Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

4369 lines
148 KiB

//+--------------------------------------------------------------------------
//
// Microsoft Windows
// Copyright (C) Microsoft Corporation, 1993
//
// File: propvar.cxx
//
// Contents: PROPVARIANT manipulation code
//
// History: 15-Aug-95 vich created
// 22-Feb-96 MikeHill Moved DwordRemain to "propmac.hxx".
// 09-May-96 MikeHill Use the 'boolVal' member of PropVariant
// rather than the member named 'bool'.
// 22-May-96 MikeHill Use the caller-provided codepage for
// string conversions, not the system default.
// 06-Jun-96 MikeHill Modify CLIPDATA.cbData to include sizeof
// ulClipFmt.
// 12-Jun-96 MikeHill - Use new BSTR alloc/free routines.
// - Added VT_I1 support (under ifdefs)
// - Bug for VT_CF|VT_VECTOR in RtlConvPropToVar
// 25-Jul-96 MikeHill - Removed Win32 SEH.
// - BSTRs: WCHAR=>OLECHAR
// - Added big-endian support.
// 10-Mar-98 MikeHill - Added support for Variant types except
// for VT_RECORD.
// 06-May-98 MikeHill - Removed usage of UnicodeCallouts.
// - Wrap SafeArray/BSTR calls for delayed-linking.
// - Enforce VT in VT_ARRAYs.
// - Added support for VT_VARIANT|VT_BYREF.
// - Added support for VT_ARRAY|VT_BYREF.
// - Added support for VT_VECTOR|VT_I1.
// - Use CoTaskMem rather than new/delete.
// 11-June-98 MikeHill - Validate elements of arrays & vectors.
//
//---------------------------------------------------------------------------
#include <pch.cxx>
#include <stdio.h>
#ifndef _MAC
#include <ddeml.h> // for CP_WINUNICODE
#endif
#include "propvar.h"
#ifndef newk
#define newk(Tag, pCounter) new
#endif
#if DBGPROP
BOOLEAN
IsUnicodeString(WCHAR const *pwszname, ULONG cb)
{
return( TRUE );
}
BOOLEAN
IsAnsiString(CHAR const *pszname, ULONG cb)
{
return( TRUE );
}
#endif
//+---------------------------------------------------------------------------
// Function: PrpConvertToUnicode, private
//
// Synopsis: Convert a MultiByte string to a Unicode string
//
// Arguments: [pch] -- pointer to MultiByte string
// [cb] -- byte length of MultiByte string
// [CodePage] -- property set codepage
// [ppwc] -- pointer to returned pointer to Unicode string
// [pcb] -- returned byte length of Unicode string
//
// Returns: Nothing
//---------------------------------------------------------------------------
VOID
PrpConvertToUnicode(
IN CHAR const *pch,
IN ULONG cb,
IN USHORT CodePage,
OUT WCHAR **ppwc,
OUT ULONG *pcb,
OUT NTSTATUS *pstatus)
{
WCHAR *pwszName;
*pstatus = STATUS_SUCCESS;
PROPASSERT(pch != NULL);
PROPASSERT(ppwc != NULL);
PROPASSERT(pcb != NULL);
*ppwc = NULL;
*pcb = 0;
ULONG cwcName;
pwszName = NULL;
cwcName = 0;
while (TRUE)
{
cwcName = MultiByteToWideChar(
CodePage,
0, // dwFlags
pch,
cb,
pwszName,
cwcName);
if (cwcName == 0)
{
CoTaskMemFree( pwszName );
*ppwc = NULL;
// If there was an error, assume that it was a code-page
// incompatibility problem.
StatusError(pstatus, "PrpConvertToUnicode: MultiByteToWideChar error",
STATUS_UNMAPPABLE_CHARACTER);
goto Exit;
}
if (pwszName != NULL)
{
DebugTrace(0, DEBTRACE_PROPERTY, (
"PrpConvertToUnicode: pch='%s'[%x] pwc='%ws'[%x->%x]\n",
pch,
cb,
pwszName,
*pcb,
cwcName * sizeof(WCHAR)));
break;
}
*pcb = cwcName * sizeof(WCHAR);
*ppwc = pwszName = (WCHAR *) CoTaskMemAlloc( *pcb );
if (pwszName == NULL)
{
StatusNoMemory(pstatus, "PrpConvertToUnicode: no memory");
goto Exit;
}
}
// ----
// Exit
// ----
Exit:
return;
}
//+---------------------------------------------------------------------------
// Function: PrpConvertToMultiByte, private
//
// Synopsis: Convert a Unicode string to a MultiByte string
//
// Arguments: [pwc] -- pointer to Unicode string
// [cb] -- byte length of Unicode string
// [CodePage] -- property set codepage
// [ppch] -- pointer to returned pointer to MultiByte string
// [pcb] -- returned byte length of MultiByte string
// [pstatus] -- pointer to NTSTATUS code
//
// Returns: Nothing
//---------------------------------------------------------------------------
VOID
PrpConvertToMultiByte(
IN WCHAR const *pwc,
IN ULONG cb,
IN USHORT CodePage,
OUT CHAR **ppch,
OUT ULONG *pcb,
OUT NTSTATUS *pstatus)
{
ULONG cbName;
CHAR *pszName;
*pstatus = STATUS_SUCCESS;
PROPASSERT(pwc != NULL);
PROPASSERT(ppch != NULL);
PROPASSERT(pcb != NULL);
*ppch = NULL;
*pcb = 0;
// Ensure that cb is valid
if( 0 != (cb % 2) )
{
StatusError(pstatus, "PrpConvertToMultiByte: Odd Unicode string cb",
STATUS_INTERNAL_DB_CORRUPTION);
goto Exit;
}
pszName = NULL;
cbName = 0;
while (TRUE)
{
cbName = WideCharToMultiByte(
CodePage,
0, // dwFlags
pwc,
cb/sizeof(WCHAR),
pszName,
cbName,
NULL, // lpDefaultChar
NULL); // lpUsedDefaultChar
if (cbName == 0)
{
CoTaskMemFree( pszName );
*ppch = NULL;
// If there was an error, assume that it was a code-page
// incompatibility problem.
StatusError(pstatus, "PrpConvertToMultiByte: WideCharToMultiByte error",
STATUS_UNMAPPABLE_CHARACTER);
goto Exit;
}
if (pszName != NULL)
{
DebugTrace(0, DEBTRACE_PROPERTY, (
"PrpConvertToMultiByte: pwc='%ws'[%x] pch='%s'[%x->%x]\n",
pwc,
cb,
pszName,
*pcb,
cbName));
break;
}
*pcb = cbName;
*ppch = pszName = reinterpret_cast<CHAR*>( CoTaskMemAlloc( cbName ));
if (pszName == NULL)
{
StatusNoMemory(pstatus, "PrpConvertToMultiByte: no memory");
goto Exit;
}
}
// ----
// Exit
// ----
Exit:
return;
}
//+---------------------------------------------------------------------------
//
// Function: SerializeSafeArrayBounds, private
//
// Synopsis: Write the rgsabounds field of a SAFEARRAY to pbdst (if non-NULL).
// Calculate and return the size of the serialized bounds,
// and the total number of elements in the array.
//
//---------------------------------------------------------------------------
NTSTATUS
SerializeSafeArrayBounds( const SAFEARRAY *psa, BYTE *pbdst, ULONG *pcbBounds, ULONG *pcElems )
{
NTSTATUS status = STATUS_SUCCESS;
ULONG ulIndex = 0;
ULONG cDims = PrivSafeArrayGetDim( const_cast<SAFEARRAY*>(psa) );
PROPASSERT( 0 < cDims );
*pcbBounds = 0;
*pcElems = 1;
// Loop through each dimension and get its range
for( ulIndex = 1; ulIndex <= cDims; ulIndex++ )
{
LONG lLowerBound = 0, lUpperBound = 0;
// Get the lower & upper bounds
if( SUCCEEDED( status = PrivSafeArrayGetLBound( const_cast<SAFEARRAY*>(psa), ulIndex, &lLowerBound )))
{
status = PrivSafeArrayGetUBound( const_cast<SAFEARRAY*>(psa), ulIndex, &lUpperBound );
}
if( FAILED(status) )
{
goto Exit;
}
else if( lUpperBound < lLowerBound )
{
status = STATUS_INVALID_PARAMETER;
goto Exit;
}
// Update the total element count
*pcElems *= (lUpperBound - lLowerBound + 1 );
// If we're really serializing, write the current set of bounds
if( NULL != pbdst )
{
// Write the length of this dimension
*(ULONG *) pbdst = (lUpperBound - lLowerBound + 1);
pbdst += sizeof(ULONG);
// Then the lower bound
*(LONG *) pbdst = lLowerBound;
pbdst += sizeof(LONG);
}
}
// Calculate the size of the rgsabound array.
*pcbBounds = sizeof(SAFEARRAYBOUND) * cDims;
Exit:
return( status );
}
ULONG
CalcSafeArrayElements( ULONG cDims, const SAFEARRAYBOUND *rgsaBounds )
{
ULONG cElems = 1; // Multiplicitive identity
for( ULONG i = 0; i < cDims; i++ )
cElems *= rgsaBounds[ i ].cElements;
return( cElems );
}
//+---------------------------------------------------------------------------
// Function: StgConvertVariantToProperty, private
//
// Synopsis: Convert a PROPVARIANT to a SERIALIZEDPROPERTYVALUE
//
// Arguments: [pvar] -- pointer to PROPVARIANT
// [CodePage] -- property set codepage
// [pprop] -- pointer to SERIALIZEDPROPERTYVALUE
// [pcb] -- pointer to remaining stream length,
// updated to actual property size on return
// [pid] -- propid (used if indirect)
// [fVariantVectorOrArray] -- TRUE if recursing on VT_VECTOR | VT_VARIANT
// [pcIndirect] -- pointer to indirect property count
// [pstatus] -- pointer to NTSTATUS code
//
// Returns: NULL if buffer too small, else input [pprop] argument
//---------------------------------------------------------------------------
// Define a macro which sets a variable named 'cbByteSwap', but
// only on big-endian builds. This value is not needed on little-
// endian builds (because byte-swapping is not necessary).
#ifdef BIGENDIAN
#define CBBYTESWAP(cb) cbByteSwap = cb
#elif LITTLEENDIAN
#define CBBYTESWAP(cb)
#else
#error Either BIGENDIAN or LITTLEENDIAN must be set.
#endif
// First, define a wrapper for this function which returns errors
// using NT Exception Handling, rather than returning an NTSTATUS.
#if defined(WINNT)
EXTERN_C SERIALIZEDPROPERTYVALUE * __stdcall
StgConvertVariantToProperty(
IN PROPVARIANT const *pvar,
IN USHORT CodePage,
OPTIONAL OUT SERIALIZEDPROPERTYVALUE *pprop,
IN OUT ULONG *pcb,
IN PROPID pid,
IN BOOLEAN fVector,
OPTIONAL OUT ULONG *pcIndirect)
{
SERIALIZEDPROPERTYVALUE *ppropRet;
NTSTATUS status;
ppropRet = StgConvertVariantToPropertyNoEH(
pvar, CodePage, pprop,
pcb, pid, fVector,
FALSE, // fArray
pcIndirect, NULL, &status );
if (!NT_SUCCESS( status ))
RtlRaiseStatus( status );
return (ppropRet );
}
#endif // #if defined(WINNT)
// Enough for "prop%lu" + L'\0'
//#define CCH_MAX_INDIRECT_NAME (4 + 10 + 1)
// Now define the body of the function, returning errors with an
// NTSTATUS value instead of raising.
SERIALIZEDPROPERTYVALUE *
StgConvertVariantToPropertyNoEH(
IN PROPVARIANT const *pvar,
IN USHORT CodePage,
OPTIONAL OUT SERIALIZEDPROPERTYVALUE *pprop,
IN OUT ULONG *pcb,
IN PROPID pid,
IN BOOLEAN fVector, // Used for recursive calls
IN BOOLEAN fArray, // Used for recursive calls
OPTIONAL OUT ULONG *pcIndirect,
IN OUT OPTIONAL WORD *pwMinFormatRequired,
OUT NTSTATUS *pstatus)
{
*pstatus = STATUS_SUCCESS;
// ------
// Locals
// ------
CHAR *pchConvert = NULL;
ULONG count = 0;
BYTE *pbdst;
ULONG cbch = 0;
ULONG cbchdiv = 0;
ULONG cb = 0;
ULONG ulIndex = 0; // Used as a misc loop control variable
// Size of byte-swapping units (e.g. 2 to swap a WORD).
INT cbByteSwap = 0;
ULONG const *pcount = NULL;
VOID const *pv = NULL;
LONG *pclipfmt = NULL;
BOOLEAN fCheckNullSource;
BOOLEAN fIllegalType = FALSE;
const VOID * const *ppv = NULL;
OLECHAR aocName[ PROPGENPROPERTYNAME_SIZEOF ]; //CCH_MAX_INDIRECT_NAME ];
BOOLEAN fByRef;
const SAFEARRAY *parray = NULL;
const VOID *parraydata = NULL;
ULONG fSafeArrayLocked = FALSE;
ULONG cSafeArrayDims = 0;
IFDBG( HRESULT &hr = *pstatus; )
propITraceStatic( "StgConvertVariantToPropertyNoEH" );
propTraceParameters(( "pprop=%p, CodePage=%d, pvar=%p, pma=%p" ));
// Initialize a local wMinFormatRequired - this is the minimum serialization
// format version required for the data in this property set (e.g., if you
// don't use any of the new NT5 support, you can stay a version 0 property set,
// otherwise you go to version 1).
WORD wMinFormatRequired = (NULL == pwMinFormatRequired)
? (WORD) PROPSET_WFORMAT_ORIGINAL
: (WORD) *pwMinFormatRequired;
// If this is a byref, then up the min format required.
if( VT_BYREF & pvar->vt )
wMinFormatRequired = (WORD) max( wMinFormatRequired, PROPSET_WFORMAT_EXPANDED_VTS );
// We dereference byrefs. If this is a byref Variant, we can shortcut this
// by simply changing pvar.
while( (VT_BYREF | VT_VARIANT) == pvar->vt )
{
if( NULL == pvar->pvarVal )
{
*pstatus = STATUS_INVALID_PARAMETER;
goto Exit;
}
pvar = pvar->pvarVal;
}
// Now that we've settled on the pvar we're going to convert,
// Jot down some info on it.
fCheckNullSource = (BOOLEAN) ((pvar->vt & VT_VECTOR) != 0);
fByRef = 0 != (pvar->vt & VT_BYREF);
// If this is an array, then validate the VT in the SafeArray itself matches
// pvar->vt.
if( VT_ARRAY & pvar->vt )
{
VARTYPE vtSafeArray = VT_EMPTY;
// It's invalid to have both the array and vector bits set (would it be
// an array of vectors or a vector of arrays?).
if( VT_VECTOR & pvar->vt )
{
StatusInvalidParameter( pstatus, "Both VT_VECTOR and VT_ARRAY set" );
goto Exit;
}
// Arrays require an uplevel property set format
wMinFormatRequired = (WORD) max( wMinFormatRequired, PROPSET_WFORMAT_EXPANDED_VTS );
// Get the Type bit from the SafeArray
if( VT_BYREF & pvar->vt )
{
if( NULL != pvar->pparray && NULL != *pvar->pparray )
{
*pstatus = PrivSafeArrayGetVartype( *pvar->pparray, &vtSafeArray );
if( FAILED(*pstatus) )
goto Exit;
}
}
else if( NULL != pvar->parray )
{
*pstatus = PrivSafeArrayGetVartype( pvar->parray, &vtSafeArray );
if( FAILED(*pstatus) )
goto Exit;
}
if( !NT_SUCCESS(*pstatus) )
goto Exit;
// Ensure the VT read from the property set matches that in the PropVariant.
// It is illegal for these to be different.
if( ( vtSafeArray & VT_TYPEMASK )
!=
( pvar->vt & VT_TYPEMASK ) )
{
*pstatus = STATUS_INVALID_PARAMETER;
goto Exit;
}
} // if( VT_ARRAY & pvar->vt )
// -------------------------------------------------------
// Analyze the PropVariant, and store information about it
// in fIllegalType, cb, pv, pcount, count, pclipfmt,
// fCheckNullSource, cbch, chchdiv, and ppv.
// -------------------------------------------------------
switch( pvar->vt )
{
case VT_EMPTY:
case VT_NULL:
fIllegalType = fVector || fArray;
break;
case VT_I1 | VT_BYREF:
fIllegalType = fVector || fArray;
case VT_I1:
AssertByteField(cVal); // VT_I1
wMinFormatRequired = (WORD) max( wMinFormatRequired, PROPSET_WFORMAT_EXPANDED_VTS );
cb = sizeof(pvar->bVal);
pv = fByRef ? pvar->pcVal : &pvar->cVal;
break;
case VT_UI1 | VT_BYREF:
fIllegalType = fVector || fArray;
case VT_UI1:
AssertByteField(bVal); // VT_UI1
AssertStringField(pbVal);
cb = sizeof(pvar->bVal);
pv = fByRef ? pvar->pbVal : &pvar->bVal;
break;
case VT_I2 | VT_BYREF:
case VT_UI2 | VT_BYREF:
case VT_BOOL | VT_BYREF:
fIllegalType = fVector || fArray;
case VT_I2:
case VT_UI2:
case VT_BOOL:
AssertShortField(iVal); // VT_I2
AssertStringField(piVal);
AssertShortField(uiVal); // VT_UI2
AssertStringField(puiVal);
AssertShortField(boolVal); // VT_BOOL
cb = sizeof(pvar->iVal);
pv = fByRef ? pvar->piVal : &pvar->iVal;
// If swapping, swap as a WORD
CBBYTESWAP(cb);
break;
case VT_INT | VT_BYREF:
case VT_UINT | VT_BYREF:
fIllegalType = fVector || fArray;
case VT_INT:
case VT_UINT:
fIllegalType |= fVector;
// Fall through
case VT_I4 | VT_BYREF:
case VT_UI4 | VT_BYREF:
case VT_R4 | VT_BYREF:
case VT_ERROR | VT_BYREF:
fIllegalType = fVector || fArray;
case VT_I4:
case VT_UI4:
case VT_R4:
case VT_ERROR:
AssertLongField(lVal); // VT_I4
AssertStringField(plVal);
AssertLongField(intVal); // VT_INT
AssertStringField(pintVal);
AssertLongField(ulVal); // VT_UI4
AssertLongField(uintVal); // VT_UINT
AssertStringField(puintVal);
AssertStringField(pulVal);
AssertLongField(fltVal); // VT_R4
AssertStringField(pfltVal);
AssertLongField(scode); // VT_ERROR
AssertStringField(pscode);
if( VT_INT == (pvar->vt&VT_TYPEMASK) || VT_UINT == (pvar->vt&VT_TYPEMASK) )
wMinFormatRequired = (WORD) max( wMinFormatRequired, PROPSET_WFORMAT_EXPANDED_VTS );
cb = sizeof(pvar->lVal);
pv = fByRef ? pvar->plVal : &pvar->lVal;
// If swapping, swap as a DWORD
CBBYTESWAP(cb);
break;
case VT_FILETIME:
fIllegalType = fArray;
/*
case VT_I8 | VT_BYREF:
case VT_UI8 | VT_BYREF:
fIllegalType = fVector || fArray;
*/
case VT_I8:
case VT_UI8:
AssertLongLongField(hVal); // VT_I8
AssertLongLongField(uhVal); // VT_UI8
AssertLongLongField(filetime); // VT_FILETIME
cb = sizeof(pvar->hVal);
pv = &pvar->hVal;
// If swapping, swap each DWORD independently.
CBBYTESWAP(sizeof(DWORD));
break;
case VT_R8 | VT_BYREF:
case VT_CY | VT_BYREF:
case VT_DATE | VT_BYREF:
fIllegalType = fVector || fArray;
case VT_R8:
case VT_CY:
case VT_DATE:
AssertLongLongField(dblVal); // VT_R8
AssertStringField(pdblVal);
AssertLongLongField(cyVal); // VT_CY
AssertStringField(pcyVal);
AssertLongLongField(date); // VT_DATE
AssertStringField(pdate);
cb = sizeof(pvar->dblVal);
pv = fByRef ? pvar->pdblVal : &pvar->dblVal;
// If swapping, swap as a LONGLONG (64 bits).
CBBYTESWAP(cb);
break;
case VT_CLSID:
AssertStringField(puuid); // VT_CLSID
fIllegalType = fArray;
cb = sizeof(GUID);
pv = pvar->puuid;
fCheckNullSource = TRUE;
// If swapping, special handling is required.
CBBYTESWAP( CBBYTESWAP_UID );
break;
case VT_DECIMAL | VT_BYREF:
fIllegalType = fVector || fArray;
case VT_DECIMAL:
fIllegalType |= fVector;
wMinFormatRequired = (WORD) max( wMinFormatRequired, PROPSET_WFORMAT_EXPANDED_VTS );
cb = sizeof(DECIMAL);
pv = fByRef ? pvar->pdecVal : &pvar->decVal;
break;
case VT_CF:
fIllegalType = fArray;
// Validate the PropVariant
if (pvar->pclipdata == NULL
||
pvar->pclipdata->cbSize < sizeof(pvar->pclipdata->ulClipFmt) )
{
StatusInvalidParameter(pstatus, "StgConvertVariantToProperty: pclipdata NULL");
goto Exit;
}
// How many bytes should we copy?
cb = CBPCLIPDATA( *(pvar->pclipdata) );
// Identify the value for this property's count field.
// (which includes sizeof(ulClipFmt))
count = pvar->pclipdata->cbSize;
pcount = &count;
// Identify the clipdata's format & data
pclipfmt = &pvar->pclipdata->ulClipFmt;
pv = pvar->pclipdata->pClipData;
fCheckNullSource = TRUE;
// Note that no byte-swapping of 'pv' is necessary.
break;
case VT_BLOB:
case VT_BLOB_OBJECT:
fIllegalType = fVector || fArray;
pcount = &pvar->blob.cbSize;
cb = *pcount;
pv = pvar->blob.pBlobData;
fCheckNullSource = TRUE;
// Note that no byte-swapping of 'pv' is necessary.
break;
case VT_VERSIONED_STREAM:
wMinFormatRequired = (WORD) max( wMinFormatRequired, PROPSET_WFORMAT_VERSTREAM );
// Fall through
case VT_STREAM:
case VT_STREAMED_OBJECT:
case VT_STORAGE:
case VT_STORED_OBJECT:
fIllegalType = fVector || fArray;
if( fIllegalType ) break;
// Does the caller support indirect properties?
if (pcIndirect != NULL)
{
// Yes.
(*pcIndirect)++;
// For indirect properties, we don't write the value
// in 'pvar', we write a substitute value. That value is by
// convention (IPropertyStorage knows to use PROPGENPROPERTYNAME),
// so we don't have to pass the name back to the caller.
PROPGENPROPERTYNAME_CB(aocName, sizeof(aocName), pid);
pv = aocName;
}
// Otherwise, the caller doesn't support indirect properties,
// so we'll take the value from pwszVal
else
{
PROPASSERT(
pvar->pwszVal == NULL ||
IsUnicodeString(pvar->pwszVal, MAXULONG));
pv = pvar->pwszVal;
}
count = 1; // default to forcing an error on NULL pointer
// Jump to the LPSTR/BSTR handling code, but skip the ansi check
goto noansicheck;
break;
case VT_BSTR | VT_BYREF:
fIllegalType = fVector || fArray;
count = 0;
pv = *pvar->pbstrVal;
goto noansicheck;
case VT_LPSTR:
fIllegalType = fArray;
PROPASSERT(
pvar->pszVal == NULL ||
IsAnsiString(pvar->pszVal, MAXULONG));
// FALLTHROUGH
case VT_BSTR:
count = 0; // allow NULL pointer
pv = pvar->pszVal;
noansicheck:
AssertStringField(pwszVal); // VT_STREAM, VT_STREAMED_OBJECT
AssertStringField(pwszVal); // VT_STORAGE, VT_STORED_OBJECT
AssertStringField(bstrVal); // VT_BSTR
AssertStringField(pbstrVal);
AssertStringField(pszVal); // VT_LPSTR
AssertStringField(pVersionedStream); // VT_VERSIONED_STREAM
if( fIllegalType ) break;
// We have the string for an LPSTR, BSTR, or indirect
// property pointed to by 'pv'. Now we'll perform any
// Ansi/Unicode conversions and byte-swapping that's
// necessary (putting the result in 'pv').
if (pv == NULL)
{
fCheckNullSource = TRUE;
}
else if (pvar->vt == VT_LPSTR)
{
count = (ULONG)strlen((char *) pv) + 1;
// If the propset is Unicode, convert the LPSTR to Unicode.
if (CodePage == CP_WINUNICODE)
{
// Convert to Unicode.
PROPASSERT(IsAnsiString((CHAR const *) pv, count));
PrpConvertToUnicode(
(CHAR const *) pv,
count,
CP_ACP, // Variants are in the system codepage
(WCHAR **) &pchConvert,
&count,
pstatus);
if( !NT_SUCCESS(*pstatus) ) goto Exit;
// 'pv' always has the ready-to-serialize string.
pv = pchConvert;
// This unicode string may require byte-swapping.
CBBYTESWAP( sizeof(WCHAR) );
}
} // else if (pvar->vt == VT_LPSTR)
else
{
// If this is a BSTR, increment the count to include
// the string terminator.
if( (~VT_BYREF & pvar->vt) == VT_BSTR )
{
count = BSTRLEN(pv); // (This looks at the count field, not wcslen)
// Verify that the input BSTR is terminated.
if( S_OK != StringCbLengthW((const OLECHAR*)pv, count+sizeof(OLECHAR), NULL ))
{
StatusInvalidParameter(pstatus,
"StgConvertVariantToProperty: bad BSTR null char");
goto Exit;
}
// Increment the count to include the terminator.
count += sizeof(OLECHAR);
}
else
{
count = ((ULONG)Prop_ocslen((OLECHAR *) pv) + 1) * sizeof(OLECHAR);
PROPASSERT(IsOLECHARString((OLECHAR const *) pv, count));
}
// This string is either an indirect property name,
// or a BSTR, both of which could be Ansi or Unicode.
if (CodePage != CP_WINUNICODE // Ansi property set
&&
OLECHAR_IS_UNICODE // The PropVariant is in Unicode
)
{
// A Unicode to Ansi conversion is required.
PROPASSERT( IsUnicodeString( (WCHAR*)pv, count ));
PrpConvertToMultiByte(
(WCHAR const *) pv,
count,
CodePage,
&pchConvert,
&count,
pstatus);
if( !NT_SUCCESS(*pstatus) ) goto Exit;
pv = pchConvert;
}
else
if (CodePage == CP_WINUNICODE // Unicode property set,
&&
!OLECHAR_IS_UNICODE // The PropVariant is in Ansi
)
{
// An Ansi to Unicode conversion is required.
PROPASSERT(IsAnsiString((CHAR const *) pv, count));
PROPASSERT(sizeof(OLECHAR) == sizeof(CHAR));
PrpConvertToUnicode(
(CHAR const *) pv,
count,
CP_ACP, // In-mem BSTR is in system CP
(WCHAR **) &pchConvert,
&count,
pstatus);
if( !NT_SUCCESS(*pstatus) ) goto Exit;
// 'pv' always holds the ready-to-serialize value.
pv = pchConvert;
// This unicode string may require swapping.
CBBYTESWAP( sizeof(WCHAR) );
}
else
if (CodePage == CP_WINUNICODE)
{
// No conversion is required (i.e., both 'pv' and the
// property set are Unicode). But we must remember
// to perform a byte-swap (if byte-swapping is necessary).
CBBYTESWAP( sizeof(WCHAR) );
}
} // if (pv == NULL) ... else if ... else
// Validate 'pv'.
#ifdef LITTLEENDIAN
PROPASSERT( NULL == pv
||
CodePage == CP_WINUNICODE && IsUnicodeString((WCHAR*)pv, count)
||
CodePage != CP_WINUNICODE && IsAnsiString((CHAR*)pv, count) );
#endif
cb = count;
pcount = &count;
break;
case VT_LPWSTR:
AssertStringField(pwszVal); // VT_LPWSTR
PROPASSERT(
pvar->pwszVal == NULL ||
IsUnicodeString(pvar->pwszVal, MAXULONG));
fIllegalType = fArray;
pv = pvar->pwszVal;
if (pv == NULL)
{
count = 0;
fCheckNullSource = TRUE;
}
else
{
// Calculate the [length] field.
count = (ULONG)Prop_wcslen(pvar->pwszVal) + 1;
// If byte-swapping will be necessary to get to the serialized
// format, we'll do so in units of WCHARs.
CBBYTESWAP( sizeof(WCHAR) );
}
cb = count * sizeof(WCHAR);
pcount = &count;
break;
/*
case VT_RECORD:
pv = pvar->pvRecord;
pRecInfo = pvar->pRecInfo;
if( NULL == pv )
{
count = 0;
fCheckNullSource = TRUE;
}
else if( NULL == pRecInfo )
{
StatusInvalidParameter( pstatus, "Missing IRecordInfo*" );
goto Exit;
}
cb = 0;
break;
*/
// Vector properties:
case VT_VECTOR | VT_I1:
AssertByteVector(cac); // VT_I1
fIllegalType = fArray;
wMinFormatRequired = (WORD) max( wMinFormatRequired, PROPSET_WFORMAT_EXPANDED_VTS );
// Fall through
case VT_VECTOR | VT_UI1:
AssertByteVector(caub); // VT_UI1
fIllegalType = fArray;
pcount = &pvar->caub.cElems;
cb = *pcount * sizeof(pvar->caub.pElems[0]);
pv = pvar->caub.pElems;
break;
case VT_VECTOR | VT_I2:
case VT_VECTOR | VT_UI2:
case VT_VECTOR | VT_BOOL:
AssertShortVector(cai); // VT_I2
AssertShortVector(caui); // VT_UI2
AssertShortVector(cabool); // VT_BOOL
fIllegalType = fArray;
pcount = &pvar->cai.cElems;
cb = *pcount * sizeof(pvar->cai.pElems[0]);
pv = pvar->cai.pElems;
// If swapping, swap as WORDs
CBBYTESWAP(sizeof(pvar->cai.pElems[0]));
break;
case VT_VECTOR | VT_I4:
case VT_VECTOR | VT_UI4:
case VT_VECTOR | VT_R4:
case VT_VECTOR | VT_ERROR:
AssertLongVector(cal); // VT_I4
AssertLongVector(caul); // VT_UI4
AssertLongVector(caflt); // VT_R4
AssertLongVector(cascode); // VT_ERROR
fIllegalType = fArray;
pcount = &pvar->cal.cElems;
cb = *pcount * sizeof(pvar->cal.pElems[0]);
pv = pvar->cal.pElems;
// If swapping, swap as DWORDs
CBBYTESWAP(sizeof(pvar->cal.pElems[0]));
break;
case VT_VECTOR | VT_I8:
case VT_VECTOR | VT_UI8:
case VT_VECTOR | VT_FILETIME:
AssertLongLongVector(cah); // VT_I8
AssertLongLongVector(cauh); // VT_UI8
AssertLongLongVector(cafiletime);// VT_FILETIME
fIllegalType = fArray;
pcount = &pvar->cah.cElems;
cb = *pcount * sizeof(pvar->cah.pElems[0]);
pv = pvar->cah.pElems;
// If swapping, swap as DWORDs
CBBYTESWAP(sizeof(DWORD));
break;
case VT_VECTOR | VT_R8:
case VT_VECTOR | VT_CY:
case VT_VECTOR | VT_DATE:
AssertLongLongVector(cadbl); // VT_R8
AssertLongLongVector(cacy); // VT_CY
AssertLongLongVector(cadate); // VT_DATE
fIllegalType = fArray;
pcount = &pvar->cah.cElems;
cb = *pcount * sizeof(pvar->cadbl.pElems[0]);
pv = pvar->cadbl.pElems;
// If swapping, swap as LONGLONGs (8 bytes)
CBBYTESWAP(sizeof(pvar->cadbl.pElems[0]));
break;
case VT_VECTOR | VT_CLSID:
AssertVarVector(cauuid, sizeof(GUID));
fIllegalType = fArray;
pcount = &pvar->cauuid.cElems;
cb = *pcount * sizeof(pvar->cauuid.pElems[0]);
pv = pvar->cauuid.pElems;
// If swapping, special handling is required.
CBBYTESWAP( CBBYTESWAP_UID );
break;
case VT_VECTOR | VT_CF:
fIllegalType = fArray;
cbch = sizeof(CLIPDATA);
cbchdiv = sizeof(BYTE);
goto stringvector;
case VT_VECTOR | VT_BSTR:
case VT_VECTOR | VT_LPSTR:
fIllegalType = fArray;
cbchdiv = cbch = sizeof(BYTE);
goto stringvector;
case VT_VECTOR | VT_LPWSTR:
fIllegalType = fArray;
cbchdiv = cbch = sizeof(WCHAR);
goto stringvector;
case VT_VECTOR | VT_VARIANT:
fIllegalType = fArray;
cbch = MAXULONG;
stringvector:
AssertVarVector(caclipdata, sizeof(CLIPDATA)); // VT_CF
AssertStringVector(cabstr); // VT_BSTR
AssertStringVector(calpstr); // VT_LPSTR
AssertStringVector(calpwstr); // VT_LPWSTR
AssertVarVector(capropvar, sizeof(PROPVARIANT));// VT_VARIANT
pcount = &pvar->calpstr.cElems;
ppv = (VOID **) pvar->calpstr.pElems;
break;
case VT_ARRAY | VT_BSTR:
case VT_ARRAY | VT_BSTR | VT_BYREF:
fIllegalType = fVector || fArray;
cbchdiv = cbch = sizeof(BYTE);
cb = 1;
// Fall through
case VT_ARRAY | VT_VARIANT:
case VT_ARRAY | VT_VARIANT | VT_BYREF:
fIllegalType = fVector || fArray;
if( 0 == cbch )
cbch = MAXULONG;
pcount = &count;
case VT_ARRAY | VT_I1:
case VT_ARRAY | VT_I1 | VT_BYREF:
case VT_ARRAY | VT_UI1:
case VT_ARRAY | VT_UI1 | VT_BYREF:
case VT_ARRAY | VT_I2:
case VT_ARRAY | VT_I2 | VT_BYREF:
case VT_ARRAY | VT_UI2:
case VT_ARRAY | VT_UI2 | VT_BYREF:
case VT_ARRAY | VT_BOOL:
case VT_ARRAY | VT_BOOL | VT_BYREF:
case VT_ARRAY | VT_I4:
case VT_ARRAY | VT_I4 | VT_BYREF:
case VT_ARRAY | VT_UI4:
case VT_ARRAY | VT_UI4 | VT_BYREF:
/*
case VT_ARRAY | VT_I8:
case VT_ARRAY | VT_I8 | VT_BYREF:
case VT_ARRAY | VT_UI8:
case VT_ARRAY | VT_UI8 | VT_BYREF:
*/
case VT_ARRAY | VT_INT:
case VT_ARRAY | VT_INT | VT_BYREF:
case VT_ARRAY | VT_UINT:
case VT_ARRAY | VT_UINT | VT_BYREF:
case VT_ARRAY | VT_R4:
case VT_ARRAY | VT_R4 | VT_BYREF:
case VT_ARRAY | VT_ERROR:
case VT_ARRAY | VT_ERROR | VT_BYREF:
case VT_ARRAY | VT_DECIMAL:
case VT_ARRAY | VT_DECIMAL | VT_BYREF:
case VT_ARRAY | VT_R8:
case VT_ARRAY | VT_R8 | VT_BYREF:
case VT_ARRAY | VT_CY:
case VT_ARRAY | VT_CY | VT_BYREF:
case VT_ARRAY | VT_DATE:
case VT_ARRAY | VT_DATE | VT_BYREF:
fIllegalType = fVector || fArray;
if( fIllegalType ) break;
wMinFormatRequired = (WORD) max( wMinFormatRequired, PROPSET_WFORMAT_EXPANDED_VTS );
parray = (VT_BYREF & pvar->vt) ? *pvar->pparray : pvar->parray;
if( NULL == parray )
cb = 0;
else
{
// Get a pointer to the raw data
*pstatus = PrivSafeArrayAccessData( const_cast<SAFEARRAY*>(parray), const_cast<void**>(&parraydata) );
if( FAILED(*pstatus) ) goto Exit;
fSafeArrayLocked = TRUE;
pv = parraydata;
ppv = static_cast<const void* const*>(pv);
// Determine the dimension count and element size
cSafeArrayDims = PrivSafeArrayGetDim( const_cast<SAFEARRAY*>(parray) );
cb = PrivSafeArrayGetElemsize( const_cast<SAFEARRAY*>(parray) );
PROPASSERT( 0 != cb );
if( 0 == cSafeArrayDims )
{
StatusInvalidParameter( pstatus, "Zero-length safearray dimension" );
goto Exit;
}
// Determine the number of elements, and the total size of parraydata
count = CalcSafeArrayElements( cSafeArrayDims, parray->rgsabound );
cb *= count;
}
break;
default:
propDbg(( DEB_IWARN, "StgConvertVariantToProperty: unsupported vt=%d\n", pvar->vt));
*pstatus = STATUS_NOT_SUPPORTED;
goto Exit;
} // switch (pvar->vt)
// ---------------------------------------------------------
// Serialize the property into the property set (pprop->rgb)
// ---------------------------------------------------------
// At this point we've analyzed the PropVariant, and stored
// information about it in various local variables. Now we
// can use this information to serialize the propvar.
// Early exit if this is an illegal type.
if (fIllegalType)
{
propDbg(( DEB_ERROR, "vt=%d\n", pvar->vt ));
StatusInvalidParameter(pstatus, "StgConvertVariantToProperty: Illegal VarType");
goto Exit;
}
// Set pbdst to point into the serialization buffer, or to
// NULL if there is no such buffer.
if (pprop == NULL)
{
pbdst = NULL;
}
else
{
pbdst = pprop->rgb;
}
// Is this an Array/Vector of Strings/Variants/CFs?
if (cbch != 0)
{
// Yes.
PROPASSERT(pcount != NULL);
PROPASSERT(*pcount == 0 || ppv != NULL);
PROPASSERT(0 == cbByteSwap);
// Start calculating the serialized size. Include the sizes
// of the VT.
cb = sizeof(ULONG);
// Is this an Array or Vector of Variants?
if( cbch != MAXULONG )
{
// No. Include each element's length field.
cb += *pcount * sizeof(ULONG);
}
// For vectors, write the element count
if( VT_VECTOR & pvar->vt )
{
cb += sizeof(ULONG);
// Do we have room to write it?
if( *pcb < cb )
{
// No. But we'll continue to calculate the cb
pprop = NULL;
}
else if( pprop != NULL )
{
*(ULONG *) pbdst = PropByteSwap(*pcount);
pbdst += sizeof(ULONG);
}
} // if( VT_VECTOR & pvar->vt )
// For arrays, write the dimension count, features, and element size
else if( NULL != parray )
{
PROPASSERT( VT_ARRAY & pvar->vt );
ULONG cbBounds = 0, cElems = 0;
// Allow for the VarType & dimension count
cb += sizeof(DWORD);
cb += sizeof(UINT);
PROPASSERT( sizeof(DWORD) >= sizeof(VARTYPE) );
// Allow for the rgsaBounds
*pstatus = SerializeSafeArrayBounds( parray, NULL, &cbBounds, &cElems );
if( !NT_SUCCESS(*pstatus) ) goto Exit;
cb += cbBounds;
// Do we have room to write this?
if( *pcb < cb )
{
// No, but continue to calc cb
pprop = NULL;
}
else if( NULL != pprop )
{
// Yes, we have room. Write the safearray header data.
PROPASSERT( sizeof(UINT) == sizeof(ULONG) );
// Write the SafeArray's internal vartype. We'll write the real pvar->vt
// at the bottom of this routine.
*(DWORD *) pbdst = 0;
*(VARTYPE *)pbdst = PropByteSwap( static_cast<VARTYPE>(pvar->vt & VT_TYPEMASK) );
pbdst += sizeof(DWORD);
// Write the dimension count
*(UINT *)pbdst = PropByteSwap(cSafeArrayDims);
pbdst += sizeof(UINT);
// Write the bounds
*pstatus = SerializeSafeArrayBounds( parray, pbdst, &cbBounds, &cElems );
pbdst += cbBounds;
}
} // if( VT_VECTOR & pvar->vt ) ... else if
// Walk through the vector/array and write the elements.
for( ulIndex = *pcount; ulIndex > 0; ulIndex-- )
{
ULONG cbcopy = 0;
const PROPVARIANT *ppropvarT;
// Switch on the size of the element.
switch (cbch)
{
//
// VT_VARIANT, VT_VECTOR
//
case MAXULONG:
cbcopy = MAXULONG;
// Perform a recursive serialization
StgConvertVariantToPropertyNoEH(
(PROPVARIANT *) ppv,
CodePage,
NULL,
&cbcopy,
PID_ILLEGAL,
(VT_VECTOR & pvar->vt) ? TRUE : FALSE,
(VT_ARRAY & pvar->vt) ? TRUE : FALSE,
NULL,
&wMinFormatRequired,
pstatus);
if( !NT_SUCCESS(*pstatus) ) goto Exit;
break;
//
// VT_CF
//
case sizeof(CLIPDATA):
// We copy cbSize-sizeof(ulClipFmt) bytes.
if( ((CLIPDATA *) ppv)->cbSize < sizeof(ULONG) )
{
StatusInvalidParameter(pstatus, "StgConvertVariantToProperty: short cbSize on VT_CF");
goto Exit;
}
else
{
cbcopy = CBPCLIPDATA( *(CLIPDATA*) ppv );
}
// But increment cb to to include sizeof(ulClipFmt)
cb += sizeof(ULONG);
break;
//
// VT_LPWSTR
//
case sizeof(WCHAR):
if (*ppv != NULL)
{
PROPASSERT(IsUnicodeString((WCHAR const *) *ppv, MAXULONG));
cbcopy = ((ULONG)Prop_wcslen((WCHAR *) *ppv) + 1) * sizeof(WCHAR);
pv = *ppv;
// If byte-swapping is necessary, swap in units of WCHARs
CBBYTESWAP( sizeof(WCHAR) );
}
break;
//
// VT_LPSTR/VT_BSTR
//
default:
PROPASSERT(cbch == sizeof(BYTE));
PROPASSERT(pchConvert == NULL);
if (*ppv != NULL)
{
pv = *ppv;
// Is this a BSTR?
if( VT_BSTR == (VT_TYPEMASK & pvar->vt) )
{
// Initialize the # bytes to copy.
cbcopy = BSTRLEN(pv);
// Verify that the BSTR is terminated.
if( S_OK != StringCbLengthW((const OLECHAR*)pv, cbcopy+sizeof(OLECHAR), NULL ))
{
StatusInvalidParameter(pstatus,
"StgConvertVariantToProperty: bad BSTR array null char");
goto Exit;
}
// Also copy the string terminator.
cbcopy += sizeof(OLECHAR);
// If the propset and the BSTR are in mismatched
// codepages (one's Unicode, the other's Ansi),
// correct the BSTR now. In any case, the correct
// string is in 'pv'.
if (CodePage != CP_WINUNICODE // Ansi property set
&&
OLECHAR_IS_UNICODE) // Unicode BSTR
{
PROPASSERT(IsUnicodeString((WCHAR*)pv, cbcopy));
PrpConvertToMultiByte(
(WCHAR const *) pv,
cbcopy,
CodePage,
&pchConvert,
&cbcopy,
pstatus);
if( !NT_SUCCESS(*pstatus) ) goto Exit;
pv = pchConvert;
}
else
if (CodePage == CP_WINUNICODE // Unicode property set
&&
!OLECHAR_IS_UNICODE) // Ansi BSTRs
{
PROPASSERT(IsAnsiString((CHAR const *) pv, cbcopy));
PrpConvertToUnicode(
(CHAR const *) pv,
cbcopy,
CP_ACP, // In-mem BSTR is in system CP
(WCHAR **) &pchConvert,
&cbcopy,
pstatus);
if( !NT_SUCCESS(*pstatus) ) goto Exit;
// The Unicode string must have the proper byte order
CBBYTESWAP( sizeof(WCHAR) );
pv = pchConvert;
}
else
if (CodePage == CP_WINUNICODE )
{
// Both the BSTR and the property set are Unicode.
// No conversion is required, but byte-swapping
// is (if byte-swapping is enabled).
CBBYTESWAP( sizeof(WCHAR) );
}
} // if( VT_BSTR == (VT_TYPEMASK & pvar->vt) )
// Otherwise it's an LPSTR
else
{
PROPASSERT(IsAnsiString((char const *) pv, MAXULONG));
PROPASSERT(pvar->vt == (VT_VECTOR | VT_LPSTR));
cbcopy = (ULONG)strlen((char *) pv) + 1; // + trailing null
if (CodePage == CP_WINUNICODE)
{
PROPASSERT(IsAnsiString(
(CHAR const *) pv,
cbcopy));
PrpConvertToUnicode(
(CHAR const *) pv,
cbcopy,
CP_ACP,
(WCHAR **) &pchConvert,
&cbcopy,
pstatus);
if( !NT_SUCCESS(*pstatus) ) goto Exit;
// If byte-swapping, we'll do so with the WCHARs
CBBYTESWAP( sizeof(WCHAR) );
pv = pchConvert;
}
} // if (pvar->vt == (VT_VECTOR | VT_BSTR)) ... else
} // if (*ppv != NULL)
// In the end, pv should be in the codepage of
// the property set.
#ifdef LITTLEENDIAN
PROPASSERT( NULL == pv
||
CodePage == CP_WINUNICODE && IsUnicodeString((WCHAR*)pv, cbcopy)
||
CodePage != CP_WINUNICODE && IsAnsiString((CHAR*)pv, cbcopy));
#endif
break;
} // switch (cbch)
// Add the size of this vector element to the property total
cb += DwordAlign(cbcopy);
// Will there be enough room for this vector element?
if (*pcb < cb)
{
// No - we'll continue (thus calculating the total size
// necessary), but we won't write to the caller's buffer.
pprop = NULL;
}
// Is this a vector or array of Variants?
if (cbch == MAXULONG)
{
// Yes. Convert this variant.
if (pprop != NULL)
{
StgConvertVariantToPropertyNoEH(
(PROPVARIANT *) ppv,
CodePage,
(SERIALIZEDPROPERTYVALUE *) pbdst,
&cbcopy,
PID_ILLEGAL,
(VT_VECTOR & pvar->vt) ? TRUE : FALSE,
(VT_ARRAY & pvar->vt) ? TRUE : FALSE,
NULL,
&wMinFormatRequired,
pstatus);
if( !NT_SUCCESS(*pstatus) ) goto Exit;
pbdst += cbcopy;
}
ppv = (VOID **) Add2Ptr(ppv, sizeof(PROPVARIANT));
} // if (cbch == MAXULONG)
else
{
// This is a vector/array of strings or clipformats
PROPASSERT(
cbch == sizeof(BYTE) ||
cbch == sizeof(WCHAR) ||
cbch == sizeof(CLIPDATA));
PROPASSERT(cbchdiv == sizeof(BYTE) || cbchdiv == sizeof(WCHAR));
// Are we writing the serialized property?
if (pprop != NULL)
{
ULONG cbVectOrArrayElement;
// Calculate the length of the vector/array element.
cbVectOrArrayElement = (ULONG) cbcopy/cbchdiv;
// Is this a ClipData?
if( cbch == sizeof(CLIPDATA) )
{
// Adjust the length to include sizeof(ulClipFmt)
cbVectOrArrayElement += sizeof(ULONG);
// Write the vector element length.
*(ULONG *) pbdst = PropByteSwap( cbVectOrArrayElement );
// Advance pbdst & write the clipboard format.
pbdst += sizeof(ULONG);
*(ULONG *) pbdst = PropByteSwap( ((CLIPDATA *) ppv)->ulClipFmt );
}
else
{
// Write the vector element length.
*(ULONG *) pbdst = PropByteSwap( cbVectOrArrayElement );
}
// Advance pbdst & write the property data.
pbdst += sizeof(ULONG);
RtlCopyMemory(
pbdst,
cbch == sizeof(CLIPDATA)?
((CLIPDATA *) ppv)->pClipData :
pv,
cbcopy);
// Zero out the pad bytes.
RtlZeroMemory(pbdst + cbcopy, DwordRemain(cbcopy));
// If byte-swapping is necessary, do so now.
PBSBuffer( pbdst, DwordAlign(cbcopy), cbByteSwap );
// Advance pbdst to the next property.
pbdst += DwordAlign(cbcopy);
} // if (pprop != NULL)
// Advance ppv to point into the PropVariant at the
// next element in the array.
if (cbch == sizeof(CLIPDATA))
{
ppv = (VOID **) Add2Ptr(ppv, sizeof(CLIPDATA));
}
else
{
ppv++;
CoTaskMemFree( pchConvert );
pchConvert = NULL;
}
} // if (cbch == MAXULONG) ... else
} // for (cElems = *pcount; cElems > 0; cElems--)
} // if (cbch != 0) // VECTOR/ARRAY of STRING/VARIANT/CF properties
else
{
// This isn't an array or a vector, or the elements of the array/vector
// aren't Strings, Variants, or CFs.
ULONG cbCopy = cb;
// Adjust cb (the total serialized buffer size) for
// pre-data.
if( pvar->vt != VT_EMPTY )
{ // Allow for the VT
cb += sizeof(ULONG);
}
if( pcount != NULL )
{ // Allow for the count field
cb += sizeof(ULONG);
}
if( pclipfmt != NULL )
{ // Allow for the ulClipFmt field.
cb += sizeof(ULONG);
}
if( pvar->vt == VT_VERSIONED_STREAM )
{
// Allow for the version guid
cb += sizeof(pvar->pVersionedStream->guidVersion);
}
if( VT_ARRAY & pvar->vt )
{
// Allow for SafeArray header info
cb += sizeof(DWORD); // VT
cb += sizeof(UINT); // Dimension count
PROPASSERT( sizeof(DWORD) >= sizeof(VARTYPE) );
// Allow for the SafeArray bounds vector
ULONG cbBounds = 0, cElems = 0;
*pstatus = SerializeSafeArrayBounds( parray, NULL, &cbBounds, &cElems );
if( !NT_SUCCESS(*pstatus) ) goto Exit;
cb += cbBounds;
}
/*
if( VT_RECORD == (VT_TYPEMASK & pvar->vt) )
{
// Allow for the recinfo guids.
cb += sizeof(GUID); // Type library ID
cb += sizeof(WORD); // Major version
cb += sizeof(WORD); // Minor version
cb += sizeof(LCID); // Type library Locale ID
cb += sizeof(GUID); // Type info ID
PROPASSERT( sizeof(WORD) == sizeof(USHORT) ); // Size of major/minor versions
PROPASSERT( NULL == pcount );
}
*/
// Is there room in the caller's buffer?
if( *pcb < cb )
{ // No - calculate cb but don't write anything.
pprop = NULL;
}
// 'pv' should point to the source data. If it does, then
// we'll copy it into the property set. If it doesn't but
// it should, then we'll report an error.
if (pv != NULL || fCheckNullSource)
{
ULONG cbZero = DwordRemain(cbCopy);
// Do we have a destination (propset) buffer?
if (pprop != NULL)
{
// Copy the GUID for a VT_VERSIONED_STREAM
if( pvar->vt == VT_VERSIONED_STREAM )
{
if( NULL != pvar->pVersionedStream )
*reinterpret_cast<GUID*>(pbdst) = pvar->pVersionedStream->guidVersion;
else
*reinterpret_cast<GUID*>(pbdst) = GUID_NULL;
PropByteSwap( reinterpret_cast<GUID*>(pbdst) );
pbdst += sizeof(pvar->pVersionedStream->guidVersion);
}
// Does this property have a count field?
if( pcount != NULL )
{
// Write the count & advance pbdst
*(ULONG *) pbdst = PropByteSwap( *pcount );
pbdst += sizeof(ULONG);
}
// Copy the clipfmt for a VT_CF
if( pclipfmt != NULL )
{
PROPASSERT(pvar->vt == VT_CF);
// Write the ClipFormat & advance pbdst
*(ULONG *) pbdst = PropByteSwap( (DWORD) *pclipfmt );
pbdst += sizeof(ULONG);
}
// Write the array info
if( (VT_ARRAY & pvar->vt) && NULL != parray )
{
ULONG cbBounds = 0, cElems = 0;
PROPASSERT( NULL == pcount && NULL == pclipfmt );
PROPASSERT( NULL != parray );
PROPASSERT( 0 != cSafeArrayDims );
PROPASSERT( VT_ARRAY & pvar->vt );
PROPASSERT( sizeof(UINT) == sizeof(ULONG) );
*(DWORD *) pbdst = 0;
*(VARTYPE *)pbdst = PropByteSwap( static_cast<VARTYPE>(pvar->vt & VT_TYPEMASK) );
pbdst += sizeof(DWORD);
*(UINT *)pbdst = PropByteSwap(cSafeArrayDims);
pbdst += sizeof(UINT);
*pstatus = SerializeSafeArrayBounds( parray, pbdst, &cbBounds, &cElems );
pbdst += cbBounds;
}
} // if (pprop != NULL)
// Are we missing the source data?
if (pv == NULL)
{
// The Source pointer is NULL. If cbCopy != 0, the passed
// VARIANT is not properly formed.
if (cbCopy != 0)
{
StatusInvalidParameter(pstatus, "StgConvertVariantToProperty: bad NULL");
goto Exit;
}
}
else if (pprop != NULL)
{
// We have a non-NULL source & destination.
// First, copy the bytes from the former to the latter.
RtlCopyMemory(pbdst, pv, cbCopy);
// Then, if necessary, swap the bytes in the property
// set (leaving the PropVariant bytes untouched).
PBSBuffer( (VOID*) pbdst, cbCopy, cbByteSwap );
// If this is a decimal, zero-out the reserved word at the front
// (typically, this is actually the VarType, because of the
// way in which a decimal is stored in a Variant).
if( VT_DECIMAL == (~VT_BYREF & pvar->vt) )
*(WORD *) pbdst = 0;
}
// Did we write the serialization?
if (pprop != NULL)
{
// Zero the padding bytes.
RtlZeroMemory(pbdst + cbCopy, cbZero);
// Canonicalize VARIANT_BOOLs. We do this here because
// we don't want to muck with the caller's buffer directly.
if ((pvar->vt & ~VT_VECTOR) == VT_BOOL)
{
VARIANT_BOOL *pvb = (VARIANT_BOOL *) pbdst;
VARIANT_BOOL *pvbEnd = &pvb[cbCopy/sizeof(*pvb)];
while (pvb < pvbEnd)
{
if (*pvb
&&
PropByteSwap(*pvb) != VARIANT_TRUE)
{
DebugTrace(0, DEBTRACE_ERROR, (
"Patching VARIANT_TRUE value: %hx --> %hx\n",
*pvb,
VARIANT_TRUE));
*pvb = PropByteSwap( (VARIANT_BOOL) VARIANT_TRUE );
}
pvb++;
}
}
} // if (pprop != NULL)
}
} // if (cbch != 0) ... else // non - STRING/VARIANT/CF VECTOR property
// Set the VT in the serialized buffer now that all size
// checks completed.
if (pprop != NULL && pvar->vt != VT_EMPTY)
{
// When byte-swapping the VT, treat it as a DWORD
// (it's a WORD in the PropVariant, but a DWORD when
// serialized).
pprop->dwType = PropByteSwap( static_cast<DWORD>(~VT_BYREF & pvar->vt) );
}
// Update the caller's copy of the total size.
*pcb = DwordAlign(cb);
Exit:
if( fSafeArrayLocked )
{
PROPASSERT( NULL != parraydata );
PROPASSERT( NULL != parray );
PrivSafeArrayUnaccessData( const_cast<SAFEARRAY*>(parray) );
parraydata = NULL;
}
/*
if( NULL != pTypeInfo )
pTypeInfo->Release();
if( NULL != pTypeLib )
pTypeLib->Release();
*/
if( NULL != pwMinFormatRequired )
*pwMinFormatRequired = wMinFormatRequired;
CoTaskMemFree( pchConvert );
return(pprop);
}
//+---------------------------------------------------------------------------
// Function: StgConvertPropertyToVariant, private
//
// Synopsis: Convert a SERIALIZEDPROPERTYVALUE to a PROPVARIANT
//
// Arguments: [pprop] -- pointer to SERIALIZEDPROPERTYVALUE
// [PointerDelta] -- adjustment to pointers to get user addresses
// [fConvertNullStrings] -- map NULL strings to empty strings
// [CodePage] -- property set codepage
// [pvar] -- pointer to PROPVARIANT
// [pma] -- caller's memory allocation routine
// [pstatus] -- pointer to NTSTATUS code
//
// Returns: TRUE if property is an indirect property type
//
// NOTE: This routine assumes that pprop points to a semi-valid
// serialized property value. That is, pprop points to
// a property value, and its buffer is long enough to hold
// the buffer. This is ensured by calling PropertyLength first.
// PropertyLength doesn't, however, ensure that individual fields
// are correct, only that the length prefix is valid. E.g.
// it doesn't check the individual fields of a VT_CF, it doesn't
// verify that strings are terminated, etc.
//
//---------------------------------------------------------------------------
#ifdef KERNEL
#define ADJUSTPOINTER(ptr, delta, type) (ptr) = (type) Add2Ptr((ptr), (delta))
#else
#define ADJUSTPOINTER(ptr, delta, type)
#endif
// First, define a wrapper for this function which returns errors
// using NT Exception Handling, rather than returning an NTSTATUS.
// This is done for backwards compatibility with old CI implementations.
#if defined(WINNT)
EXTERN_C BOOLEAN __stdcall
StgConvertPropertyToVariant(
IN SERIALIZEDPROPERTYVALUE const *pprop,
IN USHORT CodePage,
OUT PROPVARIANT *pvar,
IN PMemoryAllocator *pma)
{
BOOLEAN boolRet;
NTSTATUS status;
boolRet = StgConvertPropertyToVariantNoEH(
pprop, -1, CodePage, pvar,
pma, &status );
if (!NT_SUCCESS( status ))
RtlRaiseStatus( status );
return (boolRet);
}
#endif // #if defined(WINNT)
// Now define the body of the function, returning errors with an
// NTSTATUS value instead of raising.
BOOLEAN
StgConvertPropertyToVariantNoEH(
IN SERIALIZEDPROPERTYVALUE const *pprop,
IN ULONG cbprop,
IN USHORT CodePage,
OUT PROPVARIANT *pvar,
IN PMemoryAllocator *pma,
OUT NTSTATUS *pstatus)
{
*pstatus = STATUS_SUCCESS;
// ------
// Locals
// ------
BOOLEAN fIndirect = FALSE;
// Buffers which must be freed before exiting.
CHAR *pchConvert = NULL, *pchByteSwap = NULL;
VOID **ppv = NULL;
VOID *pv = NULL;
const VOID *pvCountedString = NULL;
VOID *pvSafeArrayData = NULL;
SAFEARRAY *psa = NULL;
BOOL fSafeArrayLocked = FALSE;
ULONG cbskip = sizeof(ULONG);
ULONG cb = 0;
// Size of byte-swapping units (must be signed).
INT cbByteSwap = 0;
BOOLEAN fPostAllocInit = FALSE;
BOOLEAN fNullLegal = (BOOLEAN) ( (PropByteSwap(pprop->dwType) & VT_VECTOR) != 0 );
IFDBG( HRESULT &hr = *pstatus; )
propITraceStatic( "StgConvertPropertyToVariantNoEH" );
propTraceParameters(( "pprop=%p, CodePage=%d, pvar=%p, pma=%p" ));
// ---------------------------------------------------------
// Based on the VT, calculate ppv, pv, cbskip,
// cb, fPostAllocInit, cbCheck, fNullLegal
// ---------------------------------------------------------
// Set the VT in the PropVariant. Note that in 'pprop' it's a
// DWORD, but it's a WORD in 'pvar'.
pvar->vt = (VARTYPE) PropByteSwap(pprop->dwType);
if( VT_BYREF & pvar->vt )
{
// ByRef's are always indirected on their way to the property set.
// Thus we should never see a VT_BYREF in serialized form.
StatusError( pstatus, "StgConvertPropertyToVariant found VT_BYREF",
STATUS_INTERNAL_DB_CORRUPTION );
goto Exit;
}
//
// Switch on the type and set cb, pv, etc. The information stored in these
// is subsequently used to do most of the work. In many cases, we can just do
// a copy at the end of the switch, we copy cb bytes from pprop->rgb into the buffer
// pointed to by pv (which points into the output propvariant). If an allocation
// must be done, ppv points to the location in the propvariant that should hold
// the buffer, so we allocate at buffer at *ppv, then copy cb bytes into it.
//
switch( pvar->vt )
{
case VT_EMPTY:
case VT_NULL:
break;
case VT_I1:
//AssertByteField(cVal); // VT_I1
cb = sizeof(pvar->cVal);
pv = &pvar->cVal;
break;
case VT_UI1:
AssertByteField(bVal); // VT_UI1
cb = sizeof(pvar->bVal);
pv = &pvar->bVal;
break;
case VT_I2:
case VT_UI2:
case VT_BOOL:
AssertShortField(iVal); // VT_I2
AssertShortField(uiVal); // VT_UI2
AssertShortField(boolVal); // VT_BOOL
cb = sizeof(pvar->iVal);
pv = &pvar->iVal;
// If swapping, swap as a WORD
CBBYTESWAP(cb);
break;
case VT_I4:
case VT_INT:
case VT_UI4:
case VT_UINT:
case VT_R4:
case VT_ERROR:
AssertLongField(lVal); // VT_I4
//AssertLongField(intVal) // VT_INT
AssertLongField(ulVal); // VT_UI4
//AssertLongField(uintVal); // VT_UINT
AssertLongField(fltVal); // VT_R4
AssertLongField(scode); // VT_ERROR
cb = sizeof(pvar->lVal);
pv = &pvar->lVal;
// If swapping, swap as a DWORD
CBBYTESWAP(cb);
break;
case VT_I8:
case VT_UI8:
case VT_FILETIME:
AssertLongLongField(hVal); // VT_I8
AssertLongLongField(uhVal); // VT_UI8
AssertLongLongField(filetime); // VT_FILETIME
cb = sizeof(pvar->hVal);
pv = &pvar->hVal;
// If swapping, swap as a pair of DWORDs
CBBYTESWAP(sizeof(DWORD));
break;
case VT_R8:
case VT_CY:
case VT_DATE:
AssertLongLongField(dblVal); // VT_R8
AssertLongLongField(cyVal); // VT_CY
AssertLongLongField(date); // VT_DATE
cb = sizeof(pvar->dblVal);
pv = &pvar->dblVal;
// If swapping, swap as a LONGLONG
CBBYTESWAP(cb);
break;
case VT_CLSID:
AssertStringField(puuid); // VT_CLSID
cb = sizeof(GUID);
ppv = (VOID **) &pvar->puuid;
cbskip = 0;
// If swapping, special handling is required
CBBYTESWAP( CBBYTESWAP_UID );
break;
case VT_DECIMAL:
//AssertVarField(decVal, sizeof(DECIMAL)); // VT_DECIMAL
cb = sizeof(DECIMAL);
pv = (VOID *) &pvar->decVal;
#ifdef BIGENDIAN
#error Big-Endian support required
// Define CBBYTESWAP_DECIMAL, and add support for it below
//CBBYTESWAP( CBBYTESWAP_DECIMAL );
#endif
break;
case VT_CF:
// Allocate a CLIPDATA buffer. Init-zero it so that we can
// do a safe cleanup should an early-exist be necessary.
pvar->pclipdata = (CLIPDATA *) pma->Allocate(sizeof(CLIPDATA));
if (pvar->pclipdata == NULL)
{
StatusKBufferOverflow(pstatus, "StgConvertPropertyToVariant: no memory for CF");
goto Exit;
}
RtlZeroMemory( pvar->pclipdata, sizeof(CLIPDATA) );
// Set the size (includes sizeof(ulClipFmt))
pvar->pclipdata->cbSize = PropByteSwap( ((CLIPDATA *) pprop->rgb)->cbSize );
if( pvar->pclipdata->cbSize < sizeof(pvar->pclipdata->ulClipFmt) )
{
StatusError(pstatus, "StgConvertPropertyToVariant: Invalid VT_CF cbSize",
STATUS_INTERNAL_DB_CORRUPTION);
goto Exit;
}
// Set the # bytes-to-copy. We can't use the CBPCLIPDATA macro
// here because it assumes that the CLIPDATA parameter is correctly
// byte-swapped.
cb = PropByteSwap( *(DWORD*) pprop->rgb ) - sizeof(pvar->pclipdata->ulClipFmt);
// Set the ClipFormat itself.
pvar->pclipdata->ulClipFmt = PropByteSwap( ((CLIPDATA *) pprop->rgb)->ulClipFmt );
// Prepare for the alloc & copy. Put the buffer pointer
// in pClipData, & skip the ulClipFmt in the copy.
ppv = (VOID **) &pvar->pclipdata->pClipData;
cbskip += sizeof(ULONG);
// It's legal for cb to be 0.
fNullLegal = TRUE;
// Adjust to the user-mode pointer (Kernel only)
ADJUSTPOINTER(pvar->pclipdata, PointerDelta, CLIPDATA *);
break;
case VT_BLOB:
case VT_BLOB_OBJECT:
cb = pvar->blob.cbSize = PropByteSwap( *(ULONG *) pprop->rgb );
ppv = (VOID **) &pvar->blob.pBlobData;
fNullLegal = TRUE;
break;
case VT_VERSIONED_STREAM:
// Allocate the first buffer (which will point to the stream)
pvar->pVersionedStream = reinterpret_cast<LPVERSIONEDSTREAM>( pma->Allocate( sizeof(*pvar->pVersionedStream) ));
if (pvar->pVersionedStream == NULL)
{
StatusKBufferOverflow(pstatus, "StgConvertPropertyToVariant: no memory for VersionedStream");
goto Exit;
}
RtlZeroMemory( pvar->pVersionedStream, sizeof(*pvar->pVersionedStream) );
// Read the GUID (the PropertyLength function has already
// validated that the buffer is big enough to read the GUID
// and counted string.
pvar->pVersionedStream->guidVersion = *reinterpret_cast<const GUID*>( pprop->rgb );
PropByteSwap( &pvar->pVersionedStream->guidVersion );
// A buffer will be allocated and the stream name put into *ppv.
ppv = reinterpret_cast<void**>( &pvar->pVersionedStream->pStream );
// Point to the beginning of the string
pvCountedString = Add2Ptr( pprop->rgb, sizeof(GUID) );
// When copying the string, we will skip the guid
cbskip += sizeof(GUID);
// Fall through
case VT_STREAM:
case VT_STREAMED_OBJECT:
case VT_STORAGE:
case VT_STORED_OBJECT:
fIndirect = TRUE;
goto lpstr;
case VT_BSTR:
case VT_LPSTR:
lpstr:
AssertStringField(pszVal); // VT_STREAM, VT_STREAMED_OBJECT
AssertStringField(pszVal); // VT_STORAGE, VT_STORED_OBJECT
AssertStringField(bstrVal); // VT_BSTR
AssertStringField(pszVal); // VT_LPSTR
// The string to be converted is loaded into pvCountedString
if( NULL == pvCountedString )
pvCountedString = reinterpret_cast<const void*>(pprop->rgb);
// [length field] bytes should be allocated
cb = PropByteSwap( *(ULONG *) pvCountedString );
// When a buffer is allocated, its pointer will go
// in *ppv.
if( NULL == ppv )
ppv = (VOID **) &pvar->pszVal;
// Is this a non-empty string?
if (cb != 0)
{
// Yes, non-empty. If the serialized string is Unicode, ensure
// that the cb is even
if( CodePage == CP_WINUNICODE
&&
0 != (cb % 2) )
{
StatusError(pstatus, "StgConvertPropertyToVariant: Odd Unicode string cb",
STATUS_INTERNAL_DB_CORRUPTION);
goto Exit;
}
// Also ensure that the string is terminated
if( CodePage == CP_WINUNICODE )
{
WCHAR *pwsz = (WCHAR *) Add2ConstPtr(pvCountedString, sizeof(ULONG));
//if( L'\0' != pwsz[ cb/sizeof(WCHAR) - 1 ] )
if( S_OK != StringCbLengthW(pwsz, cb, NULL ))
{
StatusError(pstatus, "StgConvertPropertyToVariant: Unterminated string",
STATUS_INTERNAL_DB_CORRUPTION );
goto Exit;
}
}
else
{
CHAR *psz = (CHAR *) Add2ConstPtr(pvCountedString, sizeof(ULONG));
//if( '\0' != psz[ cb - 1 ] )
if( S_OK != StringCbLengthA(psz, cb, NULL ))
{
StatusError(pstatus, "StgConvertPropertyToVariant: Unterminated string",
STATUS_INTERNAL_DB_CORRUPTION );
goto Exit;
}
}
// Is the serialized value one that should be
// an Ansi string in the PropVariant (if so it might require conversion)?
if (pvar->vt == VT_LPSTR // It's an LPSTR (always Ansi), or
||
!OLECHAR_IS_UNICODE ) // PropVariant strings are Ansi (Mac)
{
// If the propset is Unicode, we must do a
// conversion to Ansi.
if (CodePage == CP_WINUNICODE)
{
WCHAR *pwsz = (WCHAR *) Add2ConstPtr(pvCountedString, sizeof(ULONG));
// If necessary, swap the WCHARs. 'pwsz' will point to
// the correct (system-endian) string either way. If an
// alloc is necessary, 'pchByteSwap' will point to the new
// buffer.
PBSInPlaceAlloc( &pwsz, (WCHAR**) &pchByteSwap, pstatus );
if( !NT_SUCCESS( *pstatus )) goto Exit;
PROPASSERT(IsUnicodeString( pwsz, cb));
// Convert the properly-byte-ordered string in 'pwsz'
// into MBCS, putting the result in pchConvert.
// This routine will validate that cb is even.
PrpConvertToMultiByte(
pwsz,
cb,
CP_ACP, // Use the system default codepage
&pchConvert,
&cb,
pstatus);
if( !NT_SUCCESS(*pstatus) ) goto Exit;
}
} // if (pvar->vt == VT_LPSTR) ...
// Otherwise, even though this string may be
// Ansi in the Property Set, it must be Unicode
// in the PropVariant.
else
{
// If necessary, convert to Unicode
if (CodePage != CP_WINUNICODE)
{
PROPASSERT(
IsAnsiString(
(CHAR const *)
Add2ConstPtr(pvCountedString, sizeof(ULONG)),
cb));
PrpConvertToUnicode(
(CHAR const *)
Add2ConstPtr(pvCountedString, sizeof(ULONG)),
cb,
CodePage,
(WCHAR **) &pchConvert,
&cb,
pstatus);
if( !NT_SUCCESS(*pstatus) ) goto Exit;
} // if (CodePage != CP_WINUNICODE)
else
{
// The value is Unicode both the property set
// and the PropVariant. If byte-swapping is
// necessary, we'll do so in units of WCHARs.
CBBYTESWAP( sizeof(WCHAR) );
}
} // if (pvar->vt == VT_LPSTR) ... else
} // if (cb != 0)
fNullLegal = TRUE;
break;
case VT_LPWSTR:
fNullLegal = TRUE;
AssertStringField(pwszVal); // VT_LPWSTR
// Show where buffer needs to be allocated.
ppv = (VOID **) &pvar->pwszVal;
// Calculate the length of the Unicode string. Put the total number
// of bytes for this property in cbCheck.
cb = PropByteSwap( *(ULONG *) pprop->rgb ) * sizeof(WCHAR);
// Ensure the string is null-terminated.
if( 0 != cb )
{
WCHAR *pwsz = (WCHAR *) Add2ConstPtr(pprop->rgb, sizeof(ULONG));
//if( L'\0' != pwsz[ cb/sizeof(WCHAR) - 1 ] )
if( S_OK != StringCbLengthW(pwsz, cb, NULL ))
{
StatusError(pstatus, "StgConvertPropertyToVariant: Unterminated string",
STATUS_INTERNAL_DB_CORRUPTION );
goto Exit;
}
}
// If byte-swapping will be necessary, do so for the WCHARs
CBBYTESWAP( sizeof(WCHAR) );
break;
//
// VT_VECTOR types are handled by a recursive call.
//
case VT_VECTOR | VT_I1:
//AssertByteVector(cac); // VT_I1
case VT_VECTOR | VT_UI1:
AssertByteVector(caub); // VT_UI1
pvar->caub.cElems = PropByteSwap( *(ULONG *) pprop->rgb );
cb = pvar->caub.cElems * sizeof(pvar->caub.pElems[0]);
ppv = (VOID **) &pvar->caub.pElems;
break;
case VT_VECTOR | VT_I2:
case VT_VECTOR | VT_UI2:
case VT_VECTOR | VT_BOOL:
AssertShortVector(cai); // VT_I2
AssertShortVector(caui); // VT_UI2
AssertShortVector(cabool); // VT_BOOL
pvar->cai.cElems = PropByteSwap( *(ULONG *) pprop->rgb );
cb = pvar->cai.cElems * sizeof(pvar->cai.pElems[0]);
ppv = (VOID **) &pvar->cai.pElems;
// If swapping, swap as a WORD
CBBYTESWAP(sizeof(pvar->cai.pElems[0]));
break;
case VT_VECTOR | VT_I4:
case VT_VECTOR | VT_UI4:
case VT_VECTOR | VT_R4:
case VT_VECTOR | VT_ERROR:
AssertLongVector(cal); // VT_I4
AssertLongVector(caul); // VT_UI4
AssertLongVector(caflt); // VT_R4
AssertLongVector(cascode); // VT_ERROR
pvar->cal.cElems = PropByteSwap( *(ULONG *) pprop->rgb );
cb = pvar->cal.cElems * sizeof(pvar->cal.pElems[0]);
ppv = (VOID **) &pvar->cal.pElems;
// If byte swapping, swap as DWORDs
CBBYTESWAP(sizeof(pvar->cal.pElems[0]));
break;
case VT_VECTOR | VT_I8:
case VT_VECTOR | VT_UI8:
case VT_VECTOR | VT_FILETIME:
AssertLongLongVector(cah); // VT_I8
AssertLongLongVector(cauh); // VT_UI8
AssertLongLongVector(cafiletime); // VT_FILETIME
pvar->cah.cElems = PropByteSwap( *(ULONG *) pprop->rgb );
cb = pvar->cah.cElems * sizeof(pvar->cah.pElems[0]);
ppv = (VOID **) &pvar->cah.pElems;
// If byte swapping, swap as DWORDs
CBBYTESWAP(sizeof(DWORD));
break;
case VT_VECTOR | VT_R8:
case VT_VECTOR | VT_CY:
case VT_VECTOR | VT_DATE:
AssertLongLongVector(cadbl); // VT_R8
AssertLongLongVector(cacy); // VT_CY
AssertLongLongVector(cadate); // VT_DATE
pvar->cadbl.cElems = PropByteSwap( *(ULONG *) pprop->rgb );
cb = pvar->cadbl.cElems * sizeof(pvar->cadbl.pElems[0]);
ppv = (VOID **) &pvar->cadbl.pElems;
// If byte swapping, swap as LONGLONGs
CBBYTESWAP(sizeof(pvar->cadbl.pElems[0]));
break;
case VT_VECTOR | VT_CLSID:
AssertVarVector(cauuid, sizeof(GUID));
pvar->cauuid.cElems = PropByteSwap( *(ULONG *) pprop->rgb );
cb = pvar->cauuid.cElems * sizeof(pvar->cauuid.pElems[0]);
ppv = (VOID **) &pvar->cauuid.pElems;
// If byte swapping, special handling is required.
CBBYTESWAP( CBBYTESWAP_UID );
break;
case VT_VECTOR | VT_CF:
// Set the count of clipdatas
pvar->caclipdata.cElems = PropByteSwap( *(ULONG *) pprop->rgb );
// How much should we allocate for caclipdata.pElems, & where
// should that buffer pointer go?
cb = pvar->caclipdata.cElems * sizeof(pvar->caclipdata.pElems[0]);
ppv = (VOID **) &pvar->caclipdata.pElems;
// We need to do work after pElems is allocated.
fPostAllocInit = TRUE;
break;
case VT_VECTOR | VT_BSTR:
case VT_VECTOR | VT_LPSTR:
AssertStringVector(cabstr); // VT_BSTR
AssertStringVector(calpstr); // VT_LPSTR
// Put the element count in the PropVar
pvar->calpstr.cElems = PropByteSwap( *(ULONG *) pprop->rgb );
// An array of cElems pointers should be alloced
cb = pvar->calpstr.cElems * sizeof(CHAR*);
// Show where the array of pointers should go.
ppv = (VOID **) &pvar->calpstr.pElems;
// Additional allocs will be necessary after the vector
// is alloced.
fPostAllocInit = TRUE;
break;
case VT_VECTOR | VT_LPWSTR:
AssertStringVector(calpwstr); // VT_LPWSTR
pvar->calpwstr.cElems = PropByteSwap( *(ULONG *) pprop->rgb );
cb = pvar->calpwstr.cElems * sizeof(WCHAR *);
ppv = (VOID **) &pvar->calpwstr.pElems;
fPostAllocInit = TRUE;
break;
case VT_VECTOR | VT_VARIANT:
AssertVariantVector(capropvar); // VT_VARIANT
pvar->capropvar.cElems = PropByteSwap( *(ULONG *) pprop->rgb );
cb = pvar->capropvar.cElems * sizeof(PROPVARIANT);
ppv = (VOID **) &pvar->capropvar.pElems;
fPostAllocInit = TRUE;
break;
//
// VT_ARRAY (SafeArray) types are handled by a recursive call
//
case VT_ARRAY | VT_BSTR:
cbskip = 0;
cb = sizeof(BSTR); // (BSTR is really a pointer)
ppv = (VOID**) &pvar->parray;
fPostAllocInit = TRUE;
break;
case VT_ARRAY | VT_VARIANT:
cbskip = 0;
cb = sizeof(PROPVARIANT);
ppv = (VOID**) &pvar->parray;
fPostAllocInit = TRUE;
break;
case VT_ARRAY | VT_I1:
case VT_ARRAY | VT_UI1:
cbskip = 0;
ppv = (VOID**) &pvar->parray;
cb = sizeof(BYTE);
break;
case VT_ARRAY | VT_I2:
case VT_ARRAY | VT_UI2:
case VT_ARRAY | VT_BOOL:
cbskip = 0;
ppv = (VOID**) &pvar->parray;
cb = sizeof(USHORT);
break;
case VT_ARRAY | VT_I4:
case VT_ARRAY | VT_UI4:
case VT_ARRAY | VT_INT:
case VT_ARRAY | VT_UINT:
case VT_ARRAY | VT_R4:
case VT_ARRAY | VT_ERROR:
cbskip = 0;
ppv = (VOID**) &pvar->parray;
cb = sizeof(ULONG);
break;
case VT_ARRAY | VT_DECIMAL:
cbskip = 0;
ppv = (VOID**) &pvar->parray;
cb = sizeof(DECIMAL);
break;
/*
case VT_ARRAY | VT_I8:
case VT_ARRAY | VT_UI8:
*/
case VT_ARRAY | VT_DATE:
cbskip = 0;
ppv = (VOID**) &pvar->parray;
cb = sizeof(ULONGLONG);
// If byte swapping, swap as DWORDs
CBBYTESWAP(DWORD);
break;
case VT_ARRAY | VT_R8:
case VT_ARRAY | VT_CY:
cbskip = 0;
ppv = (VOID**) &pvar->parray;
cb = sizeof(CY);
// If byte swapping, swap as LONGLONGs
CBBYTESWAP(cb);
break;
default:
propDbg(( DEB_IWARN, "StgConvertPropertyToVariant: unsupported vt=%d\n", pvar->vt ));
*pstatus = STATUS_NOT_SUPPORTED;
goto Exit;
} // switch (pvar->vt)
// ------------------------------------------------------
// We've now analyzed the serialized property, learned
// about it, and loaded part or all of the PropVariant.
// Now we can load any remaining parts.
// ------------------------------------------------------
// Is this a simple, unaligned scalar?
if (pv != NULL)
{
// Yes. All we need to do is copy some bytes.
PROPASSERT(pchConvert == NULL);
PROPASSERT( cb < sizeof(PROPVARIANT)-sizeof(VARTYPE)
||
VT_DECIMAL == pprop->dwType );
// Copy from the pprop into the PropVariant
RtlCopyMemory(pv, pprop->rgb, cb);
// We also might need to byte-swap them (but only in the PropVar).
PBSBuffer( pv, cb, cbByteSwap );
// Decimal requires special handling, since it overlaps the VT field.
if( VT_DECIMAL == PropByteSwap(pprop->dwType) )
pvar->vt = VT_DECIMAL;
} // if (pv != NULL)
// Otherwise, we need to allocate memory, to which the
// PropVariant will point.
else if (ppv != NULL)
{
*ppv = NULL;
// If cb is zero, then there's nothing to allocate anyway.
if( cb == 0 )
{
// Make sure it's legal for this type to be NULL.
if (!fNullLegal)
{
StatusInvalidParameter(pstatus, "StgConvertPropertyToVariant: bad NULL");
goto Exit;
}
}
else
{
// We need to allocate something.
SAFEARRAYBOUND *rgsaBounds = NULL;
ULONG cElems = 0, cbBounds = 0;
PROPASSERT(cb != 0);
// Allocate the necessary buffer (which we figured out in the
// switch above). For vector properties, this will just be the
// pElems buffer at this point. For singleton BSTR properties, we'll skip
// this allocate altogether; they're allocated by oleaut with SysStringAlloc.
// For array properties, we'll allocate the safearray and the buffer that
// it will reference.
if( VT_ARRAY & pvar->vt )
{
// This is a SafeArray. We need to use oleaut to allocate the SafeArray
// structure.
VARTYPE vtInternal; // The VT as determined by the SafeArray
UINT cDims = 0;
// Read the SafeArray's internal VT
// (PropertyLength guarantees us that we can read the VT,
// cDims, and bounds).
vtInternal = *(VARTYPE*) &pprop->rgb[cbskip];
cbskip += sizeof(ULONG);
// Read the dimension count
cDims = *(ULONG*) &pprop->rgb[cbskip];
cbskip += sizeof(DWORD);
// Point to the SAFEARRAYBOUND array
rgsaBounds = (SAFEARRAYBOUND*) &pprop->rgb[cbskip];
// We now have everything we need to create a new safe array
psa = PrivSafeArrayCreateEx( vtInternal, cDims, rgsaBounds, NULL );
if( NULL == psa )
{
propDbg(( DEB_ERROR, "Failed SafeArrayCreateEx, vt=0x%x, cDims=%d\n",
vtInternal, cDims ));
*pstatus = STATUS_NO_MEMORY;
goto Exit;
}
cbskip += cDims * sizeof(SAFEARRAYBOUND);
// Calculate the number of elements in the safearray.
PROPASSERT( cb == psa->cbElements );
*pstatus = SerializeSafeArrayBounds( psa, NULL, &cbBounds, &cElems );
if( !NT_SUCCESS(*pstatus) ) goto Exit;
// In the big switch above, cb was set to the single element size.
// Now update it to be the total element size.
cb *= cElems;
// Put this SafeArray into pvar->parray
*ppv = psa;
// Get the newly-created psa->pvData
*pstatus = PrivSafeArrayAccessData( psa, &pvSafeArrayData );
if( FAILED(*pstatus) ) goto Exit;
fSafeArrayLocked = TRUE;
// Point ppv to it - we'll copy the data from the serialized
// format to here.
ppv = &pvSafeArrayData;
PROPASSERT( NULL != ppv && psa != *ppv );
} // if( VT_ARRAY & pvar->vt )
else if( VT_BSTR != pvar->vt )
{
// Array was handled in the if above, BSTRs are handled below
// (simultaneous with the copy), so this else if block is for
// everything else - i.e. simple allocs.
*ppv = pma->Allocate(max(1, cb));
if (*ppv == NULL)
{
StatusKBufferOverflow(pstatus, "StgConvertPropertyToVariant: no memory");
goto Exit;
}
} // if( VT_ARRAY & pvar->vt ) ... else if( VT_BSTR != pvar->vt )
// We've got memory allocated now.
// Can we load the PropVariant with a simple copy?
if( !fPostAllocInit )
{
// Yes - all we need is a memcopy (and an implicit alloc for BSTRs).
if (VT_BSTR == pvar->vt)
{
// We do the copy with the OleAutomation routine
// (which does an allocation too).
//
// If byte-swapping is necessary, the switch block
// already took care of it, leaving the buffer in
// 'pchConvert'.
//
// We already validated that the string is properly terminated.
// Now do the alloc/copy
PROPASSERT( NULL == *ppv );
*ppv = PrivSysAllocString( ( pchConvert != NULL )
? (OLECHAR *) pchConvert
: (OLECHAR *) (pprop->rgb + cbskip) );
if (*ppv == NULL)
{
StatusKBufferOverflow(pstatus, "StgConvertPropertyToVariant: no memory");
goto Exit;
}
} // if (VT_BSTR == pvar->vt)
else
{
// Copy the property into the PropVariant.
RtlCopyMemory(
*ppv,
pchConvert != NULL?
(BYTE const *) pchConvert : pprop->rgb + cbskip,
cb);
}
// If necessary, byte-swap the property (only in the PropVar).
PBSBuffer( *ppv, cb, cbByteSwap );
} // if (!fPostAllocInit)
else
{
// We must do more than just a simple copy.
// (Thus this is a vector/array of strings, variants, or CFs).
// Pointer to the correct location in pprop->rgb
BYTE const *pbsrc;
// Point pbsrc to the actual data (i.e. beyond the counts). For
// vectors, put the element count in cElems.
if( VT_VECTOR & pvar->vt )
{
// Get the element count
cElems = pvar->calpstr.cElems;
// Initialize the source pointer to point just beyond
// the element count.
pbsrc = pprop->rgb + sizeof(ULONG);
}
else
{
PROPASSERT( VT_ARRAY & pvar->vt );
PROPASSERT( 0 != cElems );
// Initialize the source pointer to point just beyond the VT, cDims, and bounds
pbsrc = pprop->rgb + cbBounds + sizeof(DWORD) + sizeof(UINT);
}
// Zero all pointers in the pElems array for easy caller cleanup
// (cb is the size of the array of pointers)
ppv = (VOID **) *ppv;
RtlZeroMemory(ppv, cb);
// Handle Variants, ClipFormats, & Strings separately.
if( (VT_VECTOR | VT_VARIANT) == pvar->vt
||
(VT_ARRAY | VT_VARIANT) == pvar->vt )
{
// This is an array or vector of variants
PROPVARIANT *pvarT = (PROPVARIANT *) ppv;
PROPASSERT(!fIndirect);
// Loop through the variants.
while (cElems-- > 0)
{
ULONG cbelement;
// Get this variant into pvarT (which is really part of
// the pvar->capropvar->pElems).
fIndirect = StgConvertPropertyToVariantNoEH(
(SERIALIZEDPROPERTYVALUE const *) pbsrc,
cbprop - (ULONG)((UINT_PTR)pbsrc - (UINT_PTR)pprop),
CodePage,
pvarT,
pma,
pstatus);
if( !NT_SUCCESS(*pstatus) ) goto Exit;
PROPASSERT(!fIndirect);
// Calculate this size of this serialized element.
cbelement = PropertyLengthNoEH(
(SERIALIZEDPROPERTYVALUE const *) pbsrc,
cbprop - (ULONG)((UINT_PTR)pbsrc - (UINT_PTR)pprop),
CPSS_VARIANTVECTOR,
pstatus);
if( !NT_SUCCESS(*pstatus) ) goto Exit;
// Advance pbsrc by that size, and advance pvarT to the
// next element in pvar->capropvar->pElems.
pbsrc += cbelement;
pvarT++;
}
} // if (pvar->vt == (VT_VECTOR | VT_VARIANT) ... )
else if (pvar->vt == (VT_VECTOR | VT_CF))
{
// Handle vectors of clipformats.
// Set pcd to &pElems[0]
CLIPDATA *pcd = (CLIPDATA *) ppv;
// Loop through pElems
while (cElems-- > 0)
{
// What is the size of the clipdata (including sizeof(ulClipFmt))?
pcd->cbSize = PropByteSwap( ((CLIPDATA *) pbsrc)->cbSize );
if( pcd->cbSize < sizeof(pcd->ulClipFmt) )
{
StatusError(pstatus, "StgConvertPropertyToVariant: Invalid VT_CF cbSize",
STATUS_INTERNAL_DB_CORRUPTION);
goto Exit;
}
// How many bytes should we copy to pClipData?
cb = CBPCLIPDATA( *pcd );
// Set the ClipFormat & advance pbsrc to the clipdata.
pcd->ulClipFmt = PropByteSwap( ((CLIPDATA *) pbsrc)->ulClipFmt );
pbsrc += 2 * sizeof(ULONG);
// Copy the ClipData into the PropVariant
pcd->pClipData = NULL;
if (cb > 0)
{
// Get a buffer for the clip data.
pcd->pClipData = (BYTE *) pma->Allocate(cb);
if (pcd->pClipData == NULL)
{
StatusKBufferOverflow(pstatus, "StgConvertPropertyToVariant: no memory for CF[]");
goto Exit;
}
// Copy the clipdata into pElems[i].pClipData
RtlCopyMemory(pcd->pClipData, pbsrc, cb);
ADJUSTPOINTER(pcd->pClipData, PointerDelta, BYTE *);
} // if (cb > 0)
// Move pcd to &pElems[i+1], and advance the buffer pointer.
pcd++;
pbsrc += DwordAlign(cb);
} // while (cElems-- > 0)
} // else if (pvar->vt == (VT_VECTOR | VT_CF))
else
{
// This is a vector or array of some kind of string.
// Assume that characters are CHARs
ULONG cbch = sizeof(char);
if( pvar->vt == (VT_VECTOR | VT_LPWSTR) )
{
// Characters are actually WCHARs
cbch = sizeof(WCHAR);
// If byte-swapping is enabled, LPWSTRs must have
// their WCHARs swapped.
CBBYTESWAP( sizeof(WCHAR) );
}
// Loop through the array
while (cElems-- > 0)
{
ULONG cbcopy;
// Read the cb from the front of the property, and advance
// pbsrc beyond that length field.
cbcopy = cb = PropByteSwap( *((ULONG *) pbsrc) ) * cbch;
pbsrc += sizeof(ULONG);
pv = (VOID *) pbsrc;
PROPASSERT(*ppv == NULL);
PROPASSERT(pchConvert == NULL);
// Do we have actual data to work with?
if( cb != 0 )
{
// Validate that the string is null terminated
if( CP_WINUNICODE == CodePage
//&& L'\0' != ((WCHAR*)pv)[ (cb-1) / sizeof(WCHAR) ]
&& S_OK != StringCbLengthW((WCHAR*)pv, cb, NULL )
||
CP_WINUNICODE != CodePage
//&& '\0' != ((CHAR*)pv)[ cb-1 ]
&& S_OK != StringCbLengthA((CHAR*)pv, cb, NULL )
)
{
StatusError(pstatus, "String element missing null termination",
STATUS_INTERNAL_DB_CORRUPTION );
goto Exit;
}
// Special BSTR pre-processing ... it might be
// necessary to do a unicode/ansi conversion.
if( (VT_VECTOR | VT_BSTR) == pvar->vt
||
(VT_ARRAY | VT_BSTR) == pvar->vt )
{
// If the propset & in-memory BSTRs are of
// different Unicode-ness, convert now.
if (CodePage != CP_WINUNICODE // Ansi PropSet
&&
OLECHAR_IS_UNICODE ) // Unicode BSTRs
{
PROPASSERT(IsAnsiString((CHAR*) pv, cb));
PrpConvertToUnicode(
(CHAR const *) pv,
cb,
CodePage,
(WCHAR **) &pchConvert,
&cbcopy,
pstatus);
if( !NT_SUCCESS(*pstatus) ) goto Exit;
pv = pchConvert;
}
else
if (CodePage == CP_WINUNICODE // Unicode PropSet
&&
!OLECHAR_IS_UNICODE ) // Ansi BSTRs
{
// If byte-swapping is necessary, the string from
// the propset must be swapped before it can be
// converted to MBCS. If such a conversion
// is necessary, a new buffer is alloced and
// put in pchByteSwap. Either way, 'pv' points
// to the correct string.
PBSInPlaceAlloc( (WCHAR**) &pv,
(WCHAR**) &pchByteSwap,
pstatus );
if( !NT_SUCCESS(*pstatus) ) goto Exit;
PROPASSERT(IsUnicodeString((WCHAR*)pv, cb));
// Convert the Unicode string from the property
// set to Ansi.
PrpConvertToMultiByte(
(WCHAR const *) pv,
cb,
CP_ACP, // Use the system default codepage
&pchConvert,
&cbcopy,
pstatus);
if( !NT_SUCCESS(*pstatus) ) goto Exit;
// 'pv' always has the correct string.
pv = pchConvert;
}
else
if (CodePage == CP_WINUNICODE)
{
// Both the BSTR is unicode in the property set,
// and must remain unicode in the PropVariant.
// But byte-swapping may still be necessary.
CBBYTESWAP( sizeof(WCHAR) );
}
#ifdef LITTLEENDIAN
PROPASSERT( IsOLECHARString((BSTR)pv, cbcopy ));
#endif
} // if( (VT_VECTOR | VT_BSTR) == pvar->vt ...
// Special LPSTR pre-processing ... again, we might
// need to do a unicode/ansi conversion.
else if (pvar->vt == (VT_VECTOR | VT_LPSTR))
{
// LPSTRs are always Ansi. If the string
// is Unicode in the propset, convert now.
if (CodePage == CP_WINUNICODE)
{
// If byte-swapping is necessary, the string from
// the propset must be swapped before it can be
// converted to MBCS. If such a conversion
// is necessary, a new buffer is alloced and
// put in pchByteSwap. Either way, 'pv' points
// to the correct string.
PBSInPlaceAlloc( (WCHAR**) &pv, (WCHAR**) &pchByteSwap,
pstatus );
if( !NT_SUCCESS(*pstatus) ) goto Exit;
PROPASSERT(IsUnicodeString((WCHAR*)pv, cb));
// Convert to Ansi.
PrpConvertToMultiByte(
(WCHAR const *) pv,
cb,
CP_ACP, // Use the system default codepage
&pchConvert,
&cbcopy,
pstatus);
if( !NT_SUCCESS(*pstatus) ) goto Exit;
pv = pchConvert;
}
PROPASSERT( IsAnsiString( (CHAR const *)pv, cbcopy ));
} // else if (pvar->vt == (VT_VECTOR | VT_LPSTR))
// Allocate memory in the PropVariant and copy
// the string.
if( (VT_BSTR | VT_VECTOR) == pvar->vt
||
(VT_BSTR | VT_ARRAY) == pvar->vt )
{
// For BSTRs, the allocate/copy is performed
// by SysStringAlloc. We've already verified
// that the string pointed to by pv is properly
// terminated.
*ppv = PrivSysAllocString( (BSTR) pv );
if (*ppv == NULL)
{
StatusKBufferOverflow(pstatus, "StgConvertPropertyToVariant: no memory for BSTR element");
goto Exit;
}
// The BSTR length should be the property length
// minus the NULL.
PROPASSERT( BSTRLEN(*ppv) == cbcopy - sizeof(OLECHAR) );
} // if( VT_BSTR == pvar->vt )
else
{
// For everything that's not a BSTR,
// Allocate a buffer in the PropVariant
*ppv = pma->Allocate(max(1, cbcopy));
if (*ppv == NULL)
{
StatusKBufferOverflow(pstatus, "StgConvertPropertyToVariant: no memory for string element");
goto Exit;
}
// And then copy from the propset buffer to the PropVariant
RtlCopyMemory(*ppv, pv, cbcopy);
} // if( VT_BSTR == pvar->vt ) ... else
// If necessary, byte-swap in the PropVariant to get
// the proper byte-ordering.
PBSBuffer( *ppv, cbcopy, cbByteSwap );
// Adjust the PropVar element ptr to user-space (kernel only)
ADJUSTPOINTER(*ppv, PointerDelta, VOID *);
// Move, within the propset buffer, to the
// next element in the vector.
pbsrc += DwordAlign(cb);
// Delete the temporary buffers
CoTaskMemFree( pchByteSwap );
pchByteSwap = NULL;
CoTaskMemFree( pchConvert );
pchConvert = NULL;
} // if (cb != 0)
// Move, within the PropVariant, to the next
// element in the vector.
ppv++;
} // while (cElems-- > 0)
} // else if (pvar->vt == (VT_VECTOR | VT_CF)) ... else
} // if (!fPostAllocInit) ... else
ADJUSTPOINTER(*ppvK, PointerDelta, VOID *);
} // if (cb == 0) ... else
} // if (pv != NULL) ... else if (ppv != NULL)
Exit:
if( fSafeArrayLocked )
{
PROPASSERT( NULL != pvSafeArrayData );
PrivSafeArrayUnaccessData( psa );
}
CoTaskMemFree( pchByteSwap );
CoTaskMemFree( pchConvert );
return(fIndirect);
}
//+---------------------------------------------------------------------------
// Function: CleanupVariants, private
//
// Synopsis: Free all memory used by an array of PROPVARIANT
//
// Arguments: [pvar] -- pointer to PROPVARIANT
// [cprop] -- property count
// [pma] -- caller's memory free routine
//
// Returns: None
//---------------------------------------------------------------------------
VOID
CleanupVariants(
IN PROPVARIANT *pvar,
IN ULONG cprop,
IN PMemoryAllocator *pma)
{
// We can get null if we're called recursively (for a vector),
// and the vector property never got fully set up (i.e. the
// second buffer never got allocated).
if( NULL == pvar )
return;
while (cprop-- > 0)
{
VOID *pv = NULL;
VOID **ppv = NULL;
ULONG cElems = 0;
switch (pvar->vt)
{
case VT_CF:
pv = pvar->pclipdata;
if (pv != NULL && pvar->pclipdata->pClipData)
{
pma->Free(pvar->pclipdata->pClipData);
}
break;
case VT_VERSIONED_STREAM:
pv = pvar->pVersionedStream;
if( NULL != pv && NULL != pvar->pVersionedStream->pStream )
{
pma->Free(pvar->pVersionedStream->pStream);
}
break;
case VT_BLOB:
case VT_BLOB_OBJECT:
pv = pvar->blob.pBlobData;
break;
case VT_BSTR:
case VT_CLSID:
case VT_STREAM:
case VT_STREAMED_OBJECT:
case VT_STORAGE:
case VT_STORED_OBJECT:
case VT_LPSTR:
case VT_LPWSTR:
AssertStringField(puuid); // VT_CLSID
AssertStringField(pszVal); // VT_STREAM, VT_STREAMED_OBJECT
AssertStringField(pszVal); // VT_STORAGE, VT_STORED_OBJECT
AssertStringField(bstrVal); // VT_BSTR
AssertStringField(pszVal); // VT_LPSTR
AssertStringField(pwszVal); // VT_LPWSTR
pv = pvar->pszVal;
break;
// Vector properties:
case VT_VECTOR | VT_I1:
case VT_VECTOR | VT_UI1:
case VT_VECTOR | VT_I2:
case VT_VECTOR | VT_UI2:
case VT_VECTOR | VT_BOOL:
case VT_VECTOR | VT_I4:
case VT_VECTOR | VT_UI4:
case VT_VECTOR | VT_R4:
case VT_VECTOR | VT_ERROR:
case VT_VECTOR | VT_I8:
case VT_VECTOR | VT_UI8:
case VT_VECTOR | VT_R8:
case VT_VECTOR | VT_CY:
case VT_VECTOR | VT_DATE:
case VT_VECTOR | VT_FILETIME:
case VT_VECTOR | VT_CLSID:
AssertByteVector(cac); // VT_I1
AssertByteVector(caub); // VT_UI1
AssertShortVector(cai); // VT_I2
AssertShortVector(caui); // VT_UI2
AssertShortVector(cabool); // VT_BOOL
AssertLongVector(cal); // VT_I4
AssertLongVector(caul); // VT_UI4
AssertLongVector(caflt); // VT_R4
AssertLongVector(cascode); // VT_ERROR
AssertLongLongVector(cah); // VT_I8
AssertLongLongVector(cauh); // VT_UI8
AssertLongLongVector(cadbl); // VT_R8
AssertLongLongVector(cacy); // VT_CY
AssertLongLongVector(cadate); // VT_DATE
AssertLongLongVector(cafiletime); // VT_FILETIME
AssertVarVector(cauuid, sizeof(GUID)); // VT_CLSID
pv = pvar->cai.pElems;
break;
case VT_VECTOR | VT_CF:
{
CLIPDATA *pcd;
cElems = pvar->caclipdata.cElems;
pv = pcd = pvar->caclipdata.pElems;
while (cElems-- > 0)
{
if (pcd->pClipData != NULL)
{
pma->Free(pcd->pClipData);
}
pcd++;
}
}
break;
case VT_VECTOR | VT_BSTR:
case VT_VECTOR | VT_LPSTR:
case VT_VECTOR | VT_LPWSTR:
AssertStringVector(cabstr); // VT_BSTR
AssertStringVector(calpstr); // VT_LPSTR
AssertStringVector(calpwstr); // VT_LPWSTR
cElems = pvar->calpstr.cElems;
ppv = (VOID **) pvar->calpstr.pElems;
break;
case VT_VECTOR | VT_VARIANT:
CleanupVariants(
pvar->capropvar.pElems,
pvar->capropvar.cElems,
pma);
pv = pvar->capropvar.pElems;
break;
} // switch (pvar->vt)
if (ppv != NULL) // STRING VECTOR property
{
// Save the vector of pointers
pv = (VOID *) ppv;
// Free the vector elements
while (cElems-- > 0)
{
if (*ppv != NULL)
{
if( (VT_BSTR | VT_VECTOR) == pvar->vt )
{
PrivSysFreeString( (BSTR) *ppv );
}
else
{
pma->Free((BYTE *) *ppv);
}
}
ppv++;
}
// Free the vector of pointers.
pma->Free(pv);
pv = NULL;
} // if (ppv != NULL)
if (pv != NULL)
{
if( VT_BSTR == pvar->vt )
{
PrivSysFreeString( (BSTR) pv );
}
else
{
pma->Free((BYTE *) pv);
}
}
pvar->vt = VT_EMPTY;
// Move on to the next PropVar in the vector.
pvar++;
} // while (cprop-- > 0)
}
//+--------------------------------------------------------------------------
// Function: PropertyLength
//
// Synopsis: compute the length of a property including the variant type
//
// Arguments: [pprop] -- property value
// [cbbuf] -- max length of accessible memory at pprop
// [flags] -- CPropertySetStream flags
// [pstatus] -- pointer to NTSTATUS code
//
// Returns: length of property
//---------------------------------------------------------------------------
// First, define a wrapper for this function which returns errors
// using NT Exception Handling, rather than returning an NTSTATUS.
#if defined(WINNT) && !defined(IPROPERTY_DLL)
ULONG
PropertyLength(
SERIALIZEDPROPERTYVALUE const *pprop,
ULONG cbbuf,
BYTE flags)
{
NTSTATUS status;
ULONG ulRet;
ulRet = PropertyLengthNoEH( pprop, cbbuf, flags, &status );
if (!NT_SUCCESS( status ))
RtlRaiseStatus( status );
return( ulRet );
}
#endif // #if defined(WINNT) && !defined(IPROPERTY_DLL)
// Now define the body of the function, returning errors with an
// NTSTATUS value instead of raising.
ULONG
PropertyLengthNoEH(
SERIALIZEDPROPERTYVALUE const *pprop,
ULONG cbbuf,
BYTE flags,
OUT NTSTATUS *pstatus)
{
ULONG const *pl = (ULONG const *) pprop->rgb;
ULONG cElems = 1;
ULONG cSafeArrayDimensions = 1;
ULONG cbremain = cbbuf;
ULONG cb = 0, cbch;
BOOLEAN fIllegalType = FALSE;
const SAFEARRAYBOUND *rgsaBounds = NULL;
ULONG vt;
*pstatus = STATUS_SUCCESS;
// Can we read the VT?
if (cbremain < CB_SERIALIZEDPROPERTYVALUE)
{
StatusOverflow(pstatus, "PropertyLength: dwType");
goto Exit;
}
// Get the VT
vt = PropByteSwap( pprop->dwType );
cbremain -= CB_SERIALIZEDPROPERTYVALUE;
PROPASSERT( sizeof(pprop->dwType) == CB_SERIALIZEDPROPERTYVALUE );
// If this is a vector or array, get the element count
if( VT_VECTOR & vt )
{
// It's a vector.
// Can we read the element count?
if (cbremain < sizeof(ULONG))
{
StatusOverflow(pstatus, "PropertyLength: cElems");
goto Exit;
}
// Get the element count
cElems = PropByteSwap( *pl++ );
cbremain -= sizeof(ULONG);
}
else if( VT_ARRAY & vt )
{
// It's an array
ULONG cbBounds = 0;
// Can we read the element VT and dimension count?
// (This VT is for the members of the array, as opposed
// to the VT_ARRAY in pprop->dwType).
if( sizeof(DWORD) + sizeof(UINT) > cbremain )
{
StatusOverflow(pstatus, "PropertyLength: vt/cDims" );
goto Exit;
}
// Read the SafeArray's VT (so we'll now ignore pprop->dwType)
vt = VT_ARRAY | PropByteSwap( *pl++ );
PROPASSERT( sizeof(DWORD) == sizeof(*pl) );
// Read the dimension count
cSafeArrayDimensions = PropByteSwap( *pl++ );
PROPASSERT( sizeof(DWORD) == sizeof(*pl) );
// Update the remaining count to be the bytes after the vt/count
cbremain -= sizeof(DWORD) + sizeof(UINT);
// Can we read the bounds?
cbBounds = sizeof(SAFEARRAYBOUND) * cSafeArrayDimensions;
if( cbBounds > cbremain )
{
StatusOverflow(pstatus, "PropertyLength: safearray bounds" );
goto Exit;
}
// Get the bounds (point to them directly in the pprop)
cbremain -= cbBounds;
rgsaBounds = reinterpret_cast<const SAFEARRAYBOUND *>(pl);
pl = static_cast<const ULONG*>(Add2ConstPtr( pl, cbBounds ));
// Finally, calc the element count
cElems = CalcSafeArrayElements( cSafeArrayDimensions, rgsaBounds );
}
// Is this a vector/array of variants? If so, we need to make recursive
// calls to size the elements.
if( (VT_VECTOR | VT_VARIANT) == vt
||
(VT_ARRAY | VT_VARIANT) == vt )
{
while (cElems-- > 0)
{
cb = PropertyLengthNoEH(
(SERIALIZEDPROPERTYVALUE const *) pl,
cbremain,
flags | CPSS_VARIANTVECTOR,
pstatus);
if( !NT_SUCCESS(*pstatus) ) goto Exit;
pl = (ULONG const *) Add2ConstPtr(pl, cb);
cbremain -= cb;
}
}
// Otherwise (it's not a vector/array), we have to look at each
// type individually.
else
{
// Assume that characters are Unicode
// (we'll update this if it's not true).
cbch = sizeof(WCHAR);
// Switch over the raw type (i.e., mask out vt_vector, vt_array, etc.)
// We won't see VT_VARIANT here because we handled it in the if above.
// If we're in a recursive call, CPSS_VARIANTVECTOR will be true, and
// consequently certain types will be illegal (such as VT_NULL - you can't
// have this type in a vector|variant). Mostly, this switch updates
// pl to point just beyond the data - the total size in the end will be
// the delta between this and pprop. Note that we don't actually try
// to dereference pl, because it may be pointing off the end of the buffer
// (i.e., we don't check cbremain during the switch).
switch( VT_TYPEMASK & vt )
{
case VT_EMPTY:
case VT_NULL:
fIllegalType = (flags & CPSS_VARIANTVECTOR) != 0;
break;
case VT_I1:
case VT_UI1:
pl = (ULONG const *) Add2ConstPtr(pl, DwordAlign(cElems * sizeof(BYTE)));
break;
case VT_I2:
case VT_UI2:
case VT_BOOL:
pl = (ULONG const *) Add2ConstPtr(pl, DwordAlign(cElems * sizeof(USHORT)));
break;
case VT_I4:
case VT_INT:
case VT_UI4:
case VT_UINT:
case VT_R4:
case VT_ERROR:
pl = (ULONG const *) Add2ConstPtr(pl, cElems * sizeof(ULONG));
break;
case VT_I8:
case VT_UI8:
case VT_R8:
case VT_CY:
case VT_DATE:
case VT_FILETIME:
pl = (ULONG const *) Add2ConstPtr(pl, cElems * sizeof(LONGLONG));
break;
case VT_CLSID:
pl = (ULONG const *) Add2ConstPtr(pl, cElems * sizeof(GUID));
break;
case VT_DECIMAL:
pl = (ULONG const *) Add2ConstPtr( pl, cElems * sizeof(DECIMAL) );
break;
case VT_VERSIONED_STREAM:
// Ensure we can read the GUID & string length
if( cbremain < sizeof(GUID) + sizeof(ULONG) )
{
StatusOverflow(pstatus, "PropertyLength: VersionedStream" );
goto Exit;
}
// Point to the string's length
pl = reinterpret_cast<const ULONG*>( Add2ConstPtr( pl, sizeof(GUID) ));
// Point past the end of the property
pl = reinterpret_cast<const ULONG*>( Add2ConstPtr( pl, sizeof(ULONG) + DwordAlign(PropByteSwap(*pl)) ));
break;
case VT_BLOB:
case VT_BLOB_OBJECT:
// FALLTHROUGH
case VT_STREAM:
case VT_STREAMED_OBJECT:
case VT_STORAGE:
case VT_STORED_OBJECT:
// These are stored as strings (which are the name of a
// stream/storage).
if (flags & CPSS_VARIANTVECTOR)
{
fIllegalType = TRUE;
break;
}
// FALLTHROUGH
case VT_CF:
case VT_BSTR:
case VT_LPSTR:
// This have byte counts, not character counts
cbch = sizeof(BYTE);
// FALLTHROUGH
case VT_LPWSTR:
// Handle all the length-prefixed types
while (cElems-- > 0)
{
if (cbremain < sizeof(ULONG) ||
cbremain < (cb = sizeof(ULONG) + DwordAlign(PropByteSwap(*pl) * cbch)))
{
StatusOverflow(pstatus, "PropertyLength: String/BLOB/CF/Indirect");
goto Exit;
}
#ifdef LITTLEENDIAN
PROPASSERT(
(PropByteSwap(pprop->dwType) & VT_TYPEMASK) != VT_LPWSTR
||
IsUnicodeString( (WCHAR const *) &pl[1],
PropByteSwap(*pl) * sizeof(WCHAR)));
#endif
pl = (ULONG const *) Add2ConstPtr(pl, cb);
cbremain -= cb;
}
break;
default:
fIllegalType = TRUE;
break;
} // switch( VT_TYPEMASK & vt )
}
// Did we get an illegal type (e.g. a VT_STREAM within a CPSS_VARIANTVECTOR)?
if (fIllegalType)
{
propDbg(( DEB_IWARN, "PropertyLength: Unsupported VarType (0x%x)\n", vt ));
*pstatus = STATUS_NOT_SUPPORTED;
goto Exit;
}
// Calculate the final cb and verify it.
cb = (ULONG) ((BYTE *) pl - (BYTE *) pprop);
if (cbbuf < cb)
{
StatusOverflow(pstatus, "PropertyLength: cb");
goto Exit;
}
// Make sure PropertyLength works when limited to an exact size buffer.
PROPASSERT(cb == cbbuf || PropertyLengthNoEH(pprop, cb, flags, pstatus) == cb);
// ----
// Exit
// ----
Exit:
// Normalize the error return value.
if( !NT_SUCCESS(*pstatus) )
cb = 0;
return(cb);
} // PropertyLengthNoEH()
//+--------------------------------------------------------------------------
// Function: StgPropertyLengthAsVariant
//
// Synopsis: compute the size of external memory required to store the
// property as a PROPVARIANT
//
// Arguments: [pprop] -- property value
// [cbprop] -- computed length of pprop in propset stream
// [CodePage] -- property set codepage
// [flags] -- CPropertySetStream flags
// [pstatus] -- pointer to NTSTATUS code
//
// Returns: length of property
//---------------------------------------------------------------------------
#if defined(WINNT)
// First, define a wrapper which raises NT Exceptions for compatibility
// with older callers who expect it.
EXTERN_C ULONG __stdcall
StgPropertyLengthAsVariant(
IN SERIALIZEDPROPERTYVALUE const *pprop,
IN ULONG cbprop,
IN USHORT CodePage,
IN BYTE flags)
{
NTSTATUS status;
ULONG ulRet;
ulRet = StgPropertyLengthAsVariantNoEH( pprop, cbprop, CodePage, flags, &status );
if (!NT_SUCCESS( status ))
RtlRaiseStatus( status );
return( ulRet );
}
// Now define the body of the function, returning errors with an
// NTSTATUS value instead of raising.
ULONG
StgPropertyLengthAsVariantNoEH(
IN SERIALIZEDPROPERTYVALUE const *pprop,
IN ULONG cbprop,
IN USHORT CodePage,
IN BYTE flags,
OUT NTSTATUS *pstatus)
{
ULONG cElems = 0;
ULONG cbvar = 0;
const ULONG *pl = reinterpret_cast<const ULONG*>(pprop->rgb);
*pstatus = STATUS_SUCCESS;
PROPASSERT(cbprop == PropertyLengthNoEH(pprop, cbprop, flags, pstatus));
if( VT_VECTOR & PropByteSwap(pprop->dwType) )
{
if( VT_ARRAY & PropByteSwap(pprop->dwType) )
{
StatusInvalidParameter( pstatus, "Both Array and Vector bits set" );
goto Exit;
}
cElems = *(ULONG *) pprop->rgb;
pl++;
cbprop -= sizeof(ULONG); // Discount the element count
}
else if( VT_ARRAY & PropByteSwap(pprop->dwType) )
{
const SAFEARRAYBOUND *rgsaBounds = NULL;
ULONG cDims = 0;
VARTYPE vtInternal;
if( VT_VECTOR & PropByteSwap(pprop->dwType) )
{
StatusInvalidParameter( pstatus, "Both Array and Vector bits set" );
goto Exit;
}
vtInternal = static_cast<VARTYPE>(*pl++);
cDims = *pl++; PROPASSERT( sizeof(UINT) == sizeof(LONG) );
rgsaBounds = reinterpret_cast<const SAFEARRAYBOUND*>(pl);
pl = static_cast<const ULONG*>( Add2ConstPtr( pl, cDims * sizeof(SAFEARRAYBOUND) ));
cElems = CalcSafeArrayElements( cDims, rgsaBounds );
// Adjust cbprop to take into account that we have to create a SafeArray
cbprop = cbprop
- sizeof(DWORD) // vtInternal
- sizeof(UINT) // cDims
+ sizeof(SAFEARRAY) // The SafeArray that will be alloced
+ sizeof(GUID) // hidden extra data alloc-ed with a safearray
- sizeof(SAFEARRAYBOUND); // Discount SAFEARRAY.rgsabound[1]
}
switch( PropByteSwap(pprop->dwType) )
{
// We don't need to check for VT_BYREF, becuase serialized property sets
// never contain them.
//default:
//case VT_EMPTY:
//case VT_NULL:
//case VT_I1:
//case VT_UI1:
//case VT_I2:
//case VT_UI2:
//case VT_BOOL:
//case VT_INT:
//case VT_UINT:
//case VT_I4:
//case VT_UI4:
//case VT_R4:
//case VT_ERROR:
//case VT_I8:
//case VT_UI8:
//case VT_R8:
//case VT_CY:
//case VT_DATE:
//case VT_FILETIME:
//case VT_DECIMAL:
//cbvar = 0;
//break;
case VT_CLSID:
cbvar = cbprop - sizeof(ULONG); // don't include VARTYPE
break;
// VT_CF: Round CLIPDATA up to Quad boundary, then drop VARTYPE+size+
// clipfmt, which get tossed or unmarshalled into CLIPDATA. Round
// byte-granular data size to a Quad boundary when returning result.
case VT_CF:
cbvar = QuadAlign(sizeof(CLIPDATA)) + cbprop - 3 * sizeof(ULONG);
break;
case VT_BLOB:
case VT_BLOB_OBJECT:
cbvar = cbprop - 2 * sizeof(ULONG); // don't include VARTYPE & size
break;
case VT_VERSIONED_STREAM:
case VT_STREAM:
case VT_STREAMED_OBJECT:
case VT_STORAGE:
case VT_STORED_OBJECT:
cbvar = cbprop - 2 * sizeof(ULONG); // don't include VARTYPE & size
if (CodePage != CP_WINUNICODE)
{
cbvar *= sizeof(WCHAR); // worst case Unicode conversion
}
break;
case VT_BSTR:
// Don't include the size of the VT field, but leave
// the size of the length field accounted for.
cbvar = cbprop - sizeof(ULONG);
// Worst-case Ansi->Unicode conversion:
cbvar *= sizeof(OLECHAR);
break;
case VT_LPSTR: // Assume Ansi conversion saves no space
case VT_LPWSTR:
cbvar = cbprop - 2 * sizeof(ULONG);
break;
case VT_ARRAY | VT_I1:
case VT_ARRAY | VT_UI1:
case VT_ARRAY | VT_I2:
case VT_ARRAY | VT_UI2:
case VT_ARRAY | VT_BOOL:
case VT_ARRAY | VT_I4:
case VT_ARRAY | VT_UI4:
case VT_ARRAY | VT_INT:
case VT_ARRAY | VT_UINT:
case VT_ARRAY | VT_R4:
case VT_ARRAY | VT_ERROR:
case VT_ARRAY | VT_DECIMAL:
//case VT_ARRAY | VT_I8:
//case VT_ARRAY | VT_UI8:
case VT_ARRAY | VT_R8:
case VT_ARRAY | VT_CY:
case VT_ARRAY | VT_DATE:
// don't include VARTYPE field
cbvar = cbprop - sizeof(ULONG);
break;
// Vector properties:
case VT_VECTOR | VT_I1:
case VT_VECTOR | VT_UI1:
case VT_VECTOR | VT_I2:
case VT_VECTOR | VT_UI2:
case VT_VECTOR | VT_BOOL:
case VT_VECTOR | VT_I4:
case VT_VECTOR | VT_UI4:
case VT_VECTOR | VT_R4:
case VT_VECTOR | VT_ERROR:
case VT_VECTOR | VT_I8:
case VT_VECTOR | VT_UI8:
case VT_VECTOR | VT_R8:
case VT_VECTOR | VT_CY:
case VT_VECTOR | VT_DATE:
case VT_VECTOR | VT_FILETIME:
case VT_VECTOR | VT_CLSID:
AssertByteVector(cac); // VT_I1
AssertByteVector(caub); // VT_UI1
AssertShortVector(cai); // VT_I2
AssertShortVector(caui); // VT_UI2
AssertShortVector(cabool); // VT_BOOL
AssertLongVector(cal); // VT_I4
AssertLongVector(caul); // VT_UI4
AssertLongVector(caflt); // VT_R4
AssertLongVector(cascode); // VT_ERROR
AssertLongLongVector(cah); // VT_I8
AssertLongLongVector(cauh); // VT_UI8
AssertLongLongVector(cadbl); // VT_R8
AssertLongLongVector(cacy); // VT_CY
AssertLongLongVector(cadate); // VT_DATE
AssertLongLongVector(cafiletime); // VT_FILETIME
AssertVarVector(cauuid, sizeof(GUID));
// don't include VARTYPE and count fields
cbvar = cbprop - 2 * sizeof(ULONG);
break;
case VT_VECTOR | VT_CF: // add room for each pointer
AssertVarVector(caclipdata, sizeof(CLIPDATA)); // VT_CF
// don't include VARTYPE and count fields
cbvar = cbprop - 2 * sizeof(ULONG);
// add room for each CLIPDATA data pointer and enough to Quad align
// every clipdata data element and 1 ULONG to Quad align the
// CLIPDATA array
cbvar += cElems * (sizeof(BYTE *) + sizeof(ULONG)) + sizeof(ULONG);
break;
case VT_VECTOR | VT_BSTR: // add room for each BSTRLEN
case VT_ARRAY | VT_BSTR:
AssertStringVector(cabstr); // VT_BSTR
//Assert
// don't include VARTYPE field
cbvar = cbprop - sizeof(ULONG);
// For vectors, don't include the count field
if( VT_VECTOR & PropByteSwap(pprop->dwType) )
cbvar -= sizeof(ULONG);
if (CodePage != CP_WINUNICODE)
{
cbvar *= sizeof(OLECHAR); // worst case Unicode conversion
}
// add room for each BSTRLEN value and enough to Quad align
// every BSTR and 1 ULONG to Quad align the array of BSTR pointers.
cbvar += cElems * (sizeof(ULONG) + sizeof(ULONG)) + sizeof(ULONG);
break;
case VT_VECTOR | VT_LPSTR: // Assume Ansi conversion saves no space
case VT_VECTOR | VT_LPWSTR:
AssertStringVector(calpstr); // VT_LPSTR
AssertStringVector(calpwstr); // VT_LPWSTR
// don't include VARTYPE and count fields
cbvar = cbprop - 2 * sizeof(ULONG);
// add enough room to Quadalign the array of string pointers.
cbvar += cElems * sizeof(ULONG) + sizeof(ULONG);
break;
case VT_VECTOR | VT_VARIANT:
case VT_ARRAY | VT_VARIANT:
{
ULONG cbremain = cbprop - sizeof(ULONG); // Discount the VT
cbvar = cElems * sizeof(PROPVARIANT);
while (cElems-- > 0)
{
ULONG cbpropElem;
ULONG cbvarElem;
cbpropElem = PropertyLengthNoEH(
(SERIALIZEDPROPERTYVALUE *) pl,
cbremain,
flags | CPSS_VARIANTVECTOR,
pstatus);
if( !NT_SUCCESS(*pstatus) ) goto Exit;
cbvarElem = StgPropertyLengthAsVariantNoEH(
(SERIALIZEDPROPERTYVALUE *) pl,
cbpropElem,
CodePage,
flags | CPSS_VARIANTVECTOR,
pstatus);
if( !NT_SUCCESS(*pstatus) ) goto Exit;
pl = (ULONG const *) Add2ConstPtr(pl, cbpropElem);
cbremain -= cbpropElem;
cbvar += cbvarElem;
}
break;
}
}
// ----
// Exit
// ----
Exit:
// Normalize the error return value.
if( !NT_SUCCESS(*pstatus) )
cbvar = 0;
return(QuadAlign(cbvar));
} // StgPropertyLengthAsVariantNoEH
#endif // #if defined(WINNT)
//+--------------------------------------------------------------------------
// Function: PBSCopy
//
// Synopsis: This is a Property Byte-Swap routine. The PBS routines
// only compile in the BIGENDIAN build. In the
// LITTLEENDIAN build, they are inlined with NOOP functions.
//
// This routine copies the source to the destination,
// byte-swapping as it copies.
//
// Arguments: [VOID*] pvDest
// Pointer to the target (swapped) buffer.
// This must be pre-allocated by the caller.
// [VOID*] pvSource
// Pointer to the original buffer.
// [ULONG] cbSize
// Size in bytes of the buffer.
// [ULONG] cbByteSwap
// Size of byte-swapping units.
//
// Returns: None.
//
//---------------------------------------------------------------------------
#ifdef BIGENDIAN
VOID PBSCopy( OUT VOID *pvDest,
IN VOID const *pvSource,
IN ULONG cbCopy,
IN LONG cbByteSwap )
{
PROPASSERT( (cbCopy & 1) == 0 );
PROPASSERT( pvDest != NULL && pvSource != NULL );
memcpy( pvDest, pvSource, cbCopy );
PBSBuffer( pvDest, cbCopy, cbByteSwap );
}
#endif // BIGENDIAN
//+--------------------------------------------------------------------------
// Function: PBSAllocAndCopy
//
// Synopsis: This is a Property Byte-Swap routine. The PBS routines
// only compile in the BIGENDIAN build. In the
// LITTLEENDIAN build, they are inlined with NOOP functions.
//
// This routine allocs a buffer, and swaps the bytes from
// the source buffer into the destination.
//
// Arguments: [VOID**] ppvDest (out)
// On success will point to the swapped buffer.
// [VOID*] pvSource (in)
// Pointer to the original buffer.
// [ULONG] cbSize (in)
// Size in bytes of the buffer.
// [LONG] cbByteSwap (in)
// Size of byte-swapping units.
// [NTSTATUS*] pstatus (out)
// NTSTATUS code.
//
// Returns: None.
//
// Note: The caller is responsible for freeing *ppvDest
// (using ::delete).
//
//---------------------------------------------------------------------------
#ifdef BIGENDIAN
VOID PBSAllocAndCopy( OUT VOID **ppvDest,
IN VOID const *pvSource,
ULONG cbSize,
LONG cbByteSwap,
OUT NTSTATUS *pstatus)
{
// -----
// Begin
// -----
*pstatus = STATUS_SUCCESS;
PROPASSERT( ppvDest != NULL && pvSource != NULL );
// Allocate a buffer.
*ppvDest = CoTaskMemAlloc( cbSize );
if( NULL == *ppvDest )
{
*pstatus = STATUS_NO_MEMORY;
goto Exit;
}
// Swap/copy the bytes.
PBSCopy( *ppvDest, pvSource, cbSize, cbByteSwap );
// ----
// Exit
// ----
Exit:
return;
} // PBSAllocAndCopy
#endif // BIGENDIAN
//+--------------------------------------------------------------------------
// Function: PBSInPlaceAlloc
//
// Synopsis: This is a Property Byte-Swap routine. The PBS routines
// only compile in the BIGENDIAN build. In the
// LITTLEENDIAN build, they are inlined with NOOP functions.
//
// This routine takes a WCHAR array, allocates a new buffer,
// and swaps the original array into the new buffer.
//
//
// Arguments: [WCHAR**] ppwszResult
// IN: *ppwszResult points to string to be swapped.
// OUT: *ppwszResult points to the swapped string.
// [WCHAR**] ppwszBuffer
// *ppwszBuffer points to the buffer which was allocated
// for the swapped bytes (should be the same as *ppwszResult).
// *ppwszBuffer must be NULL on input, and must be freed
// by the caller (using ::delete).
// [NTSTATUS*] pstatus
// NTSTATUS code.
//
// Returns: None.
//
// On input, *ppwszResult contains the original string.
// An equivalently sized buffer is allocated in *ppwszBuffer,
// and *ppwszResult is byte-swapped into it. *ppwszResult
// is then set to the new *ppwszBuffer.
//
// It doesn't appear to useful to have both buffer parameters,
// but it makes it easier on the caller in certain circumstances;
// *ppwszResult always points to the correct string, whether the
// build is BIGENDIAN (alloc & swap takes place) or the build
// is LITTLEENDIAN (nothing happes, so *ppwszResult continues
// to point to the proper string). The LITTLEENDIAN version of
// this function is implemented as an inline routine.
//
//---------------------------------------------------------------------------
#ifdef BIGENDIAN
VOID PBSInPlaceAlloc( IN OUT WCHAR** ppwszResult,
OUT WCHAR** ppwszBuffer,
OUT NTSTATUS *pstatus )
{
// ------
// Locals
// ------
WCHAR *pwszNewBuffer;
// Pointers which will walk through the input buffers.
WCHAR *pwszOriginal, *pwszSwapped;
// -----
// Begin
// -----
*pstatus = STATUS_SUCCESS;
// Allocate a new buffer.
pwszNewBuffer = CoTaskMemAlloc( sizeof(WCHAR)*( Prop_wcslen(*ppwszResult) + 1 ));
if( NULL == pwszNewBuffer )
{
*pstatus = STATUS_NO_MEMORY;
goto Exit;
}
// Swap the WCHARs into the new buffer.
pwszOriginal = *ppwszResult;
pwszSwapped = pwszNewBuffer;
do
{
*pwszSwapped = PropByteSwap(*pwszOriginal++);
} while( *pwszSwapped++ != L'\0' );
// If the caller wants a special pointer to the new buffer,
// set it now.
if( NULL != ppwszBuffer )
{
PROPASSERT( NULL== *ppwszBuffer );
*ppwszBuffer = pwszNewBuffer;
}
// Also point *ppwszResult to the new buffer.
*ppwszResult = pwszNewBuffer;
// ----
// Exit
// ----
Exit:
return;
} // PropByteSwap( WCHAR**, WCHAR**, NTSTATUS*)
#endif // BIGENDIAN
//+--------------------------------------------------------------------------
// Function: PBSBuffer
//
// Synopsis: This is a Property Byte-Swap routine. The PBS routines
// only compile in the BIGENDIAN build. In the
// LITTLEENDIAN build, they are inlined with NOOP functions.
//
// This routine takes a buffer and byte-swaps it. The caller
// specifies the size of the buffer, and the granularity of
// the byte-swapping.
//
// Arguments: [VOID*] pv
// Pointer to the buffer to be swapped.
// [ULONG] cbSize
// Size in bytes of the buffer.
// [ULONG] cbByteSwap
// Size of byte-swapping units.
//
// Returns: None.
//
// For example, an array of 4 WORDs could be swapped with:
//
// PBSBuffer( (VOID*) aw, 8, sizeof(WORD) );
//
//---------------------------------------------------------------------------
#ifdef BIGENDIAN
VOID PBSBuffer( IN OUT VOID *pv,
IN ULONG cbSize,
IN ULONG cbByteSwap )
{
ULONG ulIndex;
// What kind of swapping should be do?
switch( cbByteSwap )
{
// No swapping required
case 0:
case( sizeof(BYTE) ):
// Nothing to do.
break;
// Swap WORDs
case( sizeof(WORD) ):
for( ulIndex = 0; ulIndex < cbSize/sizeof(WORD); ulIndex++ )
ByteSwap( &((WORD*)pv)[ulIndex] );
break;
// Swap DWORDs
case( sizeof(DWORD) ):
for( ulIndex = 0; ulIndex < cbSize/sizeof(DWORD); ulIndex++ )
ByteSwap( &((DWORD*)pv)[ulIndex] );
break;
// Swap LONGLONGs
case( sizeof(LONGLONG) ):
for( ulIndex = 0; ulIndex < cbSize/sizeof(LONGLONG); ulIndex++ )
ByteSwap( &((LONGLONG*)pv)[ulIndex] );
break;
// Swap GUIDs
case CBBYTESWAP_UID:
for( ulIndex = 0; ulIndex < cbSize/sizeof(GUID); ulIndex++ )
ByteSwap( &((GUID*)pv)[ulIndex] );
break;
// Error
default:
PROPASSERT( !"Invalid generic byte-swap size" );
}
} // PropByteSwap( VOID*, ULONG, ULONG )
#endif // BIGENDIAN