Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

4349 lines
118 KiB

/*++
Copyright (c) 1999 Microsoft Corporation
Module Name:
cpuinfo.c
Abstract:
WinDbg Extension Api
Author:
Peter Johnston (peterj) 19-April-1999
Environment:
User Mode.
Revision History:
--*/
#include "precomp.h"
#include "i386.h"
#include "amd64.h"
#include "ia64.h"
#pragma hdrstop
#define MAXIMUM_IA64_VECTOR 256
#if !defined(ROUND_UP)
//
// Macro to round Val up to the next Bnd boundary. Bnd must be an integral
// power of two.
//
#define ROUND_UP( Val, Bnd ) \
(((Val) + ((Bnd) - 1)) & ~((Bnd) - 1))
#endif // !ROUND_UP
VOID
DumpCpuInfoIA64(
ULONG processor,
BOOLEAN doHead
)
{
HRESULT Hr;
ULONG number;
ULONG64 prcb;
UCHAR vendorString[16];
if (doHead)
{
dprintf("CP M/R/F/A Manufacturer SerialNumber Features Speed\n");
}
Hr = g_ExtData->ReadProcessorSystemData(processor,
DEBUG_DATA_KPRCB_OFFSET,
&prcb,
sizeof(prcb),
NULL);
if (Hr != S_OK)
{
return;
}
if ( GetFieldValue(prcb, "nt!_KPRCB", "ProcessorVendorString", vendorString) ) {
dprintf("Unable to read VendorString from Processor %u KPRCB, quitting\n", processor);
return;
}
if ( InitTypeRead( prcb, nt!_KPRCB )) {
dprintf("Unable to read KPRCB for processor %u, quitting.\n", processor);
return;
}
number = (ULONG)ReadField(Number);
if ( number != processor ) {
//
// Processor number isn't what we expected. Bail out.
// This will need revisiting at some stage in the future
// when we support a discontiguous set of processor numbers.
//
dprintf("Processor %d mismatch with processor number in KPRCB = %d, quitting\n",
processor,
number );
return;
}
dprintf("%2d %d,%d,%d,%d %-16s %016I64x %016I64x %ld Mhz\n",
number,
(ULONG) ReadField(ProcessorModel),
(ULONG) ReadField(ProcessorRevision),
(ULONG) ReadField(ProcessorFamily),
(ULONG) ReadField(ProcessorArchRev),
vendorString,
(ULONGLONG) ReadField(ProcessorSerialNumber),
(ULONGLONG) ReadField(ProcessorFeatureBits),
(ULONG) ReadField(MHz)
);
return;
}
VOID
DumpCpuInfoX86(
ULONG processor,
BOOLEAN doHead
)
{
HRESULT Hr;
ULONG64 Prcb;
UCHAR sigWarn1, sigWarn2;
LARGE_INTEGER updateSignature;
PROCESSORINFO pi;
if (doHead)
{
dprintf("CP F/M/S Manufacturer MHz Update Signature Features\n");
}
if (!Ioctl(IG_KD_CONTEXT, &pi, sizeof(pi))) {
dprintf("Unable to get processor info, quitting\n");
return;
}
CHAR VendorString[20]={0};
Hr = g_ExtData->ReadProcessorSystemData(processor,
DEBUG_DATA_KPRCB_OFFSET,
&Prcb,
sizeof(Prcb),
NULL);
if (Hr != S_OK)
{
return;
}
if (InitTypeRead(Prcb, nt!_KPRCB)) {
dprintf("Unable to read PRCB for processor %u, quitting.\n",
processor);
return;
}
if ((ULONG) ReadField(Number) != processor) {
//
// Processor number isn't what I expected. Bail out.
// This will need revisiting at some stage in the future
// when we support a discontiguous set of processor numbers.
//
dprintf("Processor %d mismatch with processor number in PRCB %d, quitting\n",
processor,
(ULONG) ReadField(Number));
return;
}
if (ReadField(CpuID) == 0) {
//
// This processor doesn't support CPUID,... not likely in
// an MP environment but also means we don't have anything
// useful to say.
//
dprintf("Processor %d doesn't support CPUID, quitting.\n",
processor);
return;
}
//
// If this is an Intel processor, family 6 (or, presumably
// above family 6) read the current UpdateSignature from
// the processor rather than using what was there when we
// booted,... it may havee been updated.
//
// Actually, this can't be done unless we can switch processors
// from within an extension. So, mark the processor we did
// it for (unless there's only one processor).
//
*((PULONG64) &updateSignature) = ReadField(UpdateSignature);
sigWarn1 = sigWarn2 = ' ';
GetFieldValue(Prcb, "nt!_KPRCB", "VendorString", VendorString);
if ((!strcmp(VendorString, "GenuineIntel")) &&
((ULONG) ReadField(CpuType) >= 6)) {
if ((ULONG) ReadField(Number) == pi.Processor)
{
if (TargetMachine == IMAGE_FILE_MACHINE_I386)
{
READ_WRITE_MSR msr;
msr.Msr = 0x8b;
msr.Value = 0;
if (Ioctl(IG_READ_MSR, &msr, sizeof(msr)))
{
updateSignature.QuadPart = msr.Value;
}
}
if (pi.NumberProcessors != 1)
{
sigWarn1 = '>';
sigWarn2 = '<';
}
}
}
//
// This extension could pretty much be !PRCB but it's a
// subset,... perhaps we should have a !PRCB?
//
dprintf("%2d %d,%d,%d %12s%5d%c%08x%08x%c%08x\n",
(ULONG) ReadField(Number),
(ULONG) ReadField(CpuType),
((ULONG) ReadField(CpuStep) >> 8) & 0xff,
(ULONG) ReadField(CpuStep) & 0xff,
VendorString,
(ULONG) ReadField(MHz),
sigWarn1,
updateSignature.u.HighPart,
updateSignature.u.LowPart,
sigWarn2,
(ULONG) ReadField(FeatureBits));
}
DECLARE_API( cpuinfo )
/*++
Routine Description:
Gather up any info we know is still in memory that we gleaned
using the CPUID instruction,.... and a few other interesting
tidbits as well.
Arguments:
None
Return Value:
None
--*/
{
ULONG64 processor;
BOOLEAN first = TRUE;
ULONG64 NumProcessors = 0;
INIT_API();
g_ExtControl->GetNumberProcessors((PULONG) &NumProcessors);
if (GetExpressionEx(args, &processor, &args))
{
//
// The user specified a procesor number.
//
if (processor >= NumProcessors)
{
dprintf("cpuinfo: invalid processor number specified\n");
}
else
{
NumProcessors = processor + 1;
}
}
else
{
//
// Enumerate all the processors
//
processor = 0;
}
while (processor < NumProcessors)
{
switch( TargetMachine )
{
case IMAGE_FILE_MACHINE_I386:
case IMAGE_FILE_MACHINE_AMD64:
DumpCpuInfoX86((ULONG)processor, first);
break;
case IMAGE_FILE_MACHINE_IA64:
DumpCpuInfoIA64((ULONG)processor, first);
break;
default:
dprintf("!cpuinfo not supported for this target machine: %ld\n", TargetMachine);
processor = NumProcessors;
}
processor++;
first = FALSE;
}
EXIT_API();
return S_OK;
}
DECLARE_API( irql )
/*++
Routine Description:
Displays the current irql
Arguments:
args - the processor number ( default is 0 )
Return Value:
None
--*/
{
HRESULT Hr;
ULONG64 Address=0;
ULONG Processor;
ULONG Prcb;
ULONG Irql;
INIT_API();
if (!*args)
{
GetCurrentProcessor(Client, &Processor, NULL);
}
else
{
Processor = (ULONG) GetExpression(args);
}
Hr = g_ExtData->ReadProcessorSystemData(Processor,
DEBUG_DATA_KPRCB_OFFSET,
&Address,
sizeof(Address),
NULL);
if (Hr != S_OK)
{
dprintf("Cannot get PRCB address\n");
return E_INVALIDARG;
}
if (GetFieldValue(Address, "nt!_KPRCB", "DebuggerSavedIRQL", Irql))
{
dprintf("Current IRQL not queryable from the debugger on this OS\n");
}
else
{
dprintf("Current IRQL -- %d\n", Irql);
}
EXIT_API();
return S_OK;
}
DECLARE_API( prcb )
/*++
Routine Description:
Displays the PRCB
Arguments:
args - the processor number ( default is 0 )
Return Value:
None
--*/
{
HRESULT Hr;
ULONG64 Address=0;
ULONG Processor;
ULONG Prcb;
ULONG Irql;
INIT_API();
if (!*args)
{
GetCurrentProcessor(Client, &Processor, NULL);
}
else
{
Processor = (ULONG) GetExpression(args);
}
Hr = g_ExtData->ReadProcessorSystemData(Processor,
DEBUG_DATA_KPRCB_OFFSET,
&Address,
sizeof(Address),
NULL);
if (Hr != S_OK)
{
dprintf("Cannot get PRCB address\n");
EXIT_API();
return E_INVALIDARG;
}
if (InitTypeRead(Address, nt!_KPRCB) )
{
dprintf("Unable to read PRCB\n");
EXIT_API();
return E_INVALIDARG;
}
dprintf("PRCB for Processor %d at %p:\n",
Processor, Address);
if (!GetFieldValue(Address, "nt!_KPRCB", "DebuggerSavedIRQL", Irql))
{
dprintf("Current IRQL -- %d\n", Irql);
}
dprintf("Threads-- Current %p Next %p Idle %p\n",
ReadField(CurrentThread),
ReadField(NextThread),
ReadField(IdleThread));
dprintf("Number %d SetMember %08lx\n",
(ULONG) ReadField(Number),
(ULONG) ReadField(SetMember));
dprintf("Interrupt Count -- %08lx\n",
(ULONG) ReadField(InterruptCount));
dprintf("Times -- Dpc %08lx Interrupt %08lx \n",
(ULONG) ReadField(DpcTime),
(ULONG) ReadField(InterruptTime));
dprintf(" Kernel %08lx User %08lx \n",
(ULONG) ReadField(KernelTime),
(ULONG) ReadField(UserTime));
EXIT_API();
return S_OK;
}
DECLARE_API( frozen )
/*++
Routine Description:
Displays which processors are in frozen state
Arguments:
args - not used
Return Value:
None
--*/
{
HRESULT Hr;
ULONG64 Address=0;
ULONG Processor;
ULONG NumProcessors;
ULONG CurrentProc;
INIT_API();
GetCurrentProcessor(Client, &CurrentProc, NULL);
Hr = g_ExtControl->GetNumberProcessors((PULONG) &NumProcessors);
if (Hr != S_OK)
{
dprintf("Cannot get number of processors\n");
EXIT_API();
return Hr;
}
dprintf("Processor states:\n");
for (Processor = 0; Processor < NumProcessors; Processor++)
{
ULONG Frozen;
Hr = g_ExtData->ReadProcessorSystemData(Processor,
DEBUG_DATA_KPRCB_OFFSET,
&Address,
sizeof(Address),
NULL);
if (Hr != S_OK)
{
dprintf("Cannot get PRCB address for processor %ld\n", Processor);
EXIT_API();
return E_INVALIDARG;
}
if (Hr = GetFieldValue(Address, "nt!_KPRCB", "IpiFrozen", Frozen) )
{
dprintf("Unable to read PRCB @ %p\n", Address);
EXIT_API();
return Hr;
} else
{
PSTR State;
if (Processor == CurrentProc)
{
State = "Current";
} else if (Frozen)
{
State = "Frozen";
} else
{
State = "Running";
}
dprintf(" %2ld : %s\n", Processor, State);
}
}
EXIT_API();
return S_OK;
}
VOID
DumpPcrX86(
ULONG64 pPcr
)
{
ULONG ListHeadOff;
PROCESSORINFO pi;
ULONG64 Prcb, DpcFlink;
ULONG DpcDataOff;
InitTypeRead(pPcr, nt!_KPCR);
//
// Print out the PCR
//
dprintf("\tNtTib.ExceptionList: %08lx\n", (ULONG) ReadField(NtTib.ExceptionList));
dprintf("\t NtTib.StackBase: %08lx\n", (ULONG) ReadField(NtTib.StackBase));
dprintf("\t NtTib.StackLimit: %08lx\n", (ULONG) ReadField(NtTib.StackLimit));
dprintf("\t NtTib.SubSystemTib: %08lx\n", (ULONG) ReadField(NtTib.SubSystemTib));
dprintf("\t NtTib.Version: %08lx\n", (ULONG) ReadField(NtTib.Version));
dprintf("\t NtTib.UserPointer: %08lx\n", (ULONG) ReadField(NtTib.ArbitraryUserPointer));
dprintf("\t NtTib.SelfTib: %08lx\n", (ULONG) ReadField(NtTib.Self));
dprintf("\n");
dprintf("\t SelfPcr: %08lx\n", (ULONG) ReadField(SelfPcr));
dprintf("\t Prcb: %08lx\n", (ULONG) ReadField(Prcb));
dprintf("\t Irql: %08lx\n", (ULONG) ReadField(Irql));
dprintf("\t IRR: %08lx\n", (ULONG) ReadField(IRR));
dprintf("\t IDR: %08lx\n", (ULONG) ReadField(IDR));
dprintf("\t InterruptMode: %08lx\n", (ULONG) ReadField(InterruptMode));
dprintf("\t IDT: %08lx\n", (ULONG) ReadField(IDT));
dprintf("\t GDT: %08lx\n", (ULONG) ReadField(GDT));
dprintf("\t TSS: %08lx\n", (ULONG) ReadField(TSS));
dprintf("\n");
dprintf("\t CurrentThread: %08lx\n", (ULONG) ReadField(PrcbData.CurrentThread));
dprintf("\t NextThread: %08lx\n", (ULONG) ReadField(PrcbData.NextThread));
dprintf("\t IdleThread: %08lx\n", (ULONG) ReadField(PrcbData.IdleThread));
GetKdContext( &pi );
dprintf("\n");
dprintf( "\t DpcQueue: ");
if (GetFieldOffset("nt!_KPCR", "PrcbData.DpcData", &DpcDataOff))
{
DpcFlink = ReadField(PrcbData.DpcListHead.Flink);
GetFieldOffset("nt!_KPRCB", "DpcListHead", &ListHeadOff);
} else
{
GetFieldValue(pPcr + DpcDataOff, "nt!_KDPC_DATA", "DpcListHead.Flink", DpcFlink);
GetFieldOffset("nt!_KDPC_DATA", "DpcListHead.Flink", &ListHeadOff);
GetFieldOffset("nt!_KPRCB", "DpcData", &DpcDataOff); // get DpcData offset in KPRCB
ListHeadOff += DpcDataOff;
}
Prcb = ReadField(Prcb);
while (DpcFlink != (Prcb + ListHeadOff )) {
CHAR Name[0x100];
ULONG64 Displacement, DeferredRoutine;
Name[0] = 0;
dprintf(" 0x%p ", (DpcFlink) - 4 );
if (GetFieldValue( DpcFlink - 4, "nt!_KDPC", "DeferredRoutine", DeferredRoutine )) {
dprintf( "Failed to read DPC at 0x%p\n", DpcFlink - 4 );
break;
}
GetSymbol( DeferredRoutine, Name, &Displacement );
dprintf("0x%p %s\n\t ", DeferredRoutine, Name );
if (CheckControlC()) {
break;
}
GetFieldValue( DpcFlink - 4, "nt!_KDPC", "DpcListEntry.Flink", DpcFlink);
}
dprintf("\n");
}
DECLARE_API( pcr )
/*++
Routine Description:
Arguments:
args -
Return Value:
None
--*/
{
ULONG Processor = 0;
ULONG64 Pkpcr;
ULONG MajorVersion, Off;
HRESULT Hr;
INIT_API();
if (!*args)
{
GetCurrentProcessor(Client, &Processor, NULL);
}
else
{
Processor = (ULONG) GetExpression(args);
}
Hr = g_ExtData->ReadProcessorSystemData(Processor,
DEBUG_DATA_KPCR_OFFSET,
&Pkpcr,
sizeof(Pkpcr),
NULL);
if (Hr != S_OK)
{
dprintf("Cannot get PRCB address\n");
return E_INVALIDARG;
}
if (GetFieldValue(Pkpcr, "nt!_KPCR", "MajorVersion", MajorVersion)) {
dprintf("Unable to read the PCR at %p\n", Pkpcr);
return E_INVALIDARG;
}
//
// Print out some interesting fields
//
InitTypeRead(Pkpcr, nt!_KPCR);
dprintf("KPCR for Processor %d at %08p:\n", Processor, Pkpcr);
dprintf(" Major %d Minor %d\n",
MajorVersion,
(ULONG) ReadField(MinorVersion));
switch (TargetMachine) {
case IMAGE_FILE_MACHINE_I386:
DumpPcrX86(Pkpcr);
break;
case IMAGE_FILE_MACHINE_IA64:
dprintf("\n");
dprintf("\t Prcb: %016I64X\n", ReadField(Prcb));
dprintf("\t CurrentThread: %016I64X\n", ReadField(CurrentThread));
dprintf("\t InitialStack: %016I64X\n", ReadField(InitialStack));
dprintf("\t StackLimit: %016I64X\n", ReadField(StackLimit));
dprintf("\t InitialBStore: %016I64X\n", ReadField(InitialBStore));
dprintf("\t BStoreLimit: %016I64X\n", ReadField(BStoreLimit));
dprintf("\t PanicStack: %016I64X\n", ReadField(PanicStack));
dprintf("\t CurrentIrql: 0x%lx\n", (ULONG)ReadField(CurrentIrql));
dprintf("\n");
break;
default:
dprintf("Panic Stack %08p\n", ReadField(PanicStack));
dprintf("Dpc Stack %08p\n", ReadField(DpcStack));
dprintf("Irql addresses:\n");
GetFieldOffset("KPCR", "IrqlMask", &Off);
dprintf(" Mask %08p\n",Pkpcr + Off);
GetFieldOffset("KPCR", "IrqlTable", &Off);
dprintf(" Table %08p\n", Pkpcr + Off);
GetFieldOffset("KPCR", "InterruptRoutine", &Off);
dprintf(" Routine %08p\n", Pkpcr + Off);
} /* switch */
EXIT_API();
return S_OK;
}
#define TYPE_NO_MATCH 0xFFFE
#define IH_WITH_SYMBOLS TRUE
#define IH_WITHOUT_SYMBOLS FALSE
typedef struct _INTERRUPTION_MAP {
ULONG Type;
PCSTR Name;
PCSTR OptionalField;
} INTERRUPTION_MAP;
static INTERRUPTION_MAP CodeToName[] = {
0x0, "VHPT FAULT", "IFA",
0x4, "ITLB FAULT", "IIPA",
0x8, "DTLB FAULT", "IFA",
0xc, "ALT ITLB FAULT", "IIPA",
0x10, "ALT DTLB FAULT", "IFA",
0x14, "DATA NESTED TLB", "IFA",
0x18, "INST KEY MISS", "IIPA",
0x1c, "DATA KEY MISS", "IFA",
0x20, "DIRTY BIT FAULT", "IFA",
0x24, "INST ACCESS BIT", "IIPA",
0x28, "DATA ACCESS BIT", "IFA",
0x2c, "BREAK INST FAULT", "IIM",
0x30, "EXTERNAL INTERRUPT", "IVR",
0x50, "PAGE NOT PRESENT", "IFA",
0x51, "KEY PERMISSION", "IFA",
0x52, "INST ACCESS RIGHT", "IIPA",
0x53, "DATA ACCESS RIGHT", "IFA",
0x54, "GENERAL EXCEPTION", "ISR",
0x55, "DISABLED FP FAULT", "ISR",
0x56, "NAT CONSUMPTION", "ISR",
0x57, "SPECULATION FAULT", "IIM",
0x59, "DEBUG FAULT", "ISR",
0x5a, "UNALIGNED REF", "IFA",
0x5b, "LOCKED DATA REF", "ISR",
0x5c, "FP FAULT", "ISR",
0x5d, "FP TRAP", "ISR",
0x5e, "LOWER PRIV TRAP", "IIPA",
0x5f, "TAKEN BRANCH TRAP", "IIPA",
0x60, "SINGLE STEP TRAP", "IIPA",
0x69, "IA32 EXCEPTION", "R0",
0x6a, "IA32 INTERCEPT", "R0",
0x6b, "IA32 INTERRUPT", "R0",
0x80, "KERNEL SYSCALL", "Num",
0x81, "USER SYSCALL", "Num",
0x90, "THREAD SWITCH", "OSP",
0x91, "PROCESS SWITCH", "OSP",
TYPE_NO_MATCH, " ", "OPT"
};
#define DumpHistoryValidIIP( _IHistoryRecord ) \
( ((_IHistoryRecord).InterruptionType != 0x90 /* THREAD_SWITCH */) && \
((_IHistoryRecord).InterruptionType != 0x91 /* PROCESS_SWITCH */) )
VOID
DumpHistory(
IHISTORY_RECORD History[],
ULONG Count,
BOOLEAN WithSymbols
)
{
ULONG index;
ULONG i;
BOOL printed;
dprintf("Total # of interruptions = %lu\n", Count);
dprintf("Vector IIP IPSR ExtraField %s\n", WithSymbols ? " IIP Symbol" : "" );
Count = (ULONG)(Count % MAX_NUMBER_OF_IHISTORY_RECORDS);
for (index = 0; index < MAX_NUMBER_OF_IHISTORY_RECORDS; index++) {
printed = FALSE;
for (i = 0; i < sizeof(CodeToName)/sizeof(CodeToName[0]); i++) {
if (History[Count].InterruptionType == CodeToName[i].Type) {
CCHAR symbol[256];
PCHAR s;
ULONG64 displacement;
ULONGLONG iip;
iip = History[Count].IIP;
s = "";
if ( WithSymbols && DumpHistoryValidIIP( History[Count]) ) {
symbol[0] = '!';
GetSymbol( iip, symbol, &displacement);
s = (PCHAR)symbol + strlen( (PCHAR)symbol );
if (s == (PCHAR)symbol ) {
// sprintf( s, (IsPtr64() ? "0x%I64x" : "0x%08x"), iip );
sprintf( s, "0x%016I64x", iip );
}
else {
if ( displacement ) {
// sprintf( s, (IsPtr64() ? "+0x%016I64x" : "+0x%08x"), displacement );
sprintf( s, "+0x%I64x", displacement );
}
}
s = symbol;
}
dprintf( "%18s %16I64x %16I64x %s= %16I64x %s\n",
CodeToName[i].Name,
iip,
History[Count].IPSR,
CodeToName[i].OptionalField,
History[Count].Extra0,
s
);
printed = TRUE;
break;
}
}
if ( !printed ) {
dprintf("VECTOR 0x%lx - unknown for !ih...\n", History[Count].InterruptionType);
}
Count++;
if (Count == MAX_NUMBER_OF_IHISTORY_RECORDS) Count = 0;
}
return;
} // DumpHistory
HRESULT DoIH(
PDEBUG_CLIENT Client,
PCSTR args,
BOOLEAN WithSymbols
)
/*++
Routine Description:
WorkHorse function to dump processors interrupt history records
Arguments:
Client - debug engine interface client
args - the processor number ( default is the current )
WithSymbols - BOOLEAN to specify with or without the IIP Symbols
Return Value:
HRESULT
--*/
{
ULONG processor;
ULONG interruptionCount;
ULONG64 pcrAddress;
HRESULT Hr;
//
// This extension is IA64 specific...
//
if ( TargetMachine != IMAGE_FILE_MACHINE_IA64 )
{
dprintf("ih: IA64 specific extension...\n");
return E_INVALIDARG;
}
INIT_API();
GetCurrentProcessor(Client, &processor, NULL);
if ( *args )
{
processor = (ULONG)GetExpression( args );
}
Hr = g_ExtData->ReadProcessorSystemData(processor,
DEBUG_DATA_KPCR_OFFSET,
&pcrAddress,
sizeof(pcrAddress),
NULL);
if (Hr != S_OK)
{
dprintf("ih: Cannot get PCR address\n");
}
else
{
if (GetFieldValue( pcrAddress, "NT!_KPCR", "InterruptionCount", interruptionCount ) )
{
dprintf("ih: failed to read KPCR for processor %lu\n", processor);
Hr = E_INVALIDARG;
}
else
{
//
// Read and display Interrupt history
//
ULONG result;
IHISTORY_RECORD history[MAX_NUMBER_OF_IHISTORY_RECORDS];
if (!ReadMemory(pcrAddress+0x1000,
(PVOID)history,
sizeof(history),
&result))
{
dprintf("ih: unable to read interrupt history records at %p - result=%lu\n",
pcrAddress + 0x1000, result);
Hr = E_INVALIDARG;
}
else
{
DumpHistory(history, interruptionCount, WithSymbols);
}
}
}
EXIT_API();
return Hr;
} // DoIH()
DECLARE_API( ihs )
/*++
Routine Description:
Dumps the interrupt history records with IIP symbols
Arguments:
args - the processor number ( default is current processor )
Return Value:
None
--*/
{
return( DoIH( Client, args, IH_WITH_SYMBOLS ) );
} // !ihs
DECLARE_API( ih )
/*++
Routine Description:
Dumps the interrupt history records
Arguments:
args - the processor number ( default is current processor )
Return Value:
None
--*/
{
return( DoIH( Client, args, IH_WITHOUT_SYMBOLS ) );
} // !ih
VOID
DumpBTHistory(
ULONGLONG Bth[], // Branch Trace record
ULONG64 BthAddress, // BTH Virtual Address
ULONG MaxBtrNumber // Maximum number of records
)
{
ULONG rec;
dprintf( "BTH @ 0x%I64x:\n"
" b mp slot address symbol\n"
, BthAddress);
for ( rec = 0; rec < (MaxBtrNumber - 1) ; rec++ ) {
DisplayBtbPmdIA64( " ", Bth[rec], DISPLAY_MIN );
}
DisplayBtbIndexPmdIA64( "BTB Index: ", Bth[rec], DISPLAY_MIN );
return;
} // DumpBTHistory()
DECLARE_API( bth )
/*++
Routine Description:
Dumps the IA-64 branch trace buffer saved in _KPCR.
The '!btb' extension dumps the processor branch trace buffer configuration and trace registers.
Arguments:
args - the processor number ( default is the current processor )
Return Value:
None
--*/
{
ULONG processor;
ULONG64 pcrAddress;
HRESULT Hr;
//
// This extension is IA64 specific...
//
if ( TargetMachine != IMAGE_FILE_MACHINE_IA64 )
{
dprintf("ih: IA64 specific extension...\n");
return E_INVALIDARG;
}
INIT_API();
GetCurrentProcessor(Client, &processor, NULL);
if ( *args )
{
processor = (ULONG)GetExpression( args );
}
Hr = g_ExtData->ReadProcessorSystemData(processor,
DEBUG_DATA_KPCR_OFFSET,
&pcrAddress,
sizeof(pcrAddress),
NULL);
if (Hr != S_OK)
{
dprintf("Cannot get PCR address\n");
}
else
{
ULONG pcrSize;
pcrSize = GetTypeSize("nt!_KPCR");
if ( pcrSize == 0 ) {
dprintf( "bth: failed to get _KPCR size\n" );
Hr = E_FAIL;
}
else {
ULONG result;
ULONG64 bthAddress;
ULONGLONG bth[MAX_NUMBER_OF_BTBHISTORY_RECORDS];
pcrSize = ROUND_UP( pcrSize, 16 );
bthAddress = pcrAddress + (ULONG64)pcrSize;
if ( !ReadMemory( bthAddress, bth, sizeof(bth), &result ) ) {
dprintf( "bth: unable to read branch trace history records at %p - result=%lu\n",
bthAddress, result);
Hr = E_FAIL;
}
else {
DumpBTHistory( bth, bthAddress, (ULONG)(sizeof(bth)/sizeof(bth[0])) );
}
}
}
EXIT_API();
return Hr;
} // !bth
DECLARE_API( btb )
/*++
Routine Description:
Dumps the IA-64 branch trace buffer.
Arguments:
args - the processor number ( default is the current processor )
Return Value:
None
--*/
{
ULONG processor;
ULONG64 msr;
ULONG reg;
HRESULT Hr = S_OK;
UNREFERENCED_PARAMETER (args);
//
// This extension is IA64 specific...
//
if ( TargetMachine != IMAGE_FILE_MACHINE_IA64 )
{
dprintf("ih: IA64 specific extension...\n");
return E_INVALIDARG;
}
INIT_API();
GetCurrentProcessor(Client, &processor, NULL);
dprintf("BTB for processor %ld:\n"
" b mp slot address symbol\n"
, processor);
// Thierry 11/20/2000 - FIXFIX - This is Itanium specific. Should be using PMD[] but
// not currently collected in _KSPECIAL_REGISTERS.
for ( reg = 0; reg < 8; reg++) {
msr = 0;
ReadMsr( 680 + reg, &msr );
DisplayBtbPmdIA64( " ", msr, DISPLAY_MIN );
}
EXIT_API();
return Hr;
} // !btb
DECLARE_API( idt )
{
ULONG64 Pkpcr;
ULONG64 Address;
ULONG64 IdtAddress;
ULONG DispatchCodeOffset;
ULONG ListEntryOffset;
ULONG64 currentIdt, endIdt;
ULONG64 displacement;
ULONG64 unexpectedStart, unexpectedEnd;
ULONG64 firstIntObj;
ULONG64 flink;
ULONG idtEntrySize;
CHAR buffer[100];
ULONG processor;
ULONG idtChainCount;
HRESULT Hr;
USHORT interruptObjectType;
BOOL bShowAll = FALSE;
BOOL bTaskGate = FALSE;
switch (TargetMachine)
{
case IMAGE_FILE_MACHINE_I386:
currentIdt = 0x30;
break;
case IMAGE_FILE_MACHINE_AMD64:
currentIdt = 0;
break;
case IMAGE_FILE_MACHINE_IA64:
dprintf("Use !ivt on IA64\n");
return E_INVALIDARG;
default:
dprintf("Unsupported platform\n");
return E_INVALIDARG;
}
INIT_API();
GetCurrentProcessor(Client, &processor, NULL);
Hr = g_ExtData->ReadProcessorSystemData(processor,
DEBUG_DATA_KPCR_OFFSET,
&Pkpcr,
sizeof(Pkpcr),
NULL);
EXIT_API();
if (Hr != S_OK)
{
dprintf("Cannot get PCR address\n");
return E_INVALIDARG;
}
endIdt = 0xfe;
while(*args)
{
switch (*args)
{
case ' ':
args++;
continue;
case '-':
case '/':
args++;
if (*args == 'a')
{
currentIdt = 0;
bShowAll = TRUE;
args++;
break;
}
else
{
dprintf("!idt [-a] [vector]\n");
return E_INVALIDARG;
}
default:
if (GetExpressionEx(args, &currentIdt, &args))
{
endIdt = currentIdt+1;
bShowAll = TRUE;
} else
{
dprintf("Bad argument '%s'\n", args);
return E_INVALIDARG;
}
break;
}
}
if ((endIdt - currentIdt) > 10000)
{
dprintf("Range is too big %p , %p\n", currentIdt, endIdt);
}
//
// Find the offset of the Dispatch Code in the
// interrupt object, so that we can simulate
// a "CONTAINING_RECORD" later.
//
GetFieldOffset("nt!_KINTERRUPT", "DispatchCode", &DispatchCodeOffset);
GetFieldOffset("nt!_KINTERRUPT", "InterruptListEntry", &ListEntryOffset);
interruptObjectType = (USHORT)GetExpression("val nt!InterruptObject");
InitTypeRead(Pkpcr, nt!_KPCR);
if (TargetMachine == IMAGE_FILE_MACHINE_I386)
{
IdtAddress = ReadField(IDT);
unexpectedStart = GetExpression("nt!KiStartUnexpectedRange");
unexpectedEnd = GetExpression("nt!KiEndUnexpectedRange");
idtEntrySize = GetTypeSize("nt!_KIDTENTRY");
}
else if (TargetMachine == IMAGE_FILE_MACHINE_AMD64)
{
IdtAddress = ReadField(IdtBase);
unexpectedStart = GetExpression("nt!KxUnexpectedInterrupt1");
unexpectedEnd = GetExpression("nt!KxUnexpectedInterrupt255");
idtEntrySize = GetTypeSize("nt!_KIDTENTRY64");
}
if (!unexpectedStart || !unexpectedEnd)
{
dprintf("\n\nCan't read kernel symbols.\n");
return E_INVALIDARG;
}
dprintf("\nDumping IDT:\n\n");
for (; currentIdt < endIdt; currentIdt++) {
if (CheckControlC()) {
break;
}
Address = (ULONG64)(IdtAddress + (currentIdt * idtEntrySize));
if (TargetMachine == IMAGE_FILE_MACHINE_I386) {
InitTypeRead(Address, nt!_KIDTENTRY);
Address = ReadField(ExtendedOffset) & 0xFFFFFFFF;
Address <<= 16;
Address |= ReadField(Offset) & 0xFFFF;
Address |= 0xFFFFFFFF00000000;
bTaskGate = (ReadField(Access) & 0x1F00) == 0x0500;
} else if (TargetMachine == IMAGE_FILE_MACHINE_AMD64) {
InitTypeRead(Address, nt!_KIDTENTRY64);
Address = ReadField(OffsetHigh) & 0xFFFFFFFF;
Address <<= 16;
Address |= ReadField(OffsetMiddle) & 0xFFFF;
Address <<= 16;
Address |= ReadField(OffsetLow) & 0xFFFF;
}
if ((Address >= unexpectedStart) && (Address <= unexpectedEnd))
{
if (!bShowAll)
{
continue;
}
}
dprintf("%x:", currentIdt);
if (bTaskGate)
{
dprintf("\tTask Selector = 0x%04X\n", ReadField(Selector));
continue;
}
//
// Work backwards from the code to the containing interrupt
// object.
//
Address -= DispatchCodeOffset;
firstIntObj = Address;
idtChainCount = 0;
InitTypeRead(Address, nt!_KINTERRUPT);
dprintf("\t%p ", Address + DispatchCodeOffset);
if (ReadField(Type) != interruptObjectType)
{
GetSymbol(Address + DispatchCodeOffset, buffer, &displacement);
if (buffer[0] != '\0') {
if (displacement != 0) {
dprintf("%s+0x%I64X", buffer, displacement);
} else {
dprintf("%s", buffer);
}
}
dprintf("\n");
continue;
}
while (TRUE) {
GetSymbol(ReadField(ServiceRoutine), buffer, &displacement);
if (buffer[0] != '\0') {
if (displacement != 0) {
dprintf("%s+0x%I64X (KINTERRUPT %p)\n", buffer, displacement, Address);
} else {
dprintf("%s (KINTERRUPT %p)\n", buffer, Address);
}
} else {
dprintf("%p (KINTERRUPT %p)\n", ReadField(ServiceRoutine), Address);
}
InitTypeRead(ListEntryOffset + Address, nt!_LIST_ENTRY);
flink = ReadField(Flink);
if (flink == 0 ||
flink == (firstIntObj + ListEntryOffset)) {
break;
}
Address = flink - ListEntryOffset;
InitTypeRead(Address, nt!_KINTERRUPT);
if (CheckControlC()) {
return E_ABORT;
}
if (idtChainCount++ > 50) {
//
// We are clearly going nowhere.
//
break;
}
dprintf("\t\t ");
}
}
dprintf("\n");
return S_OK;
}
DECLARE_API( ivt )
{
ULONG64 Pkpcr;
ULONG64 Address;
ULONG64 idtEntry;
ULONG DispatchCodeOffset;
ULONG ListEntryOffset;
ULONG InterruptRoutineOffset;
ULONG64 unexpectedInterrupt;
ULONG64 chainedDispatch;
ULONG64 PcrInterruptRoutineAddress;
ULONG currentIdt, endIdt;
BOOL argsPresent = FALSE;
ULONG64 firstIntObj;
ULONG idtEntrySize;
CHAR buffer[100];
ULONG processor;
ULONG idtChainCount;
HRESULT Hr;
ULONG64 displacement;
ULONG result;
USHORT interruptObjectType;
if ( IMAGE_FILE_MACHINE_IA64 != TargetMachine) {
dprintf("Don't know how to dump the IVT on anything but IA64, use !idt on x86\n");
return E_INVALIDARG;
}
INIT_API();
GetCurrentProcessor(Client, &processor, NULL);
Hr = g_ExtData->ReadProcessorSystemData(processor,
DEBUG_DATA_KPCR_OFFSET,
&Pkpcr,
sizeof(Pkpcr),
NULL);
EXIT_API();
if (Hr != S_OK)
{
dprintf("Cannot get PCR address\n");
return E_INVALIDARG;
}
unexpectedInterrupt = GetExpression("nt!KxUnexpectedInterrupt");
if (unexpectedInterrupt == 0) {
dprintf("\n\nCan't read kernel symbols.\n");
return E_INVALIDARG;
}
chainedDispatch = GetExpression("nt!KiChainedDispatch");
interruptObjectType = (USHORT)GetExpression("val nt!InterruptObject");
GetFieldOffset("nt!_KINTERRUPT", "DispatchCode", &DispatchCodeOffset);
GetFieldOffset("nt!_KINTERRUPT", "InterruptListEntry", &ListEntryOffset);
GetFieldOffset("nt!_KPCR", "InterruptRoutine", &InterruptRoutineOffset);
unexpectedInterrupt += DispatchCodeOffset;
idtEntrySize = GetTypeSize("nt!PKINTERRUPT_ROUTINE");
if (argsPresent = strlen(args) ? TRUE : FALSE) {
currentIdt = strtoul(args, NULL, 16);
endIdt = currentIdt+1;
if (currentIdt >= MAXIMUM_IA64_VECTOR) {
dprintf("\n\nInvalid argument \"%s\", maximum vector = %d\n", args, MAXIMUM_IA64_VECTOR);
return E_INVALIDARG;
}
} else {
currentIdt = 0;
endIdt = MAXIMUM_IA64_VECTOR;
}
dprintf("\nDumping IA64 IVT:\n\n");
PcrInterruptRoutineAddress = Pkpcr + InterruptRoutineOffset;
for (; currentIdt < endIdt; currentIdt++) {
if (CheckControlC()) {
break;
}
Address = (ULONG64)(PcrInterruptRoutineAddress + (currentIdt * idtEntrySize));
if (!ReadMemory(Address, &idtEntry, sizeof(idtEntry), &result)) {
dprintf( "Can't read entry for vector %02X at %p - result=%lu\n",
currentIdt, Address, result);
break;
}
Address = idtEntry;
if (Address == unexpectedInterrupt) {
//
// IDT entry contains "unexpected interrupt." This
// means that this vector isn't interesting.
//
if (argsPresent) {
//
// The user was specifying a specific vector.
//
dprintf("Vector %x not connected\n", currentIdt);
}
continue;
}
dprintf("\n%x:\n", currentIdt);
//
// Work backwards from the code to the containing interrupt
// object.
//
Address -= DispatchCodeOffset;
firstIntObj = Address;
idtChainCount = 0;
InitTypeRead(Address, nt!_KINTERRUPT);
if (ReadField(Type) != interruptObjectType)
{
GetSymbol(Address + DispatchCodeOffset, buffer, &displacement);
if (buffer[0] != '\0') {
if (displacement != 0) {
dprintf("\t%s+0x%I64X\n", buffer, displacement);
} else {
dprintf("\t%s\n", buffer);
}
} else {
dprintf("\t%p\n", Address + DispatchCodeOffset);
}
continue;
}
while (TRUE) {
GetSymbol(ReadField(ServiceRoutine), buffer, &displacement);
if (buffer[0] != '\0') {
if (displacement != 0) {
dprintf("\t%s+0x%I64X (%p)\n", buffer, displacement, Address);
} else {
dprintf("\t%s (%p)\n", buffer, Address);
}
} else {
dprintf("\t%p (%p)\n", ReadField(ServiceRoutine), Address);
}
if (ReadField(DispatchAddress) != chainedDispatch) {
break;
}
InitTypeRead(ListEntryOffset + Address, nt!_LIST_ENTRY);
if (ReadField(Flink) == (firstIntObj + ListEntryOffset)) {
break;
}
Address = ReadField(Flink) - ListEntryOffset;
InitTypeRead(Address, nt!_KINTERRUPT);
if (CheckControlC()) {
return E_ABORT;
}
if (idtChainCount++ > 50) {
//
// We are clearly going nowhere.
//
break;
}
}
}
dprintf("\n");
return S_OK;
}
//
// MCA MSR architecture definitions
//
//
// MSR addresses for Pentium Style Machine Check Exception
//
#define MCE_MSR_MC_ADDR 0x0
#define MCE_MSR_MC_TYPE 0x1
//
// MSR addresses for Pentium Pro Style Machine Check Architecture
//
//
// Global capability, status and control register addresses
//
#define MCA_MSR_MCG_CAP 0x179
#define MCA_MSR_MCG_STATUS 0x17a
#define MCA_MSR_MCG_CTL 0x17b
#define MCA_MSR_MCG_EAX 0x180
#define MCA_MSR_MCG_EFLAGS 0x188
#define MCA_MSR_MCG_EIP 0x189
//
// Control, Status, Address, and Misc register address for
// bank 0. Other bank registers are at a stride of MCA_NUM_REGS
// from corresponding bank 0 register.
//
#define MCA_NUM_REGS 4
#define MCA_MSR_MC0_CTL 0x400
#define MCA_MSR_MC0_STATUS 0x401
#define MCA_MSR_MC0_ADDR 0x402
#define MCA_MSR_MC0_MISC 0x403
//
// Flags used to determine if the MCE or MCA feature is
// available. Used with HalpFeatureBits.
//
#define HAL_MCA_PRESENT 0x4
#define HAL_MCE_PRESENT 0x8
//
// Flags to decode errors in MCI_STATUS register of MCA banks
//
#define MCA_EC_NO_ERROR 0x0000
#define MCA_EC_UNCLASSIFIED 0x0001
#define MCA_EC_ROMPARITY 0x0002
#define MCA_EC_EXTERN 0x0003
#define MCA_EC_FRC 0x0004
#include "pshpack1.h"
//
// Global Machine Check Capability Register
//
typedef struct _MCA_MCG_CAPABILITY {
union {
struct {
ULONG McaCnt:8;
ULONG McaCntlPresent:1;
ULONG McaExtPresent:1;
ULONG Reserved_1: 6;
ULONG McaExtCnt: 8;
ULONG Reserved_2: 8;
ULONG Reserved_3;
} hw;
ULONGLONG QuadPart;
} u;
} MCA_MCG_CAPABILITY, *PMCA_MCG_CAPABILITY;
//
// Global Machine Check Status Register
//
typedef struct _MCA_MCG_STATUS {
union {
struct {
ULONG RestartIPValid:1;
ULONG ErrorIPValid:1;
ULONG McCheckInProgress:1;
ULONG Reserved_1:29;
ULONG Reserved_2;
} hw;
ULONGLONG QuadPart;
} u;
} MCA_MCG_STATUS, *PMCA_MCG_STATUS;
//
// MCA COD field in status register for interpreting errors
//
typedef struct _MCA_COD {
union {
struct {
USHORT Level:2;
USHORT Type:2;
USHORT Request:4;
USHORT BusErrInfo:4;
USHORT Other:4;
} hw;
USHORT ShortPart;
} u;
} MCA_COD, *PMCA_COD;
//
// STATUS register for each MCA bank.
//
typedef struct _MCA_MCI_STATUS {
union {
struct {
MCA_COD McaCod;
USHORT MsCod;
ULONG OtherInfo:25;
ULONG Damage:1;
ULONG AddressValid:1;
ULONG MiscValid:1;
ULONG Enabled:1;
ULONG UnCorrected:1;
ULONG OverFlow:1;
ULONG Valid:1;
} hw;
ULONGLONG QuadPart;
} u;
} MCA_MCI_STATUS, *PMCA_MCI_STATUS;
//
// ADDR register for each MCA bank
//
typedef struct _MCA_MCI_ADDR{
union {
struct {
ULONG Address;
ULONG Reserved;
} hw;
ULONGLONG QuadPart;
} u;
} MCA_MCI_ADDR, *PMCA_MCI_ADDR;
#include "poppack.h"
//
// Machine Check Error Description
//
// Any Reserved/Generic entry
CHAR Reserved[] = "Reserved";
CHAR Generic[] = "Generic";
// Transaction Types
CHAR TransInstruction[] = "Instruction";
CHAR TransData[] = "Data";
static CHAR *TransType[] = {TransInstruction,
TransData,
Generic,
Reserved
};
// Level Encodings
CHAR Level0[] = "Level 0";
CHAR Level1[] = "Level 1";
CHAR Level2[] = "Level 2";
static CHAR *Level[] = {
Level0,
Level1,
Level2,
Generic
};
// Request Encodings
CHAR ReqGenericRead[] = "Generic Read";
CHAR ReqGenericWrite[] = "Generic Write";
CHAR ReqDataRead[] = "Data Read";
CHAR ReqDataWrite[] = "Data Write";
CHAR ReqInstrFetch[] = "Instruction Fetch";
CHAR ReqPrefetch[] = "Prefetch";
CHAR ReqEviction[] = "Eviction";
CHAR ReqSnoop[] = "Snoop";
static CHAR *Request[] = {
Generic,
ReqGenericRead,
ReqGenericWrite,
ReqDataRead,
ReqDataWrite,
ReqInstrFetch,
ReqPrefetch,
ReqEviction,
ReqSnoop,
Reserved,
Reserved,
Reserved,
Reserved,
Reserved,
Reserved,
Reserved
};
// Memory Hierarchy Error Encodings
CHAR MemHierMemAccess[] = "Memory Access";
CHAR MemHierIO[] = "I/O";
CHAR MemHierOther[] = "Other Transaction";
static CHAR *MemoryHierarchy[] = {
MemHierMemAccess,
Reserved,
MemHierIO,
MemHierOther
};
// Time Out Status
CHAR TimeOut[] = "Timed Out";
CHAR NoTimeOut[] = "Did Not Time Out";
static CHAR *TimeOutCode[] = {
NoTimeOut,
TimeOut
};
// Participation Status
CHAR PartSource[] = "Source";
CHAR PartResponds[] = "Responds";
CHAR PartObserver[] = "Observer";
static CHAR *ParticipCode[] = {
PartSource,
PartResponds,
PartObserver,
Generic
};
//
// Register names for registers starting at MCA_MSR_MCG_EAX
//
char *RegNames[] = {
"eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
"eflags", "eip", "misc"
};
VOID
DecodeError (
IN MCA_MCI_STATUS MciStatus
)
/*++
Routine Description:
Decode the machine check error logged to the status register
Model specific errors are not decoded.
Arguments:
MciStatus: Contents of Machine Check Status register
Return Value:
None
--*/
{
MCA_COD McaCod;
McaCod = MciStatus.u.hw.McaCod;
//
// Decode Errors: First identify simple errors and then
// handle compound errors as default case
//
switch(McaCod.u.ShortPart) {
case MCA_EC_NO_ERROR:
dprintf("\t\tNo Error\n");
break;
case MCA_EC_UNCLASSIFIED:
dprintf("\t\tUnclassified Error\n");
break;
case MCA_EC_ROMPARITY:
dprintf("\t\tMicrocode ROM Parity Error\n");
break;
case MCA_EC_EXTERN:
dprintf("\t\tExternal Error\n");
break;
case MCA_EC_FRC:
dprintf("\t\tFRC Error\n");
break;
default: // check for complex error conditions
if (McaCod.u.hw.BusErrInfo == 0x4) {
dprintf("\t\tInternal Unclassified Error\n");
} else if (McaCod.u.hw.BusErrInfo == 0) {
// TLB Unit Error
dprintf("\t\t%s TLB %s Error\n",
TransType[McaCod.u.hw.Type],
Level[McaCod.u.hw.Level]);
} else if (McaCod.u.hw.BusErrInfo == 1) {
// Memory Unit Error
dprintf("\t\t%s Cache %s %s Error\n",
TransType[McaCod.u.hw.Type],
Level[McaCod.u.hw.Level],
Request[McaCod.u.hw.Request]);
} else if (McaCod.u.hw.BusErrInfo >= 8) {
// Bus/Interconnect Error
dprintf("\t\tBus %s, Local Processor: %s, %s Error\n",
Level[McaCod.u.hw.Level],
ParticipCode[((McaCod.u.hw.BusErrInfo & 0x6)>>1)],
Request[McaCod.u.hw.Request]);
dprintf("%s Request %s\n",
MemoryHierarchy[McaCod.u.hw.Type],
TimeOutCode[McaCod.u.hw.BusErrInfo & 0x1]);
} else {
dprintf("\t\tUnresolved compound error code\n");
}
break;
}
}
HRESULT
McaX86(
PCSTR args
)
/*++
Routine Description:
Dumps X86 processors machine check architecture registers
and interprets any logged errors
Arguments:
args
Return Value:
HRESULT
--*/
{
MCA_MCG_CAPABILITY Capabilities;
MCA_MCG_STATUS McgStatus;
MCA_MCI_STATUS MciStatus;
MCA_MCI_ADDR MciAddress;
ULONGLONG MciControl;
ULONGLONG MciMisc;
ULONG Index,i;
ULONG FeatureBits = 0;
ULONG Cr4Value;
BOOLEAN Cr4MCEnabled = FALSE;
BOOLEAN RegsValid = FALSE;
ULONGLONG MachineCheckAddress, MachineCheckType;
ULARGE_INTEGER RegValue;
//
// Quick sanity check for Machine Check availability.
// Support included for both Pentium Style MCE and Pentium
// Pro Style MCA.
//
i = (ULONG) GetExpression(args);
if (i != 1) {
i = (ULONG) GetExpression("hal!HalpFeatureBits");
if (!i) {
dprintf ("HalpFeatureBits not found\n");
return E_INVALIDARG;
}
FeatureBits = 0;
ReadMemory(i, &FeatureBits, sizeof(i), &i);
if (FeatureBits == -1 ||
(!(FeatureBits & HAL_MCA_PRESENT) &&
!(FeatureBits & HAL_MCE_PRESENT))) {
dprintf ("Machine Check feature not present\n");
return E_INVALIDARG;
}
}
//
// Read cr4 to determine if CR4.MCE is enabled.
// This enables the Machine Check exception reporting
//
Cr4Value = (ULONG) GetExpression("@Cr4");
if (Cr4Value & CR4_MCE_X86) {
Cr4MCEnabled = TRUE;
}
if (FeatureBits & HAL_MCE_PRESENT) {
// Read P5_MC_ADDR Register and P5_MC_TYPE Register
ReadMsr(MCE_MSR_MC_ADDR, &MachineCheckAddress);
ReadMsr(MCE_MSR_MC_TYPE, &MachineCheckType);
dprintf ("MCE: %s, Cycle Address: 0x%.8x%.8x, Type: 0x%.8x%.8x\n\n",
(Cr4MCEnabled ? "Enabled" : "Disabled"),
(ULONG)(MachineCheckAddress >> 32),
(ULONG)(MachineCheckAddress),
(ULONG)(MachineCheckType >> 32),
(ULONG)(MachineCheckType));
}
Capabilities.u.QuadPart = (ULONGLONG)0;
if (FeatureBits & HAL_MCA_PRESENT) {
//
// Dump MCA registers
//
ReadMsr(MCA_MSR_MCG_CAP, &Capabilities.u.QuadPart);
ReadMsr(MCA_MSR_MCG_STATUS, &McgStatus.u.QuadPart);
dprintf ("MCA: %s, Banks %d, Control Reg: %s, Machine Check: %s.\n",
(Cr4MCEnabled ? "Enabled" : "Disabled"),
Capabilities.u.hw.McaCnt,
Capabilities.u.hw.McaCntlPresent ? "Supported" : "Not Supported",
McgStatus.u.hw.McCheckInProgress ? "In Progress" : "None"
);
if (McgStatus.u.hw.McCheckInProgress && McgStatus.u.hw.ErrorIPValid) {
dprintf ("MCA: Error IP Valid\n");
}
if (McgStatus.u.hw.McCheckInProgress && McgStatus.u.hw.RestartIPValid) {
dprintf ("MCA: Restart IP Valid\n");
}
//
// Scan all the banks to check if any machines checks have been
// logged and decode the errors if any.
//
dprintf ("Bank Error Control Register Status Register\n");
for (Index=0; Index < (ULONG) Capabilities.u.hw.McaCnt; Index++) {
ReadMsr(MCA_MSR_MC0_CTL+MCA_NUM_REGS*Index, &MciControl);
ReadMsr(MCA_MSR_MC0_STATUS+MCA_NUM_REGS*Index, &MciStatus.u.QuadPart);
dprintf (" %2d. %s 0x%.8x%.8x 0x%.8x%.8x\n",
Index,
(MciStatus.u.hw.Valid ? "Valid" : "None "),
(ULONG) (MciControl >> 32),
(ULONG) (MciControl),
(ULONG) (MciStatus.u.QuadPart>>32),
(ULONG) (MciStatus.u.QuadPart)
);
if (MciStatus.u.hw.Valid) {
DecodeError(MciStatus);
}
if (MciStatus.u.hw.AddressValid) {
ReadMsr(MCA_MSR_MC0_ADDR+MCA_NUM_REGS*Index, &MciAddress.u.QuadPart);
dprintf ("\t\tAddress Reg 0x%.8x%.8x ",
(ULONG) (MciAddress.u.QuadPart>>32),
(ULONG) (MciAddress.u.QuadPart)
);
}
if (MciStatus.u.hw.MiscValid) {
ReadMsr(MCA_MSR_MC0_MISC+MCA_NUM_REGS*Index, &MciMisc);
dprintf ("\t\tMisc Reg 0x%.8x%.8x ",
(ULONG) (MciMisc >> 32),
(ULONG) (MciMisc)
);
}
dprintf("\n");
}
}
if (Capabilities.u.hw.McaExtPresent && Capabilities.u.hw.McaExtCnt) {
dprintf ("Registers Saved: %d.", Capabilities.u.hw.McaExtCnt);
RegsValid = FALSE;
for (i = 0; i < Capabilities.u.hw.McaExtCnt; i++) {
if (i % 2 == 0) {
dprintf("\n");
}
ReadMsr(MCA_MSR_MCG_EAX+i, &RegValue.QuadPart);
if ((i == MCA_MSR_MCG_EFLAGS-MCA_MSR_MCG_EAX) && RegValue.LowPart) {
RegsValid = TRUE;
}
if (i < sizeof(RegNames)/sizeof(RegNames[0])) {
dprintf("%7s: 0x%08x 0x%08x", RegNames[i], RegValue.HighPart, RegValue.LowPart);
} else {
dprintf(" Reg%02d: 0x%08x 0x%08x", i, RegValue.HighPart, RegValue.LowPart);
}
}
dprintf("\n");
if (!RegsValid) {
dprintf("(Register state does not appear to be valid.)\n");
}
dprintf("\n");
} else {
dprintf("No register state available.\n\n");
}
return S_OK;
} // McaX86()
typedef enum _ERROR_SECTION_HEADER_TYPE_IA64 {
ERROR_SECTION_UNKNOWN = 0,
ERROR_SECTION_PROCESSOR,
ERROR_SECTION_MEMORY,
ERROR_SECTION_PCI_BUS,
ERROR_SECTION_PCI_COMPONENT,
ERROR_SECTION_SYSTEM_EVENT_LOG,
ERROR_SECTION_SMBIOS,
ERROR_SECTION_PLATFORM_SPECIFIC,
ERROR_SECTION_PLATFORM_BUS,
ERROR_SECTION_PLATFORM_HOST_CONTROLLER
} ERROR_SECTION_HEADER_TYPE_IA64;
GUID gErrorProcessorGuid;
GUID gErrorMemoryGuid;
GUID gErrorPciBusGuid;
GUID gErrorPciComponentGuid;
GUID gErrorSystemEventLogGuid;
GUID gErrorSmbiosGuid;
GUID gErrorPlatformSpecificGuid;
GUID gErrorPlatformBusGuid;
GUID gErrorPlatformHostControllerGuid;
//
// _HALP_SAL_PAL_DATA.Flags definitions
// <extracted from i64fw.h>
//
#ifndef HALP_SALPAL_FIX_MCE_LOG_ID
#define HALP_SALPAL_FIX_MCE_LOG_ID 0x1
#define HALP_SALPAL_MCE_PROCESSOR_CPUIDINFO_OMITTED 0x2
#define HALP_SALPAL_MCE_PROCESSOR_STATICINFO_PARTIAL 0x4
#endif // !HALP_SALPAL_FIX_MCE_LOG_ID
USHORT gHalpSalPalDataFlags = 0;
//
// The following are also in mce.h and are defined
// by the SAL specification.
//
// #define PciBusUnknownError ((UCHAR)0)
// #define PciBusDataParityError ((UCHAR)1)
// #define PciBusSystemError ((UCHAR)2)
// #define PciBusMasterAbort ((UCHAR)3)
// #define PciBusTimeOut ((UCHAR)4)
// #define PciMasterDataParityError ((UCHAR)5)
// #define PciAddressParityError ((UCHAR)6)
// #define PciCommandParityError ((UCHAR)7)
#define PciMaxErrorType ((UCHAR)8)
PCHAR PciBusErrorTypeStrings[] = {
"Unknown or OEM System Specific Error",
"Data Parity Error",
"System Error",
"Master Abort",
"Bus Time Our or No Device Present",
"Master Data Parity Error",
"Address Parity Error",
"Command Parity Error"
};
ULONG64
ReadUlong64(
ULONG64 Address
)
{
ULONG64 RemoteValue = 0;
ReadMemory( Address, &RemoteValue, sizeof( ULONG64 ), NULL );
return RemoteValue;
}
VOID
ExecCommand(
IN PCSTR Cmd
)
{
if (g_ExtClient && (ExtQuery(g_ExtClient) == S_OK)) {
g_ExtControl->Execute(DEBUG_OUTCTL_AMBIENT, Cmd, DEBUG_EXECUTE_DEFAULT );
}
} // ExecCommand()
BOOLEAN /* TRUE: Error was found, FALSE: successful */
SetErrorDeviceGuid(
PCSTR DeviceGuidString,
GUID * DeviceGuid
)
{
ULONG64 guidAddress;
guidAddress = GetExpression( DeviceGuidString );
if ( guidAddress ) {
GUID devGuid;
ULONG cbRead;
if ( ReadMemory( guidAddress, &devGuid, sizeof(devGuid), &cbRead ) &&
(cbRead == sizeof(devGuid)) ) {
*DeviceGuid = devGuid;
return FALSE;
}
dprintf("%s memory-read failed", DeviceGuidString );
} else {
dprintf("%s not found", DeviceGuidString );
return FALSE;
}
return TRUE;
} // SetErrorDeviceGuid()
//
// Sets up globals for the error guids for
// future comparison of error record types.
//
// Returns TRUE if successful, FALSE if an error
//
BOOLEAN
SetErrorDeviceGuids(
VOID
)
{
BOOLEAN errorFound;
ULONG errorDeviceGuidSize;
errorFound = FALSE;
errorDeviceGuidSize = GetTypeSize( "hal!_ERROR_DEVICE_GUID" );
if ( errorDeviceGuidSize == 0 ) {
// pre-SAL 3.0 check-in hal
dprintf("!mca: ERROR_DEVICE_GUID size = 0...\n");
return FALSE;
}
//
// Initialize extension-global Error Device Guids.
//
errorFound |= SetErrorDeviceGuid("hal!HalpErrorProcessorGuid", &gErrorProcessorGuid);
errorFound |= SetErrorDeviceGuid("hal!HalpErrorMemoryGuid", &gErrorMemoryGuid);
errorFound |= SetErrorDeviceGuid("hal!HalpErrorPciBusGuid", &gErrorPciBusGuid);
errorFound |= SetErrorDeviceGuid("hal!HalpErrorPciComponentGuid", &gErrorPciComponentGuid);
errorFound |= SetErrorDeviceGuid("hal!HalpErrorSystemEventLogGuid", &gErrorSystemEventLogGuid);
errorFound |= SetErrorDeviceGuid("hal!HalpErrorSmbiosGuid", &gErrorSmbiosGuid);
errorFound |= SetErrorDeviceGuid("hal!HalpErrorPlatformSpecificGuid", &gErrorPlatformSpecificGuid);
errorFound |= SetErrorDeviceGuid("hal!HalpErrorPlatformBusGuid", &gErrorPlatformBusGuid);
errorFound |= SetErrorDeviceGuid("hal!HalpErrorPlatformHostControllerGuid", &gErrorPlatformHostControllerGuid);
if ( errorFound ) {
dprintf("\n");
return FALSE;
}
return TRUE;
} // SetErrorDeviceGuids()
typedef struct _TYPED_SYMBOL_HANDLE {
ULONG64 Module;
ULONG TypeId;
ULONG Spare;
BOOLEAN Found;
CHAR Name[MAX_PATH];
} TYPED_SYMBOL_HANDLE, *PTYPED_SYMBOL_HANDLE;
__inline
VOID
InitTypedSymbol(
PTYPED_SYMBOL_HANDLE Handle,
ULONG64 Module,
ULONG TypeId,
BOOLEAN Found
)
{
Handle->Module = Module;
Handle->TypeId = TypeId;
Handle->Found = Found;
Handle->Name[0] = '\0';
return;
} // InitTypedSymbol()
__inline
BOOLEAN
IsTypedSymbolFound(
PTYPED_SYMBOL_HANDLE Handle
)
{
return Handle->Found;
} // IsTypedSymbolFound()
__inline
HRESULT
GetTypedSymbolName(
PTYPED_SYMBOL_HANDLE Handle,
ULONG64 Value
)
{
if ( !IsTypedSymbolFound( Handle ) ) {
return E_INVALIDARG;
}
return( g_ExtSymbols->GetConstantName( Handle->Module,
Handle->TypeId,
Value,
Handle->Name,
sizeof(Handle->Name),
NULL) );
} // GetTypedSymbolName()
TYPED_SYMBOL_HANDLE gErrorSeverity;
__inline
VOID
SetTypedSymbol(
PTYPED_SYMBOL_HANDLE Handle,
PCSTR Symbol
)
{
HRESULT hr;
ULONG typeId;
ULONG64 module;
hr = g_ExtSymbols->GetSymbolTypeId( Symbol, &typeId, &module);
if ( SUCCEEDED(hr) ) {
InitTypedSymbol( Handle, module, typeId, TRUE );
}
return;
} // SetTypedSymbol()
#define SetErrorTypedSymbol( _Handle, _Symbol ) SetTypedSymbol( &(_Handle), #_Symbol )
#define SetErrorSeverityValues() SetErrorTypedSymbol( gErrorSeverity, hal!_ERROR_SEVERITY_VALUE )
PCSTR
ErrorSeverityValueString(
ULONG SeverityValue
)
{
HRESULT hr;
hr = GetTypedSymbolName( &gErrorSeverity, SeverityValue );
if ( SUCCEEDED( hr ) ) {
return gErrorSeverity.Name;
} else {
dprintf("Couldn't find hal!_ERROR_SEVERITY_VALUE\n");
}
//
// Fall back to known values...
//
switch( SeverityValue ) {
case ErrorRecoverable_IA64:
return("ErrorRecoverable");
case ErrorFatal_IA64:
return("ErrorFatal");
case ErrorCorrected_IA64:
return("ErrorCorrected");
default:
return("ErrorOthers");
} // switch( SeverityValue )
} // ErrorSeverityValueString()
BOOLEAN
CompareTypedErrorDeviceGuid(
GUID * RefGuid
)
{
if ( ( RefGuid->Data1 == (ULONG) ReadField(Guid.Data1) ) &&
( RefGuid->Data2 == (USHORT) ReadField(Guid.Data2) ) &&
( RefGuid->Data3 == (USHORT) ReadField(Guid.Data3) ) &&
( RefGuid->Data4[0] == (UCHAR) ReadField(Guid.Data4[0]) ) &&
( RefGuid->Data4[1] == (UCHAR) ReadField(Guid.Data4[1]) ) &&
( RefGuid->Data4[2] == (UCHAR) ReadField(Guid.Data4[2]) ) &&
( RefGuid->Data4[3] == (UCHAR) ReadField(Guid.Data4[3]) ) &&
( RefGuid->Data4[4] == (UCHAR) ReadField(Guid.Data4[4]) ) &&
( RefGuid->Data4[5] == (UCHAR) ReadField(Guid.Data4[5]) ) &&
( RefGuid->Data4[6] == (UCHAR) ReadField(Guid.Data4[6]) ) &&
( RefGuid->Data4[7] == (UCHAR) ReadField(Guid.Data4[7]) ) ) {
return TRUE;
}
return FALSE;
} // CompareTypedErrorDeviceGuid()
UCHAR gZeroedOemPlatformId[16] = { 0 };
BOOLEAN
CompareTypedOemPlatformId(
UCHAR RefOemPlatformId[]
)
{
ULONG i;
for ( i = 0; i < 16; i++ ) {
if (RefOemPlatformId[i] != (UCHAR) ReadField(OemPlatformId[i]) ) {
return FALSE;
}
}
return TRUE;
} // CompareTypedOemPlatformId()
ERROR_SECTION_HEADER_TYPE_IA64
GetTypedErrorSectionType(
VOID
)
{
if ( CompareTypedErrorDeviceGuid( &gErrorProcessorGuid ) ) {
return ERROR_SECTION_PROCESSOR;
}
if ( CompareTypedErrorDeviceGuid( &gErrorMemoryGuid ) ) {
return ERROR_SECTION_MEMORY;
}
if ( CompareTypedErrorDeviceGuid( &gErrorPciBusGuid ) ) {
return ERROR_SECTION_PCI_BUS;
}
if ( CompareTypedErrorDeviceGuid( &gErrorPciComponentGuid ) ) {
return ERROR_SECTION_PCI_COMPONENT;
}
if ( CompareTypedErrorDeviceGuid( &gErrorSystemEventLogGuid ) ) {
return ERROR_SECTION_SYSTEM_EVENT_LOG;
}
if ( CompareTypedErrorDeviceGuid( &gErrorSmbiosGuid ) ) {
return ERROR_SECTION_SMBIOS;
}
if ( CompareTypedErrorDeviceGuid( &gErrorPlatformSpecificGuid ) ) {
return ERROR_SECTION_PLATFORM_SPECIFIC;
}
if ( CompareTypedErrorDeviceGuid( &gErrorPlatformBusGuid ) ) {
return ERROR_SECTION_PLATFORM_BUS;
}
if ( CompareTypedErrorDeviceGuid( &gErrorPlatformHostControllerGuid ) ) {
return ERROR_SECTION_PLATFORM_HOST_CONTROLLER;
}
return ERROR_SECTION_UNKNOWN;
} // GetTypedErrorSectionType()
PCSTR
ErrorSectionTypeString(
ERROR_SECTION_HEADER_TYPE_IA64 ErrorSectionType
)
{
switch( ErrorSectionType ) {
case ERROR_SECTION_PROCESSOR:
return( "Processor" );
case ERROR_SECTION_MEMORY:
return( "Memory" );
case ERROR_SECTION_PCI_BUS:
return( "PciBus" );
case ERROR_SECTION_PCI_COMPONENT:
return( "PciComponent" );
case ERROR_SECTION_SYSTEM_EVENT_LOG:
return( "SystemEventLog" );
case ERROR_SECTION_SMBIOS:
return( "Smbios" );
case ERROR_SECTION_PLATFORM_SPECIFIC:
return( "PlatformSpecific" );
case ERROR_SECTION_PLATFORM_BUS:
return( "PlatformBus" );
case ERROR_SECTION_PLATFORM_HOST_CONTROLLER:
return( "PlatformHostController" );
default:
return( "Unknown Error Device" );
} // switch( ErrorSectionType )
} // ErrorSectionTypeString()
VOID
DtCacheCheck(
ULONG64 CheckInfoStart
)
{
ULONG errorCacheCheckSize;
CHAR cmd[MAX_PATH];
errorCacheCheckSize = GetTypeSize( "hal!_ERROR_CACHE_CHECK" );
if ( !errorCacheCheckSize ) {
dprintf( "Unable to get hal!_ERROR_CACHE_CHECK type size.\n");
return;
}
dprintf( " CheckInfo: \n\n" );
sprintf(cmd, "dt -o -r hal!_ERROR_CACHE_CHECK 0x%I64x", CheckInfoStart);
ExecCommand(cmd);
dprintf( "\n" );
// We need to do more analysis here
}
VOID
DtTlbCheck(
ULONG64 CheckInfoStart
)
{
ULONG errorTlbCheckSize;
CHAR cmd[MAX_PATH];
errorTlbCheckSize = GetTypeSize( "hal!_ERROR_TLB_CHECK" );
if ( !errorTlbCheckSize ) {
dprintf( "Unable to get hal!_ERROR_TLB_CHECK type size.\n");
return;
}
dprintf( " CheckInfo: \n\n" );
sprintf(cmd, "dt -o -r hal!_ERROR_TLB_CHECK 0x%I64x", CheckInfoStart);
ExecCommand(cmd);
dprintf( "\n" );
// We need to do more analysis here
}
VOID
DtBusCheck(
ULONG64 CheckInfoStart
)
{
ULONG errorBusCheckSize;
CHAR cmd[MAX_PATH];
errorBusCheckSize = GetTypeSize( "hal!_ERROR_BUS_CHECK" );
if ( !errorBusCheckSize ) {
dprintf( "Unable to get hal!_ERROR_BUS_CHECK type size.\n");
return;
}
dprintf( " CheckInfo: \n\n" );
sprintf(cmd, "dt -o -r hal!_ERROR_BUS_CHECK 0x%I64x", CheckInfoStart);
ExecCommand(cmd);
dprintf( "\n" );
// We need to do more analysis here
}
VOID
DtRegFileCheck(
ULONG64 CheckInfoStart
)
{
ULONG errorRegfileCheckSize;
CHAR cmd[MAX_PATH];
errorRegfileCheckSize = GetTypeSize( "hal!_ERROR_REGFILE_CHECK" );
if ( !errorRegfileCheckSize ) {
dprintf( "Unable to get hal!_ERROR_REGFILE_CHECK type size.\n");
return;
}
dprintf( " CheckInfo: \n\n" );
sprintf(cmd, "dt -o -r hal!_ERROR_REGFILE_CHECK 0x%I64x", CheckInfoStart);
ExecCommand(cmd);
dprintf( "\n" );
// We need to do more analysis here
}
VOID DtMsCheck(
ULONG64 CheckInfoStart
)
{
ULONG errorMsCheckSize;
CHAR cmd[MAX_PATH];
errorMsCheckSize = GetTypeSize( "hal!_ERROR_MS_CHECK" );
if ( !errorMsCheckSize ) {
dprintf( "Unable to get hal!_ERROR_MS_CHECK type size.\n");
return;
}
dprintf( " CheckInfo: \n\n" );
sprintf(cmd, "dt -o -r hal!_ERROR_MS_CHECK 0x%I64x", CheckInfoStart);
ExecCommand(cmd);
dprintf( "\n" );
// We need to do more analysis here
}
ULONG64
DtErrorModInfos(
ULONG64 ModInfo,
ULONG CheckNum,
ULONG ModInfoSize,
PCSTR ModInfoName,
CHECK_TYPES CheckType
)
{
ULONG64 modInfo;
ULONG modInfoNum;
ULONG64 modInfoMax;
ULONG modInfoValidSize;
CHAR cmd[MAX_PATH];
ULONG64 checkInfoStart;
ULONG checkInfoOffset;
modInfo = ModInfo;
modInfoMax = modInfo + ( CheckNum * ModInfoSize );
modInfoNum = 0;
modInfoValidSize = GetTypeSize( "hal!_ERROR_MODINFO_VALID" );
while( modInfo < modInfoMax ) {
dprintf("\n %s[%ld]:\n\n", ModInfoName, modInfoNum);
if ( modInfoValidSize ) {
sprintf( cmd, "dt -o -r hal!_ERROR_MODINFO_VALID 0x%I64x", modInfo );
ExecCommand( cmd );
InitTypeRead( modInfo, hal!_ERROR_MODINFO );
dprintf( " CheckInfo : 0x%I64x\n", (ULONG64) ReadField(CheckInfo.CheckInfo) );
dprintf( " RequestorId : 0x%I64x\n", (ULONG64) ReadField(RequestorId) );
dprintf( " ResponderId : 0x%I64x\n", (ULONG64) ReadField(ResponderId) );
dprintf( " TargetIp : 0x%I64x\n", (ULONG64) ReadField(TargetIp) );
dprintf( " PreciseIp : 0x%I64x\n\n", (ULONG64) ReadField(PreciseIp) );
checkInfoStart = 0;
GetFieldOffset("hal!_ERROR_MODINFO" , "CheckInfo", &checkInfoOffset );
checkInfoStart = modInfo + checkInfoOffset;
switch (CheckType) {
case CACHE_CHECK_TYPE:
DtCacheCheck( checkInfoStart );
break;
case TLB_CHECK_TYPE:
DtTlbCheck( checkInfoStart );
break;
case BUS_CHECK_TYPE:
DtBusCheck( checkInfoStart );
break;
case REG_FILE_CHECK_TYPE:
DtRegFileCheck( checkInfoStart );
break;
case MS_CHECK_TYPE:
DtMsCheck( checkInfoStart );
break;
} // switch (CheckType)
} // if ( modInfoValidSize )
modInfo += (ULONG64)ModInfoSize;
modInfoNum++;
} // while( modInfo < modInfoMax )
return( modInfo );
} // DtErrorModInfos()
ULONG64
DtErrorProcessorStaticInfo(
ULONG64 StaticInfo,
ULONG64 SectionMax
)
{
ULONG offset;
ULONG64 valid;
CHAR cmd[MAX_PATH];
ULONG i;
HRESULT hr;
ULONG64 moduleValid;
ULONG typeIdValid;
CHAR field[MAX_PATH];
hr = g_ExtSymbols->GetSymbolTypeId( "hal!_ERROR_PROCESSOR_STATIC_INFO_VALID",
&typeIdValid,
&moduleValid);
if ( !SUCCEEDED(hr) ) {
dprintf("Unable to get hal!_ERROR_PROCESSOR_STATIC_INFO_VALID type. Stop processing...\n");
return( 0 );
}
//
//
// Display the valid structure.
//
offset = 0;
GetFieldOffset("hal!_ERROR_PROCESSOR_STATIC_INFO" , "Valid", &offset );
valid = StaticInfo + (ULONG64)offset;
dprintf(" Valid @ 0x%I64x\n\n", valid);
sprintf(cmd, "dt -o -r hal!_ERROR_PROCESSOR_STATIC_INFO_VALID 0x%I64x", valid );
ExecCommand( cmd );
dprintf( "\n" );
//
// Pass through all the valid _ERROR_PROCESSOR_STATIC_INFO fields and dump them.
//
for (i=0; ;i++) {
//
// Get a field name from the _ERROR_PROCESSOR_STATIC_INFO structure
// that corresponds to i
//
hr = g_ExtSymbols->GetFieldName(moduleValid, typeIdValid, i, field, sizeof(field), NULL);
if ( hr == S_OK) {
ULONG64 val;
ULONG size = 0;
//
// Get this field's value
//
GetFieldValue(valid, "hal!_ERROR_PROCESSOR_STATIC_INFO_VALID", field, val);
//
// Read the offset of the start of the field with the same name in
// the _ERROR_PROCESSOR_STATIC_INFO structure
//
GetFieldOffsetEx("hal!_ERROR_PROCESSOR_STATIC_INFO", field, &offset, &size);
if (val && offset ) { // Valid is the first entry. Don't print it.
ULONG64 fieldAddress, fieldAddressMax;
fieldAddress = StaticInfo + (ULONG64)offset;
fieldAddressMax = fieldAddress + (ULONG64)size - sizeof(ULONG64);
dprintf(" %s @ 0x%I64x 0x%I64x\n\n", field, fieldAddress, fieldAddressMax);
if ( fieldAddressMax > SectionMax ) {
dprintf("\t\tInvalid Entry: %s size greater than SectionMax 0x%I64x",
field, SectionMax);
}
if ( !strcmp(field, "MinState") && size ) {
//
// We will dump MinState with a structure
//
if ( GetTypeSize( "hal!_PAL_MINI_SAVE_AREA" ) ) {
sprintf(cmd, "dt -o -r hal!_PAL_MINI_SAVE_AREA 0x%I64x", fieldAddress );
ExecCommand( cmd );
dprintf( "\n" );
} else {
dprintf( "Unable to get hal!_PAL_MINI_SAVE_AREA type.\n\n");
}
} else {
//
// All the others get dumped with dqs
//
sprintf(cmd, "dqs 0x%I64x 0x%I64x", fieldAddress, fieldAddressMax );
ExecCommand( cmd );
dprintf( "\n" );
}
}
} else if (hr == E_INVALIDARG) {
// All Fields done
break;
} else {
dprintf("GetFieldName Failed %lx\n", hr);
break;
}
} // for (i=0; ;i++)
// XXTF: Later we should set to length of _ERROR_PROCESSOR_STATIC_INFO if success
return 0;
} // DtErrorProcessorStaticInfo()
HRESULT
DtErrorSectionProcessor(
IN ULONG64 Section
)
{
ULONG64 sectionMax;
ULONG sectionSize;
ULONG sectionLength;
ULONG modInfoSize;
ULONG cacheModInfos, tlbModInfos;
ULONG busModInfos, regFileModInfos, msModInfos;
ULONG64 modInfo;
ULONG64 cpuidInfo;
ULONG cpuidInfoSize;
ULONG64 staticInfo;
ULONG staticInfoSize;
ULONG64 tmpMax;
CHAR cmd[MAX_PATH];
sectionSize = GetTypeSize( "hal!_ERROR_PROCESSOR" );
if ( sectionSize == 0 ) {
dprintf( "Unable to get HAL!_ERROR_PROCESSOR type size\n" );
return( E_FAIL );
}
if ( InitTypeRead( Section, hal!_ERROR_PROCESSOR ) ) {
dprintf( "Unable to read HAL!_ERROR_PROCESSOR at 0x%I64x\n", Section );
return( E_FAIL );
}
sprintf(cmd, "dt -o -r hal!_ERROR_PROCESSOR 0x%I64x", Section);
ExecCommand( cmd );
sectionLength = (ULONG) ReadField(Header.Length);
sectionMax = Section + (ULONG64)sectionLength;
cacheModInfos = (ULONG) ReadField(Valid.CacheCheckNum);
tlbModInfos = (ULONG) ReadField(Valid.TlbCheckNum);
busModInfos = (ULONG) ReadField(Valid.BusCheckNum);
regFileModInfos = (ULONG) ReadField(Valid.RegFileCheckNum);
msModInfos = (ULONG) ReadField(Valid.MsCheckNum);
//
// Check if _ERROR_MODINFO a known type?
//
modInfo = Section + (ULONG64)sectionSize;
modInfoSize = GetTypeSize( "hal!_ERROR_MODINFO" );
if (!modInfoSize ) {
dprintf( "Unable to get HAL!_ERROR_MODINFO type size");
return( E_FAIL );
}
//
// Dump Cache ModInfo structures if any
//
if ( cacheModInfos ) {
tmpMax = modInfo + ( modInfoSize * cacheModInfos );
if ( tmpMax > sectionMax ) {
dprintf( "Invalid Mca Log Length = %ld. <= Error Cache Modinfo = %ld. Stop processing...\n\n",
sectionMax,
tmpMax );
return( E_FAIL );
} else {
modInfo = DtErrorModInfos( modInfo,
cacheModInfos,
modInfoSize,
"CacheErrorInfo",
CACHE_CHECK_TYPE
);
}
}
//
// Dump TLB ModInfo structures if any
//
if ( tlbModInfos ) {
tmpMax = modInfo + ( modInfoSize * cacheModInfos );
if ( tmpMax > sectionMax ) {
dprintf( "Invalid Mca Log Length = %ld. <= Error Tlb Modinfo = %ld. Stop processing...\n\n",
sectionMax,
tmpMax );
return( E_FAIL );
} else {
modInfo = DtErrorModInfos( modInfo,
tlbModInfos,
modInfoSize,
"TlbErrorInfo",
TLB_CHECK_TYPE
);
}
}
//
// Dump BUS ModInfo structures if any
//
if ( busModInfos ) {
tmpMax = modInfo + ( modInfoSize * cacheModInfos );
if ( tmpMax > sectionMax ) {
dprintf( "Invalid Mca Log Length = %ld. <= Error Bus Modinfo = %ld. Stop processing...\n\n",
sectionMax,
tmpMax );
return( E_FAIL );
} else {
modInfo = DtErrorModInfos( modInfo,
busModInfos,
modInfoSize,
"BusErrorInfo",
BUS_CHECK_TYPE
);
}
}
//
// Dump REGISTERS FILES ModInfo structures if any
//
if ( regFileModInfos ) {
tmpMax = modInfo + ( modInfoSize * cacheModInfos );
if ( tmpMax > sectionMax ) {
dprintf( "Invalid Mca Log Length = %ld. <= Error Regfile Modinfo = %ld. Stop processing...\n\n",
sectionMax,
tmpMax );
return( E_FAIL );
} else {
modInfo = DtErrorModInfos( modInfo,
regFileModInfos,
modInfoSize,
"RegFileErrorInfo",
REG_FILE_CHECK_TYPE
);
}
}
//
// Dump MS ModInfo structures if any
//
if ( msModInfos ) {
tmpMax = modInfo + ( modInfoSize * cacheModInfos );
if ( tmpMax > sectionMax ) {
dprintf( "Invalid Mca Log Length = %ld. <= Error Ms Modinfo = %ld. Stop processing...\n\n",
sectionMax,
tmpMax );
return( E_FAIL );
} else {
modInfo = DtErrorModInfos( modInfo,
msModInfos,
modInfoSize,
"MsErrorInfo",
MS_CHECK_TYPE
);
}
}
//
// Dump CPUID Info
//
cpuidInfo = modInfo;
/* We should see any of these for now
if ( gHalpSalPalDataFlags & HALP_SALPAL_MCE_PROCESSOR_CPUIDINFO_OMITTED ) {
dprintf("\tCpuIdInfo @ 0x%I64x FW-omitted\n", cpuidInfo);
cpuidInfoSize = 0;
} else {
*/
cpuidInfoSize = GetTypeSize( "hal!_ERROR_PROCESSOR_CPUID_INFO" );
if ( cpuidInfoSize ) {
if ( (cpuidInfo + cpuidInfoSize) > sectionMax ) {
dprintf("\nInvalid ERROR_PROCESSOR: (cpuidInfo+cpuidInfoSize) > sectionMax\n");
return E_FAIL;
}
if ( ReadField( Valid.CpuIdInfo ) ) {
dprintf(" CpuIdInfo @ 0x%I64x 0x%I64x\n\n", cpuidInfo, (cpuidInfo + (ULONG64)cpuidInfoSize));
sprintf(cmd, "dt -o -r hal!_ERROR_PROCESSOR_CPUID_INFO 0x%I64x", cpuidInfo );
ExecCommand( cmd );
dprintf("\n");
}
}
else {
dprintf( "Unable to get HAL!_ERROR_PROCESSOR_CPUID_INFO type size\n" );
}
/*
}
*/
//
// Dump Processor Static Info
//
staticInfo = cpuidInfo + cpuidInfoSize;
staticInfoSize = GetTypeSize( "hal!_ERROR_PROCESSOR_STATIC_INFO" );
if ( staticInfoSize ) {
if ( !(gHalpSalPalDataFlags & HALP_SALPAL_MCE_PROCESSOR_STATICINFO_PARTIAL) &&
((staticInfo + staticInfoSize) > sectionMax) ) {
dprintf("\nInvalid ERROR_PROCESSOR: (staticInfo+staticInfoSize) > sectionMax\n");
return E_FAIL;
}
dprintf(" StaticInfo @ 0x%I64x 0x%I64x\n\n", staticInfo, (staticInfo + (ULONG64)staticInfoSize));
(VOID) DtErrorProcessorStaticInfo( staticInfo, sectionMax );
}
else {
dprintf( "Unable to get HAL!_ERROR_PROCESSOR_STATIC_INFO type size\n" );
}
return S_OK;
} // DtErrrorSectionProcessor()
ULONG64
DtErrorOemData(
ULONG64 OemData,
ULONG64 SectionMax
)
{
ULONG oemDataSize;
CHAR cmd[MAX_PATH];
USHORT length = 0;
oemDataSize = GetTypeSize("hal!_ERROR_OEM_DATA");
if ( !oemDataSize ) {
dprintf( "Unable to get hal!_ERROR_OEM_DATA type\n\n" );
} else {
GetFieldValue( OemData, "hal!_ERROR_OEM_DATA", "Length", length );
if ( length > sizeof(length) ) {
//
// We have some data, print it
//
dprintf(" OemData @ 0x%I64x 0x%I64x\n\n", OemData, (OemData + length) );
dprintf(" Data Length = 0x%x\n", length - sizeof(length) );
dprintf(" Data:\n" );
if ( ( OemData + length ) <= SectionMax ) {
sprintf( cmd, "db 0x%I64x l 0x%x\n",
OemData + sizeof(length),
length - sizeof(length)
);
ExecCommand(cmd);
dprintf( "\n" );
} else {
dprintf( "OemData exceeds Section end\n\n" );
}
}
}
return( OemData + (ULONG64)length );
} // DtErrorOemData()
VOID
DtErrorOemDevicePath(
ULONG64 OemDevicePath,
ULONG64 OemDevicePathMax
)
{
CHAR cmd[MAX_PATH];
dprintf( " OemDevicePath @ 0x%I64x 0x%I64x\n", OemDevicePath, OemDevicePathMax );
sprintf( cmd, "db 0x%I64x l 0x%I64x\n", OemDevicePath, OemDevicePathMax - OemDevicePath );
ExecCommand( cmd );
return;
} // DtErrorOemDevicePath()
HRESULT
DtErrorSectionPlatformSpecific(
IN ULONG64 Section
)
{
ULONG sectionSize;
ULONG64 oemData;
ULONG64 devicePath;
ULONG sectionLength;
ULONG validBit;
ULONG tmpUlong;
sectionSize = GetTypeSize( "hal!_ERROR_PLATFORM_SPECIFIC" );
if ( sectionSize ) {
CHAR cmd[MAX_PATH];
sprintf(cmd, "dt -r -o hal!_ERROR_PLATFORM_SPECIFIC 0x%I64x", Section);
ExecCommand( cmd );
//
// Print the OEM data if there is any
//
GetFieldValue( Section, "hal!_ERROR_PLATFORM_SPECIFIC", "Header.Length", sectionLength );
GetFieldValue( Section, "hal!_ERROR_PLATFORM_SPECIFIC", "Valid.OemData", validBit);
GetFieldOffset("hal!_ERROR_PLATFORM_SPECIFIC", "OemData", &tmpUlong);
if ( validBit ) {
devicePath = DtErrorOemData( Section + tmpUlong, Section + sectionLength );
} else {
//
// Set up a pointer to the OEM Device path
//
devicePath = Section + tmpUlong + sizeof( USHORT );
}
//
// If the OEM device path is valid then print it
//
GetFieldValue( Section, "hal!_ERROR_PLATFORM_SPECIFIC", "Valid.OemDevicePath", validBit);
if ( validBit ) {
DtErrorOemDevicePath( devicePath, Section + (ULONG64)sectionLength );
}
}
else {
dprintf( "Unable to get hal!_ERROR_PLATFORM_SPECIFIC type. Stop processing ...\n\n" );
return E_FAIL;
}
return S_OK;
} // DtErrorSectionPlatformSpecific()
HRESULT
DtErrorSectionMemory(
IN ULONG64 Section
)
{
ULONG sectionSize;
ULONG validBit;
ULONG sectionLength;
ULONG tmpUlong;
sectionSize = GetTypeSize( "hal!_ERROR_MEMORY" );
if ( sectionSize ) {
CHAR cmd[MAX_PATH];
sprintf(cmd, "dt -r -o hal!_ERROR_MEMORY 0x%I64x", Section);
ExecCommand( cmd );
dprintf("\n");
//
// If the OEM device path is valid then print it
//
GetFieldValue( Section, "hal!_ERROR_MEMORY", "Header.Length", sectionLength );
GetFieldValue( Section, "hal!_ERROR_MEMORY", "Valid.OemDevicePath", validBit);
if ( validBit ) {
GetFieldOffset("hal!_ERROR_MEMORY", "OemId", &tmpUlong);
DtErrorOemDevicePath( Section + tmpUlong, Section + (ULONG64)sectionLength );
}
//
// Print the OEM data if there is any
//
GetFieldValue( Section, "hal!_ERROR_MEMORY", "Valid.OemData", validBit);
if ( validBit ) {
GetFieldOffset("hal!_ERROR_MEMORY", "OemData", &tmpUlong);
DtErrorOemData( Section + tmpUlong, Section + sectionLength );
}
}
else {
dprintf( "Unable to get hal!_ERROR_MEMORY type. Stop processing ...\n\n" );
return E_FAIL;
}
return S_OK;
} // DtErrorSectionMemory()
HRESULT
DtErrorSectionPciComponent(
IN ULONG64 Section
)
{
ULONG sectionSize;
ULONG64 tmpOffset;
ULONG tmpUlong;
ULONG numRegisterPairs;
ULONG sectionLength;
sectionSize = GetTypeSize( "hal!_ERROR_PCI_COMPONENT" );
if ( sectionSize ) {
CHAR cmd[MAX_PATH];
sprintf(cmd, "dt -r -o hal!_ERROR_PCI_COMPONENT 0x%I64x", Section);
ExecCommand( cmd );
dprintf("\n");
//
// Print out the MemoryMappedRegistersPairs and
// ProgrammedIORegistersPairs if there are any
//
numRegisterPairs = 0;
GetFieldValue( Section, "hal!_ERROR_PCI_COMPONENT", "Header.Length", sectionLength );
GetFieldValue( Section, "hal!_ERROR_PCI_COMPONENT", "Valid.MemoryMappedRegistersPairs", tmpUlong );
if ( tmpUlong ) {
GetFieldValue( Section, "hal!_ERROR_PCI_COMPONENT", "MemoryMappedRegistersPairs", numRegisterPairs );
}
GetFieldValue( Section, "hal!_ERROR_PCI_COMPONENT", "Valid.ProgrammedIORegistersPairs", tmpUlong );
if ( tmpUlong ) {
GetFieldValue( Section, "hal!_ERROR_PCI_COMPONENT", "ProgrammedIORegistersPairs", tmpUlong );
}
numRegisterPairs += tmpUlong;
GetFieldOffset("hal!_ERROR_PCI_COMPONENT", "ProgrammedIORegistersPairs", &tmpUlong);
tmpOffset = Section + tmpUlong + sizeof(ULONG); // Where the register pairs start
if ( numRegisterPairs ) {
dprintf( " Register Pairs\n\n" );
//
// Make sure we don't overrun the section
//
tmpUlong = numRegisterPairs * sizeof( ULONG64) * 2;
if ( ( tmpOffset + tmpUlong ) <= ( Section + sectionLength ) ) {
for ( tmpUlong = 0; tmpUlong < numRegisterPairs; tmpUlong ++ ) {
dprintf( " %016I64x %016I64x\n",
ReadUlong64(tmpOffset),
ReadUlong64(tmpOffset + sizeof(ULONG64))
);
tmpOffset += sizeof(ULONG64) * 2;
}
} else {
dprintf( " Register Pair section exceeds Section end\n\n" );
}
}
//
// Print out any OEM Data there might be
//
GetFieldValue( Section, "hal!_ERROR_PCI_COMPONENT", "Valid.OemData", tmpUlong );
if ( tmpUlong ) {
DtErrorOemData( tmpOffset, Section + sectionLength );
}
} else {
dprintf( "Unable to get hal!_ERROR_PCI_COMPONENT type. Stop processing ...\n\n" );
return E_FAIL;
}
return S_OK;
} // DtErrorSectionPciComponent()
HRESULT
DtErrorSectionPciBus(
IN ULONG64 Section
)
{
ULONG sectionSize;
ULONG tmpUlong;
sectionSize = GetTypeSize( "hal!_ERROR_PCI_BUS" );
if ( sectionSize ) {
CHAR cmd[MAX_PATH];
sprintf(cmd, "dt -r -o hal!_ERROR_PCI_BUS 0x%I64x", Section);
ExecCommand( cmd );
dprintf("\n\n");
//
// Decode the type if it is valid
//
GetFieldValue( Section, "hal!_ERROR_PCI_BUS", "Valid.CmdType", tmpUlong );
if ( tmpUlong ) {
GetFieldValue( Section, "hal!_ERROR_PCI_BUS", "CmdType", tmpUlong );
if ( tmpUlong < PciMaxErrorType ) {
dprintf( " Error Type = %s\n\n", PciBusErrorTypeStrings[tmpUlong] );
}
}
} else {
dprintf( "Unable to get hal!_ERROR_PCI_BUS type. Stop processing ...\n\n" );
return E_FAIL;
}
return S_OK;
} // DtErrorSectionPciBus()
HRESULT
DtErrorSectionPlatformBus(
IN ULONG64 Section
)
{
ULONG sectionSize;
ULONG64 oemData;
ULONG64 devicePath;
ULONG sectionLength;
sectionSize = GetTypeSize( "hal!_ERROR_PLATFORM_BUS" );
if ( sectionSize ) {
CHAR cmd[MAX_PATH];
sprintf(cmd, "dt -r -o hal!_ERROR_PLATFORM_BUS 0x%I64x", Section);
ExecCommand( cmd );
GetFieldValue( Section, "hal!_ERROR_PLATFORM_BUS", "Header.Length", sectionLength );
oemData = Section + (ULONG64)sectionSize;
devicePath = DtErrorOemData( oemData, Section + sectionLength );
DtErrorOemDevicePath( devicePath, Section + (ULONG64)sectionLength );
} else {
dprintf( "Unable to get hal!_ERROR_PLATFORM_BUS type. Stop processing ...\n\n" );
return E_FAIL;
}
return S_OK;
} // DtErrorSectionPlatformBus()
HRESULT
DtErrorSectionSystemEventLog(
IN ULONG64 Section
)
{
ULONG sectionSize;
sectionSize = GetTypeSize( "hal!_ERROR_SYSTEM_EVENT_LOG" );
if ( sectionSize ) {
CHAR cmd[MAX_PATH];
sprintf(cmd, "dt -r -o hal!_ERROR_SYSTEM_EVENT_LOG 0x%I64x", Section);
ExecCommand( cmd );
dprintf("\n");
} else {
dprintf( "Unable to get hal!_ERROR_SYSTEM_EVENT_LOG type. Stop processing ...\n\n" );
return E_FAIL;
}
return S_OK;
} // DtErrorSectionSystemEventLog()
HRESULT
DtErrorSectionPlatformHostController(
IN ULONG64 Section
)
{
ULONG sectionSize;
ULONG64 oemData;
ULONG64 devicePath;
ULONG sectionLength;
dprintf("Platform Host Controller Error Record at 0x%I64x\n", Section);
sectionSize = GetTypeSize( "hal!_ERROR_PLATFORM_HOST_CONTROLLER" );
if ( sectionSize ) {
CHAR cmd[MAX_PATH];
sprintf(cmd, "dt -r -o hal!_ERROR_PLATFORM_HOST_CONTROLLER 0x%I64x", Section);
ExecCommand( cmd );
GetFieldValue( Section, "hal!_ERROR_PLATFORM_HOST_CONTROLLER", "Header.Length", sectionLength );
oemData = Section + (ULONG64)sectionSize;
devicePath = DtErrorOemData( oemData, Section + sectionLength );
DtErrorOemDevicePath( devicePath, Section + (ULONG64)sectionLength );
} else {
dprintf( "Unable to get hal!_ERROR_PLATFORM_HOST_CONTROLLER type. Stop processing ...\n\n" );
return E_FAIL;
}
return S_OK;
} // DtErrorSectionPlatformHostController()
ULONGLONG gMceProcNumberMaskTimeStamp = 0;
HRESULT
DtMcaLog(
IN ULONG64 McaLog,
IN ULONG RecordHeaderSize,
IN ULONG64 Flags
)
{
ULONG mcaLogLength;
USHORT recordRevision;
ULONG64 section;
ULONG64 sectionMax;
ULONG errorSeverity;
ULONG sectionHeaderSize;
CHAR procNumberString[64];
ULONGLONG timeStamp;
HRESULT hr;
CHAR cmd[MAX_PATH];
UCHAR minorRevision, majorRevision;
//
// Check to see if we have SAL 3.0 records. These are currently
// the only records understood by this extension.
//
recordRevision = (USHORT)ReadField(Revision);
//
// Split the revision into minor and major fields
//
majorRevision = (UCHAR) (recordRevision >> 8) ;
minorRevision = (UCHAR) (recordRevision & 0x00ff);
if (!( majorRevision == 0 && minorRevision >= 0x2 )) {
dprintf( "MCA Record revision not supported by this extension. Major Revision = %d, Minor Revision = %d\n", majorRevision, minorRevision );
return E_FAIL;
}
//
// If HAL added the processor number to the ERROR_RECORD_HEADER,
// consider this here.
//
procNumberString[0] = '\0';
timeStamp = ReadField(TimeStamp);
if ( gMceProcNumberMaskTimeStamp ) {
ULONG procNumber;
procNumber = (ULONG) ReadField(TimeStamp.Reserved);
(void)sprintf(procNumberString, " ProcNumber: %ld", procNumber);
timeStamp &= gMceProcNumberMaskTimeStamp;
}
//
// Back to standard processing here.
//
mcaLogLength = (ULONG)ReadField(Length);
errorSeverity = (ULONG)ReadField(ErrorSeverity);
if ( mcaLogLength <= RecordHeaderSize ) {
dprintf( "Invalid Mca Log Length = %ld. <= Error Header Size = %ld. Stop processing...\n\n",
mcaLogLength,
RecordHeaderSize );
return( E_FAIL );
}
dprintf("MCA Error Record Header @ 0x%I64x 0x%I64x\n", McaLog, (McaLog + (ULONG64)mcaLogLength));
sprintf(cmd, "dt -o -r hal!_ERROR_RECORD_HEADER 0x%I64x", McaLog);
ExecCommand(cmd);
dprintf("\n%s\n Severity : %s\n\n", procNumberString, ErrorSeverityValueString( errorSeverity ));
//
// Initialize Error Sections processing.
//
if (!SetErrorDeviceGuids()) {
return( E_FAIL );
}
//
// Pass through all the record sections.
//
sectionHeaderSize = GetTypeSize( "hal!_ERROR_SECTION_HEADER" );
if ( sectionHeaderSize == 0 ) {
dprintf( "Unable to get HAL!_ERROR_SECTION_HEADER type size\n\n" );
return( E_FAIL );
}
section = McaLog + (ULONG64)RecordHeaderSize;
sectionMax = McaLog + mcaLogLength;
hr = S_OK;
while( (section < sectionMax) /* successful or not, we proceed... && SUCCEEDED(hr) */ ) {
ULONG sectionLength;
ERROR_SECTION_HEADER_TYPE_IA64 sectionType;
if ( sectionMax <= (section + sectionHeaderSize) ) { // This should not happen...
dprintf("Invalid MCA Log Length = %ld. SectionMax < (Section + Section Header Size). Stop processing...\n\n",
mcaLogLength);
return( E_FAIL );
}
if ( InitTypeRead( section, hal!_ERROR_SECTION_HEADER ) ) {
dprintf( "Unable to read HAL!_ERROR_SECTION_HEADER at 0x%I64x. Stop processing...\n\n", section );
return( E_FAIL );
}
sectionLength = (ULONG)ReadField( Length );
sectionType = GetTypedErrorSectionType();
dprintf("MCA Error Section Header @ 0x%I64x 0x%I64x [%s]\n",
section,
(section + sectionLength),
ErrorSectionTypeString( sectionType )
);
if ( ( section + sectionLength ) > sectionMax ) {
//
// Invalid log
//
dprintf( "\n\n Invalid MCA Log Length. Stop processing...\n\n" );
return ( E_FAIL );
}
switch( sectionType ) {
case ERROR_SECTION_PROCESSOR:
if ( Flags & ERROR_SECTION_PROCESSOR_FLAG ) {
hr = DtErrorSectionProcessor( section );
} else {
dprintf( "Skipping ERROR_SECTION_PROCESSOR\n\n" );
}
break;
case ERROR_SECTION_PLATFORM_SPECIFIC:
if ( Flags & ERROR_SECTION_PLATFORM_SPECIFIC_FLAG ) {
hr = DtErrorSectionPlatformSpecific( section );
} else {
dprintf( "Skipping ERROR_SECTION_PLATFORM_SPECIFIC\n\n" );
}
break;
case ERROR_SECTION_MEMORY:
if ( Flags & ERROR_SECTION_MEMORY_FLAG ) {
hr = DtErrorSectionMemory( section );
} else {
dprintf( "Skipping ERROR_SECTION_MEMORY\n\n" );
}
break;
case ERROR_SECTION_PCI_COMPONENT:
if ( Flags & ERROR_SECTION_PCI_COMPONENT_FLAG ) {
hr = DtErrorSectionPciComponent( section );
} else {
dprintf( "Skipping ERROR_SECTION_PCI_COMPONENT\n\n" );
}
break;
case ERROR_SECTION_PCI_BUS:
if ( Flags & ERROR_SECTION_PCI_BUS_FLAG ) {
hr = DtErrorSectionPciBus( section );
} else {
dprintf( "Skipping ERROR_SECTION_PCI_BUS\n\n" );
}
break;
case ERROR_SECTION_SYSTEM_EVENT_LOG:
if ( Flags & ERROR_SECTION_SYSTEM_EVENT_LOG_FLAG ) {
hr = DtErrorSectionSystemEventLog( section );
} else {
dprintf( "Skipping ERROR_SECTION_SYSTEM_EVENT_LOG\n\n" );
}
break;
case ERROR_SECTION_PLATFORM_HOST_CONTROLLER:
if ( Flags & ERROR_SECTION_PLATFORM_HOST_CONTROLLER_FLAG ) {
hr = DtErrorSectionPlatformHostController( section );
} else {
dprintf( "Skipping ERROR_SECTION_PLATFORM_HOST_CONTROLLER\n\n" );
}
break;
case ERROR_SECTION_PLATFORM_BUS:
if ( Flags & ERROR_SECTION_PLATFORM_BUS_FLAG ) {
hr = DtErrorSectionPlatformBus( section );
} else {
dprintf( "Skipping ERROR_SECTION_PLATFORM_BUS_FLAG\n\n" );
}
break;
case ERROR_SECTION_UNKNOWN:
default: // includes all the section types with incomplete processing...
sprintf(cmd, "dt -o -r hal!_ERROR_SECTION_HEADER 0x%I64x", section);
ExecCommand(cmd);
hr = S_OK;
break;
}
if ( sectionLength ) {
dprintf( "\n" );
}
else {
// Prevents looping on the same section...
dprintf("Invalid section Length = 0. Stop processing...\n\n");
return( E_FAIL );
}
section += sectionLength;
}
return( hr );
} // DtMcaLog()
#define LOW2HIGH FALSE
#define HIGH2LOW TRUE
HRESULT
DtBitMapEnum(
ULONG64 Module,
ULONG TypeId,
UINT BitMap, // Enums are unsigned ints
BOOLEAN HighToLow
)
/*++
Routine Description:
This function dumps out a bitmap value composed of enums
Arugments:
Module -
TypeId -
BitMap -
Return Value:
HRESULT
--*/
{
ULONG size;
HRESULT hr;
hr = g_ExtSymbols->GetTypeSize( Module, TypeId, &size );
if ( SUCCEEDED(hr) ) {
CHAR name[MAX_PATH];
if ( BitMap ) {
ULONG map = (ULONG)BitMap;
ULONG i = 0;
BOOLEAN first = TRUE;
size *= 8;
dprintf("[");
while( map && (i <size) ) {
ULONG val;
val = (HighToLow) ? ((ULONG)0x80000000 >> i) : (0x1 << i);
if ( map & val ) {
hr = g_ExtSymbols->GetConstantName( Module,
TypeId,
(ULONG64)val,
name,
sizeof(name),
NULL );
if ( first ) {
first = FALSE;
}
else {
dprintf("|");
}
if ( SUCCEEDED(hr) ) {
dprintf("%s", name);
if ( !strcmp(name, "HAL_MCE_PROCNUMBER") ) {
gMceProcNumberMaskTimeStamp = (ULONGLONG)(LONG)~val;
}
}
else {
dprintf("0x%lx", val);
}
map &= ~val;
}
i++;
}
dprintf("]");
}
else {
// BitMap = 0
hr = g_ExtSymbols->GetConstantName( Module,
TypeId,
(ULONG64)BitMap,
name,
sizeof(name),
NULL
);
if ( SUCCEEDED(hr) ) {
dprintf("[%s]", name);
}
}
}
return hr;
} // DtBitMapEnum()
VOID
InitMcaIa64(
PCSTR args
)
//
// IA-64 !mca extension global initializations
//
{
USHORT flags;
ULONG64 halpSalPalDataAddress;
halpSalPalDataAddress = GetExpression("hal!HalpSalPalData");
if ( !InitTypeRead( halpSalPalDataAddress, hal!_HALP_SAL_PAL_DATA) ) {
gHalpSalPalDataFlags = (USHORT)ReadField( Flags );
}
// TF 04/27/01 TEMPTEMP
// Added the feature to force gHalpSalPalDataFlags to a known value to
// handle IA64 developers-release Firmware, without rebuilding the target hal.
flags = 0;
if (args && *args) {
flags = (USHORT)GetExpression( args );
dprintf("hal!HalpSalPalDataFlags is forced to 0x%lx - was 0x%lx\n\n", flags, gHalpSalPalDataFlags);
gHalpSalPalDataFlags = flags;
}
SetErrorSeverityValues();
return;
} // InitMcaIa64()
HRESULT
McaIa64(
PCSTR args
)
/*++
Routine Description:
Dumps processors IA64 Machine Check record and interprets any logged errors
Arguments:
PCSTR args
Return Value:
None
--*/
{
HRESULT status;
ULONG64 mcaLog;
ULONG recordHeaderSize;
ULONG featureBits;
ULONG64 flags;
// Thierry: 10/01/2000
// Very simple processing for now. We will be adding features with time.
// As a first enhancement, we could access the fist mca log address directly from
// _KPCR.OsMcaResource.EventPool.
//
status = S_OK;
if (!GetExpressionEx(args,&mcaLog, &args)) {
dprintf("USAGE: !mca <address> <Flags>\n");
dprintf("Where Flags = (Applies to Itanium Architecture Only)\n");
dprintf(" Dump Processor Section 0x01\n");
dprintf(" Dump Platform Specific Section 0x02\n");
dprintf(" Dump Memory Section 0x04\n");
dprintf(" Dump PCI Component Section 0x08\n");
dprintf(" Dump PCI Bus Section 0x10\n");
dprintf(" Dump SystemEvent Log Section 0x20\n");
dprintf(" Dump Platform Host Controller Section 0x40\n");
dprintf(" Dump Platform Bus Section 0x80\n");
dprintf(" Dump All Sections Present in Log 0xFF\n");
return E_INVALIDARG;
}
//
// Get the flags argument if there is one
// If no flag, then we dump entire mca log
//
if (!GetExpressionEx(args, &flags, &args)) {
flags = 0xff;
}
//
// Present HAL Feature Bits
//
featureBits = GetUlongValue("hal!HalpFeatureBits");
if ( featureBits ) {
ULONG typeId;
ULONG64 module;
dprintf("hal!HalpFeatureBits: 0x%lx ", featureBits);
status = g_ExtSymbols->GetSymbolTypeId("hal!_HALP_FEATURE", &typeId, &module);
if ( SUCCEEDED(status) ) {
DtBitMapEnum( module, typeId, featureBits, LOW2HIGH );
} else {
dprintf ("GetSymbolTypeId failed for hal!_HALP_FEATURE. status = %x.\n\n", (ULONG) status);
}
dprintf("\n\n");
} else {
dprintf ("hal!HalpFeatureBits not found... sympath problems? status = %x.\n\n", (ULONG) status);
}
//
// Global initializations for record processing functions.
//
InitMcaIa64( args );
//
// Does our HAL pdb file have knowledge of IA64 Error formats?
//
recordHeaderSize = GetTypeSize( "hal!_ERROR_RECORD_HEADER" );
if (recordHeaderSize) {
InitTypeRead( mcaLog, hal!_ERROR_RECORD_HEADER );
status = DtMcaLog( mcaLog, recordHeaderSize, flags );
if (!SUCCEEDED(status)) {
dprintf ("DtMcaLog failed. status = %x.\n\n", (ULONG) status);
}
} else {
dprintf ("hal!_ERROR_RECORD_HEADER not found.\n\n");
status = E_FAIL;
}
return status;
} // McaIa64()
DECLARE_API( mca )
/*++
Routine Description:
Dumps processors machine check architecture registers
and interprets any logged errors
Arguments:
PDEBUG_CLIENT Client
PCSTR args
Return Value:
None
--*/
{
HRESULT status;
ULONG processor = 0;
INIT_API();
GetCurrentProcessor(Client, &processor, NULL);
//
// Simply dispatch to the right target machine handler.
//
switch( TargetMachine ) {
case IMAGE_FILE_MACHINE_I386:
// Display architectural MCA information.
status = McaX86( args );
// Finally, Display stepping information for current processor.
DumpCpuInfoX86( processor, TRUE );
break;
case IMAGE_FILE_MACHINE_IA64:
// Display architectural MCA information.
status = McaIa64( args );
// Finally, Display stepping information for current processor.
if (SUCCEEDED(status)) {
DumpCpuInfoIA64( processor, TRUE );
}
break;
default:
dprintf("!mca is not supported for this target machine:%ld\n", TargetMachine);
status = E_INVALIDARG;
}
EXIT_API();
return status;
} // !mca
DECLARE_API( fwver )
/*++
Routine Description:
Dumps the firmware version information on IA64 platforms
Arguments:
PDEBUG_CLIENT Client
PCSTR args
Return Value:
None
--*/
{
HRESULT status;
ULONG processor = 0;
ULONG64 halpSalPalDataAddress;
USHORT salRevision;
UCHAR palRevision;
UCHAR palModel;
ULONG64 smbiosString;
ULONG64 sstHeader;
UCHAR tmpUchar;
UNREFERENCED_PARAMETER (args);
INIT_API();
status = S_OK;
GetCurrentProcessor(Client, &processor, NULL);
//
// Simply dispatch to the right target machine handler.
//
if ( TargetMachine == IMAGE_FILE_MACHINE_IA64 ) {
halpSalPalDataAddress = GetExpression("hal!HalpSalPalData");
if ( !InitTypeRead( halpSalPalDataAddress, hal!_HALP_SAL_PAL_DATA) ) {
dprintf( "\nFirmware Version\n\n" );
//
// Print the SAL revision
//
sstHeader = ReadField( SalSystemTable );
GetFieldValue( sstHeader, "hal!_SST_HEADER", "SalRev", salRevision );
dprintf( " Sal Revision: %x\n", salRevision );
GetFieldValue( sstHeader, "hal!_SST_HEADER", "Sal_A_Version", salRevision );
dprintf( " SAL_A_VERSION: %x\n", salRevision );
GetFieldValue( sstHeader, "hal!_SST_HEADER", "Sal_B_Version", salRevision );
dprintf( " SAL_B_VERSION: %x\n", salRevision );
//
// Print the PAL revision
//
palRevision = (UCHAR)ReadField( PalVersion.PAL_A_Revision );
palModel = (UCHAR)ReadField( PalVersion.PAL_A_Model );
dprintf( " PAL_A_VERSION: %x%x\n", palModel, palRevision );
palRevision = (UCHAR)ReadField( PalVersion.PAL_B_Revision );
palModel = (UCHAR)ReadField( PalVersion.PAL_B_Model );
dprintf( " PAL_B_VERSION: %x%x\n", palModel, palRevision );
//
// Print the SMBIOS string
//
smbiosString = ReadField( SmBiosVersion );
if ( smbiosString ) {
dprintf( " smbiosString: " );
//
// Iterate through the SMBIOS string printing it a
// character at a time. We have to do this because
// the 32-bit extension dll print routines don't
// handle 64-bit string pointers.
//
ReadMemory( smbiosString, &tmpUchar, sizeof( UCHAR ), NULL );
while ( tmpUchar ) {
dprintf( "%c", tmpUchar);
smbiosString += 1;
ReadMemory( smbiosString, &tmpUchar, sizeof( UCHAR ), NULL );
}
}
dprintf( "\n" );
} else {
dprintf( "Unable to get hal!HalpSalPalData\n\n" );
status = E_FAIL;
}
} else {
dprintf( "This is only supported on IA64 systems\n\n" );
status = E_FAIL;
}
if ( SUCCEEDED( status ) ) {
dprintf( "\n" );
}
EXIT_API();
return status;
} // !mca
VOID
DumpAffinity(
ULONG64 AffinityMask,
ULONG NumberOfBits
)
{
CHAR Buffer[65];
ULONG64 CurrentBit;
ULONG i;
CurrentBit = 1;
i = 0;
while (i < NumberOfBits) {
if (AffinityMask & CurrentBit) {
Buffer[i] = '*';
} else {
Buffer[i] = '-';
}
i++;
CurrentBit <<= 1;
}
Buffer[i] = '\0';
dprintf(Buffer);
}
DECLARE_API( smt )
/*++
Routine Description:
Dumps processor data structures related to SMT.
Arguments:
PDEBUG_CLIENT Client
PCSTR args
Return Value:
None
--*/
{
HRESULT status;
ULONG64 activeProcessors, idleSummary;
ULONG64 Address;
ULONG i, physicalProcessors;
INIT_API();
if (TargetMachine != IMAGE_FILE_MACHINE_I386) {
dprintf("SMT functionality is only supported on x86 targets\n");
EXIT_API();
return E_INVALIDARG;
}
dprintf("SMT Summary:\n");
dprintf("------------\n");
activeProcessors = GetUlongValue ("KeActiveProcessors");
dprintf(" KeActiveProcessors: ");
DumpAffinity(activeProcessors, 32);
dprintf(" (%08I64x)\n", activeProcessors);
idleSummary = GetUlongValue ("KiIdleSummary");
dprintf(" KiIdleSummary: ");
DumpAffinity(idleSummary, 32);
dprintf(" (%08I64x)\n", idleSummary);
dprintf("No PRCB Set Master SMT Set IAID #LP\n");
physicalProcessors = 0;
for (i = 0; i < 32; i++) {
if (activeProcessors & (1 << i)) {
status = g_ExtData->ReadProcessorSystemData(i,
DEBUG_DATA_KPRCB_OFFSET,
&Address,
sizeof(Address),
NULL);
if (status != S_OK) {
dprintf("unable to read data for processor %d\n", i);
continue;
}
if (InitTypeRead(Address, nt!_KPRCB) )
{
dprintf("Unable to read PRCB for processor %d\n", i);
continue;
}
dprintf("%2d %08x ",
(ULONG) ReadField(Number),
(ULONG) Address);
if (Address == ReadField(MultiThreadSetMaster)) {
dprintf(" Master ");
physicalProcessors++;
} else {
dprintf(" %08x ", (ULONG) ReadField(MultiThreadSetMaster));
}
DumpAffinity(ReadField(MultiThreadProcessorSet), 32);
dprintf(" (%08x) %02X %3d\n",
(ULONG) ReadField(MultiThreadProcessorSet),
(ULONG) ReadField(InitialApicId),
(ULONG) ReadField(LogicalProcessorsPerPhysicalProcessor));
}
}
dprintf("\n Number of licensed physical processors: %d\n", physicalProcessors);
status = STATUS_SUCCESS;
EXIT_API();
return status;
}
NTSTATUS
DumpKNODE(
IN ULONG64 Address,
IN ULONG Node
)
/*++
Routine Description:
This dumps the a KNODE structure that defines a NUMA node
from the kernel perspective.
Arguments:
Address -- Address of the table
Node -- Node number this KNODE structure should have.
Return Value:
NTSTATUS
--*/
{
ULONG Offset;
if (InitTypeRead(Address, nt!_KNODE) )
{
dprintf("Unable to read KNODE for processor %d\n", Node);
return STATUS_UNSUCCESSFUL;
}
if (ReadField(NodeNumber) != Node) {
dprintf("WARNING: Expected node number and actual node number differ\n");
}
dprintf(" NODE %d (%016I64X):\n", Node, Address);
dprintf("\tProcessorMask : ");
DumpAffinity(ReadField(ProcessorMask), GetTypeSize("nt!KAFFINITY") * 8);
dprintf("\n\tColor : 0x%08X\n\tMmShiftedColor : 0x%08X\n\tSeed : 0x%08X\n",
(ULONG) ReadField(Color),
(ULONG) ReadField(MmShiftedColor),
(ULONG) ReadField(Seed));
GetFieldOffset("nt!_KNODE", "FreeCount", &Offset);
Address += Offset;
dprintf("\tZeroed Page Count: 0x%016I64X\n",
GetPointerFromAddress(Address));
Address += GetTypeSize("nt!PFN_NUMBER");
dprintf("\tFree Page Count : 0x%016I64X\n",
GetPointerFromAddress(Address));
return STATUS_SUCCESS;
}
DECLARE_API( numa )
{
ULONG64 activeProcessors;
ULONG64 address;
ULONG numberNodes;
ULONG i;
HRESULT status = STATUS_UNSUCCESSFUL;
INIT_API();
address = GetExpression("nt!KeNumberNodes");
if (!address) {
dprintf("No NUMA information found\n");
goto out;
}
numberNodes = (ULONG) GetByteValue("nt!KeNumberNodes");
dprintf("NUMA Summary:\n");
dprintf("------------\n");
dprintf(" Number of NUMA nodes : %d\n", numberNodes);
dprintf(" Number of Processors : %d\n", (ULONG) GetByteValue("nt!KeNumberProcessors"));
dprintf(" MmAvailablePages : 0x%08X\n", GetUlongValue("nt!MmAvailablePages"));
address = GetExpression("nt!KeActiveProcessors");
if (!address) {
dprintf("Could not get processor configuration, exiting.\n");
goto out;
}
if (ReadPtr(address, &activeProcessors) || (activeProcessors == 0)) {
dprintf("Unable to get active processor set. Cannot continue.\n");
goto out;
}
dprintf(" KeActiveProcessors : ");
DumpAffinity(activeProcessors, GetTypeSize("nt!KAFFINITY") * 8);
dprintf(" (%016I64x)\n", activeProcessors);
address = GetExpression("nt!KeNodeBlock");
if (!address) {
dprintf("Unable to get KeNodeBlock. Cannot continue.\n");
goto out;
}
for (i = 0; i < numberNodes; i++) {
if (CheckControlC()) {
break;
}
dprintf("\n");
DumpKNODE(GetPointerFromAddress(address), i);
address += GetTypeSize("nt!PKNODE");
}
status = STATUS_SUCCESS;
out:
EXIT_API();
return status;
}