Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1192 lines
35 KiB

/*++
Copyright (c) 1989 Microsoft Corporation
Module Name:
queryvm.c
Abstract:
This module contains the routines which implement the
NtQueryVirtualMemory service.
Author:
Lou Perazzoli (loup) 21-Aug-1989
Landy Wang (landyw) 02-June-1997
Revision History:
--*/
#include "mi.h"
extern POBJECT_TYPE IoFileObjectType;
NTSTATUS
MiGetWorkingSetInfo (
IN PMEMORY_WORKING_SET_INFORMATION WorkingSetInfo,
IN SIZE_T Length,
IN PEPROCESS Process
);
MMPTE
MiCaptureSystemPte (
IN PMMPTE PointerProtoPte,
IN PEPROCESS Process
);
#if DBG
PEPROCESS MmWatchProcess;
#endif // DBG
ULONG
MiQueryAddressState (
IN PVOID Va,
IN PMMVAD Vad,
IN PEPROCESS TargetProcess,
OUT PULONG ReturnedProtect,
OUT PVOID *NextVaToQuery
);
#ifdef ALLOC_PRAGMA
#pragma alloc_text(PAGE,NtQueryVirtualMemory)
#pragma alloc_text(PAGE,MiQueryAddressState)
#pragma alloc_text(PAGE,MiGetWorkingSetInfo)
#endif
NTSTATUS
NtQueryVirtualMemory (
IN HANDLE ProcessHandle,
IN PVOID BaseAddress,
IN MEMORY_INFORMATION_CLASS MemoryInformationClass,
OUT PVOID MemoryInformation,
IN SIZE_T MemoryInformationLength,
OUT PSIZE_T ReturnLength OPTIONAL
)
/*++
Routine Description:
This function provides the capability to determine the state,
protection, and type of a region of pages within the virtual address
space of the subject process.
The state of the first page within the region is determined and then
subsequent entries in the process address map are scanned from the
base address upward until either the entire range of pages has been
scanned or until a page with a nonmatching set of attributes is
encountered. The region attributes, the length of the region of pages
with matching attributes, and an appropriate status value are
returned.
If the entire region of pages does not have a matching set of
attributes, then the returned length parameter value can be used to
calculate the address and length of the region of pages that was not
scanned.
Arguments:
ProcessHandle - An open handle to a process object.
BaseAddress - The base address of the region of pages to be
queried. This value is rounded down to the next host-page-
address boundary.
MemoryInformationClass - The memory information class about which
to retrieve information.
MemoryInformation - A pointer to a buffer that receives the specified
information. The format and content of the buffer
depend on the specified information class.
MemoryBasicInformation - Data type is PMEMORY_BASIC_INFORMATION.
MEMORY_BASIC_INFORMATION Structure
ULONG RegionSize - The size of the region in bytes beginning at
the base address in which all pages have
identical attributes.
ULONG State - The state of the pages within the region.
State Values
MEM_COMMIT - The state of the pages within the region
is committed.
MEM_FREE - The state of the pages within the region
is free.
MEM_RESERVE - The state of the pages within the
region is reserved.
ULONG Protect - The protection of the pages within the region.
Protect Values
PAGE_NOACCESS - No access to the region of pages is allowed.
An attempt to read, write, or execute within
the region results in an access violation.
PAGE_EXECUTE - Execute access to the region of pages
is allowed. An attempt to read or write within
the region results in an access violation.
PAGE_READONLY - Read-only and execute access to the region
of pages is allowed. An attempt to write within
the region results in an access violation.
PAGE_READWRITE - Read, write, and execute access to the region
of pages is allowed. If write access to the
underlying section is allowed, then a single
copy of the pages are shared. Otherwise,
the pages are shared read-only/copy-on-write.
PAGE_GUARD - Read, write, and execute access to the
region of pages is allowed; however, access to
the region causes a "guard region entered"
condition to be raised in the subject process.
PAGE_NOCACHE - Disable the placement of committed
pages into the data cache.
ULONG Type - The type of pages within the region.
Type Values
MEM_PRIVATE - The pages within the region are private.
MEM_MAPPED - The pages within the region are mapped
into the view of a section.
MEM_IMAGE - The pages within the region are mapped
into the view of an image section.
MemoryInformationLength - Specifies the length in bytes of
the memory information buffer.
ReturnLength - An optional pointer which, if specified, receives the
number of bytes placed in the process information buffer.
Return Value:
NTSTATUS.
Environment:
Kernel mode.
--*/
{
KPROCESSOR_MODE PreviousMode;
PEPROCESS TargetProcess;
NTSTATUS Status;
PMMVAD Vad;
PVOID Va;
PVOID NextVaToQuery;
LOGICAL Found;
SIZE_T TheRegionSize;
ULONG NewProtect;
ULONG NewState;
PVOID FilePointer;
ULONG_PTR BaseVpn;
MEMORY_BASIC_INFORMATION Info;
PMEMORY_BASIC_INFORMATION BasicInfo;
LOGICAL Attached;
LOGICAL Leaped;
ULONG MemoryInformationLengthUlong;
KAPC_STATE ApcState;
PETHREAD CurrentThread;
PVOID HighestVadAddress;
PVOID HighestUserAddress;
Found = FALSE;
Leaped = TRUE;
FilePointer = NULL;
//
// Make sure the user's buffer is large enough for the requested operation.
//
// Check argument validity.
//
switch (MemoryInformationClass) {
case MemoryBasicInformation:
if (MemoryInformationLength < sizeof(MEMORY_BASIC_INFORMATION)) {
return STATUS_INFO_LENGTH_MISMATCH;
}
break;
case MemoryWorkingSetInformation:
if (MemoryInformationLength < sizeof(ULONG_PTR)) {
return STATUS_INFO_LENGTH_MISMATCH;
}
break;
case MemoryMappedFilenameInformation:
break;
default:
return STATUS_INVALID_INFO_CLASS;
}
CurrentThread = PsGetCurrentThread ();
PreviousMode = KeGetPreviousModeByThread(&CurrentThread->Tcb);
if (PreviousMode != KernelMode) {
//
// Check arguments.
//
try {
ProbeForWrite(MemoryInformation,
MemoryInformationLength,
sizeof(ULONG_PTR));
if (ARGUMENT_PRESENT(ReturnLength)) {
ProbeForWriteUlong_ptr(ReturnLength);
}
} except (EXCEPTION_EXECUTE_HANDLER) {
//
// If an exception occurs during the probe or capture
// of the initial values, then handle the exception and
// return the exception code as the status value.
//
return GetExceptionCode();
}
}
if (BaseAddress > MM_HIGHEST_USER_ADDRESS) {
return STATUS_INVALID_PARAMETER;
}
HighestUserAddress = MM_HIGHEST_USER_ADDRESS;
HighestVadAddress = (PCHAR) MM_HIGHEST_VAD_ADDRESS;
#if defined(_WIN64)
if (ProcessHandle == NtCurrentProcess()) {
TargetProcess = PsGetCurrentProcessByThread(CurrentThread);
}
else {
Status = ObReferenceObjectByHandle (ProcessHandle,
PROCESS_QUERY_INFORMATION,
PsProcessType,
PreviousMode,
(PVOID *)&TargetProcess,
NULL);
if (!NT_SUCCESS(Status)) {
return Status;
}
}
//
// If this is a wow64 process, then return the appropriate highest
// user address depending on whether the process has been started with
// a 2GB or a 4GB address space.
//
if (TargetProcess->Wow64Process != NULL) {
if (TargetProcess->Flags & PS_PROCESS_FLAGS_WOW64_4GB_VA_SPACE) {
HighestUserAddress = (PVOID) ((ULONG_PTR)_4gb - X64K - 1);
}
else {
HighestUserAddress = (PVOID) ((ULONG_PTR)_2gb - X64K - 1);
}
HighestVadAddress = (PCHAR)HighestUserAddress - X64K;
if (BaseAddress > HighestUserAddress) {
if (ProcessHandle != NtCurrentProcess()) {
ObDereferenceObject (TargetProcess);
}
return STATUS_INVALID_PARAMETER;
}
}
#endif
if ((BaseAddress >= HighestVadAddress) ||
(PAGE_ALIGN(BaseAddress) == (PVOID)MM_SHARED_USER_DATA_VA)) {
//
// Indicate a reserved area from this point on.
//
Status = STATUS_INVALID_ADDRESS;
if (MemoryInformationClass == MemoryBasicInformation) {
try {
((PMEMORY_BASIC_INFORMATION)MemoryInformation)->AllocationBase =
(PCHAR) HighestVadAddress + 1;
((PMEMORY_BASIC_INFORMATION)MemoryInformation)->AllocationProtect =
PAGE_READONLY;
((PMEMORY_BASIC_INFORMATION)MemoryInformation)->BaseAddress =
PAGE_ALIGN(BaseAddress);
((PMEMORY_BASIC_INFORMATION)MemoryInformation)->RegionSize =
((PCHAR)HighestUserAddress + 1) -
(PCHAR)PAGE_ALIGN(BaseAddress);
((PMEMORY_BASIC_INFORMATION)MemoryInformation)->State = MEM_RESERVE;
((PMEMORY_BASIC_INFORMATION)MemoryInformation)->Protect = PAGE_NOACCESS;
((PMEMORY_BASIC_INFORMATION)MemoryInformation)->Type = MEM_PRIVATE;
if (ARGUMENT_PRESENT(ReturnLength)) {
*ReturnLength = sizeof(MEMORY_BASIC_INFORMATION);
}
if (PAGE_ALIGN(BaseAddress) == (PVOID)MM_SHARED_USER_DATA_VA) {
//
// This is the page that is double mapped between
// user mode and kernel mode.
//
((PMEMORY_BASIC_INFORMATION)MemoryInformation)->AllocationBase =
(PVOID)MM_SHARED_USER_DATA_VA;
((PMEMORY_BASIC_INFORMATION)MemoryInformation)->Protect =
PAGE_READONLY;
((PMEMORY_BASIC_INFORMATION)MemoryInformation)->RegionSize =
PAGE_SIZE;
((PMEMORY_BASIC_INFORMATION)MemoryInformation)->State =
MEM_COMMIT;
}
} except (EXCEPTION_EXECUTE_HANDLER) {
//
// Just return success.
//
NOTHING;
}
Status = STATUS_SUCCESS;
}
#if defined(_WIN64)
if (ProcessHandle != NtCurrentProcess()) {
ObDereferenceObject (TargetProcess);
}
#endif
return Status;
}
#if !defined(_WIN64)
if (ProcessHandle == NtCurrentProcess()) {
TargetProcess = PsGetCurrentProcessByThread(CurrentThread);
}
else {
Status = ObReferenceObjectByHandle (ProcessHandle,
PROCESS_QUERY_INFORMATION,
PsProcessType,
PreviousMode,
(PVOID *)&TargetProcess,
NULL);
if (!NT_SUCCESS(Status)) {
return Status;
}
}
#endif
if (MemoryInformationClass == MemoryWorkingSetInformation) {
Status = MiGetWorkingSetInfo (
(PMEMORY_WORKING_SET_INFORMATION) MemoryInformation,
MemoryInformationLength,
TargetProcess);
if (ProcessHandle != NtCurrentProcess()) {
ObDereferenceObject (TargetProcess);
}
//
// If MiGetWorkingSetInfo failed then inform the caller.
//
if (!NT_SUCCESS(Status)) {
return Status;
}
try {
if (ARGUMENT_PRESENT(ReturnLength)) {
*ReturnLength = ((((PMEMORY_WORKING_SET_INFORMATION)
MemoryInformation)->NumberOfEntries - 1) *
sizeof(ULONG_PTR)) +
sizeof(MEMORY_WORKING_SET_INFORMATION);
}
} except (EXCEPTION_EXECUTE_HANDLER) {
}
return STATUS_SUCCESS;
}
//
// If the specified process is not the current process, attach
// to the specified process.
//
if (ProcessHandle != NtCurrentProcess()) {
KeStackAttachProcess (&TargetProcess->Pcb, &ApcState);
Attached = TRUE;
}
else {
Attached = FALSE;
}
//
// Get working set mutex and block APCs.
//
LOCK_ADDRESS_SPACE (TargetProcess);
//
// Make sure the address space was not deleted, if so, return an error.
//
if (TargetProcess->Flags & PS_PROCESS_FLAGS_VM_DELETED) {
UNLOCK_ADDRESS_SPACE (TargetProcess);
if (Attached == TRUE) {
KeUnstackDetachProcess (&ApcState);
ObDereferenceObject (TargetProcess);
}
return STATUS_PROCESS_IS_TERMINATING;
}
//
// Locate the VAD that contains the base address or the VAD
// which follows the base address.
//
if (TargetProcess->VadRoot.NumberGenericTableElements != 0) {
Vad = (PMMVAD) TargetProcess->VadRoot.BalancedRoot.RightChild;
BaseVpn = MI_VA_TO_VPN (BaseAddress);
while (TRUE) {
if (Vad == NULL) {
break;
}
if ((BaseVpn >= Vad->StartingVpn) &&
(BaseVpn <= Vad->EndingVpn)) {
Found = TRUE;
break;
}
if (BaseVpn < Vad->StartingVpn) {
if (Vad->LeftChild == NULL) {
break;
}
Vad = Vad->LeftChild;
}
else {
if (BaseVpn < Vad->EndingVpn) {
break;
}
if (Vad->RightChild == NULL) {
break;
}
Vad = Vad->RightChild;
}
}
}
else {
Vad = NULL;
BaseVpn = 0;
}
if (!Found) {
//
// There is no virtual address allocated at the base
// address. Return the size of the hole starting at
// the base address.
//
if (Vad == NULL) {
TheRegionSize = (((PCHAR)HighestVadAddress + 1) -
(PCHAR)PAGE_ALIGN(BaseAddress));
}
else {
if (Vad->StartingVpn < BaseVpn) {
//
// We are looking at the Vad which occupies the range
// just before the desired range. Get the next Vad.
//
Vad = MiGetNextVad (Vad);
if (Vad == NULL) {
TheRegionSize = (((PCHAR)HighestVadAddress + 1) -
(PCHAR)PAGE_ALIGN(BaseAddress));
}
else {
TheRegionSize = (PCHAR)MI_VPN_TO_VA (Vad->StartingVpn) -
(PCHAR)PAGE_ALIGN(BaseAddress);
}
}
else {
TheRegionSize = (PCHAR)MI_VPN_TO_VA (Vad->StartingVpn) -
(PCHAR)PAGE_ALIGN(BaseAddress);
}
}
UNLOCK_ADDRESS_SPACE (TargetProcess);
if (Attached == TRUE) {
KeUnstackDetachProcess (&ApcState);
ObDereferenceObject (TargetProcess);
}
//
// Establish an exception handler and write the information and
// returned length.
//
if (MemoryInformationClass == MemoryBasicInformation) {
BasicInfo = (PMEMORY_BASIC_INFORMATION) MemoryInformation;
Found = FALSE;
try {
BasicInfo->AllocationBase = NULL;
BasicInfo->AllocationProtect = 0;
BasicInfo->BaseAddress = PAGE_ALIGN(BaseAddress);
BasicInfo->RegionSize = TheRegionSize;
BasicInfo->State = MEM_FREE;
BasicInfo->Protect = PAGE_NOACCESS;
BasicInfo->Type = 0;
Found = TRUE;
if (ARGUMENT_PRESENT(ReturnLength)) {
*ReturnLength = sizeof(MEMORY_BASIC_INFORMATION);
}
} except (EXCEPTION_EXECUTE_HANDLER) {
//
// Just return success if the BasicInfo was successfully
// filled in.
//
if (Found == FALSE) {
return GetExceptionCode ();
}
}
return STATUS_SUCCESS;
}
return STATUS_INVALID_ADDRESS;
}
//
// Found a VAD.
//
Va = PAGE_ALIGN(BaseAddress);
Info.BaseAddress = Va;
//
// There is a page mapped at the base address.
//
if (Vad->u.VadFlags.PrivateMemory) {
Info.Type = MEM_PRIVATE;
}
else {
if (Vad->u.VadFlags.ImageMap == 1) {
Info.Type = MEM_IMAGE;
}
else {
Info.Type = MEM_MAPPED;
}
if (MemoryInformationClass == MemoryMappedFilenameInformation) {
if (Vad->ControlArea != NULL) {
FilePointer = Vad->ControlArea->FilePointer;
}
if (FilePointer == NULL) {
FilePointer = (PVOID)1;
}
else {
ObReferenceObject (FilePointer);
}
}
}
LOCK_WS_UNSAFE (TargetProcess);
Info.State = MiQueryAddressState (Va,
Vad,
TargetProcess,
&Info.Protect,
&NextVaToQuery);
Va = NextVaToQuery;
while (MI_VA_TO_VPN (Va) <= Vad->EndingVpn) {
NewState = MiQueryAddressState (Va,
Vad,
TargetProcess,
&NewProtect,
&NextVaToQuery);
if ((NewState != Info.State) || (NewProtect != Info.Protect)) {
//
// The state for this address does not match, calculate
// size and return.
//
Leaped = FALSE;
break;
}
Va = NextVaToQuery;
}
UNLOCK_WS_UNSAFE (TargetProcess);
//
// We may have aggressively leaped past the end of the VAD. Shorten the
// Va here if we did.
//
if (Leaped == TRUE) {
Va = MI_VPN_TO_VA (Vad->EndingVpn + 1);
}
Info.RegionSize = ((PCHAR)Va - (PCHAR)Info.BaseAddress);
Info.AllocationBase = MI_VPN_TO_VA (Vad->StartingVpn);
Info.AllocationProtect = MI_CONVERT_FROM_PTE_PROTECTION (
Vad->u.VadFlags.Protection);
//
// A range has been found, release the mutexes, detach from the
// target process and return the information.
//
#if defined(_MIALT4K_)
if (TargetProcess->Wow64Process != NULL) {
Info.BaseAddress = PAGE_4K_ALIGN(BaseAddress);
MiQueryRegionFor4kPage (Info.BaseAddress,
MI_VPN_TO_VA_ENDING(Vad->EndingVpn),
&Info.RegionSize,
&Info.State,
&Info.Protect,
TargetProcess);
}
#endif
UNLOCK_ADDRESS_SPACE (TargetProcess);
if (Attached == TRUE) {
KeUnstackDetachProcess (&ApcState);
ObDereferenceObject (TargetProcess);
}
if (MemoryInformationClass == MemoryBasicInformation) {
Found = FALSE;
try {
*(PMEMORY_BASIC_INFORMATION)MemoryInformation = Info;
Found = TRUE;
if (ARGUMENT_PRESENT(ReturnLength)) {
*ReturnLength = sizeof(MEMORY_BASIC_INFORMATION);
}
} except (EXCEPTION_EXECUTE_HANDLER) {
//
// Just return success if the BasicInfo was successfully
// filled in.
//
if (Found == FALSE) {
return GetExceptionCode ();
}
}
return STATUS_SUCCESS;
}
//
// Try to return the name of the file that is mapped.
//
if (FilePointer == NULL) {
return STATUS_INVALID_ADDRESS;
}
if (FilePointer == (PVOID)1) {
return STATUS_FILE_INVALID;
}
MemoryInformationLengthUlong = (ULONG)MemoryInformationLength;
if ((SIZE_T)MemoryInformationLengthUlong < MemoryInformationLength) {
return STATUS_INVALID_PARAMETER_5;
}
//
// We have a referenced pointer to the file. Call ObQueryNameString
// and get the file name.
//
Status = ObQueryNameString (FilePointer,
(POBJECT_NAME_INFORMATION) MemoryInformation,
MemoryInformationLengthUlong,
(PULONG)ReturnLength);
ObDereferenceObject (FilePointer);
return Status;
}
ULONG
MiQueryAddressState (
IN PVOID Va,
IN PMMVAD Vad,
IN PEPROCESS TargetProcess,
OUT PULONG ReturnedProtect,
OUT PVOID *NextVaToQuery
)
/*++
Routine Description:
Arguments:
Return Value:
Returns the state (MEM_COMMIT, MEM_RESERVE, MEM_PRIVATE).
Environment:
Kernel mode. Working set lock and address creation lock held.
--*/
{
PMMPTE PointerPte;
PMMPTE PointerPde;
PMMPTE PointerPpe;
PMMPTE PointerPxe;
MMPTE CapturedProtoPte;
PMMPTE ProtoPte;
LOGICAL PteIsZero;
ULONG State;
ULONG Protect;
ULONG Waited;
LOGICAL PteDetected;
PVOID NextVa;
State = MEM_RESERVE;
Protect = 0;
PointerPxe = MiGetPxeAddress (Va);
PointerPpe = MiGetPpeAddress (Va);
PointerPde = MiGetPdeAddress (Va);
PointerPte = MiGetPteAddress (Va);
ASSERT ((Vad->StartingVpn <= MI_VA_TO_VPN (Va)) &&
(Vad->EndingVpn >= MI_VA_TO_VPN (Va)));
PteIsZero = TRUE;
PteDetected = FALSE;
*NextVaToQuery = (PVOID)((PCHAR)Va + PAGE_SIZE);
do {
if (!MiDoesPxeExistAndMakeValid (PointerPxe,
TargetProcess,
MM_NOIRQL,
&Waited)) {
#if (_MI_PAGING_LEVELS >= 4)
NextVa = MiGetVirtualAddressMappedByPte (PointerPxe + 1);
NextVa = MiGetVirtualAddressMappedByPte (NextVa);
NextVa = MiGetVirtualAddressMappedByPte (NextVa);
*NextVaToQuery = MiGetVirtualAddressMappedByPte (NextVa);
#endif
break;
}
#if (_MI_PAGING_LEVELS >= 4)
Waited = 0;
#endif
if (!MiDoesPpeExistAndMakeValid (PointerPpe,
TargetProcess,
MM_NOIRQL,
&Waited)) {
#if (_MI_PAGING_LEVELS >= 3)
NextVa = MiGetVirtualAddressMappedByPte (PointerPpe + 1);
NextVa = MiGetVirtualAddressMappedByPte (NextVa);
*NextVaToQuery = MiGetVirtualAddressMappedByPte (NextVa);
#endif
break;
}
#if (_MI_PAGING_LEVELS < 4)
Waited = 0;
#endif
if (!MiDoesPdeExistAndMakeValid (PointerPde,
TargetProcess,
MM_NOIRQL,
&Waited)) {
NextVa = MiGetVirtualAddressMappedByPte (PointerPde + 1);
*NextVaToQuery = MiGetVirtualAddressMappedByPte (NextVa);
break;
}
if (Waited == 0) {
PteDetected = TRUE;
}
} while (Waited != 0);
if (PteDetected == TRUE) {
//
// A PTE exists at this address, see if it is zero.
//
if (MI_PDE_MAPS_LARGE_PAGE (PointerPde)) {
*ReturnedProtect = PAGE_READWRITE;
NextVa = MiGetVirtualAddressMappedByPte (PointerPde + 1);
*NextVaToQuery = MiGetVirtualAddressMappedByPte (NextVa);
return MEM_COMMIT;
}
if (PointerPte->u.Long != 0) {
PteIsZero = FALSE;
//
// There is a non-zero PTE at this address, use
// it to build the information block.
//
if (MiIsPteDecommittedPage (PointerPte)) {
ASSERT (Protect == 0);
ASSERT (State == MEM_RESERVE);
}
else {
State = MEM_COMMIT;
if (Vad->u.VadFlags.PhysicalMapping == 1) {
//
// Physical mapping, there is no corresponding
// PFN element to get the page protection from.
//
Protect = MI_CONVERT_FROM_PTE_PROTECTION (
Vad->u.VadFlags.Protection);
}
else {
Protect = MiGetPageProtection (PointerPte,
TargetProcess,
FALSE);
if ((PointerPte->u.Soft.Valid == 0) &&
(PointerPte->u.Soft.Prototype == 1) &&
(Vad->u.VadFlags.PrivateMemory == 0) &&
(Vad->ControlArea != (PCONTROL_AREA)NULL)) {
//
// Make sure the protoPTE is committed.
//
ProtoPte = MiGetProtoPteAddress(Vad,
MI_VA_TO_VPN (Va));
CapturedProtoPte.u.Long = 0;
if (ProtoPte) {
CapturedProtoPte = MiCaptureSystemPte (ProtoPte,
TargetProcess);
}
if (CapturedProtoPte.u.Long == 0) {
State = MEM_RESERVE;
Protect = 0;
}
}
}
}
}
}
if (PteIsZero) {
//
// There is no PDE at this address, the template from
// the VAD supplies the information unless the VAD is
// for an image file. For image files the individual
// protection is on the prototype PTE.
//
//
// Get the default protection information.
//
State = MEM_RESERVE;
Protect = 0;
if (Vad->u.VadFlags.PhysicalMapping == 1) {
//
// Must be banked memory, just return reserved.
//
NOTHING;
}
else if ((Vad->u.VadFlags.PrivateMemory == 0) &&
(Vad->ControlArea != (PCONTROL_AREA)NULL)) {
//
// This VAD refers to a section. Even though the PTE is
// zero, the actual page may be committed in the section.
//
*NextVaToQuery = (PVOID)((PCHAR)Va + PAGE_SIZE);
ProtoPte = MiGetProtoPteAddress(Vad, MI_VA_TO_VPN (Va));
CapturedProtoPte.u.Long = 0;
if (ProtoPte) {
CapturedProtoPte = MiCaptureSystemPte (ProtoPte,
TargetProcess);
}
if (CapturedProtoPte.u.Long != 0) {
State = MEM_COMMIT;
if (Vad->u.VadFlags.ImageMap == 0) {
Protect = MI_CONVERT_FROM_PTE_PROTECTION (
Vad->u.VadFlags.Protection);
}
else {
//
// This is an image file, the protection is in the
// prototype PTE.
//
Protect = MiGetPageProtection (&CapturedProtoPte,
TargetProcess,
TRUE);
}
}
}
else {
//
// Get the protection from the corresponding VAD.
//
if (Vad->u.VadFlags.MemCommit) {
State = MEM_COMMIT;
Protect = MI_CONVERT_FROM_PTE_PROTECTION (
Vad->u.VadFlags.Protection);
}
}
}
*ReturnedProtect = Protect;
return State;
}
NTSTATUS
MiGetWorkingSetInfo (
IN PMEMORY_WORKING_SET_INFORMATION WorkingSetInfo,
IN SIZE_T Length,
IN PEPROCESS Process
)
{
PMDL Mdl;
PMEMORY_WORKING_SET_INFORMATION Info;
PMEMORY_WORKING_SET_BLOCK Entry;
#if DBG
PMEMORY_WORKING_SET_BLOCK LastEntry;
#endif
PMMWSLE Wsle;
PMMWSLE LastWsle;
WSLE_NUMBER WsSize;
PMMPTE PointerPte;
PMMPFN Pfn1;
NTSTATUS status;
LOGICAL Attached;
KAPC_STATE ApcState;
PETHREAD CurrentThread;
//
// Allocate an MDL to map the request.
//
Mdl = ExAllocatePoolWithTag (NonPagedPool,
sizeof(MDL) + sizeof(PFN_NUMBER) +
BYTES_TO_PAGES (Length) * sizeof(PFN_NUMBER),
' mM');
if (Mdl == NULL) {
return STATUS_INSUFFICIENT_RESOURCES;
}
//
// Initialize the MDL for the request.
//
MmInitializeMdl(Mdl, WorkingSetInfo, Length);
CurrentThread = PsGetCurrentThread ();
try {
MmProbeAndLockPages (Mdl,
KeGetPreviousModeByThread (&CurrentThread->Tcb),
IoWriteAccess);
} except (EXCEPTION_EXECUTE_HANDLER) {
ExFreePool (Mdl);
return GetExceptionCode();
}
Info = MmGetSystemAddressForMdlSafe (Mdl, NormalPagePriority);
if (Info == NULL) {
MmUnlockPages (Mdl);
ExFreePool (Mdl);
return STATUS_INSUFFICIENT_RESOURCES;
}
if (PsGetCurrentProcessByThread (CurrentThread) != Process) {
KeStackAttachProcess (&Process->Pcb, &ApcState);
Attached = TRUE;
}
else {
Attached = FALSE;
}
status = STATUS_SUCCESS;
LOCK_WS (Process);
if (Process->Flags & PS_PROCESS_FLAGS_VM_DELETED) {
status = STATUS_PROCESS_IS_TERMINATING;
}
else {
WsSize = Process->Vm.WorkingSetSize;
ASSERT (WsSize != 0);
Info->NumberOfEntries = WsSize;
if (sizeof(MEMORY_WORKING_SET_INFORMATION) + (WsSize-1) * sizeof(ULONG_PTR) > Length) {
status = STATUS_INFO_LENGTH_MISMATCH;
}
}
if (!NT_SUCCESS(status)) {
UNLOCK_WS (Process);
if (Attached == TRUE) {
KeUnstackDetachProcess (&ApcState);
}
MmUnlockPages (Mdl);
ExFreePool (Mdl);
return status;
}
Wsle = MmWsle;
LastWsle = &MmWsle[MmWorkingSetList->LastEntry];
Entry = &Info->WorkingSetInfo[0];
#if DBG
LastEntry = (PMEMORY_WORKING_SET_BLOCK)(
(PCHAR)Info + (Length & (~(sizeof(ULONG_PTR) - 1))));
#endif
do {
if (Wsle->u1.e1.Valid == 1) {
Entry->VirtualPage = Wsle->u1.e1.VirtualPageNumber;
PointerPte = MiGetPteAddress (Wsle->u1.VirtualAddress);
ASSERT (PointerPte->u.Hard.Valid == 1);
Pfn1 = MI_PFN_ELEMENT (PointerPte->u.Hard.PageFrameNumber);
#if defined(MI_MULTINODE)
Entry->Node = Pfn1->u3.e1.PageColor;
#else
Entry->Node = 0;
#endif
Entry->Shared = Pfn1->u3.e1.PrototypePte;
if (Pfn1->u3.e1.PrototypePte == 0) {
Entry->ShareCount = 0;
Entry->Protection = MI_GET_PROTECTION_FROM_SOFT_PTE(&Pfn1->OriginalPte);
}
else {
if (Pfn1->u2.ShareCount <= 7) {
Entry->ShareCount = Pfn1->u2.ShareCount;
}
else {
Entry->ShareCount = 7;
}
if (Wsle->u1.e1.SameProtectAsProto == 1) {
Entry->Protection = MI_GET_PROTECTION_FROM_SOFT_PTE(&Pfn1->OriginalPte);
}
else {
Entry->Protection = Wsle->u1.e1.Protection;
}
}
Entry += 1;
}
Wsle += 1;
#if DBG
ASSERT ((Entry < LastEntry) || (Wsle > LastWsle));
#endif
} while (Wsle <= LastWsle);
UNLOCK_WS (Process);
if (Attached == TRUE) {
KeUnstackDetachProcess (&ApcState);
}
MmUnlockPages (Mdl);
ExFreePool (Mdl);
return STATUS_SUCCESS;
}