Name, Extra0) \
.##org Offset; \
.##global Name; \
.##proc Name; \
Name::
#define VECTOR_EXIT(Name) \
.##endp Name
#define HANDLER_EXIT(Name) \
.##endp Name
//++
// Routine:
//
// IO_END_OF_INTERRUPT(rVector,rT1,rT2,pEOI)
//
// Routine Description:
//
// HalEOITable Entry corresponding to the vectorNo is tested.
// If the entry is nonzero, then vectorNo is stored to the location
// specified in the entry. If the entry is zero, return.
//
// Arguements:
//
//
// Notes:
//
// MS preprocessor requires /* */ style comments
//
//--
#define IO_END_OF_INTERRUPT(rVector,rT1,rT2,pEOI) ;\
movl rT1 = KiPcr+PcEOITable ;\
;; ;\
ld8 rT1 = [rT1] ;\
;; ;\
shladd rT2 = rVector,3,rT1 ;\
;; ;\
ld8 rT1 = [rT2] ;\
;; ;\
cmp.ne pEOI = zero, rT1 ;\
;; ;\
(pEOI) st4.rel [rT1] = rVector
//++
// Routine:
//
// VECTOR_CALL_HANDLER(Handler, SpecificHandler)
//
// Routine Description:
//
// Common code for transfer to heavyweight handlers from
// interruption vectors. Put RSE in store intensive mode,
// cover current frame and call handler.
//
// Arguments:
//
// Handler: First level handler for this vector
// SpecificHandler: Specific handler to be called by the generic
// exception handler.
//
// Return Value:
//
// None
//
// Notes:
// Uses just the kernel banked registers (h16-h31)
//
// MS preprocessor requires /* */ style comments
//--
#define VECTOR_CALL_HANDLER(Handler,SpecificHandler) ;\
mov rHIFA = cr##.##ifa ;\
movl rHHandler = SpecificHandler ;\
br##.##sptk Handler ;\
;;
//++
// Routine:
//
// ALLOCATE_TRAP_FRAME
//
// Routine Description:
//
// Common code for allocating trap frame on kernel entry for heavyweight
// handler.
//
// On entry:
//
// On exit: sp -> trap frame; any instruction that depends on sp must be
// placed in the new instruction group. Interruption resources
// ipsr, iipa, iip, predicates, isr, sp, ifs are captured in
// seven of the banked registers h16-23. The last one is used
// by SAVE_INTERRUPTION_STATE as a pointer to save these resources
// in the trap frame.
//
// Return Value:
//
// None
//
// Notes:
// Uses just the kernel banked registers (h16-h31)
//
// MS preprocessor requires /* */ style comments below
//--
#define ALLOCATE_TRAP_FRAME ;\
;\
pOverflow1 = pt2 ;\
pOverflow2 = pt3 ;\
pOverflow3 = pt4 ;\
;\
mov rHIPSR = cr##.##ipsr ;\
movl rTH1 = KiPcr+PcInitialStack ;\
;\
mov rHIIP = cr##.##iip ;\
mov rHOldPreds = pr ;\
cover /* cover and save IFS */;\
;; ;\
;\
ld8 rTH4 = [rTH1], PcBStoreLimit-PcInitialStack ;\
mov rTH3 = ar##.##bsp ;\
tbit##.##z pt1, pt0 = sp, 63 ;\
;; ;\
;\
mov rHIIPA = cr##.##iipa ;\
ld8 rTH2 = [rTH1], PcStackLimit-PcBStoreLimit ;\
mov rHVector = ip /* Save this vectors address */;\
;\
mov rHIFS = cr##.##ifs ;\
mov rHSp = sp ;\
extr##.##u rHpT1 = rHIPSR, PSR_CPL, PSR_CPL_LEN /* get mode */;\
;; ;\
;\
cmp4##.##eq pKrnl, pUser = PL_KERNEL, rHpT1 /* set mode pred */;\
cmp4##.##eq pKstk, pUstk = PL_KERNEL, rHpT1 /* set stack pred */;\
add rHpT1 = PcKernelDebugActive-PcStackLimit, rTH1 ;\
;; ;\
;\
(pKstk) ld8 rTH1 = [rTH1] ;\
(pKstk) cmp##.##geu##.##unc pOverflow2 = rTH3, rTH2 ;\
(pKstk) add sp = -TrapFrameLength, sp /* allocate TF */;\
;; ;\
;\
ld1 rHpT1 = [rHpT1] /* load kernel db state */;\
(pKstk) cmp##.##leu##.##unc pOverflow1 = sp, rTH1 ;\
(pKstk) cmp##.##geu##.##unc pOverflow3 = sp, rTH3 ;\
;; ;\
;\
mov rHISR = cr##.##isr ;\
cmp##.##ne##.##or pKDbg = r0, rHpT1 /* kernel debug active? */;\
mov rPanicCode = PANIC_STACK_SWITCH ;\
;\
(pUstk) add sp = -ThreadStateSaveAreaLength-TrapFrameLength, rTH4 ;\
(pOverflow1) br.spnt.few KiPanicHandler ;\
(pOverflow2) br.spnt.few KiPanicHandler ;\
(pOverflow3) br.spnt.few KiPanicHandler
//++
// Routine:
//
// SAVE_INTERRUPTION_STATE
//
// Routine Description:
//
// Common code for saving interruption state on entry to a heavyweight
// handler.
//
// Arguments:
//
// None
//
// On entry:
//
// sp -> trap frame
//
// On exit:
//
// Static registers gp, teb, sp, fpsr spilled into the trap frame.
// Registers gp, teb, fpsr are set up for kernel mode execution.
//
// Return Value:
//
// None
//
// Notes:
//
// Interruption resources already captured in bank 0 registers h16-h23.
// It's safe to take data TLB fault when saving them into the trap
// frame because kernel stack is always resident in memory. This macro
// is carefully constructed to save the bank registers' contents in
// the trap frame and reuse them to capture other register states as
// soon as they are available. Until we have a virtual register
// allocation scheme in place, the bank 0 register aliases defined at
// the beginning of the file must be updated when this macro is modified.
//
// MS preprocessor requires /* */ style comments below
//--
#define SAVE_INTERRUPTION_STATE ;\
;\
/* Save interruption resources in trap frame */ ;\
;\
;\
ssm (1 << PSR_IC) | (1 << PSR_DFH) | (1 << PSR_AC) ;\
add rHpT1 = TrStIPSR, sp /* -> IPSR */;\
;; ;\
srlz##.##d ;\
st8 [rHpT1] = rHIPSR, TrStISR-TrStIPSR /* save IPSR */;\
add rHpT2 = TrPreds, sp /* -> Preds */;\
;; ;\
;\
st8 [rHpT1] = rHISR, TrStIIP-TrStISR /* save ISR */;\
st8 [rHpT2] = rHOldPreds, TrIntSp-TrPreds ;\
;; ;\
;\
mov rHUNAT = ar##.##unat ;\
st8 [rHpT1] = rHIIP, TrStIFS-TrStIIP /* save IIP */;\
mov rHBrp = brp ;\
;; ;\
;\
mov rHFPSR = ar##.##fpsr ;\
st8 [rHpT1] = rHIFS, TrStIIPA-TrStIFS /* save IFS */;\
mov rHPFS = ar##.##pfs ;\
st8.spill [rHpT2] = rHSp, TrBrRp-TrIntSp /* save SP */;\
;; ;\
;\
st8 [rHpT1] = rHIIPA, TrStFPSR-TrStIIPA /* save IIPA */;\
st8 [rHpT2] = rHBrp, TrRsPFS-TrBrRp ;\
;; ;\
;\
mov rHRSC = ar##.##rsc ;\
st8 [rHpT2] = rHPFS /* save PFS */;\
add rHpT2 = TrApUNAT, sp ;\
;\
mov rHBSP = ar##.##bsp ;\
(pUstk) movl rHInitBStore = KiPcr + PcInitialBStore ;\
;; ;\
;\
mov ar##.##rsc = r0 /* put RSE in lazy mode */;\
st8 [rHpT2] = rHUNAT, TrIntGp-TrApUNAT /* save UNAT */;\
(pUstk) ld8 rHInitBStore = [rHInitBStore] ;\
;; ;\
;\
mov rHBSPSTORE = ar##.##bspstore /* get user bspstore point */;\
st8 [rHpT1] = rHFPSR, TrRsBSP-TrStFPSR /* save FPSR */;\
;; ;\
;\
st8##.##spill [rHpT2] = gp, TrIntTeb-TrIntGp /* spill GP */;\
st8 [rHpT1] = rHBSP, TrRsBSPSTORE - TrRsBSP /* save BSP */;\
(pUstk) mov rHRNAT = ar##.##rnat /* get RNAT */;\
movl rHFPSR = FPSR_FOR_KERNEL /* initial fpsr value */;\
;; ;\
;\
st8 [rHpT1] = rHBSPSTORE /* save BSPSTORE */;\
st8##.##spill [rHpT2] = teb, TrRsRSC-TrIntTeb /* spill TEB (r13) */;\
sub rHBSP = rHBSP, rHBSPSTORE /* size of dirty region */;\
(pUstk) mov teb = kteb /* sanitize teb */;\
(pUstk) dep rHInitBStore = rHBSPSTORE, rHInitBStore, 0, 9 ;\
;; ;\
;\
mov ar##.##fpsr = rHFPSR /* set fpsr */;\
movl rHpT1 = KiPcr + PcKernelGP ;\
;\
(pUstk) mov ar##.##bspstore = rHInitBStore ;\
dep rHRSC = rHBSP, rHRSC, RSC_MBZ1, RSC_LOADRS_LEN ;\
;; ;\
;\
(pUstk) mov ar##.##rnat = rHRNAT /* preserve the user RNAT */;\
st8 [rHpT2] = rHRSC, TrRsRNAT-TrRsRSC ;\
ld8 gp = [rHpT1] /* load GP */;\
;; ;\
;\
/* */;\
/* If previous mode is user, switch to kernel backing store */;\
/* -- uses the "loadrs" approach. Note that we do not save the */;\
/* BSP/BSPSTORE in the trap frame if prvious mode was kernel */;\
/* */;\
;\
(pUstk) mov ar##.##rsc = RSC_KERNEL /* turn rse on, kernel mode */;\
(pUstk) st8 [rHpT2] = rHRNAT /* save user RNAT */;\
/* adjust kernel BSPSTORE */;\
/* for NAT collection */;\
bsw##.##1 /* switch back to user bank */;\
;; /* stop bit required */;\
//++
// Routine:
//
// RETURN_FROM_INTERRUPTION
//
// Routine Description:
//
// Common handler code to restore trap frame and resume execution
// at the interruption address.
//
// Arguments:
//
// Label
//
// Return Value:
//
// None
//
// Note:
//
// On entry: interrrupts disabled, sp -> trap frame
// On exit:
// MS preprocessor requires /* */ style comments below
//--
#define RETURN_FROM_INTERRUPTION(Label) ;\
;\
.##regstk 0,5,2,0 /* must match the alloc instruction below */ ;\
;\
rBSP = loc0 ;\
rRnat = loc1 ;\
;\
rpT1 = t1 ;\
rpT2 = t2 ;\
rpT3 = t3 ;\
rpT4 = t4 ;\
rThread = t6 ;\
rApcFlag = t7 ;\
rT1 = t8 ;\
rT2 = t9 ;\
;\
;\
alloc rT1 = 0,5,2,0 ;\
movl rpT1 = KiPcr + PcCurrentThread /* ->PcCurrentThread */;\
;; ;\
;\
(pUstk) ld8 rThread = [rpT1] ;\
add loc4 = TrStIPSR, sp ;\
(pKstk) br##.##call##.##spnt brp = KiRestoreTrapFrame ;\
;; ;\
;\
ld8 loc4 = [loc4] /* load StIPSR */ ;\
(pUstk) add rpT1 = ThApcState+AsUserApcPending, rThread ;\
(pKstk) br##.##spnt Label##CriticalExitCode ;\
;; ;\
;\
ld1 rApcFlag = [rpT1], ThAlerted-ThApcState-AsUserApcPending ;\
add rBSP = TrRsBSP, sp ;\
add rRnat = TrRsRNAT, sp /* -> user RNAT */;\
;; ;\
;\
st1##.##nta [rpT1] = zero ;\
cmp##.##ne pApc = zero, rApcFlag ;\
(pUstk) tbit##.##nz.unc pUDbg = loc4, PSR_DB /* if non-zero, user debug active */;\
;; ;\
;\
PSET_IRQL (pApc, APC_LEVEL) ;\
movl gp = _gp /* restore to kernel gp value */;\
;\
(pApc) FAST_ENABLE_INTERRUPTS ;\
(pApc) mov out1 = sp ;\
(pApc) br##.##call##.##sptk brp = KiApcInterrupt ;\
;; ;\
;\
ld8 rBSP = [rBSP] /* user BSP */;\
ld8 rRnat = [rRnat] /* user RNAT */;\
;\
(pApc) FAST_DISABLE_INTERRUPTS ;\
PSET_IRQL (pApc, zero) ;\
(pUDbg) br##.##call##.##spnt brp = KiLoadUserDebugRegisters ;\
;; ;\
;\
br##.##call##.##sptk brp = KiRestoreTrapFrame ;\
;; ;\
;\
;\
Label##CriticalExitCode: ;\
;\
add loc2 = TrBrRp, sp ;\
add loc3 = TrRsRSC, sp ;\
bsw##.##0 ;\
;; ;\
;\
ld8 rHBrp = [loc2], TrRsPFS-TrBrRp ;\
ld8 rHRSC = [loc3] ;\
mov loc3 = RSC_KERNEL_DISABLED ;\
;; ;\
;\
invala ;\
(pUstk) movl out0 = KiIA64RseNumOfMaxDirty ;\
;\
mov rHIPSR = loc4 ;\
movl rHpT1 = KiPcr+PcHighFpOwner ;\
;; ;\
;\
ld8 rHPFS = [loc2] ;\
ld8 rHpT4 = [rHpT1], PcCurrentThread-PcHighFpOwner ;\
extr##.##u loc2 = rHRSC, RSC_MBZ1, RSC_LOADRS_LEN ;\
;; ;\
;\
(pUstk) ld8 out0 = [out0] ;\
shr##.##u out1 = loc2, 3 ;\
sub rHBSPSTORE = rBSP, loc2 ;\
;\
ld8 loc4 = [rHpT1], PcKernelDebugActive-PcCurrentThread ;\
(pUstk) mov rHRNAT2 = rRnat ;\
;; ;\
;\
ld1 rHpT1 = [rHpT1] ;\
dep loc3 = loc2, loc3, RSC_LOADRS, RSC_LOADRS_LEN ;\
cmp##.##ne pt2 = rHpT4, loc4 ;\
;; ;\
;\
mov ar##.##rsc = loc3 /* RSE off */ ;\
(pUstk) cmp##.##gt pt0 = out0, out1 ;\
(pt2) dep rHIPSR = 0, rHIPSR, PSR_MFH, 1 ;\
(pUstk) sub loc0 = out0, out1 ;\
(pKstk) br##.##spnt Label##KernelExit ;\
;; ;\
;\
alloc rTH1 = 0, 0, 1, 0 ;\
(pt2) dep rHIPSR = 1, rHIPSR, PSR_DFH, 1 ;\
;; ;\
(pt0) br##.##call##.##sptk brp = KeScrubBackingStoreRegisters ;\
;; ;\
alloc rTH1 = 0,0,0,0 ;\
;; ;\
;\
loadrs /* pull in user regs */;\
;; ;\
;\
Label##KernelExit: ;\
(pUstk) mov ar##.##bspstore = rHBSPSTORE /* restore user BSP */ ;\
dep rHRSC = r0, rHRSC, RSC_MBZ1, RSC_LOADRS_LEN ;\
(pKstk) cmp##.##ne##.##unc pKDbg, pt2 = rHpT1, r0 /* hardware debug? */ ;\
;\
add rHpT4 = TrApUNAT, sp /* -> previous UNAT */;\
mov ar##.##pfs = rHPFS /* restore PFS */;\
add rHIFS = TrStIFS, sp ;\
;; ;\
;\
(pUstk) mov ar##.##rnat = rHRNAT2 /* restore user RNAT */;\
ld8 rHIFS = [rHIFS] /* load IFS */;\
add rHpT1 = TrStIIPA, sp ;\
;; ;\
;\
mov ar##.##rsc = rHRSC /* restore user RSC */;\
ld8 rHUNAT = [rHpT4],TrPreds-TrApUNAT ;\
mov brp = rHBrp ;\
;; ;\
;\
ld8 rHIIPA = [rHpT1], TrStIIP-TrStIIPA ;\
ld8 rHOldPreds = [rHpT4], TrIntSp-TrPreds ;\
(pt2) dep rHIPSR = 0, rHIPSR, PSR_DB, 1 ;\
;; ;\
;\
ld8 rHIIP = [rHpT1], TrStIFS-TrStIIP /* load IIP */;\
ld8##.##fill sp = [rHpT4], TrStIFS-TrIntSp ;\
(pKDbg) dep rHIPSR = 1, rHIPSR, PSR_DB, 1 ;\
;\
rsm 1 << PSR_IC /* reset ic bit */;\
;; ;\
srlz##.##d /* must serialize */;\
;\
/* */;\
/* Restore status registers */;\
/* */;\
;\
mov cr##.##ipsr = rHIPSR /* restore previous IPSR */;\
mov cr##.##iipa = rHIIPA /* restore previous IIPA */;\
;\
mov cr##.##ifs = rHIFS /* restore previous IFS */;\
mov cr##.##iip = rHIIP /* restore previous IIP */;\
mov pr = rHOldPreds, -1 /* restore preds */;\
;; ;\
;\
/* */;\
/* Resume at point of interruption (rfi must be at end of instruction group)*/;\
/* */;\
mov ar##.##unat = rHUNAT /* restore UNAT */;\
mov h17 = r0 /* clear TB loop count */;\
rfi ;\
;;
//
// Interruption Vector Table. First level interruption vectors.
// This section must be 32K aligned. The special section ".drectve"
// is used to pass the align command to the linker.
//
.section .drectve, "MI", "progbits"
string "-section:.ivt,,align=0x8000"
.section .ivt = "ax", "progbits"
KiIvtBase:: // symbol for start of IVT
//++
//
// KiVhptTransVector
//
// Cause: The hardware VHPT walker encountered a TLB miss while attempting to
// reference the virtuall addressed VHPT linear table.
//
// Parameters: cr.iip - address of bundle for which the hardware VHPT walker was
// trying to resolve the TLB miss
//
// cr.ipsr - copy of PSR at the time of the fault
//
// cr.idtr - default translation inforamtion for the address that caused
// a VHPT translation fault
//
// cr.ifa - original faulting address
//
// cr.isr - original faulting status information
//
// Handle: Extracts the PDE index from cr.iha (PTE address in VHPT) and
// generates a PDE address by adding to VHPT_DIRBASE. When accesses
// a page directory entry (PDE), there might be a TLB miss on the
// page directory table and returns a NaT on ld8.s. If so, branches
// to KiPageDirectoryTableFault. If the page-not-present bit of the
// PDE is not set, branches to KiPageNotPresentFault. Otherwise,
// inserts the PDE entry into the data TC (translation cache).
//
//--
VECTOR_ENTRY(0x0000, KiVhptTransVector, cr.ifa)
#if 1
rva = h24
riha = h25
rpr = h26
rPte = h27
rK5 = h28
rPte2 = h28
rCache = h28
rps = h29
risr = h30
riha2 = h31
mov rva = cr.ifa // M0
mov rps = PAGE_SIZE
mov riha = cr.iha // M0
mov rpr = pr // I
mov risr = cr.isr // M0
;;
mov rK5 = ar.k5
tbit.nz pt6 = risr, ISR_SP
;;
#ifndef NO_IHA_CHECK
thash riha2 = rva // M0, for extra IHA checking
#endif
(pt6) cmp.gtu.unc pt6 = rps, rva
(pt6) br.cond.spnt KiPageZeroFault
ld8.s rPte = [riha] // M
tbit.z pt3, pt4 = risr, ISR_X // I
cmp.le pt7,pt8 = 20, rK5
add rK5 = 2, rK5
;;
(pt7) mov ar.k5 = r0
tnat.nz pt0 = rPte // I
(pt8) mov ar.k5 = rK5
tbit.z pt1 = rPte, PTE_VALID // I
(pt0) br.cond.spnt KiPageTableFault // B
(pt1) br.cond.spnt KiPteNotPresentFault // B
extr.u rCache = rPte, 2, 3 // I
;;
cmp.eq pt5 = 1, rCache // A
(pt5) br.cond.spnt KiPageTableFault // B
;;
.pred.rel "mutex",pt3,pt4
(pt4) itc.i rPte // M
;;
(pt3) itc.d rPte // M
;;
#if !defined(NT_UP)
ld8.s rPte2 = [riha] // M
mov rps = PAGE_SHIFT << PS_SHIFT // I
cmp.ne pt0 = zero, zero // I
;;
cmp.ne.or pt0 = rPte2, rPte // M
#ifndef NO_IHA_CHECK
cmp.ne.or pt0 = riha, riha2 // M, check if IHA is correct
#endif
tnat.nz.or pt0 = rPte2 // I
;;
(pt0) ptc.l rva, rps // M
#else
#ifndef NO_IHA_CHECK
cmp.ne pt0 = riha, riha2 // M, check if IHA is correct
mov rps = PAGE_SHIFT << PS_SHIFT // I
;;
(pt0) ptc.l rva, rps // M
#endif
#endif
mov pr = rpr, -1 // I
rfi;; // B
#else
rva = h24
riha = h25
rpr = h26
rpPde = h27
rPde = h28
rPde2 = h29
rps = h30
mov riha = cr.iha // M
mov rva = cr.ifa // M
mov rpr = pr // I
;;
thash rpPde = riha // M
;;
ld8.s rPde = [rpPde] // M, load PDE
;;
tnat.nz pt0, p0 = rPde // I
tbit.z pt1, p0 = rPde, PTE_VALID // I, if non-present page fault
(pt0) br.cond.spnt KiPageDirectoryFault // B
(pt1) br.cond.spnt KiPdeNotPresentFault // B
mov cr.ifa = riha // M
;;
itc.d rPde // M
;;
#if !defined(NT_UP)
ld8.s rPde2 = [rpPde] // M
mov rps = PAGE_SHIFT << PS_SHIFT // I
cmp.ne pt0 = zero, zero // I
;;
cmp.ne.or pt0 = rPde2, rPde // M, if PTEs are different
tnat.nz.or pt0 = rPde2 // I
;;
(pt0) ptc.l riha, rps // M, purge it
#endif
mov pr = rpr, -1 // I
rfi // B
;;
#endif
VECTOR_EXIT(KiVhptTransVector)
//++
//
// KiInstTlbVector
//
// Cause: The VHPT walker aborted the search for the instruction translation.
//
// Parameters: cr.iip - address of bundle for which the hardware VHPT walker was
// trying to resolve the TLB miss
//
// cr.ipsr - copy of PSR at the time of the fault
//
// cr.iha - PTE address in the VHPT which the VHPT walker was attempting to
// reference
//
// cr.iitr - default translation inforamtion for the address that caused
// a instruction TLB miss
//
// cr.isr - faulting status information
//
// Handle: As the VHPT has aborted the search or the implemenation does not
// support the h/w page table walk, the handler needs to emulates the
// function. Since the offending PTE address is already available
// with cr.iha, the handler can access the PTE without performing THASH.
// Accessing a PTE with ld8.s may return a NaT. If so, it branches to
// KiPageTableFault. If the page-not-present bit of the PTE is not set,
// it branches to KiPageFault.
//
// Comments: Merced never casues this fault since it never abort the search on the
// VHPT.
//
//--
VECTOR_ENTRY(0x0400, KiInstTlbVector, cr.iipa)
rva = h24
riha = h25
rpr = h26
rPte = h27
rPte2 = h28
rps = h29
rCache = h28
KiInstTlbVector0:
mov riha = cr.iha // M
mov rva = cr.ifa // M
mov rpr = pr // I
;;
ld8.s rPte = [riha] // M
;;
tnat.nz pt0, p0 = rPte // I
tbit.z pt1, p0 = rPte, PTE_VALID // I
(pt0) br.cond.spnt KiPageTableFault // B
(pt1) br.cond.spnt KiPteNotPresentFault // B
extr.u rCache = rPte, 2, 3 // I
;;
cmp.eq pt3 = 1, rCache // A
(pt3) br.cond.spnt Ki4KInstTlbFault // B
itc.i rPte // M
;;
#if !defined(NT_UP)
ld8.s rPte2 = [riha] // M
mov rps = PAGE_SHIFT << PS_SHIFT // I
cmp.ne pt0 = zero, zero // I
;;
cmp.ne.or pt0 = rPte2, rPte // M
tnat.nz.or pt0 = rPte2 // I
;;
(pt0) ptc.l rva, rps // M
#endif
mov pr = rpr, -1 // I
rfi;; // B
VECTOR_EXIT(KiInstTlbVector)
//++
//
// KiDataTlbVector
//
// Cause: The VHPT walker aborted the search for the data translation.
//
// Parameters: cr.iip - address of bundle for which the hardware VHPT walker was
// trying to resolve the TLB miss
//
// cr.ipsr - copy of PSR at the time of the fault
//
// cr.iha - PTE address in the VHPT which the VHPT walker was attempting to
// reference
//
// cr.idtr - default translation inforamtion for the address that caused
// a data TLB miss
//
// cr.ifa - address that caused a data TLB miss
//
// cr.isr - faulting status information
//
// Handle: As the VHPT has aborted the search or the implemenation does not
// support the h/w page table walk, the handler needs to emulates the
// function. Since the offending PTE address is already available
// with cr.iha, the handler can access the PTE without performing THASH.
// Accessing a PTE with ld8.s may return a NaT. If so, it branches to
// KiPageTableFault. If the page-not-present bit of the PTE is not set,
// it branches to KiPageFault.
//
// Comments: Merced never casues instruction TLB faults since the VHPT search always
// sucesses.
//
//--
VECTOR_ENTRY(0x0800, KiDataTlbVector, cr.ifa)
rva = h24
riha = h25
rpr = h26
rPte = h27
rK5 = h28
rPte2 = h28
rCache = h28
rps = h29
KiDataTlbVector0:
mov riha = cr.iha // M
mov rps = PAGE_SIZE
mov rva = cr.ifa // M
mov rpr = pr // I
;;
mov rK5 = ar.k5
tbit.nz pt6 = risr, ISR_SP
;;
(pt6) cmp.gtu.unc pt6 = rps, rva
(pt6) br.cond.spnt KiPageZeroFault
ld8.s rPte = [riha] // M
cmp.le pt7,pt8 = 20, rK5
add rK5 = 2, rK5
;;
(pt7) mov ar.k5 = r0
(pt8) mov ar.k5 = rK5
extr.u rCache = rPte, 2, 3 // I
;;
cmp.eq pt3 = 1, rCache // A
(pt3) br.cond.spnt Ki4KDataTlbFault // B
tnat.nz pt0, p0 = rPte // I
tbit.z pt1, p0 = rPte, PTE_VALID // I
(pt0) br.cond.spnt KiPageTableFault // B
(pt1) br.cond.spnt KiPteNotPresentFault // B
itc.d rPte // M
;;
#if !defined(NT_UP)
ld8.s rPte2 = [riha] // M
mov rps = PAGE_SHIFT << PS_SHIFT // I
cmp.ne pt0 = zero, zero // I
;;
cmp.ne.or pt0 = rPte2, rPte // M
tnat.nz.or pt0 = rPte2 // I
;;
(pt0) ptc.l rva, rps // M
#endif
mov pr = rpr, -1 // I
rfi;; // B
VECTOR_EXIT(KiDataTlbVector)
//++
//
// KiAltTlbVector
//
// Cause: There was a TLB miss for instruction execution and the VHPT
// walker was not enabled for the referenced region.
//
// Parameters: cr.iip - address of bundle that caused a TLB miss
//
// cr.ipsr - copy of PSR at the time of the fault
//
// cr.idtr - default translation inforamtion for the address that caused
// the fault.
//
// cr.isr - faulting status information
//
// Handle: Currently, NT does not have any use of this vector.
//
//--
VECTOR_ENTRY(0x0c00, KiAltInstTlbVector, cr.iipa)
rva = h24
riha = h25
mov rva = cr.ifa
;;
thash riha = rva
;;
mov cr.iha = riha
;;
srlz.d
br.sptk KiInstTlbVector0
VECTOR_CALL_HANDLER(KiGenericExceptionHandler, KiMemoryFault)
VECTOR_EXIT(KiAltInstTlbVector)
//++
//
// KiAltDataTlbVector
//
// Cause: There was a data TLB miss and the VHPT walker was not enabled for
// the referenced region.
//
// Parameters: cr.iip - address of bundle that caused a TLB miss
//
// cr.ipsr - copy of PSR at the time of the fault
//
// cr.idtr - default translation inforamtion for the address that caused
// the fault.
//
// cr.isr - faulting status information
//
// Handle: Currently, NT does not have any use of this vector.
//
//--
VECTOR_ENTRY(0x1000, KiAltDataTlbVector, cr.ifa)
rva = h24
riha = h25
rpr = h26
rPte = h27
rKseglimit = h28
rIPSR = h30
rISR = h29
rVrn = h31
#if NO_VHPT_WALKER
rRR = h30
mov rva = cr.ifa // M
mov rpr = pr // I
;;
mov rRR = rr[rva]
movl rKseglimit = KSEG3_LIMIT
;;
thash riha = rva
tbit.z pt4 = rRR, 0
mov rIPSR = cr.ipsr
shr.u rVrn = rva, VRN_SHIFT // I, get VPN
(pt4) br.cond.spnt AltFault
;;
mov cr.iha = riha
;;
srlz.d
mov pr = rpr, -1
br.sptk KiDataTlbVector0
;;
AltFault:
#else
mov rva = cr.ifa // M
movl rKseglimit = KSEG3_LIMIT
;;
mov rIPSR = cr.ipsr
mov rpr = pr // I
shr.u rVrn = rva, VRN_SHIFT // I, get VPN
;;
#endif
extr.u rIPSR = rIPSR, PSR_CPL, PSR_CPL_LEN
;;
cmp.ne pt1 = PL_KERNEL, rIPSR
cmp.ne pt2 = KSEG3_VRN, rVrn // M/I
cmp.eq pt4 = KSEG4_VRN, rVrn
(pt1) br.cond.spnt KiCallMemoryFault // if it was User
(pt4) br.cond.spnt KiKseg4Fault
(pt2) br.cond.spnt NoKsegFault // B
cmp.leu pt0 = rKseglimit, rva
(pt0) br.cond.spnt NoKsegFault
mov rISR = cr.isr // M
movl rPte = VALID_KERNEL_PTE // L
mov rIPSR = cr.ipsr // M
shr.u rva = rva, PAGE_SHIFT // I
;;
tbit.z pt2, pt3 = rISR, ISR_SP // I
dep.z rva = rva, PAGE_SHIFT, 32 // I
;;
or rPte = rPte, rva // I
dep rIPSR = 1, rIPSR, PSR_ED, 1 // I
;;
(pt2) itc.d rPte // M
;;
(pt3) mov cr.ipsr = rIPSR // M
;;
mov pr = rpr, -1 // I
rfi // B
;;
NoKsegFault:
rPdeUtbase = h27
rva0 = h29
rPpe = h30
shr.u rva0 = rva, PAGE_SHIFT
movl rPdeUtbase = KiPcr+PcPdeUtbase
;;
dep.z rva0 = rva0, PAGE_SHIFT, VRN_SHIFT-PAGE_SHIFT
ld8 rPdeUtbase = [rPdeUtbase]
movl rPpe = MiDefaultPpe
;;
ld8 rPpe = [rPpe]
cmp.ne pt3, p0 = rva0, rPdeUtbase
(pt3) br.cond.spnt KiPageFault
;;
itc.d rPpe
;;
mov pr = rpr, -1
rfi;;
VECTOR_EXIT(KiAltDataTlbVector)
//++
//
// KiNestedTlbVector
//
// Cause: Instruction/Data TLB miss handler encountered a TLB miss while
// attempting to reference the PTE in the virtuall addressed
// VHPT linear table.
//
// Parameters: cr.iip - address of bundle for which the hardware VHPT walker was
// trying to resolve the TLB miss
//
// cr.ipsr - copy of PSR at the time of VHPT translation fault
//
// cr.iha - address in VHPT which the VHPT walker was attempting to
// reference
//
// cr.idtr - default translation inforamtion for the virtual address
// contained in cr.iha
//
// cr.ifa - original faulting address
//
// cr.isr - faulting status information
//
// h16(riha) - PTE address in the VHPT which caused the Nested miss
//
// Handle: Currently, there is no use for Nested TLB vector. This should be
// a bug fault. Call KiPanicHandler.
//
//--
VECTOR_ENTRY(0x1400, KiNestedTlbVector, cr.ifa)
ALLOCATE_TRAP_FRAME
mov rHIFA = cr.ifa
br.sptk KiPanicHandler
VECTOR_EXIT(KiNestedTlbVector)
//++
//
// KiInstKeyMissVector
//
// Cause: There was a instruction key miss in the translation. Since the
// architecture allows an implementation to choose a unified TC
// structure, the hyper space translation brought by the data
// access-bit may cause a instruction key miss fault. Only erroneous
// user code tries to execute the NT page table and hyper space.
//
// Parameters: cr.iip - address of bundle which caused a instruction key miss fault
//
// cr.ipsr - copy of PSR at the time of the data key miss fault
//
// cr.idtr - default translation inforamtion of the address that caused
// the fault.
//
// cr.isr - faulting status information
//
// Handle: Save the whole register state and call MmAccessFault().
//
//--
VECTOR_ENTRY(0x1800, KiInstKeyMissVector, cr.iipa)
VECTOR_CALL_HANDLER(KiGenericExceptionHandler, KiMemoryFault)
VECTOR_EXIT(KiInstKeyMissVector)
//++
//
// KiDataKeyMissVector
//
// Cause: The referenced translation had the different key ID from the one
// specified the key permission register. This is an indication of
// TLB miss on the NT page table and hyperspace.
//
// Parameters: cr.iip - address of bundle which caused the fault
//
// cr.ipsr - copy of PSR at the time of the data key miss fault
//
// cr.idtr - default translation inforamtion of the address that caused
// the fault.
//
// cr.ifa - address that caused a data key miss
//
// cr.isr - faulting status information
//
// Handle: The handler needs to purge the faulting translation and install
// a new PTE by loading it from the VHPT. The key ID of the IDTR
// for the installing translation should be modified to be the same
// ID as the local region ID. This effectively creates a local
// space within the global kernel space.
//
//--
VECTOR_ENTRY(0x1c00, KiDataKeyMissVector, cr.ifa)
VECTOR_CALL_HANDLER(KiGenericExceptionHandler, KiMemoryFault)
VECTOR_EXIT(KiDataKeyMissVector)
//++
//
// KiDirtyBitVector
//
// Cause: The refereced data translation did not have the dirty-bit set and
// a write operation was made to this page.
//
// Parameters: cr.iip - address of bundle which caused a dirty bit fault
//
// cr.ipsr - copy of PSR at the time of a data access fault
//
// cr.idtr - default translation inforamtion for the address that
// caused the fault
//
// cr.ifa - referenced data address that caused the dirty-bit fault
//
// cr.isr - faulting status information
//
// Handle: Save the whole register state and call MmAccessFault().
//
// Comments: There is always a TLB coherency problem on a multiprocessor
// system. Rather than implementing an atomic operation of setting
// dirty-bit within this handler, the handler instead calls the high
// level C routine, MmAccessFault(), to perform locking the page table
// and setting the dirty-bit of the PTE.
//
// It is too much effort to implement the atomic operation of setting
// the dirty-bit using cmpxchg; a potential nested TLB miss on load/store
// and restoring ar.ccv complicate the design of the handler.
//
//--
VECTOR_ENTRY(0x2000, KiDirtyBitVector, cr.ifa)
VECTOR_CALL_HANDLER(KiGenericExceptionHandler, KiMemoryFault)
VECTOR_EXIT(KiDirtyBitVector)
//++
//
// KiInstAccessBitVector
//
// Cause: There is a access-bit fault on the instruction translation. This only
// happens if the erroneous user mistakenly accesses the NT page table and
// hyper space.
//
// Parameters: cr.iip - address of bundle which caused a instruction access bit fault
//
// cr.ipsr - copy of PSR at the time of a data access fault
//
// cr.idtr - default translation inforamtion for the address that
// caused the fault
//
// cr.ifa - referenced data address that caused the data access-bit fault
//
// cr.isr - faulting status information
//
// Handle: Save the whole register state and call MmAccessFault().
//
//--
VECTOR_ENTRY(0x2400, KiInstAccessBitVector, cr.iipa)
VECTOR_CALL_HANDLER(KiGenericExceptionHandler, KiMemoryFault)
VECTOR_EXIT(KiInstAccessBitVector)
//++
//
// KiDataBitAccessVector
//
// Cause: The reference-bit in the the referenced translation was zero,
// indicating there was a TLB miss on the NT page table or hyperspace.
//
// Parameters: cr.iip - address of bundle which caused a data access bit fault
//
// cr.ipsr - copy of PSR at the time of a data access fault
//
// cr.idtr - default translation inforamtion for the address that
// caused the fault
//
// cr.ifa - referenced data address that caused the data access-bit fault
//
// cr.isr - faulting status information
//
// Handle: The reference-bit is used to fault on PTEs for the NT page table and
// hyperspace. On a data access-bit fault, the handler needs to change the
// the default key ID of the IDTR to be the local key ID. This effectively
// creates the local space within the global kernel space.
//
//--
VECTOR_ENTRY(0x2800, KiDataAccessBitVector, cr.ifa)
rva = h24
rpr = h26
rIPSR = h27
rISR = h31
//
// check to see if non-present fault occurred on a speculative load.
// if so, set IPSR.ed bit. This forces to generate a NaT on ld.s after
// rfi
//
mov rpr = pr
mov rISR = cr.isr // M
mov rIPSR = cr.ipsr // M
;;
tbit.z pt0, p0 = rISR, ISR_SP // I
dep rIPSR = 1, rIPSR, PSR_ED, 1 // I
(pt0) br.cond.spnt KiCallMemoryFault // B
;;
mov cr.ipsr = rIPSR // M
;;
mov pr = rpr, -1 // I
rfi // B
;;
VECTOR_EXIT(KiDataBitAccessVector)
//--------------------------------------------------------------------
// Routine:
//
// KiBreakVector
//
// Description:
//
// Interruption vector for break instruction.
//
// On entry:
//
// IIM contains break immediate value:
// -- BREAK_SYSCALL -> standard system call
// interrupts disabled
// r16-r31 switched to kernel bank
// r16-r31 all available since no TLB faults at this point
//
// Return value:
//
// if system call, sys call return value in v0.
//
// Process:
//--------------------------------------------------------------------
VECTOR_ENTRY(0x2C00, KiBreakVector, cr.iim)
mov rHIIM = cr.iim // get break value
movl rTH1 = KiPcr+PcSavedIIM
;;
st8 [rTH1] = rHIIM
VECTOR_CALL_HANDLER(KiGenericExceptionHandler, KiOtherBreakException)
//
// Do not return from handler
//
VECTOR_EXIT(KiBreakVector)
//--------------------------------------------------------------------
// Routine:
//
// KiExternalInterruptVector
//
// Routine Description:
//
// Interruption vector for External Interrrupt
//
// On entry:
//
// interrupts disabled
// r16-r31 switched to kernel bank
//
// Return value:
//
// none
//
// Process:
//--------------------------------------------------------------------
VECTOR_ENTRY(0x3000, KiExternalInterruptVector, r0)
mov h24 = cr.iip
movl h25 = MM_EPC_VA+0x20
;;
mov h26 = pr
cmp.ne pt0 = h25, h24
add h25 = 0x10, h25
;;
mov h27 = cr.ipsr
(pt0) cmp.ne pt0 = h25, h24
;;
dep h27 = 0, h27, PSR_I, 1
(pt0) br.cond.sptk kei_taken
;;
mov cr.ipsr = h27
;;
mov pr = h26, -1
rfi
;;
kei_taken:
mov pr = h26, -1
;;
ALLOCATE_TRAP_FRAME
;;
SAVE_INTERRUPTION_STATE
br.many KiExternalInterruptHandler
;;
//
// Do not return (rfi from handler)
//
VECTOR_EXIT(KiExternalInterruptVector)
//++
//
// KiPageNotPresentVector
//
// Cause: The translation for the referenced page did not have a present-bit
// set.
//
// Parameters: cr.iip - address of bundle which caused a page not present fault
//
// cr.ipsr - copy of PSR at the time of a page not present ault
//
// cr.idtr - default translation inforamtion for the address that
// caused the fault
//
// cr.ifa - referenced data address if the fault occurred on the data
// reference
//
// cr.isr - faulting status information
//
// Handle: This is the page fault. The handler saves the register context and
// calls MmAccessFault().
//
//--
VECTOR_ENTRY(0x5000, KiPageNotPresentVector, cr.ifa)
rva = h24
riha = h25
rpr = h26
rPte = h27
rps = h29
mov rva = cr.ifa // M
mov rpr = pr // I
;;
thash riha = rva // M
cmp.ne pt1 = r0, r0
mov rps = PAGE_SHIFT << PS_SHIFT // I
;;
ld8.s rPte = [riha] // M
;;
tnat.nz pt0, p0 = rPte // I
tbit.z.or pt1, p0 = rPte, PTE_ACCESS
tbit.z.or pt1, p0 = rPte, PTE_VALID // I, if non-present page fault
(pt0) br.cond.spnt KiPageTableFault // B
(pt1) br.cond.spnt KiPteNotPresentFault // B
//
// if we find a valid PTE that is speculatively fetched into the TLB
// then, purge it and return.
//
ptc.l rva, rps // M
;;
mov pr = rpr, -1 // I
rfi;; // B
VECTOR_EXIT(KiPageNotPresentVector)
//++
//
// KiKeyPermVector
//
// Cause: Read, write or execution key permissions were violated.
//
// Parameters: cr.iip - address of bundle which caused a key permission fault
//
// cr.ipsr - copy of PSR at the time of a key permission fault
//
// cr.idtr - default translation inforamtion for the address that
// caused the fault
//
// cr.ifa - referenced data address if the key permission occurred on
// the data reference
//
// cr.isr - faulting status information
//
// Handle: This should not happen. The EM/NT does not utilize the key permissions.
// The handler saves the register state and calls the bug check.
//
//--
VECTOR_ENTRY(0x5100, KiKeyPermVector, cr.ifa)
VECTOR_CALL_HANDLER(KiGenericExceptionHandler, KiMemoryFault)
VECTOR_EXIT(KiKeyPermVector)
//++
//
// KiInstAccessRightsVector
//
// Cause: The referenced page had a access rights violation.
//
// Parameters: cr.iip - address of bundle which caused a data access bit fault
//
// cr.ipsr - copy of PSR at the time of a data access fault
//
// cr.idtr - default translation inforamtion for the address that
// caused the fault
//
// cr.ifa - referenced data address that caused the data ccess-bit fault
//
// cr.isr - faulting status information
//
// Handle: The handler saves the register context and calls MmAccessFault().
//
//--
VECTOR_ENTRY(0x5200, KiInstAccessRightsVector, cr.iipa)
VECTOR_CALL_HANDLER(KiGenericExceptionHandler, KiMemoryFault)
VECTOR_EXIT(KiInstAccessRightsVector)
//++
//
// KiDataAccessRightsVector
//
// Cause: The referenced page had a data access rights violation.
//
// Parameters: cr.iip - address of bundle which caused a data access rights fault
//
// cr.ipsr - copy of PSR at the time of a data access rights fault
//
// cr.idtr - default translation inforamtion for the address that
// caused the fault
//
// cr.ifa - referenced data address that caused the data access rights
// fault
//
// cr.isr - faulting status information
//
// Handle: The handler saves the register context and calls MmAccessFault().
//
//--
VECTOR_ENTRY(0x5300, KiDataAccessRightsVector, cr.ifa)
rva = h24
rpr = h26
rIPSR = h27
rISR = h31
//
// check to see if non-present fault occurred on a speculative load.
// if so, set IPSR.ed bit. This forces to generate a NaT on ld.s after
// rfi
//
mov rpr = pr
mov rISR = cr.isr // M
mov rIPSR = cr.ipsr // M
;;
tbit.z pt0, p0 = rISR, ISR_SP // I
dep rIPSR = 1, rIPSR, PSR_ED, 1 // I
(pt0) br.cond.spnt KiCallMemoryFault2 // B
;;
mov cr.ipsr = rIPSR // M
;;
mov pr = rpr, -1 // I
rfi // B
;;
KiCallMemoryFault2:
mov rHIFA = cr.ifa
movl rHHandler = KiMemoryFault
mov pr = rpr, -1
br.sptk KiGenericExceptionHandler
VECTOR_EXIT(KiDataAccessRightsVector)
//--------------------------------------------------------------------
// Routine:
//
// KiGeneralExceptionsVector
//
// Description:
//
// Interruption vector for General Exceptions
//
// On entry:
// interrupts disabled
// r16-r31 switched to kernel bank
//
// Return value:
//
// none
//
// Process:
//--------------------------------------------------------------------
VECTOR_ENTRY(0x5400, KiGeneralExceptionsVector, cr.isr)
rPSR_ED = h25
rpr = h26
rIPSR = h27
rCode = h30
rISR = h31
rLfetch = h28
mov rISR = cr.isr // M
movl rPSR_ED = 1 << PSR_ED // L
mov rIPSR = cr.ipsr // M
mov rpr = pr
;;
cmp.ne pt0 = r0, r0
extr.u rCode = rISR, 0, 8
mov rLfetch = ISR_LFETCH|ISR_RESVD_REG << 4
;;
cmp.ne.or pt0 = rCode, rLfetch
tbit.z.or pt0 = rISR, ISR_NA
(pt0) br.cond.sptk KiCallGeneralExceptions
;;
or rIPSR = rIPSR, rPSR_ED // A
;;
mov cr.ipsr = rIPSR // M
mov pr = rpr, -1 // I
;;
rfi
;;
KiCallGeneralExceptions:
mov rHIFA = cr.ifa
movl rHHandler = KiGeneralExceptions
mov pr = rpr, -1
br.sptk KiGenericExceptionHandler
//
// Do not return (rfi from handler)
//
VECTOR_EXIT(KiGeneralExceptionsVector)
//--------------------------------------------------------------------
// Routine:
//
// KiDisabledFpRegisterVector
//
// Description:
//
// Interruption vector for Disabled FP-register vector
//
// On entry:
// interrupts disabled
// r16-r31 switched to kernel bank
//
// Return value:
//
// none
//
// Process:
//--------------------------------------------------------------------
VECTOR_ENTRY(0x5500, KiDisabledFpRegisterVector, cr.isr)
mov rHIPSR = cr.ipsr
mov rHIIP = cr.iip
cover
;;
mov rHIFS = cr.ifs
extr.u rTH1 = rHIPSR, PSR_CPL, PSR_CPL_LEN
mov rHOldPreds = pr
;;
cmp4.eq pKrnl, pUser = PL_KERNEL, rTH1
;;
(pUser) tbit.z.unc pt0, pt1 = rHIPSR, PSR_DFH // if dfh not set,
// dfl must be set
(pKrnl) br.spnt.few Kdfrv10 // Kernel mode should never get here.
;;
(pt1) ssm 1 << PSR_IC // set ic bit
(pt1) mov rHDfhPFS = ar.pfs
(pt1) mov rHDfhBrp = brp
;;
(pt1) srlz.d
(pt1) br.call.sptk.many brp = KiRestoreHigherFPVolatile
(pt0) br.spnt.few Kdfrv10
;;
rsm 1 << PSR_IC // reset ic bit
dep rHIPSR = 0, rHIPSR, PSR_DFH, 1 // reset dfh bit
mov brp = rHDfhBrp
;;
srlz.d
mov cr.ifs = rHIFS
mov ar.pfs = rHDfhPFS
mov cr.ipsr = rHIPSR
mov cr.iip = rHIIP
mov pr = rHOldPreds, -1
;;
rfi
;;
Kdfrv10:
mov pr = rHOldPreds, -1
VECTOR_CALL_HANDLER(KiGenericExceptionHandler, KiGeneralExceptions)
;;
VECTOR_EXIT(KiDisabledFpRegisterVector)
//--------------------------------------------------------------------
// Routine:
//
// KiNatConsumptionVector
//
// Description:
//
// Interruption vector for Nat Consumption Vector
//
// On entry:
// interrupts disabled
// r16-r31 switched to kernel bank
//
// Return value:
//
// none
//
// Process:
//--------------------------------------------------------------------
VECTOR_ENTRY(0x5600, KiNatConsumptionVector, cr.isr)
mov h16 = cr.isr
mov h17 = pr
;;
mov rHIFA = cr.ifa
extr.u h16 = h16, 4, 4 // extract the error code
;;
cmp.eq pt0, pt1 = ISR_NAT_PAGE, h16
;;
(pt0) movl rHHandler = KiMemoryFault
(pt1) movl rHHandler = KiNatExceptions
;;
mov pr = h17, -1
br.sptk KiGenericExceptionHandler
VECTOR_EXIT(KiNatConsumptionVector)
//++
//
// KiSpeculationVector
//
// Cause: CHK.S, CHK.A, FCHK detected an exception condition.
//
// Parameters: cr.iip - address of bundle which caused a speculation fault
//
// cr.ipsr - copy of PSR at the time of a speculation fault
//
// cr.iipa - address of bundle containing the last
// successfully executed instruction
//
// cr.iim - contains the immediate value in either
// CHK.S, CHK.A, or FCHK opecode
//
// cr.isr - faulting status information
//
// Handle: The handler implements a branch operation to the
// recovery code specified by the IIM IP-offset.
//
// Note: This code will not be exercised until the compiler
// generates the speculation code.
//
// TBD: Need to check for taken branch trap.
//
//--
VECTOR_ENTRY(0x5700, KiSpeculationVector, cr.iim)
mov h16 = cr.iim // get imm offset
mov h17 = cr.iip // get IIP
;;
extr h16 = h16, 0, 21 // get sign-extended
mov h18 = cr.ipsr
;;
shladd h16 = h16, 4, h17 // get addr for recovery handler
dep h18 = 0, h18, PSR_RI, 2 // zero target slot number
;;
mov cr.ipsr = h18
mov cr.iip = h16
;;
rfi
;;
VECTOR_EXIT(KiSpeculationVector)
//++
//
// KiDebugFaultVector
//
// Cause: A unaligned data access fault has occured
//
// Parameters: cr.iip - address of bundle causing the fault.
//
// cr.ipsr - copy of PSR at the time of interruption.
//
// cr.iipa - address of bundle containing the last
// successfully executed instruction
//
// cr.isr - faulting status information. ISR.ei bits are
// set to indicate which instruction caused the
// exception.
// The ISR.code contains information about the
// FP exception fault. See trapc.c and the EAS
//
//--
VECTOR_ENTRY(0x5900, KiDebugFaultVector, cr.isr)
VECTOR_CALL_HANDLER(KiGenericExceptionHandler, KiDebugFault)
//
// Do not return (rfi from handler)
//
VECTOR_EXIT(KiDebugFaultVector)
//++
//
// KiUnalignedFaultVector
//
// Cause: A unaligned data access fault has occured
//
// Parameters: cr.iip - address of bundle causing the fault.
//
// cr.ipsr - copy of PSR at the time of interruption.
//
// cr.iipa - address of bundle containing the last
// successfully executed instruction
//
// cr.isr - faulting status information. ISR.ei bits are
// set to indicate which instruction caused the
// exception.
// The ISR.code contains information about the
// FP exception fault. See trapc.c and the EAS
//
//--
VECTOR_ENTRY(0x5a00, KiUnalignedFaultVector, cr.ifa)
VECTOR_CALL_HANDLER(KiGenericExceptionHandler, KiUnalignedFault)
//
// Do not return (rfi from handler)
//
VECTOR_EXIT(KiUnalignedFaultVector)
//++
//
// KiFloatFaultVector
//
// Cause: A floating point fault has occured
//
// Parameters: cr.iip - address of bundle causing the fault.
//
// cr.ipsr - copy of PSR at the time of interruption.
//
// cr.iipa - address of bundle containing the last
// successfully executed instruction
//
// cr.isr - faulting status information. ISR.ei bits are
// set to indicate which instruction caused the
// exception.
// The ISR.code contains information about the
// FP exception fault. See trapc.c and the EAS
//
//--
VECTOR_ENTRY(0x5c00, KiFloatFaultVector, cr.isr)
VECTOR_CALL_HANDLER(KiGenericExceptionHandler, KiFloatFault)
//
// Do not return (rfi from handler)
//
VECTOR_EXIT(KiFloatFaultVector)
//++
//
// KiFloatTrapVector
//
// Cause: A floating point trap has occured
//
// Parameters: cr.iip - address of bundle with the instruction to be
// executed next.
//
// cr.ipsr - copy of PSR at the time of interruption.
//
// cr.iipa - address of bundle containing the last
// successfully executed instruction
//
// cr.isr - faulting status information. ISR.ei bits are
// set to indicate which instruction caused the
// exception.
// The ISR.code contains information about the
// FP trap. See trapc.c and the EAS
//
//--
VECTOR_ENTRY(0x5d00, KiFloatTrapVector, cr.isr)
VECTOR_CALL_HANDLER(KiGenericExceptionHandler, KiFloatTrap)
//
// Do not return (rfi from handler)
//
VECTOR_EXIT(KiFloatTrapVector)
//++
//
// KiLowerPrivilegeVector
//
// Cause: A branch lowers the privilege level and PSR.lp is 1.
// Or an attempt made to execute an instruction
// in the unimplemented address space.
// This trap is higher priority than taken branch
// or single step traps.
//
// Parameters: cr.iip - address of bundle containing the instruction to
// be executed next.
//
// cr.ipsr - copy of PSR at the time of interruption.
//
// cr.iipa - address of bundle containing the last
// successfully executed instruction
//
// cr.isr - faulting status information. The ISR.code
// contains a bit vector for all traps which
// occurred in the trapping bundle.
//
//--
VECTOR_ENTRY(0x5e00, KiLowerPrivilegeVector, cr.iipa)
mov rHISR = cr.isr
mov rHOldPreds = pr
mov rHIIPA = cr.iipa
mov rHIPSR = cr.ipsr
;;
tbit.z pt1, pt0 = rHISR, ISR_UI_TRAP
(pt1) br.cond.spnt Klpv10
;;
mov rHIFA = cr.iip
movl rHHandler = KiUnimplementedAddressTrap
mov pr = rHOldPreds, -2 // must restore predicates
br.sptk KiGenericExceptionHandler
;;
Klpv10:
mov rHVector = ip
mov rPanicCode = UNEXPECTED_KERNEL_MODE_TRAP
br.sptk KiPanicHandler
VECTOR_EXIT(KiLowerPrivilegeVector)
//++
//
// KiTakenBranchVector
//
// Cause: A taken branch was successfully execcuted and the PSR.tb
// bit is 1. This trap is higher priority than single step trap.
//
// Parameters: cr.iip - address of bundle containing the instruction to
// be executed next.
//
// cr.ipsr - copy of PSR at the time of interruption.
//
// cr.iipa - address of bundle containing the last
// successfully executed instruction
//
// cr.isr - faulting status information. The ISR.code
// contains a bit vector for all traps which
// occurred in the trapping bundle.
//
//--
VECTOR_ENTRY(0x5f00, KiTakenBranchVector, cr.iipa)
mov rHIPSR = cr.ipsr
movl rHEPCVa = MM_EPC_VA+0x20 // user system call entry point
mov rHIIP = cr.iip
movl rHpT1 = KiPcr+PcInitialStack
;;
ld8 rHpT1 = [rHpT1]
extr.u rTH1 = rHIPSR, PSR_CPL, PSR_CPL_LEN
mov rHOldPreds = pr
;;
cmp.eq pt0 = rHEPCVa, rHIIP
;;
(pt0) ssm 1 << PSR_IC
(pt0) movl rHpT3 = 1 << PSR_LP
;;
(pt0) or rHpT3 = rHIPSR, rHpT3
(pt0) srlz.d
add rHpT1=-ThreadStateSaveAreaLength-TrapFrameLength+TrStIPSR,rHpT1
(pt0) br.spnt.few Ktbv10
mov pr = rHOldPreds, -2
VECTOR_CALL_HANDLER(KiGenericExceptionHandler, KiSingleStep)
;;
Ktbv10:
st8 [rHpT1] = rHpT3
movl rHpT3 = 1 << PSR_SS | 1 << PSR_TB | 1 << PSR_DB
;;
rsm 1 << PSR_IC
mov pr = rHOldPreds, -2
andcm rHIPSR = rHIPSR, rHpT3 // clear ss, tb, db bits
;;
srlz.d
mov cr.ipsr = rHIPSR
;;
rfi
;;
VECTOR_EXIT(KiTakenBranchVector)
//++
//
// KiSingleStepVector
//
// Cause: An instruction was successfully execcuted and the PSR.ss
// bit is 1.
//
// Parameters: cr.iip - address of bundle containing the instruction to
// be executed next.
//
// cr.ipsr - copy of PSR at the time of interruption.
//
// cr.iipa - address of bundle containing the last
// successfully executed instruction
//
// cr.isr - faulting status information. The ISR.code
// contains a bit vector for all traps which
// occurred in the trapping bundle.
//
//--
VECTOR_ENTRY(0x6000, KiSingleStepVector, cr.iipa)
mov rHIPSR = cr.ipsr
movl rHEPCVa = MM_EPC_VA+0x20 // user system call entry point
mov rHIIP = cr.iip
movl rHpT1 = KiPcr+PcInitialStack
;;
ld8 rHpT1 = [rHpT1]
extr.u rTH1 = rHIPSR, PSR_CPL, PSR_CPL_LEN
mov rHOldPreds = pr
;;
cmp.eq pt0 = rHEPCVa, rHIIP
;;
(pt0) ssm 1 << PSR_IC
(pt0) movl rHpT3 = 1 << PSR_LP
;;
(pt0) or rHpT3 = rHIPSR, rHpT3
(pt0) srlz.d
add rHpT1=-ThreadStateSaveAreaLength-TrapFrameLength+TrStIPSR,rHpT1
(pt0) br.spnt.few Kssv10
mov pr = rHOldPreds, -2
VECTOR_CALL_HANDLER(KiGenericExceptionHandler, KiSingleStep)
;;
Kssv10:
st8 [rHpT1] = rHpT3
movl rHpT3 = 1 << PSR_SS | 1 << PSR_DB
;;
rsm 1 << PSR_IC
mov pr = rHOldPreds, -2
andcm rHIPSR = rHIPSR, rHpT3 // clear ss, db bits
;;
srlz.d
mov cr.ipsr = rHIPSR
;;
rfi
;;
VECTOR_EXIT(KiSingleStepVector)
//++
//
// KiIA32ExceptionVector
//
// Cause: A fault or trap was generated while executing from the
// iA-32 instruction set.
//
// Parameters: cr.iip - address of the iA-32 instruction causing interruption
//
// cr.ipsr - copy of PSR at the time of the instruction
//
// cr.iipa - Address of the last successfully executed
// iA-32 or EM instruction
//
// cr.isr - The ISR.ei exception indicator is cleared.
// ISR.iA_vector contains the iA-32 interruption vector
// number. ISR.code contains the iA-32 16-bit error cod
//
// Handle: Save the whole register state and
// call KiIA32ExceptionVectorHandler()().
//
//--
VECTOR_ENTRY(0x6900, KiIA32ExceptionVector, r0)
mov rHIIM = cr.iim // save info from IIM
movl rTH1 = KiPcr+PcSavedIIM
;;
st8 [rTH1] = rHIIM
VECTOR_CALL_HANDLER(KiGenericExceptionHandler,
KiIA32ExceptionVectorHandler)
VECTOR_EXIT(KiIA32ExceptionVector)
//++
//
// KiIA32InterceptionVector
//
// Cause: A interception fault or trap was generated while executing
// from the iA-32 instruction set.
//
// Parameters: cr.iip - address of the iA-32 instruction causing interruption
//
// cr.ipsr - copy of PSR at the time of the instruction
//
// cr.iipa - Address of the last successfully executed
// iA-32 or EM instruction
//
// cr.isr - The ISR.ei exception indicator is cleared.
// ISR.iA_vector contains the iA-32 interruption vector
// number. ISR.code contains the iA-32specific
// interception information
//
// Handle: Save the whole register state and
// call KiIA32InterceptionVectorHandler()().
//
//--
VECTOR_ENTRY(0x6a00, KiIA32InterceptionVector, r0)
mov rHIIM = cr.iim // save info from IIM
movl rTH1 = KiPcr+PcSavedIIM
;;
st8 [rTH1] = rHIIM
VECTOR_CALL_HANDLER(KiGenericExceptionHandler,
KiIA32InterceptionVectorHandler)
VECTOR_EXIT(KiIA32InterceptionVector)
//++
//
// KiIA32InterruptionVector
//
// Cause: An iA software interrupt was executed
//
// Parameters: cr.iip - address of the iA-32 instruction causing interruption
//
// cr.ipsr - copy of PSR at the time of the instruction
//
// cr.iipa - Address of the last successfully executed
// iA-32 or EM instruction
//
// cr.isr - ISR.iA_vector contains the iA-32 defined vector
// number. ISR.code contains 0
// ISR.ei excepting instruction indicator is cleared.
// ISR.iA_vector contains the iA-32 instruction vector.
// ISR.code contains iA-32 specific information.
//
// Handle: Save the whole register state and
// call KiIA32InterruptionVectorHandler()().
//
//--
VECTOR_ENTRY(0x6b00, KiIA32InterruptionVector, r0)
// This one doesn't need IIM, so we won't bother to save it
VECTOR_CALL_HANDLER(KiGenericExceptionHandler,
KiIA32InterruptionVectorHandler)
VECTOR_EXIT(KiIA32InterruptionVector)
//
// All non-VECTOR_ENTRY functions must follow KiNormalSystemCall.
//
// N.B. KiNormalSystemCall must be the first function body in the .nsc
// section.
//
//--------------------------------------------------------------------
// Routine:
//
// KiNormalSystemCall
//
// Description:
//
// Handler for normal (not fast) system calls
//
// On entry:
//
// ic off
// interrupts disabled
// v0: contains sys call #
// cover done by call
// r32-r39: sys call arguments
// CFM: sof = # args, ins = 0, outs = # args
// clear mfh bit (high fp registers are scratch per s/w convention)
//
// Return value:
//
// v0: system call return value
//
// Process:
//
//--------------------------------------------------------------------
.section .drectve, "MI", "progbits"
string " -section:.nsc,,align=0x2000"
.section .nsc = "ax", "progbits"
HANDLER_ENTRY_EX(KiNormalSystemCall, KiSystemServiceHandler)
.prologue
.unwabi @nt, EXCEPTION_FRAME
rPFS = t0
rThread = t1 // current thread
rIFS = t1
rIIP = t2
rPreds = t3
rIPSR = t4
rUNAT = t5
rSp = t6
rpT1 = t7
rpT2 = t8
rpT3 = t9
rpT4 = t10
rT0 = t11
rT1 = t12
rT2 = t13
rT3 = t14
rT4 = t15
rKDbgActive = t16
rIntNats = t17
rpSd = t16 /* -> service descriptor entry */
rArgTable = t18 /* pointer to argument table */
rArgNum = t20 /* number of arguments */
rArgBytes = t21
rRscD = t16
rRNAT = t17
rRscE = t18
rKBSPStore = t18
rBSPStore = t19
rRscDelta = t20
rBSP = t21
rPreviousMode = t22
pInvl = ps9 /* pInvl = not GUI service */
pVal = pt1
pGui = pt2 /* true if GUI call */
pNoGui = pt3 /* true if no GUI call */
pNatedArg = pt4 /* true if any input argument */
/* register is Nat'ed */
pNoCopy = pt5 /* no in-memory arguments to copy */
pCopy = pt6
pNatedSp = pt7
mov rUNAT = ar.unat
mov rPreds = pr
mov rPreviousMode = KernelMode
mov rIPSR = psr
rsm 1 << PSR_I | 1 << PSR_MFH
br.sptk Knsc_Allocate
;;
//
// N.B. KiUserSystemCall is at an offset of 0x20 from KiNormalSystemCall.
// Whenever this offset is changed, the definition of kernel system call
// stub in services.stb must be updated to reflect the new value.
//
ALTERNATE_ENTRY(KiUserSystemCall)
mov rUNAT = ar.unat
mov rPreds = pr
epc
;;
mov rIPSR = psr
rsm (1 << PSR_I) | (1 << PSR_BE)
mov rPreviousMode = UserMode
;; // stop bit needed to ensure interrupt is off
Knsc_Allocate::
#if defined(INTERRUPTION_LOGGING)
// For Conditional Interrupt Logging
movl rpT1 = KiVectorLogMask
;;
ld8 rT1 = [rpT1]
;;
tbit.z pt1 = rT1, UserSystemcallBit
(pt1) br.cond.sptk EndOfLogging1
mov rT1 = 0x80 // dummy offset for sys call
movl rpT1 = KiPcr+PcInterruptionCount
mov rT2 = b0
mov rT3 = MAX_NUMBER_OF_IHISTORY_RECORDS - 1
;;
ld4.nt1 rT4 = [rpT1] // get current count
or rT1 = rT1, rPreviousMode // kernel/user
;;
add rT0 = 1, rT4 // incr count
and rT4 = rT3, rT4 // index of current entry
add rpT2 = 0x1000-PcInterruptionCount, rpT1 // base of history
;;
st4.nta [rpT1] = rT0 // save count
shl rT4 = rT4, 5 // offset of current entry
;;
add rpT2 = rpT2, rT4 // address of current entry
;;
st8 [rpT2] = rT1, 8 // save sys call offset
;;
st8 [rpT2] = rT2, 8 // save return address
;;
st8 [rpT2] = rIPSR, 8 // save psr
;;
st8.spill [rpT2] = v0; // save sys call number
;;
// For Conditional Interrupt Logging
EndOfLogging1:
#endif // INTERRUPTION_LOGGING
//
// if sp is Nat'ed return to caller with an error status
// N.B. sp is spilled and a value of zero is saved in the IntNats field
//
tnat.nz pNatedSp = sp
movl rpT4 = KiPcr+PcInitialStack
;;
mov rSp = sp
(pNatedSp) movl rT4 = Knsc_ErrorReturn
;;
tnat.nz pNatedArg = v0 // Test service number for NAT.
cmp.eq pUser, pKrnl = UserMode, rPreviousMode
mov rBSP = ar.bsp
(pNatedSp) movl v0 = STATUS_IA64_INVALID_STACK
;;
(pUser) ld8 sp = [rpT4], PcInitialBStore-PcInitialStack // set new sp
mov rIIP = brp
mov rPFS = ar.pfs
;;
mov rT2 = ar.rsc
(pUser) ld8 rKBSPStore = [rpT4], PcKernelDebugActive-PcInitialBStore
(pNatedSp) mov bt1 = rT4
;;
(pUser) ld1 rKDbgActive = [rpT4], PcCurrentThread-PcKernelDebugActive
(pKrnl) add rpT4 = PcCurrentThread-PcInitialStack, rpT4
extr.u rIFS = rPFS, 0, 38
mov rT0 = ar.fpsr
(pUser) movl rT3 = 1 << PSR_SS | 1 << PSR_DB | 1 << PSR_TB | 1 << PSR_LP
(pUser) mov ar.rsc = r0 // put RSE in lazy mode
(pUser) add sp = -ThreadStateSaveAreaLength-TrapFrameLength, sp
(pKrnl) add sp = -TrapFrameLength, sp // allocate TF
;;
(pUser) mov rBSPStore = ar.bspstore // get user bsp store point
add rpT1 = TrStIPSR, sp // -> IPSR
add rpT2 = TrIntSp, sp // -> IntSp
;;
//
// Get the previous value of the IPRS from the stack. This is used to get user's debug
// values TB, SS, and DB from before they call the system service. KiSingleStepVector and
// KiTakenBranchVector clear these bits if they hit on the EPC instruction. This value is
// initialized to zero at thread startup and then copied if the user trap frame moves because
// of stack convertion or user call backs.
//
(pUser) ld8 rT4 = [rpT1]
st8.spill [rpT2] = rSp, TrApUNAT-TrIntSp // sp is not Nat'ed
add rpT3 = TrStIFS, sp // -> IFS
(pNatedArg) mov v0 = SERVICE_NUMBER_MASK // v0 is NATed set it to the maximum system service number.
dep rIFS = 1, rIFS, 63, 1 // set IFS.v
;;
st8 [rpT2] = rUNAT, TrPreds-TrApUNAT
st8 [rpT3] = rIFS, TrRsPFS-TrStIFS // save IFS
(pUser) and rT4 = rT3, rT4 // capture psr.db, tb, ss
;;
st8 [rpT2] = rPreds, TrIntNats-TrPreds
st8.nta [rpT3] = rPFS, TrStFPSR-TrRsPFS // save PFS
(pUser) mov rT3 = rIPSR
rBspOff = t5
extr.u rBspOff = rBSP, 0, 9
extr.u t0 = rIFS, 0, 7
extr.u rIFS = rIFS, 7, 7
;;
(pUser) mov rRNAT = ar.rnat
movl rT1 = 1 << PSR_I | 1 << PSR_MFH | 1 << PSR_BE
sub rIFS = t0, rIFS
movl t0 = 1 << PSR_I | 1 << PSR_BN
;;
(pUser) or rIPSR = rIPSR, rT4
(pUser) cmp.ne.unc pKDbg, pt2 = zero, rKDbgActive // kernel debug active?
shladd rBspOff = rIFS, 3, rBspOff
shladd rBSP = rIFS, 3, rBSP
mov rT4 = 0x1F8
(pUser) dep t0 = 1, t0, PSR_CPL, 2
;;
st8 [rpT2] = zero,TrIntGp-TrIntNats // all integer Nats are 0
st8 [rpT3] = rT0, TrStIIP-TrStFPSR // save FPSR
(pUser) andcm rT3 = rT3, rT1 // clear i, mfh, be
cmp.ge pt0 = rBspOff, rT4
or rIPSR = t0, rIPSR // set i, cpl, bn for the saved IPSR
;;
st8 [rpT1] = rIPSR // save IPSR
st8 [rpT3] = rIIP, TrBrRp-TrStIIP // save IIP
(pt2) dep rT3 = 0, rT3, PSR_DB, 1 // disable db in kernel
;;
st8.nta [rpT3] = rIIP, TrRsBSP-TrBrRp // save BRP
st8.spill [rpT2] = gp, TrIntV0-TrIntGp // Save GP even though it is a temporary
// If someone does a get/set context and GP
// is zero in the trap fram then set context
// will think IIP is a plabel and dereference i.
(pt0) add rBSP = 8, rBSP
(pUser) dep rT3 = 1, rT3, PSR_AC, 1 // enable alignment check
;;
(pt0) add rIFS = 1, rIFS
st8.nta [rpT2] = v0, TrRsRSC-TrIntV0 // Sanitize the return value in trap frame.
st8 [rpT3] = rBSP, TrRsBSPSTORE-TrRsBSP
(pUser) sub rBSP = rBSP, rBSPStore
(pUser) mov psr.l = rT3
;;
(pUser) st8 [rpT3] = rBSPStore // save user BSP Store
(pUser) dep rT2 = rBSP, rT2, RSC_MBZ1, RSC_LOADRS_LEN
(pUser) mov teb = kteb // get Teb pointer
movl rT1 = Knsc10 // Leave the EPC page
;;
st8 [rpT2] = rT2, TrRsRNAT-TrRsRSC // save RSC
(pUser) dep rKBSPStore = rBSPStore, rKBSPStore, 0, 9
mov bt0 = rT1 // Addres of Knsc10 in KSEG0.
;;
(pUser) mov ar.bspstore = rKBSPStore // switch to kernel BSP
movl gp = _gp // set up kernel gp
;;
(pUser) mov ar.rnat = rRNAT // preserve uer RNAT bits
(pUser) st8 [rpT2] = rRNAT // save RNAT in trap frame
(pUser) mov ar.rsc = RSC_KERNEL // turn rse on, in kernel mode
(pNatedSp) br.spnt bt1
br.sptk bt0
;;
//
// Register aliases for rest of procedure
//
#ifdef _CAPKERN
.regstk 8, 9, 2, 0
#else
.regstk 8, 9, 0, 0
#endif
rScallGp = loc0
rpThObj = loc1 // pointer to thread object
rSavedV0 = loc2 // saved v0 for GUI thread
rpEntry = loc3 // syscall routine entry point
rSnumber = loc4 // service number
rSdOffset = loc5
rCount = loc6 /* index of the first Nat'ed input register */
rUserSp = loc7
rUserPFS = loc8
//
// The following code is an out of band error path. Since we always
// branch between the EPC page to Knsc10 below.
//
Knsc_Invalid:
//
// If rSdOffset == SERVICE_TABLE_TEST then service number is GUI service
//
cmp.ne pInvl, pVal = SERVICE_TABLE_TEST, rSdOffset
mov v0 = 1
(pVal) br.call.sptk brp = PsConvertToGuiThread
;;
cmp4.eq pVal, p0 = 0, v0 // pVal = 1, if successful
movl v0 = STATUS_INVALID_SYSTEM_SERVICE // invalid, if not successful
;;
add rpEntry = @gprel(KeServiceDescriptorTableShadow),gp // Load address of table of shadow table
// Used by KiSystemServiceRepeat and the
// fall through case below.
(pVal) br.sptk KiSystemServiceRepeat // br if successful
(pInvl) br.spnt Knsc_ErrorReturn // br to KiSystemServiceExit if
;; // system call out of range
//
// The conversion to a Gui thread failed. The correct return value is encoded
// in a byte table indexed by the service number that is at the end of the
// service address table. The encoding is as follows:
;;
//
// 0 - return 0.
// -1 - return -1.
// 1 - return status code.
//
add rpT1 = SERVICE_TABLE_TEST, rpEntry // Get addr of the GUI table
;;
ld8 rpT2 = [rpT1], SdLimit - SdBase // Get the table base.
;;
ld4 rT1 = [rpT1] // Get the limit.
add rpT2 = rpT2, rSnumber // Index by the server number to the correct byte.
;;
shladd rpT2 = rT1, 3, rpT2 // Calculate the end of the table.
cmp4.ltu pt1, pt0 = rSnumber, rT1 // pt1 = number < limit
;; // pt1 == 0 implies return an ntstatus.
(pt1) ld1 rT1 = [rpT2] // Load the flag byte if within table
;;
sxt1 rT2 = rT1 // Sign extend the result
(pt1) cmp.eq pt0, pt1 = 1, rT1 // Test for 1 which means return STATUS_INVALID_SYSTEM_SERVICE
;;
(pt1) mov v0 = rT2 // Use the flag value if needed.
br.sptk Knsc_ErrorReturn // br to KiSystemServiceExit
;;
//
// Now running with user banked registers and on kernel backing store
//
// Can now take TLB faults
//
// Preserve the output args (as in's) in the local frame until it's ready to
// call the specified system service because other calls may have to be made
// before that. Also allocate locals and one out.
//
Knsc10:
#ifdef _CAPKERN
alloc rUserPFS = 8, 9, 2, 0
#else
alloc rUserPFS = 8, 9, 0, 0
#endif
ld8 rpThObj = [rpT4]
add rpT1 = TrEOFMarker, sp
;;
mov rUserSp = ar.bsp
movl rT1 = FPSR_FOR_KERNEL // initial fpsr value
;;
mov ar.fpsr = rT1 // set fpsr
movl rT3 = KTRAP_FRAME_EOF | SYSCALL_FRAME
;;
st8 [rpT1] = rT3, TrNewBSP - TrEOFMarker
mov rCount = pr // save local predicates
shladd rUserSp = rIFS, 3, rUserSp
;;
st8 [rpT1] = rUserSp // Save NewBSP.
mov rSavedV0 = v0 // save syscall # across call
mov rUserSp = rSp
add rpT2 = ThServiceTable, rpThObj // Address of thread service table
add rpT3 = ThTrapFrame, rpThObj
mov pr = zero, -1
;;
ld8 rT4 = [rpT3], ThPreviousMode-ThTrapFrame
//
// the following code uses the predicates to determine the first of
// the 8 input argument register whose Nat bit is set. The result
// is saved in register rCount and used to determine whether to fail
// the system call in Knsc_CheckArguments.
//
cmp.eq p1 = r32, r32
cmp.eq p9 = r33, r33
cmp.eq p17 = r34, r34
cmp.eq p25 = r35, r35
cmp.eq p33 = r36, r36
cmp.eq p41 = r37, r37
cmp.eq p49 = r38, r38
cmp.eq p57 = r39, r39
ld8 rpEntry = [rpT2] // Load service describtor
add rpT1 = TrTrapFrame, sp // -> TrTrapFrame
shr.u rSdOffset = rSavedV0, SERVICE_TABLE_SHIFT // isolate service descriptor offset
;;
ld1 rT0 = [rpT3] // rT0 = thread's previous mode
st1 [rpT3] = rPreviousMode // set new thread previous mode
mov rT1 = pr
;;
st8 [rpT1] = rT4, TrPreviousMode-TrTrapFrame
dep rT1 = 0, rT1, 0, 1 // clear bit 0
mov pr = rCount, -1 // restore local predicates
;;
and rSdOffset = SERVICE_TABLE_MASK, rSdOffset
extr.u rSnumber = rSavedV0, 0, 12
czx1.r rCount = rT1 // determine which arg is Nat'ed
st4 [rpT1] = rT0
FAST_ENABLE_INTERRUPTS
(pKDbg) br.call.spnt brp = KiLoadKernelDebugRegisters
;;
PROLOGUE_END
//
// If the specified system service number is not within range, then
// attempt to convert the thread to a GUI thread and retry the service
// dispatch.
//
// N.B. The system call arguments, the system service entry point (rpEntry),
// the service number (Snumber)
// are implicitly preserved in the register stack while attempting to
// convert the thread to a GUI thread. v0 and the gp must be preserved
// explicitly.
//
// Validate sys call number
//
#ifdef _CAPKERN
br.call.sptk.few b0=_CAP_ThreadID#;;
#endif
ALTERNATE_ENTRY(KiSystemServiceRepeat)
add rpT1 = ThTrapFrame, rpThObj // rpT1 -> ThTrapFrame
add rpSd = rSdOffset, rpEntry // service descriptor -> rpSd
cmp4.ne pNoGui, pGui = SERVICE_TABLE_TEST, rSdOffset // check if GUI system service
;;
st8 [rpT1] = sp // set trap frame address
ld8 rT4 = [rpSd], SdLimit-SdBase // rT4 = table base
add rpT1 = TeGdiBatchCount, teb
;; // We assume SdBase == 0
#if SdBase
#error "SdBase not equal zero."
#endif
KiSystemServiceTeb::
ld4 rT1 = [rpSd] // rT1 = table limit
(pGui) ld4 rT2 = [rpT1] // get number of batched calls
add rScallGp = -8, rT4 // The GP values is just before the Base
;;
(pGui) cmp4.eq pNoGui, pGui = 0, rT2 // if bacth calls is non-zero then call flush.
cmp4.ltu pt1, pt0 = rSnumber, rT1 // pt1 = number < limit
shladd rpT3 = rSnumber, 3, rT4 // -> entry point address
;;
(pt1) ld8 rScallGp = [rScallGp] // load syscall gp
(pt1) add rpT1 = @gprel(KeGdiFlushUserBatch), gp
(pt0) br.dpnt Knsc_Invalid // The system call is out of range.
;;
ld8 rpEntry = [rpT3] // -> sys call routine plabel
(pGui) ld8 rpT1 = [rpT1] // get KeGdiFlushUserBatch()
(pNoGui) br.dptk Knsc_NotGUI // Not a GUI thread
;;
Knsc_GUI:
//
// If the system service is a GUI service and the GDI user batch queue is
// not empty, then call the appropriate service to flush the user batch.
//
ld8 rT1 = [rpT1], PlGlobalPointer-PlEntryPoint // get entry point
mov rSavedV0 = rpSd // save service descriptor
;;
ld8 gp = [rpT1] // set global pointer
mov bt0 = rT1
br.call.sptk brp = bt0 // call to KeGdiFlushUserBatch
;;
#if DBG
mov rpSd = rSavedV0 // restore service descriptor
;;
#endif
//
// Check for Nat'ed input argument register and
// Copy in-memory arguments from caller stack to kernel stack
//
Knsc_NotGUI:
#ifdef _CAPKERN
movl out0 = @fptr(KiNormalSystemCall)
mov out1 = rpEntry
br.call.sptk.few b0=_CAP_Start_Profiling2
#endif
#if DBG // checked build code
add rpT1 = SdCount-SdLimit, rpSd // rpT1 -> count table address
;;
ld8 rpT2 = [rpT1] // service count table address
;;
cmp.ne pt0 = rpT2, zero // if zero, no table defined
shladd rpT3 = rSnumber, 2, rpT2 // compute service count address
;;
(pt0) ld4 rT1 = [rpT3] // increment count
;;
(pt0) add rT1 = 1, rT1
;;
(pt0) st4 [rpT3] = rT1 // store result
#endif // DBG
and rArgNum = 0xf, rpEntry // extract # of arguments
and rpEntry = -16, rpEntry // clear least significant 4 bit
cmp.ne pNatedArg = zero, zero // assume no Nat'ed argument
mov gp = rScallGp
movl v0 = STATUS_INVALID_PARAMETER_1
;;
cmp.geu pNoCopy, pCopy = 8, rArgNum // any in-memory arguments ?
mov bt0 = rpEntry
mov rSp = rUserSp
;;
add v0 = rCount, v0 // set return status
dep rPFS = 0, rUserPFS, 62, 2
add rArgBytes = -8, rArgNum // rArgBytes contion the number of 16 byte chunks to copy.
;;
(pNoCopy) cmp.gt pNatedArg = rArgNum, rCount // any Nat'ed argument ?
mov ar.pfs = rPFS // Make the user PFS look like our PFS
(pCopy) cmp.gt pNatedArg = 8, rCount
;;
alloc rT1 = 0,0,8,0 // output regs are ready
(pNatedArg) br.spnt Knsc_ErrorReturn // exit if Nat'ed arg found
(pNoCopy) br.sptk KiSystemServiceEnd // skip copy if no memory args
//
// Get the caller's sp. If caller was user mode, validate the stack pointer
// ar.unat contains Nat for previous sp (in TrIntSp)
//
(pUser) movl rT2 = MI_USER_PROBE_ADDRESS // User sp limit
;;
add rArgBytes = -1, rArgBytes // decrement count
(pUser) tnat.nz.unc pt1, pt2 = rSp // test user sp for Nat
add rpT1 = STACK_SCRATCH_AREA, rSp // adjust previous sp for scratch area
;;
(pt2) cmp.geu pt1 = rSp, rT2 // user sp >= PROBE ADDRESS ?
add rpT2 = STACK_SCRATCH_AREA, sp // adjust for scratch area
;;
add rpT3 = 8, rpT1 // second source pointer
add rpT4 = 8, rpT2 // second destination pointer
(pt1) mov rpT1 = rT2 // set out of range (includes Nat case)
;;
//
// At this point rpT1, rpT3 -> source and rpT2, rpT4 -> destination
// Copy rArgBytes from source to destination, 16 bytes per iteration
// Exceptions handled by KiSystemServiceHandler
//
KiSystemServiceStart::
Knsc_CopyLoop:
ld8 rT1 = [rpT1], 16 // get caller arg
ld8 rT2 = [rpT3], 16 // get caller arg
cmp4.gt pt1 = rArgBytes, zero // loop if # bytes > 0
;;
nop.m 0
nop.f 0
add rArgBytes = -1, rArgBytes // decrement count
st8 [rpT2] = rT1, 16 // store in kernel stack
st8 [rpT4] = rT2, 16 // store in kernel stack
(pt1) br.dpnt Knsc_CopyLoop
;;
KiSystemServiceEnd::
//
// N.B. t0 is reserved to pass trap frame address to NtContinue()
//
mov t0 = sp // for NtContinue()
movl rT1 = KiSystemServiceExit
;;
//
// This is not call since that would change the stack registers.
// we want to got to the routine with the same argument regisers
// that we entered with.
//
mov brp = rT1
br.sptk bt0 // call routine(args)
;;
KiSystemServiceExit::
//
// make the current bsp the same as the saved BSP in the trap frame
//
add rpT2 = TrStIPSR, sp
cover
;;
#ifdef _CAPKERN
alloc rT1 = ar.pfs, 0, 0, 1, 0
movl gp = _gp // restore to kernel GP value
;;
CAPEND(KiNormalSystemCall)
br.call.sptk.few b0=_CAP_SetCPU#
;;
add rpT2 = TrStIPSR, sp
;;
#endif
//
// At this point:
// ar.unat contains Nat for previous sp (ar.unat is preserved register)
// sp -> trap frame
//
// Returning from "call": no need to restore volatile state
// *** TBD *** : zero volatile state for security? PPC does zero, mips does not.
//
//
// Update PbSystemCalls
//
//
// Restore thread previous mode and trap frame address from the trap frame
//
lfetch [rpT2], TrTrapFrame-TrStIPSR
movl rpT1 = KiPcr + PcPrcb // rpT1 -> Prcb
;;
ld8 rT2 = [rpT2], TrPreviousMode-TrTrapFrame
ld8 rpT3 = [rpT1], PcCurrentThread-PcPrcb
;;
FAST_DISABLE_INTERRUPTS
ld8 rThread = [rpT1] // rpT1 -> current thread
add rpT3 = PbSystemCalls, rpT3 // pointer to sys call counter
;;
ld4 rT1 = [rpT3] // rT1.4 = counter value
ld4 rT3 = [rpT2], TrRsRSC-TrPreviousMode
add rpT4 = ThTrapFrame, rThread // -> thread trap frame
add rpT1 = ThApcState+AsUserApcPending, rThread
;;
(pKrnl) ld8 rRscE = [rpT2] // load user RSC
(pUser) ld1 rT4 = [rpT1], ThAlerted - ThApcState - AsUserApcPending
add rT1 = 1, rT1 // increment
;;
st8 [rpT4] = rT2, ThPreviousMode-ThTrapFrame
st4 [rpT3] = rT1 // store
;;
st1 [rpT4] = rT3 // restore prevmode in thread
mov t0 = sp // set t0 to trap frame
(pKrnl) br.spnt Knsc_CommonExit // br if returning to kernel
;;
st1 [rpT1] = zero
cmp4.eq pt0 = zero, rT4
(pt0) br.sptk KiUserServiceExit
;;
alloc rT1 = ar.pfs, 0, 1, 2, 0
add loc0 = TrIntV0, sp
add rpT1 = TrIntTeb, sp
//
// v0 is saved in the trap frame so the return status can be restored
// by NtContinue after the user APC has been dispatched.
//
ssm 1 << PSR_I // enable interrupts
mov rT3 = APC_LEVEL
;;
SET_IRQL (rT3)
;;
st8.nta [loc0] = v0 // save return status in trap frame
movl gp = _gp // restore to kernel gp value
st8.nta [rpT1] = teb
#ifdef _CAPKERN
mov rpT1 = out0
;;
CAPSTART(KiNormalSystemCall,KiApcInterrupt)
mov out0 = rpT1
#endif
mov out1 = sp
br.call.sptk brp = KiApcInterrupt
;;
CAPEND(KiNormalSystemCall)
rsm 1 << PSR_I // disable interrupt
ld8.nta v0 = [loc0] // restore system call return status
SET_IRQL (zero)
HANDLER_EXIT(KiNormalSystemCall)
//
// KiServiceExit is carefully constructed as a continuation of
// KiNormalSystemCall. From now on, t0 must be preserved because it is
// used to hold the trap frame address. v0 must be preserved because it
// is holding the return status.
// This section of code is also written to overwrite the tempoary interger
// registers so that no information is leaked back to the user.
//
HANDLER_ENTRY_EX(KiServiceExit, KiSystemServiceHandler)
.prologue
.unwabi @nt, EXCEPTION_FRAME
.vframe t0
mov t0 = sp
;;
ALTERNATE_ENTRY(KiUserServiceExit)
(pUser) add rpT3 = TrStIPSR, t0
;;
(pUser) ld8 rpT3 = [rpT3]
invala
;;
(pUser) tbit.nz.unc pUDbg = rpT3, PSR_DB // if user psr.db set, load user DRs
(pUDbg) br.call.spnt brp = KiLoadUserDebugRegisters
;;
add rpT1 = TrRsRSC, t0 // -> user RSC
add rpT2 = TrRsBSP, t0 // -> user BSP Store
;;
PROLOGUE_END
ld8 rRscE = [rpT1], TrRsRNAT-TrRsRSC // load user RSC
ld8 rBSP = [rpT2]
mov rRscD = RSC_KERNEL_DISABLED
;;
//
// Switch to user BSP -- put in load intensive mode to overlap RS restore
// with volatile state restore.
//
ld8 rRNAT = [rpT1] // user RNAT
extr.u rRscDelta = rRscE, RSC_MBZ1, RSC_LOADRS_LEN
dep rRscE = r0, rRscE, RSC_MBZ1, RSC_LOADRS_LEN
movl rpT1 = KiIA64RseNumOfMaxDirty
;;
.regstk 0, 0, 1, 0
alloc rT2 = 0,0,1,0
ld8 rpT1 = [rpT1]
dep rRscD = rRscDelta, rRscD, RSC_LOADRS, RSC_LOADRS_LEN
sub rBSPStore = rBSP, rRscDelta
shr.u out0 = rRscDelta, 3
;;
cmp.gt pt0 = rpT1, out0
sub out0 = rpT1, out0
(pt0) br.call.sptk brp = KeScrubBackingStoreRegisters
;;
alloc rT2 = 0, 0, 0, 0
mov ar.rsc = rRscD // turn off RSE
;;
loadrs // pull in user regs
;;
mov ar.bspstore = rBSPStore // restore user BSP
;;
mov ar.rnat = rRNAT // restore user RNAT
Knsc_CommonExit:
add rpT1 = TrIntSp, t0
movl rpT2 = KiPcr+PcCurrentThread
add rpT4 = TrStIPSR, t0
add rpT3 = TrStIIP, t0
;;
ld8 rSp = [rpT1], TrPreds-TrIntSp
.pred.rel "mutex",pUser,pKrnl
(pUser) ld8 rT1 = [rpT2], PcHighFpOwner-PcCurrentThread
(pKrnl) add rpT2 = PcKernelDebugActive-PcCurrentThread, rpT2
;;
ld8 rIPSR = [rpT4], TrStIFS-TrStIPSR
(pUser) ld8 rT2 = [rpT2]
(pKrnl) mov rPreviousMode = KernelMode
;;
ld8 rIIP = [rpT3], TrStFPSR-TrStIIP
(pKrnl) ld1 rT2 = [rpT2]
(pUser) mov rPreviousMode = UserMode
;;
mov ar.rsc = rRscE // restore RSC
(pUser) cmp.ne.unc pt0 = rT1, rT2
;;
ld8 rT3 = [rpT3] // load fpsr
ld8 rIFS = [rpT4] // load IFS
(pt0) dep rIPSR = 1, rIPSR, PSR_DFH, 1
;;
(pKrnl) cmp.ne.unc pKDbg, pt2 = rT2, r0 // hardware debug active?
dep rIPSR = 0, rIPSR, PSR_MFH, 1 // psr.mfh
;;
ld8 rPreds = [rpT1], TrApUNAT-TrPreds
(pt2) dep rIPSR = 0, rIPSR, PSR_DB, 1 // disable db in kernel
(pKDbg) dep rIPSR = 1, rIPSR, PSR_DB, 1 // enable db in kernel
;;
ld8 rUNAT = [rpT1]
mov t11 = r0 // Sanitize
mov pr = rPreds // restore preds
;;
mov ar.csd = r0 // Sanitize CSD
rsm 1 << PSR_IC // disable PSR.ic
mov ar.unat = rUNAT // restore UNAT
;;
srlz.d // must serialize
mov ar.fpsr = rT3 // restore FPSR
;;
//
// The system return case must be handle separately from the user return
// case, so we can determine which stack we are currently using in case
// a trap is take before we can return.
//
mov sp = rSp
//
// Restore status registers
//
mov cr.ipsr = rIPSR // restore previous IPSR
mov cr.ifs = rIFS // restore previous IFS
mov cr.iip = rIIP // restore previous IIP
;;
//
// Resume at point of interruption (rfi must be at end of instruction group)
//
rfi
;;
Knsc_ErrorReturn:
//
// N.B. t0 is reserved to pass trap frame address to NtContinue()
//
add rPFS = TrRsPFS, sp
;;
ld8 rPFS = [rPFS]
;;
dep rPFS = 0, rPFS, 62, 2
;;
mov ar.pfs = rPFS
movl rT1 = KiSystemServiceExit
;;
mov brp = rT1
br.ret.sptk brp
;;
HANDLER_EXIT(KiServiceExit)
.text
//++
//--------------------------------------------------------------------
// Routine:
//
// KiGenericExceptionHandler
//
// Description:
//
// First level handler for heavyweight exceptions.
//
// On entry:
//
// ic off
// interrupts disabled
// current frame covered
// rHIFA must be initialized to a non-nated value
//
// Process:
//
// Notes:
//
// PCR page mapped with TR
//--------------------------------------------------------------------
HANDLER_ENTRY(KiGenericExceptionHandler)
.prologue
.unwabi @nt, EXCEPTION_FRAME
ALLOCATE_TRAP_FRAME
//
// sp points to trap frame
//
// Save exception handler routine in kernel register
//
mov rkHandler = rHHandler
movl rTH3 = KiPcr+PcSavedIFA
;;
st8 [rTH3] = rHIFA
//
// Save interruption state in trap frame and switch to user bank registers
// and switch to kernel backing store.
//
SAVE_INTERRUPTION_STATE
//
// Now running with user banked registers and on kernel stack.
//
// Can now take TLB faults
//
// sp -> trap frame
//
br.call.sptk brp = KiSaveTrapFrame
;;
//
// Register aliases
//
rpT1 = t0
rpT2 = t1
rpT3 = t2
rT1 = t3
rT2 = t4
rT3 = t5
rPreviousMode = t6 // previous mode
rT4 = t7
mov rT1 = rkHandler // restore address of interruption routine
movl rpT1 = KiPcr+PcSavedIIM
;;
ld8 rT2 = [rpT1], PcSavedIFA-PcSavedIIM // load saved IIM
add rpT2 = TrEOFMarker, sp
add rpT3 = TrStIIM, sp
;;
ld8 rT4 = [rpT1] // load saved IFA
movl rT3 = KTRAP_FRAME_EOF | EXCEPTION_FRAME
;;
mov t8 = ar.bsp
st8 [rpT2] = rT3, TrNewBSP-TrEOFMarker
st8 [rpT3] = rT2, TrStIFA-TrStIIM // save IIM in trap frame
;;
.regstk 0, 1, 2, 0 // must match KiExceptionExit
alloc out1 = 0,1,2,0
st8 [rpT3] = rT4 // save IFA in trap frame
mov bt0 = rT1 // set destination address
PROLOGUE_END
//
// Dispatch the exception via call to address in rkHandler
//
.pred.rel "mutex",pUser,pKrnl
add rpT1 = TrPreviousMode, sp // -> previous mode
(pUser) mov rPreviousMode = UserMode // set previous mode
(pKrnl) mov rPreviousMode = KernelMode
;;
st4 [rpT1] = rPreviousMode // save in trap frame
st8 [rpT2] = t8 // Save new BSP for debugging
(pKDbg) br.call.spnt brp = KiLoadKernelDebugRegisters
;;
FAST_ENABLE_INTERRUPTS // enable interrupt
mov out0 = sp // trap frame pointer
br.call.sptk brp = bt0 // call handler(tf) (C code)
;;
.pred.rel "mutex",pUser,pKrnl
cmp.ne pt0, pt1 = v0, zero
(pUser) mov out1 = UserMode
(pKrnl) mov out1 = KernelMode
//
// does not return
//
mov out0 = sp
(pt1) br.cond.sptk KiAlternateExit
(pt0) br.call.spnt brp = KiExceptionDispatch
;;
//
// Interrupts need to be disable be for mess up the stack such that
// the unwind code does not work.
//
FAST_DISABLE_INTERRUPTS
;;
ALTERNATE_ENTRY(KiExceptionExit)
//++
//
// Routine Description:
//
// This routine is called to exit from an exception.
//
// N.B. This transfer of control occurs from:
//
// 1. fall-through from above
// 2. exit from continue system service
// 3. exit from raise exception system service
// 4. exit into user mode from thread startup
//
// Arguments:
//
// loc0 - pointer to trap frame
// sp - pointer to high preserved float save area + STACK_SCRATCH_AREA
//
// Return Value:
//
// Does not return.
//
//--
//
// upon entry of this block, s0 and s1 must be set to the address of
// the trap and the exception frames respectively.
//
// preserved state is restored here because they may have been modified
// by SetContext
//
LEAF_SETUP(0, 1, 2, 0) // must be in sync with
// KiGenericExceptionHandler
mov loc0 = s0 // -> trap frame
mov out0 = s1 // -> exception frame
;;
br.call.sptk brp = KiRestoreExceptionFrame
;;
mov sp = loc0 // deallocate exception
// frame by restoring sp
ALTERNATE_ENTRY(KiAlternateExit)
//
// sp -> trap frame addres
//
// Interrupts disabled from here to rfi
//
FAST_DISABLE_INTERRUPTS
;;
RETURN_FROM_INTERRUPTION(Ked)
//
// Add four nop cycles (two bundles) bundles of NOP's to
// workaround McKinly Errata.
//
nop.m 0
;;
nop.m 0
;;
nop.m 0
;;
nop.m 0
;;
HANDLER_EXIT(KiGenericExceptionHandler)
//--------------------------------------------------------------------
// Routine:
//
// KiExternalInterruptHandler
//
// Description:
//
// First level external interrupt handler. Dispatch highest priority
// pending interrupt.
//
// On entry:
//
// ic off
// interrupts disabled
// current frame covered
//
// Process:
//--------------------------------------------------------------------
HANDLER_ENTRY(KiExternalInterruptHandler)
//
// Now running with user banked registers and on kernel backing store.
// N.B. sp -> trap frame
//
// Can now take TLB faults
//
.prologue
.unwabi @nt, INTERRUPT_FRAME
.regstk 0, 4, 2, 0
alloc loc0 = 0, 4, 2, 0
//
// Register aliases
//
rVector = loc0
rSaveGP = loc1
rpSaveIrql = loc2 // -> old irql in trap frame
rOldIrql = loc3
rpT1 = t0
rpT2 = t1
rpT3 = t2
rT1 = t3
rT2 = t4
rT3 = t5
rPreviousMode = t6 // previous mode
rNewIrql = t7
pEOI = pt1
movl rOldIrql = KiPcr+PcCurrentIrql
;;
//
// Save kernel gp
//
mov rSaveGP = gp
//
// Get the vector number
//
mov rVector = cr.ivr // for A0 2173 workaround
br.call.sptk brp = KiSaveTrapFrame
;;
#if defined(INTERRUPTION_LOGGING)
movl t0 = KiVectorLogMask
;;
ld8 t1 = [t0]
;;
tbit.z pt1 = t1, ExternalInterruptBit
(pt1) br.cond.sptk EndOfLogging2
movl t0 = KiPcr+PcInterruptionCount
;;
ld4.nt1 t0 = [t0]
mov t1 = MAX_NUMBER_OF_IHISTORY_RECORDS - 1
;;
add t0 = -1, t0
movl t2 = KiPcr+0x1000
;;
and t1 = t0, t1
;;
shl t1 = t1, 5
;;
add t0 = t2, t1
;;
add t0 = 24, t0
;;
st8.nta [t0] = rVector // save ivr in the Extra0 field
// For Conditional Interrupt Logging
EndOfLogging2:
#endif // defined(INTERRUPTION_LOGGING)
//
// Exit if spurious interrupt vector
//
cmp.eq pt0, pt1 = 0xF, rVector
ld1 rOldIrql = [rOldIrql] // The Irql in the PCR has been santized in
// SAVE_INTERRUPTION_STATE.
(pt0) br.spnt Keih_Exit
;;
//
// sp -> trap frame
//
add rpSaveIrql = TrEOFMarker, sp
movl rT3 = KTRAP_FRAME_EOF | INTERRUPT_FRAME
;;
st8 [rpSaveIrql] = rT3, TrPreviousMode - TrEOFMarker
.pred.rel "mutex",pUser,pKrnl
(pUser) mov rPreviousMode = UserMode // set previous mode
(pKrnl) mov rPreviousMode = KernelMode
;;
st4 [rpSaveIrql] = rPreviousMode, TrOldIrql-TrPreviousMode
;;
st4 [rpSaveIrql] = rOldIrql // save irql in trap frame
(pKDbg) br.call.spnt brp = KiLoadKernelDebugRegisters
;;
PROLOGUE_END
Keih_InterruptLoop:
//
// Dispatch the interrupt: first raise the IRQL to the level of the new
// interrupt and enable interrupts.
//
GET_IRQL_FOR_VECTOR(p0, rNewIrql, rVector)
movl rpT3 = KiPcr+PcInterruptRoutine // -> interrupt routine table
;;
shladd rpT3 = rVector, INT_ROUTINES_SHIFT, rpT3 // base + offset
SET_IRQL (rNewIrql) // raise to new level
movl rpT1 = KiPcr + PcPrcb // pointer to prcb
;;
ld8 out0 = [rpT3] // out0 -> interrupt dispatcher
ld8 rpT1 = [rpT1]
mov out1 = sp // out1 -> trap frame
;;
FAST_ENABLE_INTERRUPTS
add rpT1 = PbInterruptCount, rpT1 // -> interrupt counter
;;
ld4.nta rT1 = [rpT1] // counter value
ld8.nta rT2 = [out0], PlGlobalPointer-PlEntryPoint // get entry point
;;
add rT1 = 1, rT1 // increment
;;
//
// Call the interrupt dispatch routine via a function pointer
//
st4.nta [rpT1] = rT1 // store, ignore overflow
;;
ld8.nta gp = [out0], PlEntryPoint-PlGlobalPointer
mov bt0 = rT2
br.call.sptk brp = bt0 // call ISR
;;
ld4 rOldIrql = [rpSaveIrql]
mov gp = rSaveGP
END_OF_INTERRUPT // end of interrupt processing
IO_END_OF_INTERRUPT(rVector,rT1,rT2,pEOI)
;;
srlz.d
//
// Disable interrupts and restore IRQL level
//
FAST_DISABLE_INTERRUPTS
cmp.gt pt0 = APC_LEVEL, rOldIrql
mov t0 = APC_LEVEL
;;
(pt0) br.spnt ke_call_apc
ke_call_apc_resume:
LOWER_IRQL (rOldIrql)
//
// Get the next vector number
//
mov rVector = cr.ivr // for A0 2173 workaround
;;
//
// Loop if more interrupts pending (spurious vector == 0xF)
//
cmp.ne pt0 = 0xF, rVector
;;
(pt0) br.spnt Keih_InterruptLoop
br.sptk Keih_Exit
;;
ke_call_apc:
LOWER_IRQL (t0)
ke_call_apc1:
movl t0 = KiPcr+PcApcInterrupt
;;
ld1 t1 = [t0]
st1 [t0] = r0
;;
cmp.eq pt0 = r0, t1
;;
(pt0) br.sptk ke_call_apc_resume
FAST_ENABLE_INTERRUPTS
mov out1 = sp
br.call.sptk brp = KiApcInterrupt
FAST_DISABLE_INTERRUPTS
br.sptk ke_call_apc1
Keih_Exit:
RETURN_FROM_INTERRUPTION(Keih)
HANDLER_EXIT(KiExternalInterruptHandler)
//--------------------------------------------------------------------
// Routine:
//
// KiPanicHandler
//
// Description:
//
// Handler for panic. Call the bug check routine. A place
// holder for now.
//
// On entry:
//
// running on kernel memory stack and kernel backing store
// sp: top of stack -- points to trap frame
// interrupts enabled
//
// IIP: address of bundle causing fault
//
// IPSR: copy of PSR at time of interruption
//
// Output:
//
// sp: top of stack -- points to trap frame
//
// Return value:
//
// none
//
// Notes:
//
// If ISR code out of bounds, this code will inovke the panic handler
//
//--------------------------------------------------------------------
HANDLER_ENTRY(KiPanicHandler)
.prologue
.unwabi @nt, EXCEPTION_FRAME
mov ar.k1 = rTH1 // Save Old Stack Limit
mov ar.k2 = rTH2 // Save Old BSP Limit
mov ar.k4 = rHVector
mov rkHandler = rHHandler
;;
mov rHpT1 = KERNEL_STACK_SIZE
movl rTH1 = KiPcr+PcPanicStack
;;
ld8 sp = [rTH1], PcInitialStack-PcPanicStack
movl rTH2 = KiPcr+PcSystemReserved
;;
st4 [rTH2] = rPanicCode
st8 [rTH1] = sp, PcStackLimit-PcInitialStack
sub rTH2 = sp, rHpT1
;;
st8 [rTH1] = rTH2, PcInitialBStore-PcStackLimit
mov rHpT1 = KERNEL_BSTORE_SIZE
;;
st8 [rTH1] = sp, PcBStoreLimit-PcInitialBStore
add rTH2 = rHpT1, sp
add sp = -TrapFrameLength, sp
;;
st8 [rTH1] = rTH2, PcSavedIFA - PcBStoreLimit
;;
st8 [rTH1] = rHIFA, PcSavedIIM - PcSavedIFA
mov rTH2 = cr.iha
;;
st8 [rTH1] = rTH2 // save iha in the iim field
SAVE_INTERRUPTION_STATE
//
// switch to kernel back
//
bsw.0
;;
rpRNAT = h16
rpBSPStore= h17
rBSPStore = h18
rKBSPStore= h19
rRNAT = h20
rKrnlFPSR = h21
mov ar.rsc = r0 // put RSE in lazy mode
movl rKBSPStore = KiPcr+PcInitialBStore
;;
mov rBSPStore = ar.bspstore
mov rRNAT = ar.rnat
;;
ld8 rKBSPStore = [rKBSPStore]
add rpRNAT = TrRsRNAT, sp
add rpBSPStore = TrRsBSPSTORE, sp
;;
st8 [rpRNAT] = rRNAT
st8 [rpBSPStore] = rBSPStore
dep rKBSPStore = rBSPStore, rKBSPStore, 0, 9
;;
mov ar.bspstore = rKBSPStore
mov ar.rsc = RSC_KERNEL
;;
//
// switch to user bank
//
bsw.1
;;
alloc out0 = ar.pfs, 0, 0, 5, 0
;;
PROLOGUE_END
br.call.sptk brp = KiSaveTrapFrame
;;
movl rpT1 = KiPcr+PcSavedIIM
;;
ld8 rT2 = [rpT1], PcSavedIFA-PcSavedIIM // load iha
;;
ld8 rT3 = [rpT1] // load ifa
add rpT3 = TrStIHA, sp
;;
st8 [rpT3] = rT2, TrStIFA-TrStIHA
;;
st8 [rpT3] = rT3
// Raise the IRQL to HIGH
add rpT2 = TrOldIrql, sp
movl rpT1 = KiPcr + PcCurrentIrql
;;
ld1 rT1 = [rpT1]
mov rT2 = HIGH_LEVEL
;;
st1 [rpT2] = rT1
st1 [rpT1] = rT2
dep.z rT3 = rT2, TPR_MIC, TPR_MIC_LEN
;;
mov cr.tpr = rT3
mov out2 = ar.k4 // 3rd argument: caller of panic
mov out3 = rkHandler
movl out0 = KiPcr+PcSystemReserved
;;
ld4 out0 = [out0] // 1st argument: panic code
mov out1 = sp // 2nd argument: trap frame
br.call.sptk.many brp = KeBugCheckEx
;;
nop.m 0
nop.m 0
nop.i 0
;;
HANDLER_EXIT(KiPanicHandler)
//++
//--------------------------------------------------------------------
// Routine:
//
// VOID
// KiSaveTrapFrame(PKTRAP_FRAME)
//
// Description:
//
// Save volatile application state in trap frame.
// Note: sp, brp, UNAT, RSC, predicates, BSP, BSP Store,
// PFS, CSD, and FPSR saved elsewhere.
//
// Input:
//
// sp: points to trap frame
// ar.unat: contains the Nats of sp, gp, teb, which have already
// been spilled into the trap frame.
//
// Output:
//
// None
//
// Return value:
//
// none
//
//--------------------------------------------------------------------
LEAF_ENTRY(KiSaveTrapFrame)
.regstk 0, 3, 0, 0
//
// Local register aliases
//
rpTF1 = loc0
rpTF2 = loc1
rL1 = t0
rL2 = t1
rL3 = t2
rL4 = t3
rL5 = t4
//
// (ar.unat unchanged from point of save)
// Spill temporary (volatile) integer registers
//
alloc loc2 = 0,3,0,0 // don't destroy static register
add rpTF1 = TrIntT0, sp // -> t0 save area
add rpTF2 = TrIntT1, sp // -> t1 save area
;;
.mem.offset 0,0
st8.spill [rpTF1] = t0, TrIntT2-TrIntT0 // spill t0 - t22
.mem.offset 8,0
st8.spill [rpTF2] = t1, TrIntT3-TrIntT1
;;
.mem.offset 0,0
st8.spill [rpTF1] = t2, TrIntT4-TrIntT2
.mem.offset 8,0
st8.spill [rpTF2] = t3, TrIntT5-TrIntT3
;;
.mem.offset 0,0
st8.spill [rpTF1] = t4, TrIntT6-TrIntT4
.mem.offset 8,0
st8.spill [rpTF2] = t5, TrIntT7-TrIntT5
mov rL2 = bt0
;;
mov rL1 = ar.csd
mov rL4 = ar.ccv
mov rL3 = bt1
;;
.mem.offset 0,0
st8.spill [rpTF1] = t6, TrIntT8-TrIntT6
.mem.offset 8,0
st8.spill [rpTF2] = t7, TrIntT9-TrIntT7
mov t5 = cr.tpr // Capture the real IRQL
;;
.mem.offset 0,0
st8.spill [rpTF1] = t8, TrIntT10-TrIntT8
.mem.offset 8,0
st8.spill [rpTF2] = t9, TrIntT11-TrIntT9
;;
.mem.offset 0,0
st8.spill [rpTF1] = t10, TrIntT12-TrIntT10
.mem.offset 8,0
st8.spill [rpTF2] = t11, TrIntT13-TrIntT11
;;
.mem.offset 0,0
st8.spill [rpTF1] = t12, TrIntT14-TrIntT12
.mem.offset 8,0
st8.spill [rpTF2] = t13, TrIntT15-TrIntT13
;;
.mem.offset 0,0
st8.spill [rpTF1] = t14, TrIntT16-TrIntT14
.mem.offset 8,0
st8.spill [rpTF2] = t15, TrIntT17-TrIntT15
;;
.mem.offset 0,0
st8.spill [rpTF1] = t16, TrIntT18-TrIntT16
.mem.offset 8,0
st8.spill [rpTF2] = t17, TrIntT19-TrIntT17
;;
.mem.offset 0,0
st8.spill [rpTF1] = t18, TrIntT20-TrIntT18
.mem.offset 8,0
st8.spill [rpTF2] = t19, TrIntT21-TrIntT19
;;
.mem.offset 0,0
st8.spill [rpTF1] = t20, TrIntT22-TrIntT20
.mem.offset 8,0
st8.spill [rpTF2] = t21, TrIntV0-TrIntT21
;;
.mem.offset 0,0
st8.spill [rpTF1] = t22, TrBrT0-TrIntT22
.mem.offset 8,0
st8.spill [rpTF2] = v0, TrBrT1-TrIntV0 // spill old V0
;;
st8 [rpTF1] = rL2, TrApCCV-TrBrT0 // save old bt0 - bt1
st8 [rpTF2] = rL3
mov rL5 = ar.unat
;;
st8 [rpTF1] = rL4, TrSegCSD-TrApCCV // save ar.ccv
movl rL3 = KiPcr+PcCurrentIrql
;;
st8 [rpTF1] = rL1 // save ar.csd
add rpTF1 = TrFltT0, sp // point to FltT0
add rpTF2 = TrFltT1, sp // point to FltT1
;;
//
// Spill temporary (volatile) floating point registers
//
stf.spill [rpTF1] = ft0, TrFltT2-TrFltT0 // spill float tmp 0 - 9
stf.spill [rpTF2] = ft1, TrFltT3-TrFltT1
;;
stf.spill [rpTF1] = ft2, TrFltT4-TrFltT2
stf.spill [rpTF2] = ft3, TrFltT5-TrFltT3
;;
stf.spill [rpTF1] = ft4, TrFltT6-TrFltT4
stf.spill [rpTF2] = ft5, TrFltT7-TrFltT5
;;
stf.spill [rpTF1] = ft6, TrFltT8-TrFltT6
stf.spill [rpTF2] = ft7, TrFltT9-TrFltT7
add t20 = TrIntNats, sp
;;
stf.spill [rpTF1] = ft8
stf.spill [rpTF2] = ft9
extr.u t5 = t5, TPR_MIC, TPR_MIC_LEN
;;
st8 [t20] = rL5 // save volatile iNats
st1 [rL3] = t5 // Sanitize currnet IRQL in PCR.
LEAF_RETURN
;;
LEAF_EXIT(KiSaveTrapFrame)
//++
//--------------------------------------------------------------------
// Routine:
//
// VOID
// KiRestoreTrapFrame(PKTRAP_FRAME)
//
// Description:
//
// Restore volatile application state from trap frame. Restore CSD
// Note: sp, brp, RSC, UNAT, predicates, BSP, BSP Store, PFS,
// CSD and FPSR not restored here.
//
// Input:
//
// sp: points to trap frame
// RSE frame size is zero
//
// Output:
//
// None
//
// Return value:
//
// none
//
//--------------------------------------------------------------------
LEAF_ENTRY(KiRestoreTrapFrame)
LEAF_SETUP(0,2,0,0)
rpTF1 = loc0
rpTF2 = loc1
mov t21 = psr
add t12 = TrIntNats, sp
add rpTF2 = TrApCCV, sp
;;
ld8 t0 = [t12], TrBrT0-TrIntNats
ld8 t1 = [rpTF2], TrBrT1-TrApCCV
add rpTF1 = TrFltT0, sp
;;
ld8 t2 = [t12], TrStFPSR-TrBrT0
ld8 t3 = [rpTF2], TrSegCSD-TrBrT1
;;
ld8 t10 = [t12]
ld8 t11 = [rpTF2], TrFltT1-TrSegCSD
;;
ldf.fill ft0 = [rpTF1], TrFltT2-TrFltT0
ldf.fill ft1 = [rpTF2], TrFltT3-TrFltT1
;;
mov ar.unat = t0
ldf.fill ft2 = [rpTF1], TrFltT4-TrFltT2
ldf.fill ft3 = [rpTF2], TrFltT5-TrFltT3
;;
ldf.fill ft4 = [rpTF1], TrFltT6-TrFltT4
ldf.fill ft5 = [rpTF2], TrFltT7-TrFltT5
;;
ldf.fill ft6 = [rpTF1], TrFltT8-TrFltT6
ldf.fill ft7 = [rpTF2], TrFltT9-TrFltT7
;;
ldf.fill ft8 = [rpTF1], TrIntGp-TrFltT8
ldf.fill ft9 = [rpTF2], TrIntT0-TrFltT9
;;
mov ar.ccv = t1
ld8.fill gp = [rpTF1], TrIntT1-TrIntGp
;;
ld8.fill t0 = [rpTF2], TrIntT2-TrIntT0
ld8.fill t1 = [rpTF1], TrIntT3-TrIntT1
mov bt0 = t2
;;
mov ar.csd = t11
ld8.fill t2 = [rpTF2], TrIntT4-TrIntT2
mov bt1 = t3
;;
ld8.fill t3 = [rpTF1], TrIntT5-TrIntT3
tbit.z pt1 = t21, PSR_MFL
mov ar.fpsr = t10
ld8.fill t4 = [rpTF2], TrIntT6-TrIntT4
;;
ld8.fill t5 = [rpTF1], TrIntT7-TrIntT5
ld8.fill t6 = [rpTF2], TrIntT8-TrIntT6
;;
ld8.fill t7 = [rpTF1], TrIntT9-TrIntT7
ld8.fill t8 = [rpTF2], TrIntT10-TrIntT8
;;
ld8.fill t9 = [rpTF1], TrIntT11-TrIntT9
ld8.fill t10 = [rpTF2], TrIntT12-TrIntT10
;;
ld8.fill t11 = [rpTF1], TrIntT13-TrIntT11
ld8.fill t12 = [rpTF2], TrIntT14-TrIntT12
;;
ld8.fill t13 = [rpTF1], TrIntT15-TrIntT13
ld8.fill t14 = [rpTF2], TrIntT16-TrIntT14
;;
ld8.fill t15 = [rpTF1], TrIntT17-TrIntT15
ld8.fill t16 = [rpTF2], TrIntT18-TrIntT16
;;
ld8.fill t17 = [rpTF1], TrIntT19-TrIntT17
ld8.fill t18 = [rpTF2], TrIntT20-TrIntT18
;;
ld8.fill t19 = [rpTF1], TrIntT21-TrIntT19
ld8.fill t20 = [rpTF2], TrIntT22-TrIntT20
;;
ld8.fill t21 = [rpTF1], TrIntTeb-TrIntT21
ld8.fill t22 = [rpTF2], TrIntV0-TrIntT22
;;
ld8.fill teb = [rpTF1]
ld8.fill v0 = [rpTF2]
br.ret.sptk.many brp
;;
LEAF_EXIT(KiRestoreTrapFrame)
//++
//--------------------------------------------------------------------
// Routine:
//
// VOID
// KiLoadKernelDebugRegisters
//
// Description:
//
// We maintain two debug register flags:
// 1. Thread DebugActive: Debug registers active for current thread
// 2. PCR KernelDebugActive: Debug registers active in kernel mode
// (setup by kernel debugger)
//
// On user -> kernel transitions there are four possibilities:
//
// Thread Kernel
// DebugActive DebugActive Action
//
// 1. 0 0 None
//
// 2. 1 0 None (kernel PSR.db = 0 by default)
//
// 3. 0 1 Set PSR.db = 1 for kernel
//
// 4. 1 1 Set PSR.db = 1 for kernel and
// load kernel debug registers
//
// Note we never save the user debug registers:
// the user cannot change the DRs so the values in the DR save area are
// always up-to-date (set by SetContext).
//
// Input:
//
// None (Previous mode is USER)
//
// Output:
//
// None
//
// Return value:
//
// none
//
//--------------------------------------------------------------------
NESTED_ENTRY(KiLoadKernelDebugRegisters)
PROLOGUE_BEGIN
movl t10 = KiPcr+PcPrcb
;;
ld8 t10 = [t10] // load prcb address
cmp.eq pt3, pt2 = r0, r0
;;
add t11 = PbProcessorState+KpsSpecialRegisters+KsKernelDbI0,t10
add t12 = PbProcessorState+KpsSpecialRegisters+KsKernelDbI1,t10
add t13 = PbProcessorState+KpsSpecialRegisters+KsKernelDbD0,t10
add t14 = PbProcessorState+KpsSpecialRegisters+KsKernelDbD1,t10
br Krdr_Common
;;
ALTERNATE_ENTRY(KiLoadUserDebugRegisters)
//
// Restore debug registers, if debug active
//
cmp.ne pt3, pt2 = r0, r0
movl t10 = KiPcr+PcCurrentThread
;;
ld8 t10 = [t10] // get current thread pointer
;;
add t10 = ThStackBase, t10
;;
ld8.nta t10 = [t10] // get stack base
;;
add t11 = -ThreadStateSaveAreaLength+TsDebugRegisters+DrDbI0,t10
add t12 = -ThreadStateSaveAreaLength+TsDebugRegisters+DrDbI1,t10
add t13 = -ThreadStateSaveAreaLength+TsDebugRegisters+DrDbD0,t10
add t14 = -ThreadStateSaveAreaLength+TsDebugRegisters+DrDbD1,t10
;;
Krdr_Common:
.regstk 0, 2, 2, 0
.save ar.pfs, savedpfs
alloc savedpfs = ar.pfs, 0, 2, 2, 0
.save b0, savedbrp
mov savedbrp = brp
.save ar.lc, t22
mov t22 = ar.lc // save ar.lc
mov t7 = 0
mov t8 = 1
PROLOGUE_END
mov ar.lc = 1 // 2 pairs of debug registers
;;
Krdr_Loop:
ld8 t1 = [t11], 16 // get dbr pair
ld8 t2 = [t12], 16 // step by 16 = 1 pair of DRs
ld8 t3 = [t13], 16 // get dbr pair
ld8 t4 = [t14], 16 // step by 16 = 1 pair of DRs
;;
.auto
mov ibr[t7] = t1 // restore ibr pair
mov ibr[t8] = t2
.auto
mov dbr[t7] = t3 // restore dbr pair
mov dbr[t8] = t4
;;
#ifndef NO_12241
srlz.d
#endif
.default
add t7 = 2, t7 // next pair
add t8 = 2, t8
br.cloop.sptk Krdr_Loop
;;
mov ar.lc = t22 // restore ar.lc
(pt2) br.ret.sptk brp // return if loading user
mov out0 = PSR_DB
mov out1 = 1
(pt3) br.call.spnt brp = KeSetLowPsrBit // set psr.db if loading kernel
;;
NESTED_RETURN
;;
NESTED_EXIT(KiLoadKernelDebugRegisters)
//++
//--------------------------------------------------------------------
// Routine:
//
// VOID
// KiSaveExceptionFrame(PKEXCEPTION_FRAME)
//
// Description:
//
// Save preserved context in exception frame.
//
// Note: This routine modifies the UNAT register. The caller
// is resposible for preserving UNAT before calling.
//
// Input:
//
// a0: points to exception frame
//
// Output:
//
// None
//
// Return value:
//
// none
//
// Note: t0 may contain the trap frame address; don't touch it.
//
//--------------------------------------------------------------------
LEAF_ENTRY(KiSaveExceptionFrame)
//
// Local register aliases
//
rpEF1 = t10
rpEF2 = t11
add rpEF1 = ExIntS0, a0 // -> ExIntS0
movl t12 = PFS_EC_MASK << PFS_EC_SHIFT
;;
add rpEF2 = ExIntS1, a0 // -> ExIntS1
mov t3 = ar.pfs
;;
and t3 = t3, t12
.mem.offset 0,0
st8.spill [rpEF1] = s0, ExIntS2-ExIntS0
.mem.offset 8,0
st8.spill [rpEF2] = s1, ExIntS3-ExIntS1
mov t4 = ar.lc
;;
.mem.offset 0,0
st8.spill [rpEF1] = s2, ExApEC-ExIntS2
.mem.offset 8,0
st8.spill [rpEF2] = s3, ExApLC-ExIntS3
mov t5 = bs0
;;
st8 [rpEF1] = t3, ExBrS0-ExApEC
st8 [rpEF2] = t4, ExBrS1-ExApLC
mov t6 = bs1
;;
mov t2 = ar.unat // save user nat register for
mov t7 = bs2
mov t8 = bs3
st8 [rpEF1] = t5, ExBrS2-ExBrS0
st8 [rpEF2] = t6, ExBrS3-ExBrS1
mov t9 = bs4
;;
st8 [rpEF1] = t7, ExBrS4-ExBrS2
st8 [rpEF2] = t8, ExIntNats-ExBrS3
;;
st8 [rpEF1] = t9, ExFltS0-ExBrS4
st8 [rpEF2] = t2, ExFltS1-ExIntNats
;;
stf.spill [rpEF1] = fs0, ExFltS2-ExFltS0
stf.spill [rpEF2] = fs1, ExFltS3-ExFltS1
;;
stf.spill [rpEF1] = fs2, ExFltS4-ExFltS2
stf.spill [rpEF2] = fs3, ExFltS5-ExFltS3
;;
stf.spill [rpEF1] = fs4, ExFltS6-ExFltS4
stf.spill [rpEF2] = fs5, ExFltS7-ExFltS5
;;
stf.spill [rpEF1] = fs6, ExFltS8-ExFltS6
stf.spill [rpEF2] = fs7, ExFltS9-ExFltS7
;;
stf.spill [rpEF1] = fs8, ExFltS10-ExFltS8
stf.spill [rpEF2] = fs9, ExFltS11-ExFltS9
;;
stf.spill [rpEF1] = fs10, ExFltS12-ExFltS10
stf.spill [rpEF2] = fs11, ExFltS13-ExFltS11
;;
stf.spill [rpEF1] = fs12, ExFltS14-ExFltS12
stf.spill [rpEF2] = fs13, ExFltS15-ExFltS13
;;
stf.spill [rpEF1] = fs14, ExFltS16-ExFltS14
stf.spill [rpEF2] = fs15, ExFltS17-ExFltS15
;;
stf.spill [rpEF1] = fs16, ExFltS18-ExFltS16
stf.spill [rpEF2] = fs17, ExFltS19-ExFltS17
;;
stf.spill [rpEF1] = fs18
stf.spill [rpEF2] = fs19
LEAF_RETURN
;;
LEAF_EXIT(KiSaveExceptionFrame)
//--------------------------------------------------------------------
// Routine:
//
// VOID
// KiRestoreExceptionFrame(PKEXCEPTION_FRAME)
//
// Description:
//
// Restores preserved context from the exception frame. Also
// restore volatile part of floating point context not restored with
// rest of volatile context.
//
// Note: This routine does not use v0, t21 or t22. This routine's
// caller may be dependent on these registers (for performance
// in the context switch path).
//
// Note: This routine modifies the UNAT register. The caller
// is resposible for restoring UNAT to the correct value.
//
// Input:
//
// a0: points to exception frame
//
// Output:
//
// None
//
// Return value:
//
// none
//
//--------------------------------------------------------------------
LEAF_ENTRY(KiRestoreExceptionFrame)
add t16 = ExIntNats, a0
movl t12 = PFS_EC_MASK << PFS_EC_SHIFT
add t17 = ExApEC, a0
nop.f 0
mov t13 = ar.pfs
;;
ld8.nta t2 = [t16], ExBrS0-ExIntNats
ld8.nta t3 = [t17], ExApLC-ExApEC
;;
ld8.nta t5 = [t16], ExBrS1-ExBrS0
ld8.nta t4 = [t17], ExBrS2-ExApLC
;;
ld8.nta t6 = [t16], ExBrS3-ExBrS1
ld8.nta t7 = [t17], ExBrS4-ExBrS2
;;
ld8.nta t8 = [t16], ExFltS0-ExBrS3
ld8.nta t9 = [t17], ExFltS1-ExBrS4
;;
ldf.fill.nta fs0 = [t16], ExFltS2-ExFltS0
ldf.fill.nta fs1 = [t17], ExFltS3-ExFltS1
add t18 = ExIntS0, a0
;;
ldf.fill.nta fs2 = [t16], ExFltS4-ExFltS2
ldf.fill.nta fs3 = [t17], ExFltS5-ExFltS3
add t19 = ExIntS1, a0
;;
ldf.fill.nta fs4 = [t16], ExFltS6-ExFltS4
ldf.fill.nta fs5 = [t17], ExFltS7-ExFltS5
andcm t13 = t13, t12 // zero out EC field
;;
ldf.fill.nta fs6 = [t16], ExFltS8-ExFltS6
ldf.fill.nta fs7 = [t17], ExFltS9-ExFltS7
and t3 = t3, t12 // capture EC value
;;
mov ar.unat = t2
or t13 = t3, t13 // deposit into PFS.EC field
;;
ldf.fill.nta fs8 = [t16], ExFltS10-ExFltS8
ldf.fill.nta fs9 = [t17], ExFltS11-ExFltS9
mov ar.pfs = t13
;;
ldf.fill.nta fs10 = [t16], ExFltS12-ExFltS10
ldf.fill.nta fs11 = [t17], ExFltS13-ExFltS11
mov ar.lc = t4
;;
ldf.fill.nta fs12 = [t16], ExFltS14-ExFltS12
ldf.fill.nta fs13 = [t17], ExFltS15-ExFltS13
mov bs0 = t5
;;
ldf.fill.nta fs14 = [t16], ExFltS16-ExFltS14
ldf.fill.nta fs15 = [t17], ExFltS17-ExFltS15
mov bs1 = t6
;;
ldf.fill.nta fs16 = [t16], ExFltS18-ExFltS16
ldf.fill.nta fs17 = [t17], ExFltS19-ExFltS17
mov bs2 = t7
;;
ldf.fill.nta fs18 = [t16]
ldf.fill.nta fs19 = [t17]
mov bs3 = t8
ld8.fill.nta s0 = [t18], ExIntS2-ExIntS0
ld8.fill.nta s1 = [t19], ExIntS3-ExIntS1
mov bs4 = t9
;;
ld8.fill.nta s2 = [t18]
ld8.fill.nta s3 = [t19]
LEAF_RETURN
;;
LEAF_EXIT(KiRestoreExceptionFrame)
//++
//--------------------------------------------------------------------
// Routine:
//
// KiSaveHigherFPVolatile(PKHIGHER_FP_SAVEAREA)
//
// Description:
//
// Save higher FP volatile context in higher FP save area
//
// Input:
//
// a0: pointer to higher FP save area
// brp: return address
//
// Output:
//
// None
//
// Return value:
//
// None
//
//--------------------------------------------------------------------
NESTED_ENTRY(KiSaveHigherFPVolatile)
NESTED_SETUP(1, 3, 1, 0)
PROLOGUE_END
//
// Local register aliases
//
rpSA1 = t0
rpSA2 = t1
//
// Clear DFH bit so the high floating point set may be saved by the kernel
// Disable interrupts so that save is atomic
//
GET_IRQL (loc2)
mov t2 = psr.um
movl t3 = KiPcr+PcCurrentThread
;;
cmp.ge pt2, pt3 = APC_LEVEL, loc2
;;
PSET_IRQL (pt2, DISPATCH_LEVEL)
ld8 t4 = [t3], PcHighFpOwner-PcCurrentThread
;;
ld8 t5 = [t3]
;;
cmp.ne pt1 = t4, t5
(pt1) br.cond.spnt Kshfpv20
;;
tbit.z pt0 = t2, PSR_MFH
(pt0) br.cond.spnt Kshfpv20
br Kshfpv10
;;
ALTERNATE_ENTRY(KiSaveHigherFPVolatileAtDispatchLevel)
NESTED_SETUP(1, 3, 1, 0)
cmp.ne pt2, pt3 = r0, r0 // set pt2 to FALSE, pt3 to TRUE
PROLOGUE_END
movl t3 = KiPcr+PcCurrentThread
;;
ld8 t4 = [t3], PcHighFpOwner-PcCurrentThread
;;
ld8 t5 = [t3]
;;
cmp.ne pt1 = t4, t5
;;
(pt1) break.i BREAKPOINT_STOP
Kshfpv10:
rsm (1 << PSR_DFH)
add rpSA1 = HiFltF32, a0 // -> HiFltF32
add rpSA2 = HiFltF33, a0 // -> HiFltF33
;;
srlz.d
stf.spill.nta [rpSA1] = f32, HiFltF34-HiFltF32
stf.spill.nta [rpSA2] = f33, HiFltF35-HiFltF33
;;
stf.spill.nta [rpSA1] = f34, HiFltF36-HiFltF34
stf.spill.nta [rpSA2] = f35, HiFltF37-HiFltF35
;;
stf.spill.nta [rpSA1] = f36, HiFltF38-HiFltF36
stf.spill.nta [rpSA2] = f37, HiFltF39-HiFltF37
;;
stf.spill.nta [rpSA1] = f38, HiFltF40-HiFltF38
stf.spill.nta [rpSA2] = f39, HiFltF41-HiFltF39
;;
stf.spill.nta [rpSA1] = f40, HiFltF42-HiFltF40
stf.spill.nta [rpSA2] = f41, HiFltF43-HiFltF41
;;
stf.spill.nta [rpSA1] = f42, HiFltF44-HiFltF42
stf.spill.nta [rpSA2] = f43, HiFltF45-HiFltF43
;;
stf.spill.nta [rpSA1] = f44, HiFltF46-HiFltF44
stf.spill.nta [rpSA2] = f45, HiFltF47-HiFltF45
;;
stf.spill.nta [rpSA1] = f46, HiFltF48-HiFltF46
stf.spill.nta [rpSA2] = f47, HiFltF49-HiFltF47
;;
stf.spill.nta [rpSA1] = f48, HiFltF50-HiFltF48
stf.spill.nta [rpSA2] = f49, HiFltF51-HiFltF49
;;
stf.spill.nta [rpSA1] = f50, HiFltF52-HiFltF50
stf.spill.nta [rpSA2] = f51, HiFltF53-HiFltF51
;;
stf.spill.nta [rpSA1] = f52, HiFltF54-HiFltF52
stf.spill.nta [rpSA2] = f53, HiFltF55-HiFltF53
;;
stf.spill.nta [rpSA1] = f54, HiFltF56-HiFltF54
stf.spill.nta [rpSA2] = f55, HiFltF57-HiFltF55
;;
stf.spill.nta [rpSA1] = f56, HiFltF58-HiFltF56
stf.spill.nta [rpSA2] = f57, HiFltF59-HiFltF57
;;
stf.spill.nta [rpSA1] = f58, HiFltF60-HiFltF58
stf.spill.nta [rpSA2] = f59, HiFltF61-HiFltF59
;;
stf.spill.nta [rpSA1] = f60, HiFltF62-HiFltF60
stf.spill.nta [rpSA2] = f61, HiFltF63-HiFltF61
;;
stf.spill.nta [rpSA1] = f62, HiFltF64-HiFltF62
stf.spill.nta [rpSA2] = f63, HiFltF65-HiFltF63
;;
stf.spill.nta [rpSA1] = f64, HiFltF66-HiFltF64
stf.spill.nta [rpSA2] = f65, HiFltF67-HiFltF65
;;
stf.spill.nta [rpSA1] = f66, HiFltF68-HiFltF66
stf.spill.nta [rpSA2] = f67, HiFltF69-HiFltF67
;;
stf.spill.nta [rpSA1] = f68, HiFltF70-HiFltF68
stf.spill.nta [rpSA2] = f69, HiFltF71-HiFltF69
;;
stf.spill.nta [rpSA1] = f70, HiFltF72-HiFltF70
stf.spill.nta [rpSA2] = f71, HiFltF73-HiFltF71
;;
stf.spill.nta [rpSA1] = f72, HiFltF74-HiFltF72
stf.spill.nta [rpSA2] = f73, HiFltF75-HiFltF73
;;
stf.spill.nta [rpSA1] = f74, HiFltF76-HiFltF74
stf.spill.nta [rpSA2] = f75, HiFltF77-HiFltF75
;;
stf.spill.nta [rpSA1] = f76, HiFltF78-HiFltF76
stf.spill.nta [rpSA2] = f77, HiFltF79-HiFltF77
;;
stf.spill.nta [rpSA1] = f78, HiFltF80-HiFltF78
stf.spill.nta [rpSA2] = f79, HiFltF81-HiFltF79
;;
stf.spill.nta [rpSA1] = f80, HiFltF82-HiFltF80
stf.spill.nta [rpSA2] = f81, HiFltF83-HiFltF81
;;
stf.spill.nta [rpSA1] = f82, HiFltF84-HiFltF82
stf.spill.nta [rpSA2] = f83, HiFltF85-HiFltF83
;;
stf.spill.nta [rpSA1] = f84, HiFltF86-HiFltF84
stf.spill.nta [rpSA2] = f85, HiFltF87-HiFltF85
;;
stf.spill.nta [rpSA1] = f86, HiFltF88-HiFltF86
stf.spill.nta [rpSA2] = f87, HiFltF89-HiFltF87
;;
stf.spill.nta [rpSA1] = f88, HiFltF90-HiFltF88
stf.spill.nta [rpSA2] = f89, HiFltF91-HiFltF89
;;
stf.spill.nta [rpSA1] = f90, HiFltF92-HiFltF90
stf.spill.nta [rpSA2] = f91, HiFltF93-HiFltF91
;;
stf.spill.nta [rpSA1] = f92, HiFltF94-HiFltF92
stf.spill.nta [rpSA2] = f93, HiFltF95-HiFltF93
;;
stf.spill.nta [rpSA1] = f94, HiFltF96-HiFltF94
stf.spill.nta [rpSA2] = f95, HiFltF97-HiFltF95
;;
stf.spill.nta [rpSA1] = f96, HiFltF98-HiFltF96
stf.spill.nta [rpSA2] = f97, HiFltF99-HiFltF97
;;
stf.spill.nta [rpSA1] = f98, HiFltF100-HiFltF98
stf.spill.nta [rpSA2] = f99, HiFltF101-HiFltF99
;;
stf.spill.nta [rpSA1] = f100, HiFltF102-HiFltF100
stf.spill.nta [rpSA2] = f101, HiFltF103-HiFltF101
;;
stf.spill.nta [rpSA1] = f102, HiFltF104-HiFltF102
stf.spill.nta [rpSA2] = f103, HiFltF105-HiFltF103
;;
stf.spill.nta [rpSA1] = f104, HiFltF106-HiFltF104
stf.spill.nta [rpSA2] = f105, HiFltF107-HiFltF105
;;
stf.spill.nta [rpSA1] = f106, HiFltF108-HiFltF106
stf.spill.nta [rpSA2] = f107, HiFltF109-HiFltF107
;;
stf.spill.nta [rpSA1] = f108, HiFltF110-HiFltF108
stf.spill.nta [rpSA2] = f109, HiFltF111-HiFltF109
;;
stf.spill.nta [rpSA1] = f110, HiFltF112-HiFltF110
stf.spill.nta [rpSA2] = f111, HiFltF113-HiFltF111
;;
stf.spill.nta [rpSA1] = f112, HiFltF114-HiFltF112
stf.spill.nta [rpSA2] = f113, HiFltF115-HiFltF113
;;
stf.spill.nta [rpSA1] = f114, HiFltF116-HiFltF114
stf.spill.nta [rpSA2] = f115, HiFltF117-HiFltF115
;;
stf.spill.nta [rpSA1] = f116, HiFltF118-HiFltF116
stf.spill.nta [rpSA2] = f117, HiFltF119-HiFltF117
;;
stf.spill.nta [rpSA1] = f118, HiFltF120-HiFltF118
stf.spill.nta [rpSA2] = f119, HiFltF121-HiFltF119
;;
stf.spill.nta [rpSA1] = f120, HiFltF122-HiFltF120
stf.spill.nta [rpSA2] = f121, HiFltF123-HiFltF121
;;
stf.spill.nta [rpSA1] = f122, HiFltF124-HiFltF122
stf.spill.nta [rpSA2] = f123, HiFltF125-HiFltF123
;;
stf.spill.nta [rpSA1] = f124, HiFltF126-HiFltF124
stf.spill.nta [rpSA2] = f125, HiFltF127-HiFltF125
;;
stf.spill.nta [rpSA1] = f126
stf.spill.nta [rpSA2] = f127
//
// Set DFH bit so the high floating point set may not be used by the kernel
// Must clear mfh after fp registers saved
//
Kshfpv20:
ssm 1 << PSR_DFH
;;
rum 1 << PSR_MFH
(pt3) br.ret.sptk brp
LOWER_IRQL(loc2)
NESTED_RETURN
;;
LEAF_EXIT(KiSaveHigherFPVolatile)
//++
//--------------------------------------------------------------------
// Routine:
//
// KiRestoreHigherFPVolatile()
//
// Description:
//
// Restore higher FP volatile context from higher FP save area
//
// N.B. This function is carefully constructed to use only scratch
// registers rHpT1, rHpT3, and rTH2. This function may be
// called by C code and the disabled fp vector when user
// and kernel bank is used respectively.
// N.B. Caller must ensure higher fp enabled (psr.dfh=0)
// N.B. Caller must ensure no interrupt during restore
//
// Input:
//
// None.
//
// Output:
//
// None
//
// Return value:
//
// None
//
//--------------------------------------------------------------------
LEAF_ENTRY(KiRestoreHigherFPVolatile)
movl rHpT1 = KiPcr+PcCurrentThread
;;
ld8 rHpT3 = [rHpT1], PcHighFpOwner-PcCurrentThread
;;
st8 [rHpT1] = rHpT3, PcNumber-PcHighFpOwner
add rHpT3 = ThNumber, rHpT3
;;
ld1 rHpT1 = [rHpT1] // load processor #
;;
st1 [rHpT3] = rHpT1 // save it in Thread->Number
add rHpT3 = ThStackBase-ThNumber, rHpT3
;;
ld8 rHpT3 = [rHpT3] // load kernel stack base
;;
add rHpT1 = -ThreadStateSaveAreaLength+TsHigherFPVolatile+HiFltF32, rHpT3
add rHpT3 = -ThreadStateSaveAreaLength+TsHigherFPVolatile+HiFltF33, rHpT3
;;
ldf.fill.nta f32 = [rHpT1], HiFltF34-HiFltF32
ldf.fill.nta f33 = [rHpT3], HiFltF35-HiFltF33
;;
ldf.fill.nta f34 = [rHpT1], HiFltF36-HiFltF34
ldf.fill.nta f35 = [rHpT3], HiFltF37-HiFltF35
;;
ldf.fill.nta f36 = [rHpT1], HiFltF38-HiFltF36
ldf.fill.nta f37 = [rHpT3], HiFltF39-HiFltF37
;;
ldf.fill.nta f38 = [rHpT1], HiFltF40-HiFltF38
ldf.fill.nta f39 = [rHpT3], HiFltF41-HiFltF39
;;
ldf.fill.nta f40 = [rHpT1], HiFltF42-HiFltF40
ldf.fill.nta f41 = [rHpT3], HiFltF43-HiFltF41
;;
ldf.fill.nta f42 = [rHpT1], HiFltF44-HiFltF42
ldf.fill.nta f43 = [rHpT3], HiFltF45-HiFltF43
;;
ldf.fill.nta f44 = [rHpT1], HiFltF46-HiFltF44
ldf.fill.nta f45 = [rHpT3], HiFltF47-HiFltF45
;;
ldf.fill.nta f46 = [rHpT1], HiFltF48-HiFltF46
ldf.fill.nta f47 = [rHpT3], HiFltF49-HiFltF47
;;
ldf.fill.nta f48 = [rHpT1], HiFltF50-HiFltF48
ldf.fill.nta f49 = [rHpT3], HiFltF51-HiFltF49
;;
ldf.fill.nta f50 = [rHpT1], HiFltF52-HiFltF50
ldf.fill.nta f51 = [rHpT3], HiFltF53-HiFltF51
;;
ldf.fill.nta f52 = [rHpT1], HiFltF54-HiFltF52
ldf.fill.nta f53 = [rHpT3], HiFltF55-HiFltF53
;;
ldf.fill.nta f54 = [rHpT1], HiFltF56-HiFltF54
ldf.fill.nta f55 = [rHpT3], HiFltF57-HiFltF55
;;
ldf.fill.nta f56 = [rHpT1], HiFltF58-HiFltF56
ldf.fill.nta f57 = [rHpT3], HiFltF59-HiFltF57
;;
ldf.fill.nta f58 = [rHpT1], HiFltF60-HiFltF58
ldf.fill.nta f59 = [rHpT3], HiFltF61-HiFltF59
;;
ldf.fill.nta f60 = [rHpT1], HiFltF62-HiFltF60
ldf.fill.nta f61 = [rHpT3], HiFltF63-HiFltF61
;;
ldf.fill.nta f62 = [rHpT1], HiFltF64-HiFltF62
ldf.fill.nta f63 = [rHpT3], HiFltF65-HiFltF63
;;
ldf.fill.nta f64 = [rHpT1], HiFltF66-HiFltF64
ldf.fill.nta f65 = [rHpT3], HiFltF67-HiFltF65
;;
ldf.fill.nta f66 = [rHpT1], HiFltF68-HiFltF66
ldf.fill.nta f67 = [rHpT3], HiFltF69-HiFltF67
;;
ldf.fill.nta f68 = [rHpT1], HiFltF70-HiFltF68
ldf.fill.nta f69 = [rHpT3], HiFltF71-HiFltF69
;;
ldf.fill.nta f70 = [rHpT1], HiFltF72-HiFltF70
ldf.fill.nta f71 = [rHpT3], HiFltF73-HiFltF71
;;
ldf.fill.nta f72 = [rHpT1], HiFltF74-HiFltF72
ldf.fill.nta f73 = [rHpT3], HiFltF75-HiFltF73
;;
ldf.fill.nta f74 = [rHpT1], HiFltF76-HiFltF74
ldf.fill.nta f75 = [rHpT3], HiFltF77-HiFltF75
;;
ldf.fill.nta f76 = [rHpT1], HiFltF78-HiFltF76
ldf.fill.nta f77 = [rHpT3], HiFltF79-HiFltF77
;;
ldf.fill.nta f78 = [rHpT1], HiFltF80-HiFltF78
ldf.fill.nta f79 = [rHpT3], HiFltF81-HiFltF79
;;
ldf.fill.nta f80 = [rHpT1], HiFltF82-HiFltF80
ldf.fill.nta f81 = [rHpT3], HiFltF83-HiFltF81
;;
ldf.fill.nta f82 = [rHpT1], HiFltF84-HiFltF82
ldf.fill.nta f83 = [rHpT3], HiFltF85-HiFltF83
;;
ldf.fill.nta f84 = [rHpT1], HiFltF86-HiFltF84
ldf.fill.nta f85 = [rHpT3], HiFltF87-HiFltF85
;;
ldf.fill.nta f86 = [rHpT1], HiFltF88-HiFltF86
ldf.fill.nta f87 = [rHpT3], HiFltF89-HiFltF87
;;
ldf.fill.nta f88 = [rHpT1], HiFltF90-HiFltF88
ldf.fill.nta f89 = [rHpT3], HiFltF91-HiFltF89
;;
ldf.fill.nta f90 = [rHpT1], HiFltF92-HiFltF90
ldf.fill.nta f91 = [rHpT3], HiFltF93-HiFltF91
;;
ldf.fill.nta f92 = [rHpT1], HiFltF94-HiFltF92
ldf.fill.nta f93 = [rHpT3], HiFltF95-HiFltF93
;;
ldf.fill.nta f94 = [rHpT1], HiFltF96-HiFltF94
ldf.fill.nta f95 = [rHpT3], HiFltF97-HiFltF95
;;
ldf.fill.nta f96 = [rHpT1], HiFltF98-HiFltF96
ldf.fill.nta f97 = [rHpT3], HiFltF99-HiFltF97
;;
ldf.fill.nta f98 = [rHpT1], HiFltF100-HiFltF98
ldf.fill.nta f99 = [rHpT3], HiFltF101-HiFltF99
;;
ldf.fill.nta f100 = [rHpT1], HiFltF102-HiFltF100
ldf.fill.nta f101 = [rHpT3], HiFltF103-HiFltF101
;;
ldf.fill.nta f102 = [rHpT1], HiFltF104-HiFltF102
ldf.fill.nta f103 = [rHpT3], HiFltF105-HiFltF103
;;
ldf.fill.nta f104 = [rHpT1], HiFltF106-HiFltF104
ldf.fill.nta f105 = [rHpT3], HiFltF107-HiFltF105
;;
ldf.fill.nta f106 = [rHpT1], HiFltF108-HiFltF106
ldf.fill.nta f107 = [rHpT3], HiFltF109-HiFltF107
;;
ldf.fill.nta f108 = [rHpT1], HiFltF110-HiFltF108
ldf.fill.nta f109 = [rHpT3], HiFltF111-HiFltF109
;;
ldf.fill.nta f110 = [rHpT1], HiFltF112-HiFltF110
ldf.fill.nta f111 = [rHpT3], HiFltF113-HiFltF111
;;
ldf.fill.nta f112 = [rHpT1], HiFltF114-HiFltF112
ldf.fill.nta f113 = [rHpT3], HiFltF115-HiFltF113
;;
ldf.fill.nta f114 = [rHpT1], HiFltF116-HiFltF114
ldf.fill.nta f115 = [rHpT3], HiFltF117-HiFltF115
;;
ldf.fill.nta f116 = [rHpT1], HiFltF118-HiFltF116
ldf.fill.nta f117 = [rHpT3], HiFltF119-HiFltF117
;;
ldf.fill.nta f118 = [rHpT1], HiFltF120-HiFltF118
ldf.fill.nta f119 = [rHpT3], HiFltF121-HiFltF119
;;
ldf.fill.nta f120 = [rHpT1], HiFltF122-HiFltF120
ldf.fill.nta f121 = [rHpT3], HiFltF123-HiFltF121
;;
ldf.fill.nta f122 = [rHpT1], HiFltF124-HiFltF122
ldf.fill.nta f123 = [rHpT3], HiFltF125-HiFltF123
;;
ldf.fill.nta f124 = [rHpT1], HiFltF126-HiFltF124
ldf.fill.nta f125 = [rHpT3], HiFltF127-HiFltF125
;;
ldf.fill.nta f126 = [rHpT1]
ldf.fill.nta f127 = [rHpT3]
;;
rsm 1 << PSR_MFH // clear psr.mfh bit
br.ret.sptk brp
;;
LEAF_EXIT(KiRestoreHigherFPVolatile)
//
// ++
//
// Routine:
//
// KiPageTableFault
//
// Description:
//
// Branched from Inst/DataTlbVector
// Inserts a missing PDE translation for VHPT mapping
// If PageNotPresent-bit of PDE is not set,
// branches out to KiPageFault
//
// On entry:
//
// rva (h24) : offending virtual address
// riha (h25) : a offending PTE address
// rpr: (h26) : saved predicate
//
// Handle:
//
// Extracts the PDE index from riha (PTE address in VHPT) and
// generates a PDE address by adding to VHPT_DIRBASE. When accesses
// a page directory entry (PDE), there might be a TLB miss on the
// page directory table and returns a NaT on ld8.s. If so, branches
// to KiPageDirectoryTableFault. If the page-not-present bit of the
// PDE is not set, branches to KiPageNotPresentFault. Otherwise,
// inserts the PDE entry into the data TC (translation cache).
//
// Notes:
//
//
// --
HANDLER_ENTRY(KiPageTableFault)
rva = h24
riha = h25
rpr = h26
rpPde = h27
rPde = h28
rPde2 = h29
rps = h30
rISR = h31
thash rpPde = riha // M
cmp.ne pt1 = r0, r0
mov rps = PAGE_SHIFT << PS_SHIFT // I
;;
mov cr.itir = rps // M
ld8.s rPde = [rpPde] // M, load PDE
;;
extr.u rPde2 = rPde, 2, 3 // I
tnat.nz pt0, p0 = rPde // I
tbit.z.or pt1, p0 = rPde, PTE_ACCESS
tbit.z.or pt1, p0 = rPde, PTE_VALID // I, if non-present page fault
(pt0) br.cond.spnt KiPageDirectoryFault // B, tb miss on PDE access
(pt1) br.cond.spnt KiPageFault // B, page fault
;;
cmp.eq pt3 = 1, rPde2 // A
mov cr.ifa = riha // M
(pt3) br.cond.spnt KiLargePage
;;
itc.d rPde // M
;;
#if !defined(NT_UP)
ld8.s rPde2 = [rpPde] // M
cmp.ne pt0 = zero, zero // I
;;
cmp.ne.or pt0, p0 = rPde2, rPde // I, if PTEs are different
tnat.nz.or pt0, p0 = rPde2 // I
;;
(pt0) ptc.l riha, rps // M, purge it
#endif
mov pr = rpr, -1 // I
rfi;; // B
//
// This is a large page PDE entry.
//
KiLargePage:
mov cr.ifa = rva // M
mov rISR = cr.isr
extr.u rPde2 = rPde, PTE_LP_CACHE_SHIFT, PTE_CACHE_LEN
;;
mov rps = LARGE_PAGE_SHIFT << PS_SHIFT
dep rPde2 = rPde2, rPde, 2, 3 // Set the cachable attribute.
;;
mov cr.itir = rps // M
tbit.z pt3, pt4 = rISR, ISR_X // I
;;
(pt3) itc.d rPde2 // M
;;
(pt4) itc.i rPde2 // M
;;
#if !defined(NT_UP)
ld8.s rPde2 = [rpPde] // M
cmp.ne pt0 = zero, zero // I
;;
cmp.ne.or pt0, p0 = rPde2, rPde // I, if PTEs are different
tnat.nz.or pt0, p0 = rPde2 // I
;;
(pt0) ptc.l rva, rps // M, purge it
#endif
mov pr = rpr, -1 // I
rfi;; // B
HANDLER_EXIT(KiPageTableFault)
//++
//
// KiPageDirectoryFault
//
// Cause:
//
// Parameters:
// rpPde (h28) : pointer to PDE entry
// rpr (h26) : saved predicate
//
//
// Handle:
//
//--
HANDLER_ENTRY(KiPageDirectoryFault)
rva = h24
rpPpe = h25
rpr = h26
rpPde = h27
rPpe = h28
rPpe2 = h29
rps = h30
thash rpPpe = rpPde // M
cmp.ne pt0 = r0, r0
;;
ld8.s rPpe = [rpPpe] // M
;;
tnat.nz.or pt0, p0 = rPpe // I
tbit.z.or pt0, p0 = rPpe, PTE_ACCESS
tbit.z.or pt0, p0 = rPpe, PTE_VALID // I, if non-present page fault
(pt0) br.cond.spnt KiPageFault // B
;;
mov cr.ifa = rpPde // M, set tva for vhpt translation
;;
itc.d rPpe // M
;;
#if !defined(NT_UP)
ld8.s rPpe2 = [rpPpe] // M
mov rps = PAGE_SHIFT << PS_SHIFT // I
cmp.ne pt0 = zero, zero // I
;;
cmp.ne.or pt0, p0 = rPpe2, rPpe // I, if PTEs are different
tnat.nz.or pt0, p0 = rPpe2 // I
;;
(pt0) ptc.l rpPde, rps // M, purge it
#endif
mov pr = rpr, -1 // I
rfi;; // B
HANDLER_EXIT(KiPageDirectoryFault)
//
// ++
//
// Routine:
//
// KiPteNotPresentFault
//
// Description:
//
// Branched from KiVhptTransVector and KiPageTableFault.
// Inserts a missing PDE translation for VHPT mapping
// If no PDE for it, branches out to KiPageFault
//
// On entry:
//
// rva (h24) : offending virtual address
// rpr (h26) : saved predicate
// rPde (h28) : PDE entry
//
// Handle:
//
// Check to see if PDE is marked as LARGE_PAGE. If so,
// make it valid and install the large page size PTE.
// If not, branch to KiPageFault.
//
//
// Notes:
//
// PCR page mapped with TR
// --
HANDLER_ENTRY(KiPteNotPresentFault)
rva = h24 // passed
riha = h25 // passed
rpr = h26 // passed
rps = h27
rPfn = h28
rpAte = h28
rAte = h29
rAteEnd = h30
rAteBase = h31
rAteMask = h22
pIndr = pt1
mov rps = PS_4K << PS_SHIFT // M
movl rAteBase = ALT4KB_BASE // L
mov rAteMask = ATE_MASK0 // I
shr.u rPfn = rva, PAGE4K_SHIFT // I
;;
shladd rpAte = rPfn, PTE_SHIFT, rAteBase // M
movl rAteEnd = ALT4KB_END // L
;;
ld8.s rAte = [rpAte] // M
andcm rAteMask = -1, rAteMask // I
cmp.ltu pIndr = rpAte, rAteEnd // I
;;
tnat.z.and pIndr = rAte // I
tbit.nz.and pIndr = rAte, PTE_VALID // I
or rAteMask = rAte, rAteMask // M
tbit.nz.and pIndr = rAte, PTE_ACCESS // I
tbit.nz.and pIndr = rAte, ATE_INDIRECT // I
(pIndr) br.cond.spnt KiPteIndirectFault
br.sptk KiPageFault // B
HANDLER_EXIT(KiPteNotPresentFault)
//
// ++
//
// Routine:
//
// KiKseg4Fault
//
// Description:
//
// TLB miss on KSEG4 space
//
//
// On entry:
//
// rva (h24) : faulting virtual address
// riha (h25) : IHA address
// rpr (h26) : saved predicate
//
// Process:
//
//
// Notes:
//
// PCR page mapped with TR
// --
HANDLER_ENTRY(KiKseg4Fault)
rIPSR = h22
rISR = h23
rva = h24 // passed
riha = h25
rpr = h26 // passed
rPte = h27
mov rISR = cr.isr // M
movl rPte = VALID_KERNEL_PTE | PTE_NOCACHE // L
mov rIPSR = cr.ipsr // M
shr.u rva = rva, PAGE_SHIFT // I
;;
tbit.z pt2, pt3 = rISR, ISR_SP // I
dep.z rva = rva, PAGE_SHIFT, 32 // I
;;
or rPte = rPte, rva // I
dep rIPSR = 1, rIPSR, PSR_ED, 1 // I
;;
(pt2) itc.d rPte // M
;;
(pt3) mov cr.ipsr = rIPSR // M
;;
mov pr = rpr, -1 // I
rfi // B
;;
HANDLER_EXIT(KiKseg4Fault)
//
// ++
//
// Routine:
//
// KiPageFault
//
// Description:
//
// This must be a genuine page fault. Call KiMemoryFault().
//
//
// On entry:
//
// rva (h24) : offending virtual address
// rpr (h26) : PDE contents
//
// Process:
//
// Restores the save predicate (pr), and branches to
// KiGenericExceptionHandler with the argument KiMemoryFault with
// macro VECTOR_CALL_HANDLER().
//
// Notes:
//
// PCR page mapped with TR
// --
HANDLER_ENTRY(KiPageFault)
rva = h24
rPSR_ED = h25
rpr = h26
rIPSR = h27
rps = h29
rCode = h30
rISR = h31
//
// check to see if a page fault occurred on a speculative load or
// lfetch.fault. if so, set IPSR.ed bit. This forces to generate a NaT on
// ld.s and steps out to the next instruction on lfetch.fault after
// rfi.
//
mov rISR = cr.isr // M
movl rPSR_ED = 1 << PSR_ED // L
mov rIPSR = cr.ipsr // M
;;
and rCode = ISR_NA_CODE_MASK, rISR // A
or rIPSR = rIPSR, rPSR_ED // A
tbit.nz pt1, pt2 = rISR, ISR_NA // I
;;
(pt1) cmp.ne pt0, p0 = ISR_LFETCH, rCode // A
(pt2) tbit.z pt0, p0 = rISR, ISR_SP // I
(pt0) br.cond.spnt KiCallMemoryFault // B
mov cr.ipsr = rIPSR // M
;;
mov pr = rpr, -1 // I
rfi // B
;;
KiCallMemoryFault:
mov rHIFA = cr.ifa
movl rHHandler = KiMemoryFault
mov rps = PAGE_SHIFT << PS_SHIFT
mov pr = rpr, -1 // I
;;
ptc.l rHIFA, rps
br.sptk KiGenericExceptionHandler
HANDLER_EXIT(KiPageFault)
//
// ++
//
// Routine:
//
// KiPteIndirectFault
//
// Description:
//
// The PTE itself indicates a PteIndirect fault. The target PTE address
// should be generated by extracting PteOffset from PTE and adding it to
// PTE_UBASE. The owner field of the target PTE must be 1. Otherwise,
// Call MmX86Fault().
//
// On entry:
//
// rva (h24) : offending virtual address
// rpr (h26) : PDE contents
//
// Process:
//
// Restores the save predicate (pr), and branches to
// KiGenericExceptionHandler with the argument KiMemoryFault with
// macro VECTOR_CALL_HANDLER().
//
// Notes:
//
// PCR page mapped with TR
// --
HANDLER_ENTRY(KiPteIndirectFault)
rpr = h26 // passed
rps = h27 // passed
rpAte = h28 // passed
rAte = h29 // passed
rPte = h30
rPte0 = h31
rAteMask = h22 // passed
rVa12 = h23
rPteOffset = h23
rpNewPte = h21
rOldIIP = h17 // preserved
rIA32IIP = h18
rpVa = h19 // preserved
rIndex = h20 // preserved
rpBuffer= h16
rpPte = h22
pBr = pt0
pPrg = pt3
pLoop = pt4
pClear = pt5
mov cr.itir = rps // M
thash rpNewPte = r0 // M
mov rIA32IIP = cr.iip // M
extr.u rPteOffset = rAte, PAGE4K_SHIFT, 32 // I
;;
add rpNewPte = rPteOffset, rpNewPte // M/I
cmp.eq pLoop, pClear = rIA32IIP, rOldIIP // I
;;
ld8.s rPte = [rpNewPte] // M
shr rVa12 = rpAte, PTE_SHIFT // I
;;
tnat.nz.or pBr = rPte // I
tbit.z.or pBr = rPte, PTE_VALID // I
tbit.z.or pBr = rPte, PTE_ACCESS // I
(pBr) br.cond.spnt KiPageFault
;;
(pClear)mov rIndex = 0 // M
and rPte0 = rPte, rAteMask // I
;;
#if 1
//
// try to acquire the spinlock
// if failed, resume execution and try again on the next fault
//
mov rpVa = 1
movl rpBuffer = KiPcr + PcFpbLock // L
;;
xchg8 rpVa = [rpBuffer], rpVa
;;
cmp.ne pt1 = 0, rpVa
(pt1) br.cond.spnt Kpif10
;;
#endif
//
// deposit extra PFN bits for 4k page
//
dep rPte0 = rVa12, rPte0, PAGE4K_SHIFT, PAGE_SHIFT-PAGE4K_SHIFT // I
;;
(pClear)itc.d rPte0 // M
;;
and rIndex = 7, rIndex // A
movl rpBuffer = KiPcr + PcForwardProgressBuffer // L
;;
shladd rpVa = rIndex, 4, rpBuffer // M
add rIndex = 1, rIndex // I
;;
st8 [rpVa] = rva // M
add rpPte = 8, rpVa // I
;;
st8 [rpPte] = rPte0 // M
#if 1
//
// done updating the forward progress buffer entry, release spinlock
//
movl rpBuffer = KiPcr + PcFpbLock // L
;;
st8.rel [rpBuffer] = r0, PcForwardProgressBuffer - PcFpbLock
#endif
mov rOldIIP = rIA32IIP // I
#if !defined(NT_UP)
rAte2 = h28
rPte2 = h31
ld8.s rPte2 = [rpNewPte] // M
ld8.s rAte2 = [rpAte] // M
cmp.ne pPrg = zero, zero // I
;;
cmp.ne.or pPrg = rPte, rPte2 // I
tnat.nz.or pPrg = rPte2 // I
cmp.ne.or pPrg = rAte, rAte2 // I
tnat.nz.or pPrg = rAte2 // I
;;
(pPrg) ptc.l rva, rps // M
(pPrg) st8 [rpPte] = r0 // M
#endif
(pLoop) br.cond.spnt KiFillForwardProgressTb // B
Kpif10:
mov pr = rpr, -1 // I
rfi;; // B
HANDLER_EXIT(KiPteIndirectFault)
//
// ++
//
// Routine:
//
// Ki4KDataTlbFault
//
// Description:
//
// Branched from KiDataTlbVector if PTE.Cache indicates the reserved
// encoding. Reads the corresponding ATE and creates a 4kb TB on the
// fly inserts it to the TLB. If a looping condition at IIP is
// detected, it branches to KiFillForwardProgressTb and insert the TBs
// from the forward progress TB queue.
//
// On entry:
//
// rva (h24) : offending virtual address
// riha(h25) : IHA address
// rpr (h26) : PDE contents
//
// Notes:
//
// --
HANDLER_ENTRY(Ki4KDataTlbFault)
rva = h24 // passed
riha = h25 // passed
rpr = h26 // passed
rps = h27
rPfn = h28
rpAte = h28
rAte = h29
rPte = h30
rAltBase = h31
rPte0 = h31
rAteMask = h22
rVa12 = h23
rOldIIP = h17 // preserved
rIA32IIP = h18
rpVa = h19
rIndex = h20 // preserved
rpBuffer= h16
rpPte = h21
pBr = pt0
pIndr = pt1
pMiss = pt2
pPrg = pt3
pLoop = pt4
pClear = pt5
pMiss2 = pt6
mov rIA32IIP = cr.iip // M
mov rps = PS_4K << PS_SHIFT // I
dep rAteMask = 1, r0, 32, 1 // Set rAteMask equal to 2**32
;;
cmp.ge pBr, pt7 = rva, rAteMask // M/I, Test to see if rva is out of bounds.
movl rAltBase = ALT4KB_BASE // L
ld8.s rPte = [riha] // M
shr.u rPfn = rva, PAGE4K_SHIFT // I
;;
shladd rpAte = rPfn, PTE_SHIFT, rAltBase // I
;;
ld8.s rAte = [rpAte] // M
movl rAteMask = ATE_MASK // L
;;
cmp.eq pLoop, pClear = rIA32IIP, rOldIIP// M
tnat.nz pMiss = rPte // I
(pMiss) br.cond.spnt KiPageTableFault // B
(pt7) tnat.nz pMiss2 = rAte // I
(pMiss2)br.cond.spnt KiAltTableFault // B
tbit.z.or pBr = rPte, PTE_VALID // I
tbit.z.or pBr = rAte, PTE_VALID // I
tbit.z.or pBr = rAte, PTE_ACCESS // I
or rAteMask = rAte, rAteMask // M
tbit.nz pIndr, p0 = rAte, ATE_INDIRECT // I
(pBr) br.cond.spnt KiPageFault // B
dep rPte0 = 0, rPte, 2, 3 // I, make it WB
shr rVa12 = rpAte, PTE_SHIFT // I
(pIndr) br.cond.spnt KiPteIndirectFault // B
;;
(pClear)mov rIndex = 0 // M
mov cr.itir = rps // M
and rPte0 = rPte0, rAteMask // I
;;
#if 1
//
// try to acquire the spinlock
// if failed, resume execution and try again on the next fault
//
mov rpVa = 1
movl rpBuffer = KiPcr + PcFpbLock // L
;;
xchg8 rpVa = [rpBuffer], rpVa
;;
cmp.ne pt1 = 0, rpVa
(pt1) br.cond.spnt K4dtf10
;;
#endif
//
// deposit extra PFN bits for 4k page
//
dep rPte0 = rVa12, rPte0, PAGE4K_SHIFT, PAGE_SHIFT-PAGE4K_SHIFT // I
;;
(pClear)itc.d rPte0 // M, install PTE
;;
and rIndex = 7, rIndex // A
movl rpBuffer = KiPcr + PcForwardProgressBuffer // L
;;
shladd rpVa = rIndex, 4, rpBuffer // M
add rIndex = 1, rIndex // I
;;
st8 [rpVa] = rva // M
add rpPte = 8, rpVa // I
;;
st8 [rpPte] = rPte0 // M
//
// done updating the forward progress buffer entry, release spinlock
//
movl rpBuffer = KiPcr + PcFpbLock // L
;;
st8.rel [rpBuffer] = r0, PcForwardProgressBuffer - PcFpbLock
mov rOldIIP = rIA32IIP // I
#if !defined(NT_UP)
rps = h27
rAte2 = h28
rPte2 = h31
ld8.s rPte2 = [riha] // M
ld8.s rAte2 = [rpAte] // M
cmp.ne pPrg = zero, zero // I
;;
cmp.ne.or pPrg = rPte, rPte2 // M
tnat.nz.or pPrg = rPte2 // I
cmp.ne.or pPrg = rAte, rAte2 // M
tnat.nz.or pPrg = rAte2 // I
;;
(pPrg) ptc.l rva, rps // M
(pPrg) st8 [rpPte] = r0 // M
#endif
(pLoop) br.cond.spnt KiFillForwardProgressTb // B
K4dtf10:
mov pr = rpr, -1 // I
rfi;; // B
HANDLER_EXIT(Ki4KDataTlbFault)
//
// ++
//
// Routine:
//
// Ki4KInstTlbFault
//
// Description:
//
// Branched from KiInstTlbVector if PTE.Cache indicates the reserved
// encoding. Reads the corresponding ATE and creates a 4kb TB on the
// fly inserts it to the TLB.
//
// On entry:
//
// rva (h24) : offending virtual address
// riha(h25) : IHA address
// rpr (h26) : PDE contents
//
// Notes:
//
// --
HANDLER_ENTRY(Ki4KInstTlbFault)
rva = h24 // passed
riha = h25 // passed
rpr = h26 // passed
rps = h27
rPfn = h28
rpAte = h28
rAte = h29
rPte = h30
rAltBase = h31
rPte0 = h31
rAteMask = h22
rVa12 = h23
pBr = pt0
pIndr = pt1
pMiss = pt2
pPrg = pt3
pMiss2 = pt6
mov rps = PS_4K << PS_SHIFT // M
movl rAltBase = ALT4KB_BASE // L
shr.u rPfn = rva, PAGE4K_SHIFT // I
dep rAteMask = 1, r0, 32, 1 // Set rAteMask equal to 2**32
;;
ld8.s rPte = [riha] // M
cmp.ge pBr, pt7 = rva, rAteMask // M/I, Test to see if rva is out of bounds.
shladd rpAte = rPfn, PTE_SHIFT, rAltBase // I
;;
ld8.s rAte = [rpAte] // M
movl rAteMask = ATE_MASK // L
;;
tnat.nz pMiss = rPte // I
(pMiss) br.cond.spnt KiPageTableFault // B
(pt7) tnat.nz pMiss2 = rAte // I
(pMiss2)br.cond.spnt KiAltTableFault // B
tbit.z.or pBr = rPte, PTE_VALID // I
tbit.z.or pBr = rAte, PTE_VALID // I
tbit.z.or pBr = rAte, PTE_ACCESS // I
or rAteMask = rAte, rAteMask // M
tbit.nz pIndr, p0 = rAte, ATE_INDIRECT // I
(pBr) br.cond.spnt KiPageFault // B
dep rPte0 = 0, rPte, 2, 3 // I, make it WB
shr rVa12 = rpAte, PTE_SHIFT // I
(pIndr) br.cond.spnt KiPteIndirectFault // B
;;
mov cr.itir = rps // M
and rPte0 = rPte0, rAteMask // I
;;
//
// deposit extra PFN bits for 4k page
//
dep rPte0 = rVa12, rPte0, PAGE4K_SHIFT, PAGE_SHIFT-PAGE4K_SHIFT // I
;;
itc.i rPte0 // M, install PTE
;;
#if !defined(NT_UP)
rps = h27
rAte2 = h28
rPte2 = h31
ld8.s rPte2 = [riha] // M
ld8.s rAte2 = [rpAte] // M
cmp.ne pPrg = zero, zero // I
;;
cmp.ne.or pPrg = rPte, rPte2 // M
tnat.nz.or pPrg = rPte2 // I
cmp.ne.or pPrg = rAte, rAte2 // M
tnat.nz.or pPrg = rAte2 // I
;;
(pPrg) ptc.l rva, rps // M
#endif
mov pr = rpr, -1 // I
rfi;; // B
HANDLER_EXIT(Ki4KInstTlbFault)
//
// ++
//
// Routine:
//
// KiAltTableFault
//
// Description:
//
// Branched from Inst/DataAccessBitVector
// Inserts a missing PTE translation for the alt table.
//
// On entry:
//
// rva (h24) : offending virtual address
// riha (h25) : a offending PTE address
// rpr: (h26) : saved predicate
//
// Handle:
//
// --
HANDLER_ENTRY(KiAltTableFault)
rpAte = h28 // passed
rva = h24
riha = h25
rpr = h26 // passed
rPte = h27
rPte2 = h28
rps = h29
thash riha = rpAte // M
cmp.ne pt1 = r0, r0
mov rva = rpAte // I
;;
ld8.s rPte = [riha] // M
;;
tnat.nz pt0, p0 = rPte // I
tbit.z.or pt1, p0 = rPte, PTE_ACCESS
tbit.z.or pt1, p0 = rPte, PTE_VALID // I, if non-present page fault
(pt0) br.cond.spnt KiPageTableFault // B
(pt1) br.cond.spnt KiPteNotPresentFault // B
;;
mov cr.ifa = rva
;;
itc.d rPte // M
;;
#if !defined(NT_UP)
ld8.s rPte2 = [riha] // M
mov rps = PAGE_SHIFT << PS_SHIFT // I
cmp.ne pt0 = zero, zero // I
;;
cmp.ne.or pt0 = rPte2, rPte // M
tnat.nz.or pt0 = rPte2 // I
;;
(pt0) ptc.l rva, rps // M
#endif
mov pr = rpr, -1 // I
rfi;; // B
HANDLER_EXIT(KiAltTableFault)
//
// ++
//
// Routine:
//
// KiFillForwardProgressTb
//
// Description:
//
// Fill TB from TLB forward progress buffer.
//
// On entry:
//
// rpBuffer (h16) : forward progress buffer address
// rpr: (h26) : saved predicate
//
// Handle:
//
// --
HANDLER_ENTRY(KiFillForwardProgressTb)
rLc = h29
rT0 = h28
rps = h27
rpr = h26
rVa = h22
rPte = h21
rpVa = h19
rpPte = h17
rpBuffer= h16
mov rpVa = rpBuffer // A
mov.i rLc = ar.lc // I
mov rT0 = NUMBER_OF_FWP_ENTRIES - 1 //
;;
add rpPte = 8, rpBuffer // A
mov.i ar.lc = rT0 // I
;;
fpb_loop:
//
// use ALAT to see if somebody modify the PTE entry
//
ld8 rVa = [rpVa], 16 // M
ld8.a rPte = [rpPte] // M
;;
mov cr.ifa = rVa // M
cmp.ne pt0, pt1 = rPte, r0 // I
;;
(pt0) itc.d rPte // M
;;
(pt0) ld8.c.clr rPte = [rpPte] // M
add rpPte = 16, rpPte // I
;;
(pt1) invala.e rPte // M, invalidate ALAT entry
(pt0) cmp.eq.and pt0 = rPte, r0 // I
;;
(pt0) ptc.l rVa, rps // M
br.cloop.dptk.many fpb_loop;; // B
mov.i ar.lc = rLc
mov pr = rpr, -1 // I
rfi // B
;;
//
// Add four nop cycles (two bundles) bundles of NOP's to
// workaround McKinly Errata.
//
nop.m 0
;;
nop.m 0
;;
nop.m 0
;;
nop.m 0
;;
HANDLER_EXIT(KiFillForwardProgressTb)
//++
//
// Routine Description:
//
// This routine begins the common code for raising an exception.
// The routine saves the non-volatile state and dispatches to the
// next level exception dispatcher.
//
// Arguments:
//
// a0 - pointer to trap frame
// a1 - previous mode
//
// Return Value:
//
// None.
//
//--
NESTED_ENTRY(KiExceptionDispatch)
//
// Build exception frame
//
.regstk 2, 3, 5, 0
.prologue 0xA, loc0
alloc t16 = ar.pfs, 2, 3, 5, 0
mov loc0 = sp
cmp4.eq pt0 = UserMode, a1 // previous mode is user?
mov loc1 = brp
.fframe ExceptionFrameLength
add sp = -ExceptionFrameLength, sp
;;
.save ar.unat, loc2
mov loc2 = ar.unat
add t0 = ExFltS19+STACK_SCRATCH_AREA, sp
add t1 = ExFltS18+STACK_SCRATCH_AREA, sp
;;
.save.gf 0x0, 0xC0000
stf.spill [t0] = fs19, ExFltS17-ExFltS19
stf.spill [t1] = fs18, ExFltS16-ExFltS18
;;
.save.gf 0x0, 0x30000
stf.spill [t0] = fs17, ExFltS15-ExFltS17
stf.spill [t1] = fs16, ExFltS14-ExFltS16
mov t10 = bs4
;;
.save.gf 0x0, 0xC000
stf.spill [t0] = fs15, ExFltS13-ExFltS15
stf.spill [t1] = fs14, ExFltS12-ExFltS14
mov t11 = bs3
;;
.save.gf 0x0, 0x3000
stf.spill [t0] = fs13, ExFltS11-ExFltS13
stf.spill [t1] = fs12, ExFltS10-ExFltS12
mov t12 = bs2
;;
.save.gf 0x0, 0xC00
stf.spill [t0] = fs11, ExFltS9-ExFltS11
stf.spill [t1] = fs10, ExFltS8-ExFltS10
mov t13 = bs1
;;
.save.gf 0x0, 0x300
stf.spill [t0] = fs9, ExFltS7-ExFltS9
stf.spill [t1] = fs8, ExFltS6-ExFltS8
mov t14 = bs0
;;
.save.gf 0x0, 0xC0
stf.spill [t0] = fs7, ExFltS5-ExFltS7
stf.spill [t1] = fs6, ExFltS4-ExFltS6
mov t15 = ar.lc
;;
.save.gf 0x0, 0x30
stf.spill [t0] = fs5, ExFltS3-ExFltS5
stf.spill [t1] = fs4, ExFltS2-ExFltS4
;;
.save.f 0xC
stf.spill [t0] = fs3, ExFltS1-ExFltS3 // save fs3
stf.spill [t1] = fs2, ExFltS0-ExFltS2 // save fs2
;;
.save.f 0x3
stf.spill [t0] = fs1, ExBrS4-ExFltS1 // save fs1
stf.spill [t1] = fs0, ExBrS3-ExFltS0 // save fs0
;;
.save.b 0x18
st8 [t0] = t10, ExBrS2-ExBrS4 // save bs4
st8 [t1] = t11, ExBrS1-ExBrS3 // save bs3
;;
.save.b 0x6
st8 [t0] = t12, ExBrS0-ExBrS2 // save bs2
st8 [t1] = t13, ExIntS2-ExBrS1 // save bs1
;;
.save.b 0x1
st8 [t0] = t14, ExIntS3-ExBrS0 // save bs0
movl out0 = KiPcr+PcCurrentThread
;;
.save.gf 0xC, 0x0
.mem.offset 0,0
st8.spill [t0] = s3, ExIntS1-ExIntS3 // save s3
.mem.offset 8,0
st8.spill [t1] = s2, ExIntS0-ExIntS2 // save s2
;;
.save.gf 0x3, 0x0
.mem.offset 0,0
st8.spill [t0] = s1, ExApLC-ExIntS1 // save s1
.mem.offset 8,0
st8.spill [t1] = s0, ExApEC-ExIntS0 // save s0
;;
.savepsp ar.pfs, ExceptionFrameLength-ExApEC-STACK_SCRATCH_AREA
st8 [t1] = t16, ExIntNats-ExApEC
mov t4 = ar.unat // captured Nats of s0-s3
;;
(pt0) ld8 out0 = [out0]
;;
(pt0) add out0 = ThStackBase, out0
.savepsp ar.lc, ExceptionFrameLength-ExApLC-STACK_SCRATCH_AREA
st8 [t0] = t15
.savepsp @priunat, ExceptionFrameLength-ExIntNats-STACK_SCRATCH_AREA
st8 [t1] = t4 // save Nats of s0-s3
;;
PROLOGUE_END
(pt0) ld8 out0 = [out0]
;;
(pt0) add out0 = -ThreadStateSaveAreaLength+TsHigherFPVolatile, out0
(pt0) br.call.sptk brp = KiSaveHigherFPVolatile
;;
CAPSTART(KiExceptionDispatch,KiDispatchException)
add out0 = TrExceptionRecord, a0 // -> exception record
add out1 = STACK_SCRATCH_AREA, sp // -> exception frame
mov out2 = a0 // -> trap frame
mov out3 = a1 // previous mode
mov out4 = 1 // first chance
br.call.sptk.many brp = KiDispatchException
;;
CAPEND(KiExceptionDispatch)
add t1 = ExApEC+STACK_SCRATCH_AREA, sp
movl t0 = KiExceptionExit
;;
//
// Interrupts must be disabled before calling KiExceptionExit
// because the unwind code cannot unwind from that point.
//
FAST_DISABLE_INTERRUPTS
ld8 t1 = [t1]
mov brp = t0
;;
mov ar.unat = loc2
mov ar.pfs = t1
add s1 = STACK_SCRATCH_AREA, sp // s1 -> exception frame
mov s0 = a0 // s0 -> trap frame
br.ret.sptk brp
;;
NESTED_EXIT(KiExceptionDispatch)
//++
//
// BOOLEAN
// KeInvalidAccessAllowed (
// IN PVOID TrapInformation
// )
//
// Routine Description:
//
// Mm will pass a pointer to a trap frame prior to issuing a bug check on
// a pagefault. This routine lets Mm know if it is ok to bugcheck. The
// specific case we must protect are the interlocked pop sequences which can
// blindly access memory that may have been freed and/or reused prior to the
// access. We don't want to bugcheck the system in these cases, so we check
// the instruction pointer here.
//
// Arguments:
//
// TrapFrame (a0) - Supplies a trap frame pointer. NULL means return False.
//
// Return Value:
//
// True if the invalid access should be ignored.
// False which will usually trigger a bugcheck.
//
//--
LEAF_ENTRY(KeInvalidAccessAllowed)
.regstk 1, 0, 0, 0
cmp.eq pt0 = 0, a0
movl t1 = ExpInterlockedPopEntrySListFault
add t0 = TrStIIP, a0
mov v0 = zero // assume access not allowed
(pt0) br.ret.spnt brp
;;
ld8 t0 = [t0]
;;
cmp.eq pt2 = t0, t1
;;
nop.m 0
(pt2) mov v0 = 1
br.ret.sptk brp
LEAF_EXIT(KeInvalidAccessAllowed)
LEAF_ENTRY(KeScrubBackingStoreRegisters)
.regstk 1, 15, 1, 0
alloc loc0 = 1, 15, 1, 0
mov loc1 = brp
cmp.ge pt0, pt1 = 17, a0
add out0 = -16, a0
mov loc2 = r0
mov loc3 = r0
;;
mov loc4 = r0
mov loc5 = r0
mov loc6 = r0
mov loc7 = r0
mov loc8 = r0
mov loc9 = r0
mov loc10 = r0
mov loc11 = r0
mov loc12 = r0
mov loc13 = r0
mov loc14 = r0
(pt1) br.call.dpnt brp = KeScrubBackingStoreRegisters
mov out0 = r0
mov brp = loc1
mov loc1 = r0
mov a0 = r0
mov ar.pfs = loc0
mov loc0 = r0
br.ret.sptk brp
LEAF_EXIT (KeScrubBackingStoreRegisters)
LEAF_ENTRY(KiPageZeroFault)
rpr = h26
rK5 = h28
mov h29 = cr.ipsr
tbit.z pt1, pt0 = rK5, 0
;;
dep h29 = 1, h29, PSR_ED, 1 // I
(pt0) itc.d r0
;;
mov cr.ipsr = h29
(pt0) mov rK5 = r0
(pt1) add rK5 = 3, rK5
;;
mov ar.k5 = rK5
mov pr = rpr, -1 // I
rfi;; // B
LEAF_EXIT(KiPageZeroFault)