Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

7347 lines
169 KiB

#ifndef _SYNC_HXX_INCLUDED
#define _SYNC_HXX_INCLUDED
#include "nt.h"
#include "ntrtl.h"
#include "nturtl.h"
#include "windows.h"
#pragma warning ( disable : 4786 ) // we allow huge symbol names
// Build Options
#define SYNC_USE_X86_ASM // use x86 assembly for atomic memory manipulation
//#define SYNC_ANALYZE_PERFORMANCE // analyze performance of synchronization objects
#ifdef SYNC_ANALYZE_PERFORMANCE
#define SYNC_DUMP_PERF_DATA // dump performance analysis of synchronization objects
#endif // SYNC_ANALYZE_PERFORMANCE
//#define SYNC_DEADLOCK_DETECTION // perform deadlock detection
//#define SYNC_VALIDATE_IRKSEM_USAGE // validate IRKSEM (CReferencedKernelSemaphore) usage
#ifdef DEBUG
#ifdef DBG
#else // !DBG
#define SYNC_DEADLOCK_DETECTION // always perform deadlock detection in DEBUG
#define SYNC_VALIDATE_IRKSEM_USAGE // always validate IRKSEM (CReferencedKernelSemaphore) usage in DEBUG
#endif // DBG
#endif // DEBUG
// copied from basestd.h to make LONG_PTR available.
#ifdef __cplusplus
extern "C" {
#endif
//
// The following types are guaranteed to be signed and 32 bits wide.
//
typedef int LONG32, *PLONG32;
typedef int INT32, *PINT32;
//
// The following types are guaranteed to be unsigned and 32 bits wide.
//
typedef unsigned int ULONG32, *PULONG32;
typedef unsigned int DWORD32, *PDWORD32;
typedef unsigned int UINT32, *PUINT32;
//
// The INT_PTR is guaranteed to be the same size as a pointer. Its
// size with change with pointer size (32/64). It should be used
// anywhere that a pointer is cast to an integer type. UINT_PTR is
// the unsigned variation.
//
// __int3264 is intrinsic to 64b MIDL but not to old MIDL or to C compiler.
//
#if ( 501 < __midl )
typedef __int3264 INT_PTR, *PINT_PTR;
typedef unsigned __int3264 UINT_PTR, *PUINT_PTR;
typedef __int3264 LONG_PTR, *PLONG_PTR;
typedef unsigned __int3264 ULONG_PTR, *PULONG_PTR;
#else // midl64
// old midl and C++ compiler
#ifdef _WIN64
typedef __int64 INT_PTR, *PINT_PTR;
typedef unsigned __int64 UINT_PTR, *PUINT_PTR;
typedef __int64 LONG_PTR, *PLONG_PTR;
typedef unsigned __int64 ULONG_PTR, *PULONG_PTR;
#define __int3264 __int64
#else
typedef int INT_PTR, *PINT_PTR;
typedef unsigned int UINT_PTR, *PUINT_PTR;
typedef long LONG_PTR, *PLONG_PTR;
typedef unsigned long ULONG_PTR, *PULONG_PTR;
#define __int3264 __int32
#endif
#endif //midl64
typedef ULONG_PTR DWORD_PTR, *PDWORD_PTR;
//
// The following types are guaranteed to be signed and 64 bits wide.
//
typedef __int64 LONG64, *PLONG64;
typedef __int64 INT64, *PINT64;
//
// The following types are guaranteed to be unsigned and 64 bits wide.
//
typedef unsigned __int64 ULONG64, *PULONG64;
typedef unsigned __int64 DWORD64, *PDWORD64;
typedef unsigned __int64 UINT64, *PUINT64;
//
// SIZE_T used for counts or ranges which need to span the range of
// of a pointer. SSIZE_T is the signed variation.
//
typedef ULONG_PTR SIZE_T, *PSIZE_T;
typedef LONG_PTR SSIZE_T, *PSSIZE_T;
//
// useful macros for both 32/64
//
#define OffsetOf(s,m) (SIZE_T)&(((s *)0)->m)
#ifdef __cplusplus
}
#endif
#pragma warning ( disable : 4355 )
#include <limits.h>
#include <new.h>
#include <stdarg.h>
#include <stdlib.h>
// calling convention
#define OSSYNCAPI __stdcall
// basic types
typedef int BOOL;
#define fFalse BOOL( 0 )
#define fTrue BOOL( !0 )
typedef unsigned char BYTE;
typedef unsigned short WORD;
typedef unsigned long DWORD;
typedef unsigned __int64 QWORD;
// Assertions
// Assertion Failure action
//
// called to indicate to the developer that an assumption is not true
void OSSYNCAPI AssertFail( const char* szMessage, const char* szFilename, long lLine );
// Assert Macros
// asserts that the given expression is true or else fails with the specified message
#define OSSYNCAssertSzRTL( exp, sz ) ( ( exp ) ? (void) 0 : AssertFail( sz, __FILE__, __LINE__ ) )
#ifdef DEBUG
#define OSSYNCAssertSz( exp, sz ) OSSYNCAssertSzRTL( exp, sz )
#else // !DEBUG
#define OSSYNCAssertSz( exp, sz )
#endif // DEBUG
// asserts that the given expression is true or else fails with that expression
#define OSSYNCAssertRTL( exp ) OSSYNCAssertSzRTL( exp, #exp )
#define OSSYNCAssert( exp ) OSSYNCAssertSz( exp, #exp )
// Enforces
// Enforce Failure action
//
// called when a strictly enforced condition has been violated
void OSSYNCAPI EnforceFail( const char* szMessage, const char* szFilename, long lLine );
// Enforce Macros
// the given expression MUST be true or else fails with the specified message
#define OSSYNCEnforceSz( exp, sz ) ( ( exp ) ? (void) 0 : EnforceFail( sz, __FILE__, __LINE__ ) )
// the given expression MUST be true or else fails with that expression
#define OSSYNCEnforce( exp ) OSSYNCEnforceSz( exp, #exp )
#ifdef SYNC_VALIDATE_IRKSEM_USAGE
#define OSSYNCEnforceIrksem( exp, sz ) OSSYNCEnforceSz( exp, sz )
#else // !SYNC_VALIDATE_IRKSEM_USAGE
#define OSSYNCEnforceIrksem( exp, sz )
#endif // SYNC_VALIDATE_IRKSEM_USAGE
// OSSYNC_FOREVER marks all convergence loops
#if defined( _M_IX86 ) && defined( SYNC_USE_X86_ASM )
inline void OSSyncPause() { __asm rep nop }
#else // !_M_IX86 || !SYNC_USE_X86_ASM
inline void OSSyncPause() {}
#endif // _M_IX86 && SYNC_USE_X86_ASM
#ifdef DEBUG
#define OSSYNC_FOREVER for ( int cLoop = 0; ; cLoop++, OSSyncPause() )
#else // !DEBUG
#define OSSYNC_FOREVER for ( ; ; OSSyncPause() )
#endif // DEBUG
namespace OSSYNC {
class CDumpContext;
// Context Local Storage
class COwner;
class CLockDeadlockDetectionInfo;
struct CLS
{
#ifdef SYNC_DEADLOCK_DETECTION
COwner* pownerLockHead; // list of locks owned by this context
DWORD cDisableOwnershipTracking; // lock ownerships are not tracked for this context
BOOL fOverrideDeadlock; // next lock ownership will not be a deadlock
CLockDeadlockDetectionInfo* plddiLockWait; // lock for which this context is waiting
DWORD groupLockWait; // lock group for which this context is waiting
#endif // SYNC_DEADLOCK_DETECTION
};
// returns the pointer to the current context's local storage
CLS* const OSSYNCAPI Pcls();
// Processor Information
// returns the maximum number of processors this process can utilize
int OSSYNCAPI OSSyncGetProcessorCountMax();
// returns the current number of processors this process can utilize
int OSSYNCAPI OSSyncGetProcessorCount();
// returns the processor number that the current context _MAY_ be executing on
//
// NOTE: the current context may change processors at any time
int OSSYNCAPI OSSyncGetCurrentProcessor();
// sets the processor number returned by OSSyncGetCurrentProcessor()
void OSSYNCAPI OSSyncSetCurrentProcessor( const int iProc );
// Processor Local Storage
// configures the size of processor local storage
BOOL OSSYNCAPI FOSSyncConfigureProcessorLocalStorage( const size_t cbPLS );
// retrieves a pointer to the current context's processor local storage
void* OSSYNCAPI OSSyncGetProcessorLocalStorage();
// retrieves a pointer to a given processor's local storage
void* OSSYNCAPI OSSyncGetProcessorLocalStorage( const size_t iProc );
// High Resolution Timer
// returns the current HRT frequency
QWORD OSSYNCAPI QwOSTimeHRTFreq();
// returns the current HRT count
QWORD OSSYNCAPI QwOSTimeHRTCount();
// Timer
// returns the current tick count where one tick is one millisecond
DWORD OSSYNCAPI DwOSTimeGetTickCount();
// Global Synchronization Constants
// wait time used for testing the state of the kernel object
extern const int cmsecTest;
// wait time used for infinite wait on a kernel object
extern const int cmsecInfinite;
// maximum wait time on a kernel object before a deadlock is suspected
extern const int cmsecDeadlock;
// wait time used for infinite wait on a kernel object without deadlock
extern const int cmsecInfiniteNoDeadlock;
// cache line size
extern const int cbCacheLine;
// Atomic Memory Manipulations
// returns fTrue if the given data is properly aligned for atomic modification
inline const BOOL IsAtomicallyModifiable( long* plTarget )
{
return ULONG_PTR( plTarget ) % sizeof( long ) == 0;
}
inline const BOOL IsAtomicallyModifiablePointer( void*const* ppvTarget )
{
return ULONG_PTR( ppvTarget ) % sizeof( void* ) == 0;
}
#if defined( _M_IX86 ) && ( defined( SYNC_USE_X86_ASM ) || _MSC_FULL_VER > 13009037 )
#if _MSC_FULL_VER <= 13009037
#pragma warning( disable: 4035 )
// atomically compares the current value of the target with the specified
// initial value and if equal sets the target to the specified final value.
// the initial value of the target is returned. the exchange is successful
// if the value returned equals the specified initial value. the target
// must be aligned to a four byte boundary
inline long AtomicCompareExchange( long* const plTarget, const long lInitial, const long lFinal )
{
OSSYNCAssert( IsAtomicallyModifiable( plTarget ) );
__asm mov ecx, plTarget
__asm mov edx, lFinal
__asm mov eax, lInitial
__asm lock cmpxchg [ecx], edx
}
inline void* AtomicCompareExchangePointer( void** const ppvTarget, void* const pvInitial, void* const pvFinal )
{
OSSYNCAssert( IsAtomicallyModifiablePointer( ppvTarget ) );
return (void*) AtomicCompareExchange( (long* const) ppvTarget, (const long) pvInitial, (const long) pvFinal );
}
// atomically sets the target to the specified value, returning the target's
// initial value. the target must be aligned to a four byte boundary
inline long AtomicExchange( long* const plTarget, const long lValue )
{
OSSYNCAssert( IsAtomicallyModifiable( plTarget ) );
__asm mov ecx, plTarget
__asm mov eax, lValue
__asm lock xchg [ecx], eax
}
inline void* AtomicExchangePointer( void* const * ppvTarget, void* const pvValue )
{
OSSYNCAssert( IsAtomicallyModifiablePointer( ppvTarget ) );
return (void*) AtomicExchange( (long* const) ppvTarget, (const long) pvValue );
}
// atomically adds the specified value to the target, returning the target's
// initial value. the target must be aligned to a four byte boundary
inline long AtomicExchangeAdd( long* const plTarget, const long lValue )
{
OSSYNCAssert( IsAtomicallyModifiable( plTarget ) );
__asm mov ecx, plTarget
__asm mov eax, lValue
__asm lock xadd [ecx], eax
}
#pragma warning( default: 4035 )
#else
extern "C" {
LONG
__cdecl
_InterlockedExchange(
IN OUT LONG volatile *Target,
IN LONG Value
);
#pragma intrinsic (_InterlockedExchange)
}
inline long AtomicExchange( long* const plTarget, const long lValue )
{
OSSYNCAssert( IsAtomicallyModifiable( plTarget ) );
return _InterlockedExchange( plTarget, lValue );
}
extern "C" {
LONG
__cdecl
_InterlockedExchangeAdd(
IN OUT LONG volatile *Addend,
IN LONG Increment
);
#pragma intrinsic (_InterlockedExchangeAdd)
}
inline long AtomicExchangeAdd( long* const plTarget, const long lValue )
{
OSSYNCAssert( IsAtomicallyModifiable( plTarget ) );
return _InterlockedExchangeAdd( plTarget, lValue );
}
extern "C" {
LONG
__cdecl
_InterlockedCompareExchange (
IN OUT LONG volatile *Destination,
IN LONG ExChange,
IN LONG Comperand
);
#pragma intrinsic (_InterlockedCompareExchange)
}
inline long AtomicCompareExchange( long* const plTarget, const long lInitial, const long lFinal )
{
OSSYNCAssert( IsAtomicallyModifiable( plTarget ) );
return _InterlockedCompareExchange( plTarget, lFinal, lInitial );
}
inline void* AtomicExchangePointer( void* const * ppvTarget, void* const pvValue )
{
return (void*)AtomicExchange( (long *)ppvTarget, (long)pvValue );
}
inline void* AtomicCompareExchangePointer( void** const ppvTarget, void* const pvInitial, void* const pvFinal )
{
return (void*)AtomicCompareExchange( (long *)ppvTarget, (long)pvInitial, (long)pvFinal );
}
#endif
#elif defined( _WIN64 )
inline long AtomicExchange( long* const plTarget, const long lValue )
{
OSSYNCAssert( IsAtomicallyModifiable( plTarget ) );
return InterlockedExchange( plTarget, lValue );
}
inline long AtomicExchangeAdd( long* const plTarget, const long lValue )
{
OSSYNCAssert( IsAtomicallyModifiable( plTarget ) );
return InterlockedExchangeAdd( plTarget, lValue );
}
inline long AtomicCompareExchange( long* const plTarget, const long lInitial, const long lFinal )
{
OSSYNCAssert( IsAtomicallyModifiable( plTarget ) );
return InterlockedCompareExchange( plTarget, lFinal, lInitial );
}
inline void* AtomicExchangePointer( void* const * ppvTarget, void* const pvValue )
{
OSSYNCAssert( IsAtomicallyModifiablePointer( ppvTarget ) );
return InterlockedExchangePointer( (void **)ppvTarget, pvValue );
}
inline void* AtomicCompareExchangePointer( void** const ppvTarget, void* const pvInitial, void* const pvFinal )
{
OSSYNCAssert( IsAtomicallyModifiablePointer( ppvTarget ) );
return InterlockedCompareExchangePointer( ppvTarget, pvFinal, pvInitial );
}
#else
long OSSYNCAPI AtomicCompareExchange( long* const plTarget, const long lInitial, const long lFinal );
void* OSSYNCAPI AtomicCompareExchangePointer( void** const ppvTarget, void* const pvInitial, void* const pvFinal );
long OSSYNCAPI AtomicExchange( long* const plTarget, const long lValue );
void* OSSYNCAPI AtomicExchangePointer( void* const * ppvTarget, void* const pvValue );
long OSSYNCAPI AtomicExchangeAdd( long* const plTarget, const long lValue );
#endif
// atomically adds the specified value to the target, returning the target's
// initial value. the target must be aligned to a pointer boundary.
inline void* AtomicExchangeAddPointer( void** const ppvTarget, void* const pvValue )
{
void* pvInitial;
void* pvFinal;
void* pvResult;
OSSYNCAssert( IsAtomicallyModifiablePointer( ppvTarget ) );
OSSYNC_FOREVER
{
pvInitial = *((void* volatile *)ppvTarget);
pvFinal = (void*)( ULONG_PTR( pvInitial ) + ULONG_PTR( pvValue ) );
pvResult = AtomicCompareExchangePointer( ppvTarget, pvInitial, pvFinal );
if ( pvResult == pvInitial )
{
break;
}
}
return pvResult;
}
// atomically increments the target, returning the incremented value. the
// target must be aligned to a four byte boundary
inline long AtomicIncrement( long* const plTarget )
{
return AtomicExchangeAdd( plTarget, 1 ) + 1;
}
// atomically decrements the target, returning the decremented value. the
// target must be aligned to a four byte boundary
inline long AtomicDecrement( long* const plTarget )
{
return AtomicExchangeAdd( plTarget, -1 ) - 1;
}
// atomically adds the specified value to the target. the target must be
// aligned to a four byte boundary
inline void AtomicAdd( QWORD* const pqwTarget, const QWORD qwValue )
{
#ifdef _WIN64
AtomicExchangeAddPointer( (VOID **)pqwTarget, (VOID *)qwValue );
#else
DWORD* const pdwTargetLow = (DWORD*)pqwTarget;
DWORD* const pdwTargetHigh = pdwTargetLow + 1;
const DWORD dwValueLow = DWORD( qwValue );
DWORD dwValueHigh = DWORD( qwValue >> 32 );
if ( dwValueLow )
{
if ( DWORD( AtomicExchangeAdd( (long*)pdwTargetLow, dwValueLow ) ) + dwValueLow < dwValueLow )
{
dwValueHigh++;
}
}
if ( dwValueHigh )
{
AtomicExchangeAdd( (long*)pdwTargetHigh, dwValueHigh );
}
#endif
}
// Atomically increments a DWORD counter, returning TRUE if the final
// value is less than or equal to a specified maximum, or FALSE otherwise.
// The pre-incremented value is returned in *pdwInitial
// WARNING: to determine if the maximum value has been reached, an UNSIGNED
// comparison is performed
inline BOOL FAtomicIncrementMax(
volatile DWORD * const pdw,
DWORD * const pdwInitial,
const DWORD dwMax )
{
OSSYNC_FOREVER
{
const DWORD dwInitial = *pdw;
if ( dwInitial < dwMax )
{
const DWORD dwFinal = dwInitial + 1;
if ( dwInitial == (DWORD)AtomicCompareExchange( (LONG *)pdw, (LONG)dwInitial, (LONG)dwFinal ) )
{
*pdwInitial = dwInitial;
return fTrue;
}
}
else
return fFalse;
}
// should be impossible
OSSYNCAssert( fFalse );
return fFalse;
}
// Atomically increments a pointer-sized counter, returning TRUE if the final
// value is less than or equal to a specified maximum, or FALSE otherwise.
// The pre-incremented value is returned in *ppvInitial
// WARNING: to determine if the maximum value has been reached, an UNSIGNED
// comparison is performed
inline BOOL FAtomicIncrementPointerMax(
volatile VOID ** const ppv,
VOID ** const ppvInitial,
const VOID * const pvMax )
{
OSSYNC_FOREVER
{
const QWORD qwInitial = QWORD( *ppv );
if ( qwInitial < (QWORD)pvMax )
{
const QWORD qwFinal = qwInitial + 1;
if ( qwInitial == (QWORD)AtomicCompareExchangePointer( (VOID **)ppv, (VOID *)qwInitial, (VOID *)qwFinal ) )
{
*ppvInitial = (VOID *)qwInitial;
return fTrue;
}
}
else
return fFalse;
}
// should be impossible
OSSYNCAssert( fFalse );
return fFalse;
}
// Enhanced Synchronization Object State Container
//
// This class manages a "simple" or normal state for an arbitrary sync object
// and its "enhanced" counterpart. Which type is used depends on the build.
// The goal is to maintain a footprint equal to the normal state so that other
// classes that contain this object do not fluctuate in size depending on what
// build options have been selected. For example, a performance build might
// need extra storage to collect performance stats on the object. This data
// will force the object to be allocated elsewhere in memory but will not change
// the size of the object in its containing class.
//
// Template Arguments:
//
// CState sync object state class
// CStateInit sync object state class ctor arg type
// CInformation sync object information class
// CInformationInit sync object information class ctor arg type
void* OSSYNCAPI ESMemoryNew( size_t cb );
void OSSYNCAPI ESMemoryDelete( void* pv );
// determine when enhanced state is needed
#if defined( SYNC_ANALYZE_PERFORMANCE ) || defined( SYNC_DEADLOCK_DETECTION )
#define SYNC_ENHANCED_STATE
#endif // SYNC_ANALYZE_PERFORMANCE || SYNC_DEADLOCK_DETECTION
template< class CState, class CStateInit, class CInformation, class CInformationInit >
class CEnhancedStateContainer
{
public:
// types
// enhanced state
class CEnhancedState
: public CState,
public CInformation
{
public:
CEnhancedState( const CStateInit& si, const CInformationInit& ii )
: CState( si ),
CInformation( ii )
{
}
void* operator new( size_t cb ) { return ESMemoryNew( cb ); }
void operator delete( void* pv ) { ESMemoryDelete( pv ); }
};
// member functions
// ctors / dtors
CEnhancedStateContainer( const CStateInit& si, const CInformationInit& ii )
{
#ifdef SYNC_ENHANCED_STATE
m_pes = new CEnhancedState( si, ii );
#else // !SYNC_ENHANCED_STATE
new( (CState*) m_rgbState ) CState( si );
#endif // SYNC_ENHANCED_STATE
}
~CEnhancedStateContainer()
{
#ifdef SYNC_ENHANCED_STATE
delete m_pes;
#ifdef DEBUG
m_pes = NULL;
#endif // DEBUG
#else // !SYNC_ENHANCED_STATE
( (CState*) m_rgbState )->~CState();
#endif // SYNC_ENHANCED_STATE
}
// accessors
CEnhancedState& State() const
{
#ifdef SYNC_ENHANCED_STATE
return *m_pes;
#else // !SYNC_ENHANCED_STATE
// NOTE: this assumes that CInformation has no storage!
return *( (CEnhancedState*) m_rgbState );
#endif // SYNC_ENHANCED_STATE
}
// debugging support
void Dump( CDumpContext& dc ) const;
private:
// data members
// either a pointer to the enhanced state elsewhere in memory or the
// actual state data, depending on the mode of the sync object
union
{
CEnhancedState* m_pes;
BYTE m_rgbState[ sizeof( CState ) ];
};
};
// Synchronization Object Base Class
//
// All Synchronization Objects are derived from this class
class CSyncObject
{
public:
// member functions
// ctors / dtors
CSyncObject() {}
~CSyncObject() {}
private:
// member functions
// operators
CSyncObject& operator=( CSyncObject& ); // disallowed
};
// Synchronization Object Basic Information
class CSyncBasicInfo
{
public:
// member functions
// ctors / dtors
CSyncBasicInfo( const char* szInstanceName );
~CSyncBasicInfo();
// manipulators
void SetTypeName( const char* szTypeName );
void SetInstance( const CSyncObject* const psyncobj );
// accessors
#ifdef SYNC_ENHANCED_STATE
const char* SzInstanceName() const { return m_szInstanceName; }
const char* SzTypeName() const { return m_szTypeName; }
const CSyncObject* const Instance() const { return m_psyncobj; }
#endif // SYNC_ENHANCED_STATE
// debugging support
void Dump( CDumpContext& dc ) const;
private:
// member functions
// operators
CSyncBasicInfo& operator=( CSyncBasicInfo& ); // disallowed
// data members
#ifdef SYNC_ENHANCED_STATE
// Instance Name
const char* m_szInstanceName;
// Type Name
const char* m_szTypeName;
// Instance
const CSyncObject* m_psyncobj;
#endif // SYNC_ENHANCED_STATE
};
// sets the type name for the synchronization object
inline void CSyncBasicInfo::SetTypeName( const char* szTypeName )
{
#ifdef SYNC_ENHANCED_STATE
m_szTypeName = szTypeName;
#endif // SYNC_ENHANCED_STATE
}
// sets the instance pointer for the synchronization object
inline void CSyncBasicInfo::SetInstance( const CSyncObject* const psyncobj )
{
#ifdef SYNC_ENHANCED_STATE
m_psyncobj = psyncobj;
#endif // SYNC_ENHANCED_STATE
}
// Synchronization Object Performance: Wait Times
class CSyncPerfWait
{
public:
// member functions
// ctors / dtors
CSyncPerfWait();
~CSyncPerfWait();
// member functions
// manipulators
void StartWait();
void StopWait();
// accessors
#ifdef SYNC_ANALYZE_PERFORMANCE
QWORD CWaitTotal() const { return m_cWait; }
double CsecWaitElapsed() const { return (double)(signed __int64)m_qwHRTWaitElapsed /
(double)(signed __int64)QwOSTimeHRTFreq(); }
#endif // SYNC_ANALYZE_PERFORMANCE
// debugging support
void Dump( CDumpContext& dc ) const;
private:
// member functions
// operators
CSyncPerfWait& operator=( CSyncPerfWait& ); // disallowed
// data members
#ifdef SYNC_ANALYZE_PERFORMANCE
// wait count
volatile QWORD m_cWait;
// elapsed wait time
volatile QWORD m_qwHRTWaitElapsed;
#endif // SYNC_ANALYZE_PERFORMANCE
};
// starts the wait timer for the sync object
inline void CSyncPerfWait::StartWait()
{
#ifdef SYNC_ANALYZE_PERFORMANCE
// increment the wait count
AtomicAdd( (QWORD*)&m_cWait, 1 );
// subtract the start wait time from the elapsed wait time. this starts
// an elapsed time computation for this context. StopWait() will later
// add the end wait time to the elapsed time, causing the following net
// effect:
//
// m_qwHRTWaitElapsed += <end time> - <start time>
//
// we simply choose to go ahead and do the subtraction now to save storage
AtomicAdd( (QWORD*)&m_qwHRTWaitElapsed, QWORD( -__int64( QwOSTimeHRTCount() ) ) );
#endif // SYNC_ANALYZE_PERFORMANCE
}
// stops the wait timer for the sync object
inline void CSyncPerfWait::StopWait()
{
#ifdef SYNC_ANALYZE_PERFORMANCE
// add the end wait time to the elapsed wait time. this completes the
// computation started in StartWait()
AtomicAdd( (QWORD*)&m_qwHRTWaitElapsed, QwOSTimeHRTCount() );
#endif // SYNC_ANALYZE_PERFORMANCE
}
// Null Synchronization Object State Initializer
class CSyncStateInitNull
{
};
extern const CSyncStateInitNull syncstateNull;
// Kernel Semaphore Information
class CKernelSemaphoreInfo
: public CSyncBasicInfo,
public CSyncPerfWait
{
public:
// member functions
// ctors / dtors
CKernelSemaphoreInfo( const CSyncBasicInfo& sbi )
: CSyncBasicInfo( sbi )
{
}
// debugging support
void Dump( CDumpContext& dc ) const;
};
// Kernel Semaphore State
class CKernelSemaphoreState
{
public:
// member functions
// ctors / dtors
CKernelSemaphoreState( const CSyncStateInitNull& null ) : m_handle( 0 ) {}
// manipulators
void SetHandle( void * handle ) { m_handle = handle; }
// accessors
void* Handle() { return m_handle; }
// debugging support
void Dump( CDumpContext& dc ) const;
private:
// member functions
// operators
CKernelSemaphoreState& operator=( CKernelSemaphoreState& ); // disallowed
// data members
// kernel semaphore handle
void* m_handle;
};
// Kernel Semaphore
class CKernelSemaphore
: private CSyncObject,
private CEnhancedStateContainer< CKernelSemaphoreState, CSyncStateInitNull, CKernelSemaphoreInfo, CSyncBasicInfo >
{
public:
// member functions
// ctors / dtors
CKernelSemaphore( const CSyncBasicInfo& sbi );
~CKernelSemaphore();
// init / term
const BOOL FInit();
void Term();
// manipulators
void Acquire();
const BOOL FTryAcquire();
const BOOL FAcquire( const int cmsecTimeout );
void Release( const int cToRelease = 1 );
// accessors
const BOOL FReset();
// debugging support
void Dump( CDumpContext& dc ) const;
private:
// member functions
// operators
CKernelSemaphore& operator=( CKernelSemaphore& ); // disallowed
// accessors
const BOOL FInitialized();
};
// acquire one count of the semaphore, waiting forever if necessary
inline void CKernelSemaphore::Acquire()
{
// semaphore should be initialized
OSSYNCAssert( FInitialized() );
// wait for the semaphore
const BOOL fAcquire = FAcquire( cmsecInfinite );
OSSYNCAssert( fAcquire );
}
// try to acquire one count of the semaphore without waiting. returns 0 if a
// count could not be acquired
inline const BOOL CKernelSemaphore::FTryAcquire()
{
// semaphore should be initialized
OSSYNCAssert( FInitialized() );
// test the semaphore
return FAcquire( cmsecTest );
}
// returns fTrue if the semaphore has no available counts
inline const BOOL CKernelSemaphore::FReset()
{
// semaphore should be initialized
OSSYNCAssert( FInitialized() );
// test the semaphore
return !FTryAcquire();
}
// returns fTrue if the semaphore has been initialized
inline const BOOL CKernelSemaphore::FInitialized()
{
return State().Handle() != 0;
}
// Kernel Semaphore Pool
class CKernelSemaphorePool
{
public:
// types
// index to a ref counted kernel semaphore
typedef unsigned short IRKSEM;
enum { irksemAllocated = 0xFFFE, irksemNil = 0xFFFF };
// member functions
// ctors / dtors
CKernelSemaphorePool();
~CKernelSemaphorePool();
// init / term
const BOOL FInit();
void Term();
// manipulators
const IRKSEM Allocate( const CSyncObject* const psyncobj );
void Reference( const IRKSEM irksem );
void Unreference( const IRKSEM irksem );
// accessors
CKernelSemaphore& Ksem( const IRKSEM irksem, const CSyncObject* const psyncobj ) const;
const BOOL FInitialized() const;
long CksemAlloc() const { return m_cksem; }
private:
// types
// reference counted kernel semaphore
class CReferencedKernelSemaphore
: public CKernelSemaphore
{
public:
// member functions
// ctors / dtors
CReferencedKernelSemaphore();
~CReferencedKernelSemaphore();
// init / term
const BOOL FInit();
void Term();
// manipulators
BOOL FAllocate();
void Release();
void SetUser( const CSyncObject* const psyncobj );
void Reference();
const BOOL FUnreference();
// accessors
const BOOL FInUse() const { return m_fInUse; }
const int CReference() const { return m_cReference; }
#ifdef SYNC_VALIDATE_IRKSEM_USAGE
const CSyncObject* const PsyncobjUser() const { return m_psyncobjUser; }
#endif // SYNC_VALIDATE_IRKSEM_USAGE
private:
// member functions
// operators
CReferencedKernelSemaphore& operator=( CReferencedKernelSemaphore& ); // disallowed
// data members
// transacted state representation
union
{
volatile long m_l;
struct
{
volatile unsigned short m_cReference:15; // 0 <= m_cReference <= ( 1 << 15 ) - 1
volatile unsigned short m_fInUse:1; // m_fInUse = { 0, 1 }
};
};
volatile long m_fAvailable;
#ifdef SYNC_VALIDATE_IRKSEM_USAGE
// sync object currently using this semaphore
const CSyncObject* volatile m_psyncobjUser;
#else // SYNC_VALIDATE_IRKSEM_USAGE
BYTE m_rgbReserved1[4];
#endif // SYNC_VALIDATE_IRKSEM_USAGE
BYTE m_rgbReserved2[16];
};
// member functions
// operators
CKernelSemaphorePool& operator=( CKernelSemaphorePool& ); // disallowed
// manipulators
const IRKSEM AllocateNew();
void Free( const IRKSEM irksem );
// data members
// semaphore index to semaphore map
CReferencedKernelSemaphore* m_mpirksemrksem;
// semaphore count
volatile long m_cksem;
};
// allocates an IRKSEM from the pool on behalf of the specified sync object
//
// NOTE: the returned IRKSEM has one reference count
inline const CKernelSemaphorePool::IRKSEM CKernelSemaphorePool::Allocate( const CSyncObject* const psyncobj )
{
// semaphore pool should be initialized
OSSYNCAssert( FInitialized() );
// there are semaphores in the semaphore pool
IRKSEM irksem = irksemNil;
if ( m_cksem )
{
// hash into the semaphore pool based on this context's CLS and the time
IRKSEM irksemHash = IRKSEM( UINT_PTR( UINT_PTR( Pcls() ) / sizeof( CLS ) + UINT_PTR( QwOSTimeHRTCount() ) ) % m_cksem );
OSSYNCAssert( irksemHash >= 0 && irksemHash < m_cksem );
// try to allocate a semaphore, scanning forwards through the pool
for ( long cLoop = 0;
cLoop < m_cksem;
cLoop++, irksemHash = IRKSEM( ++irksemHash % m_cksem ) )
{
if ( m_mpirksemrksem[ irksemHash ].FAllocate() )
{
irksem = irksemHash;
break;
}
}
}
// if we do not yet have a semaphore, allocate one
if ( irksem == irksemNil )
{
irksem = AllocateNew();
}
// validate irksem retrieved
OSSYNCAssert( irksem != irksemNil );
OSSYNCAssert( irksem >= 0 );
OSSYNCAssert( irksem < m_cksem );
// set the user for this semaphore
m_mpirksemrksem[irksem].SetUser( psyncobj );
// ensure that the semaphore we retrieved is reset
OSSYNCEnforceIrksem( m_mpirksemrksem[irksem].FReset(),
"Illegal allocation of a Kernel Semaphore with available counts!" );
// return the allocated semaphore
return irksem;
}
// add a reference count to an IRKSEM
inline void CKernelSemaphorePool::Reference( const IRKSEM irksem )
{
// validate IN args
OSSYNCAssert( irksem != irksemNil );
OSSYNCAssert( irksem >= 0 );
OSSYNCAssert( irksem < m_cksem );
// semaphore pool should be initialized
OSSYNCAssert( FInitialized() );
// increment the reference count for this IRKSEM
m_mpirksemrksem[irksem].Reference();
}
// remove a reference count from an IRKSEM, freeing it if the reference count
// drops to zero and it is not currently in use
inline void CKernelSemaphorePool::Unreference( const IRKSEM irksem )
{
// validate IN args
OSSYNCAssert( irksem != irksemNil );
OSSYNCAssert( irksem >= 0 );
OSSYNCAssert( irksem < m_cksem );
// semaphore pool should be initialized
OSSYNCAssert( FInitialized() );
// decrement the reference count for this IRKSEM
const BOOL fFree = m_mpirksemrksem[irksem].FUnreference();
// we need to free the semaphore
if ( fFree )
{
// free the IRKSEM back to the allocation stack
Free( irksem );
}
}
// returns the CKernelSemaphore object associated with the given IRKSEM
inline CKernelSemaphore& CKernelSemaphorePool::Ksem( const IRKSEM irksem, const CSyncObject* const psyncobj ) const
{
// validate IN args
OSSYNCAssert( irksem != irksemNil );
OSSYNCAssert( irksem >= 0 );
OSSYNCAssert( irksem < m_cksem );
// semaphore pool should be initialized
OSSYNCAssert( FInitialized() );
// we had better be retrieving this semaphore for the right sync object
OSSYNCEnforceIrksem( m_mpirksemrksem[irksem].PsyncobjUser() == psyncobj,
"Illegal use of a Kernel Semaphore by another Synchronization Object" );
// return kernel semaphore
return m_mpirksemrksem[irksem];
}
// returns fTrue if the semaphore pool has been initialized
inline const BOOL CKernelSemaphorePool::FInitialized() const
{
return m_mpirksemrksem != NULL;
}
// allocates a new irksem and adds it to the stack's irksem pool
inline const CKernelSemaphorePool::IRKSEM CKernelSemaphorePool::AllocateNew()
{
// atomically allocate a position in the stack's irksem pool for our new
// irksem
const long lDelta = 0x00000001;
const long lBI = AtomicExchangeAdd( (long*) &m_cksem, lDelta );
const IRKSEM irksem = IRKSEM( lBI );
// initialize this irksem
new ( &m_mpirksemrksem[irksem] ) CReferencedKernelSemaphore;
BOOL fInitKernelSemaphore = m_mpirksemrksem[irksem].FInit();
OSSYNCEnforceSz( fInitKernelSemaphore, "Could not allocate a Kernel Semaphore" );
// return the irksem for use
return irksem;
}
// frees the given IRKSEM back to the allocation stack
inline void CKernelSemaphorePool::Free( const IRKSEM irksem )
{
// validate IN args
OSSYNCAssert( irksem != irksemNil );
OSSYNCAssert( irksem >= 0 );
OSSYNCAssert( irksem < m_cksem );
// semaphore pool should be initialized
OSSYNCAssert( FInitialized() );
// the semaphore to free had better not be in use
OSSYNCEnforceIrksem( !m_mpirksemrksem[irksem].FInUse(),
"Illegal free of a Kernel Semaphore that is still in use" );
// the semaphore had better not already be freed
OSSYNCEnforceIrksem( !m_mpirksemrksem[irksem].FAllocate(),
"Illegal free of a Kernel Semaphore that is already free" );
// ensure that the semaphore to free is reset
OSSYNCEnforceIrksem( m_mpirksemrksem[irksem].FReset(),
"Illegal free of a Kernel Semaphore that has available counts" );
// release the semaphore to the pool
m_mpirksemrksem[irksem].Release();
}
// Referenced Kernel Semaphore
// attempts to allocate the semaphore, returning fTrue on success
inline BOOL CKernelSemaphorePool::CReferencedKernelSemaphore::FAllocate()
{
return m_fAvailable && AtomicExchange( (long*)&m_fAvailable, 0 );
}
// releases the semaphore
inline void CKernelSemaphorePool::CReferencedKernelSemaphore::Release()
{
AtomicExchange( (long*)&m_fAvailable, 1 );
}
// sets the user for the semaphore and gives the user an initial reference
inline void CKernelSemaphorePool::CReferencedKernelSemaphore::SetUser( const CSyncObject* const psyncobj )
{
// this semaphore had better not already be in use
OSSYNCEnforceIrksem( !m_fInUse,
"Illegal allocation of a Kernel Semaphore that is already in use" );
OSSYNCEnforceIrksem( !m_psyncobjUser,
"Illegal allocation of a Kernel Semaphore that is already in use" );
// mark this semaphore as in use and add an initial reference count for the
// user
AtomicExchangeAdd( (long*) &m_l, 0x00008001 );
#ifdef SYNC_VALIDATE_IRKSEM_USAGE
m_psyncobjUser = psyncobj;
#endif // SYNC_VALIDATE_IRKSEM_USAGE
}
// add a reference count to the semaphore
inline void CKernelSemaphorePool::CReferencedKernelSemaphore::Reference()
{
// increment the reference count
AtomicIncrement( (long*) &m_l );
// there had better be at least one reference count!
OSSYNCAssert( m_cReference > 0 );
}
// remove a reference count from the semaphore, returning fTrue if the last
// reference count on the semaphore was removed and the semaphore was in use
// (this is the condition on which we can free the semaphore to the stack)
inline const BOOL CKernelSemaphorePool::CReferencedKernelSemaphore::FUnreference()
{
// there had better be at least one reference count!
OSSYNCAssert( m_cReference > 0 );
// try forever until we succeed in removing our reference count
long lBI;
OSSYNC_FOREVER
{
// read the current state of the control word as our expected before image
const long lBIExpected = m_l;
// compute the after image of the control word by decrementing the
// reference count and reseting the In Use bit if and only if we are
// removing the last reference count
const long lAI = lBIExpected +
( lBIExpected == 0x00008001 ?
0xFFFF7FFF :
0xFFFFFFFF );
// attempt to perform the transacted state transition on the control word
lBI = AtomicCompareExchange( (long*)&m_l, lBIExpected, lAI );
// the transaction failed
if ( lBI != lBIExpected )
{
// try again
continue;
}
// the transaction succeeded
else
{
// we're done
break;
}
}
// return fTrue if we removed the last reference count and reset the In Use bit
if ( lBI == 0x00008001 )
{
#ifdef SYNC_VALIDATE_IRKSEM_USAGE
m_psyncobjUser = NULL;
#endif // SYNC_VALIDATE_IRKSEM_USAGE
return fTrue;
}
else
{
return fFalse;
}
}
// Global Kernel Semaphore Pool
extern CKernelSemaphorePool ksempoolGlobal;
// Synchronization Object Performance: Acquisition
class CSyncPerfAcquire
{
public:
// member functions
// ctors / dtors
CSyncPerfAcquire();
~CSyncPerfAcquire();
// member functions
// manipulators
void SetAcquire();
void SetContend();
// accessors
#ifdef SYNC_ANALYZE_PERFORMANCE
QWORD CAcquireTotal() const { return m_cAcquire; }
QWORD CContendTotal() const { return m_cContend; }
#endif // SYNC_ANALYZE_PERFORMANCE
// debugging support
void Dump( CDumpContext& dc ) const;
private:
// member functions
// operators
CSyncPerfAcquire& operator=( CSyncPerfAcquire& ); // disallowed
// data members
#ifdef SYNC_ANALYZE_PERFORMANCE
// acquire count
volatile QWORD m_cAcquire;
// contend count
volatile QWORD m_cContend;
#endif // SYNC_ANALYZE_PERFORMANCE
};
// specifies that the sync object was acquired
inline void CSyncPerfAcquire::SetAcquire()
{
#ifdef SYNC_ANALYZE_PERFORMANCE
AtomicAdd( (QWORD*)&m_cAcquire, 1 );
#endif // SYNC_ANALYZE_PERFORMANCE
}
// specifies that a contention occurred while acquiring the sync object
inline void CSyncPerfAcquire::SetContend()
{
#ifdef SYNC_ANALYZE_PERFORMANCE
AtomicAdd( (QWORD*)&m_cContend, 1 );
#endif // SYNC_ANALYZE_PERFORMANCE
}
// Semaphore Information
class CSemaphoreInfo
: public CSyncBasicInfo,
public CSyncPerfWait,
public CSyncPerfAcquire
{
public:
// member functions
// ctors / dtors
CSemaphoreInfo( const CSyncBasicInfo& sbi )
: CSyncBasicInfo( sbi )
{
}
// debugging support
void Dump( CDumpContext& dc ) const;
};
// Semaphore State
class CSemaphoreState
{
public:
// member functions
// ctors / dtors
CSemaphoreState( const CSyncStateInitNull& null ) : m_cAvail( 0 ) {}
CSemaphoreState( const int cAvail );
CSemaphoreState( const int cWait, const int irksem );
~CSemaphoreState() {}
// operators
CSemaphoreState& operator=( CSemaphoreState& state ) { m_cAvail = state.m_cAvail; return *this; }
// manipulators
const BOOL FChange( const CSemaphoreState& stateCur, const CSemaphoreState& stateNew );
const BOOL FIncAvail( const int cToInc );
const BOOL FDecAvail();
// accessors
const BOOL FNoWait() const { return m_cAvail >= 0; }
const BOOL FWait() const { return m_cAvail < 0; }
const BOOL FAvail() const { return m_cAvail > 0; }
const BOOL FNoWaitAndNoAvail() const { return m_cAvail == 0; }
const int CAvail() const { OSSYNCAssert( FNoWait() ); return m_cAvail; }
const int CWait() const { OSSYNCAssert( FWait() ); return -m_cWaitNeg; }
const CKernelSemaphorePool::IRKSEM Irksem() const { OSSYNCAssert( FWait() ); return CKernelSemaphorePool::IRKSEM( m_irksem ); }
// debugging support
void Dump( CDumpContext& dc ) const;
private:
// data members
// transacted state representation (switched on bit 31)
union
{
// Mode 0: no waiters
volatile long m_cAvail; // 0 <= m_cAvail <= ( 1 << 31 ) - 1
// Mode 1: waiters
struct
{
volatile unsigned short m_irksem; // 0 <= m_irksem <= ( 1 << 16 ) - 2
volatile short m_cWaitNeg; // -( ( 1 << 15 ) - 1 ) <= m_cWaitNeg <= -1
};
};
};
// ctor
inline CSemaphoreState::CSemaphoreState( const int cAvail )
{
// validate IN args
OSSYNCAssert( cAvail >= 0 );
OSSYNCAssert( cAvail <= 0x7FFFFFFF );
// set available count
m_cAvail = long( cAvail );
}
// ctor
inline CSemaphoreState::CSemaphoreState( const int cWait, const int irksem )
{
// validate IN args
OSSYNCAssert( cWait > 0 );
OSSYNCAssert( cWait <= 0x7FFF );
OSSYNCAssert( irksem >= 0 );
OSSYNCAssert( irksem <= 0xFFFE );
// set waiter count
m_cWaitNeg = short( -cWait );
// set semaphore
m_irksem = (unsigned short) irksem;
}
// changes the transacted state of the semaphore using a transacted memory
// compare/exchange operation, returning fFalse on failure
inline const BOOL CSemaphoreState::FChange( const CSemaphoreState& stateCur, const CSemaphoreState& stateNew )
{
return AtomicCompareExchange( (long*)&m_cAvail, stateCur.m_cAvail, stateNew.m_cAvail ) == stateCur.m_cAvail;
}
// tries to increase the available count on the semaphore by the count
// given using a transacted memory compare/exchange operation, returning fFalse
// on failure
__forceinline const BOOL CSemaphoreState::FIncAvail( const int cToInc )
{
// try forever to change the state of the semaphore
OSSYNC_FOREVER
{
// get current value
const long cAvail = m_cAvail;
// munge start value such that the transaction will only work if we are in
// mode 0 (we do this to save a branch)
const long cAvailStart = cAvail & 0x7FFFFFFF;
// compute end value relative to munged start value
const long cAvailEnd = cAvailStart + cToInc;
// validate transaction
OSSYNCAssert( cAvail < 0 || ( cAvailStart >= 0 && cAvailEnd <= 0x7FFFFFFF && cAvailEnd == cAvailStart + cToInc ) );
// attempt the transaction
const long cAvailOld = AtomicCompareExchange( (long*)&m_cAvail, cAvailStart, cAvailEnd );
// the transaction succeeded
if ( cAvailOld == cAvailStart )
{
// return success
return fTrue;
}
// the transaction failed
else
{
// the transaction failed because of a collision with another context
if ( cAvailOld >= 0 )
{
// try again
continue;
}
// the transaction failed because there are waiters
else
{
// return failure
return fFalse;
}
}
}
}
// tries to decrease the available count on the semaphore by one using a
// transacted memory compare/exchange operation, returning fFalse on failure
__forceinline const BOOL CSemaphoreState::FDecAvail()
{
// try forever to change the state of the semaphore
OSSYNC_FOREVER
{
// get current value
const long cAvail = m_cAvail;
// this function has no effect on 0x80000000, so this MUST be an illegal
// value!
OSSYNCAssert( cAvail != 0x80000000 );
// munge end value such that the transaction will only work if we are in
// mode 0 and we have at least one available count (we do this to save a
// branch)
const long cAvailEnd = ( cAvail - 1 ) & 0x7FFFFFFF;
// compute start value relative to munged end value
const long cAvailStart = cAvailEnd + 1;
// validate transaction
OSSYNCAssert( cAvail <= 0 || ( cAvailStart > 0 && cAvailEnd >= 0 && cAvailEnd == cAvail - 1 ) );
// attempt the transaction
const long cAvailOld = AtomicCompareExchange( (long*)&m_cAvail, cAvailStart, cAvailEnd );
// the transaction succeeded
if ( cAvailOld == cAvailStart )
{
// return success
return fTrue;
}
// the transaction failed
else
{
// the transaction failed because of a collision with another context
if ( cAvailOld > 0 )
{
// try again
continue;
}
// the transaction failed because there are no available counts
else
{
// return failure
return fFalse;
}
}
}
}
// Semaphore
class CSemaphore
: private CSyncObject,
private CEnhancedStateContainer< CSemaphoreState, CSyncStateInitNull, CSemaphoreInfo, CSyncBasicInfo >
{
public:
// member functions
// ctors / dtors
CSemaphore( const CSyncBasicInfo& sbi );
~CSemaphore();
// manipulators
void Acquire();
const BOOL FTryAcquire();
const BOOL FAcquire( const int cmsecTimeout );
void Release( const int cToRelease = 1 );
// accessors
const int CWait() const;
const int CAvail() const;
// debugging support
void Dump( CDumpContext& dc ) const;
private:
// member functions
// operators
CSemaphore& operator=( CSemaphore& ); // disallowed
// manipulators
const BOOL _FAcquire( const int cmsecTimeout );
void _Release( const int cToRelease );
};
// acquire one count of the semaphore, waiting forever if necessary
inline void CSemaphore::Acquire()
{
// we will wait forever, so we should not timeout
int fAcquire = FAcquire( cmsecInfinite );
OSSYNCAssert( fAcquire );
}
// try to acquire one count of the semaphore without waiting or spinning.
// returns fFalse if a count could not be acquired
inline const BOOL CSemaphore::FTryAcquire()
{
// only try to perform a simple decrement of the available count
const BOOL fAcquire = State().FDecAvail();
// we did not acquire the semaphore
if ( !fAcquire )
{
// this is a contention
State().SetContend();
}
// we did acquire the semaphore
else
{
// note that we acquired a count
State().SetAcquire();
}
return fAcquire;
}
// acquire one count of the semaphore, waiting only for the specified interval.
// returns fFalse if the wait timed out before a count could be acquired
inline const BOOL CSemaphore::FAcquire( const int cmsecTimeout )
{
// first try to quickly grab an available count. if that doesn't work,
// retry acquire using the full state machine
return FTryAcquire() || _FAcquire( cmsecTimeout );
}
// releases the given number of counts to the semaphore, waking the appropriate
// number of waiters
inline void CSemaphore::Release( const int cToRelease )
{
// we failed to perform a simple increment of the available count
if ( !State().FIncAvail( cToRelease ) )
{
// retry release using the full state machine
_Release( cToRelease );
}
}
// returns the number of execution contexts waiting on the semaphore
inline const int CSemaphore::CWait() const
{
// read the current state of the semaphore
const CSemaphoreState stateCur = (CSemaphoreState&) State();
// return the waiter count
return stateCur.FWait() ? stateCur.CWait() : 0;
}
// returns the number of available counts on the semaphore
inline const int CSemaphore::CAvail() const
{
// read the current state of the semaphore
const CSemaphoreState stateCur = (CSemaphoreState&) State();
// return the available count
return stateCur.FNoWait() ? stateCur.CAvail() : 0;
}
// Auto-Reset Signal Information
class CAutoResetSignalInfo
: public CSyncBasicInfo,
public CSyncPerfWait,
public CSyncPerfAcquire
{
public:
// member functions
// ctors / dtors
CAutoResetSignalInfo( const CSyncBasicInfo& sbi )
: CSyncBasicInfo( sbi )
{
}
// debugging support
void Dump( CDumpContext& dc ) const;
};
// Auto-Reset Signal State
class CAutoResetSignalState
{
public:
// member functions
// ctors / dtors
CAutoResetSignalState( const CSyncStateInitNull& null ) : m_fSet( 0 ) {}
CAutoResetSignalState( const int fSet );
CAutoResetSignalState( const int cWait, const int irksem );
~CAutoResetSignalState() {}
// operators
CAutoResetSignalState& operator=( CAutoResetSignalState& state ) { m_fSet = state.m_fSet; return *this; }
// manipulators
const BOOL FChange( const CAutoResetSignalState& stateCur, const CAutoResetSignalState& stateNew );
const BOOL FSimpleSet();
const BOOL FSimpleReset();
// accessors
const BOOL FNoWait() const { return m_fSet >= 0; }
const BOOL FWait() const { return m_fSet < 0; }
const BOOL FNoWaitAndSet() const { return m_fSet > 0; }
const BOOL FNoWaitAndNotSet() const { return m_fSet == 0; }
const BOOL FSet() const { OSSYNCAssert( FNoWait() ); return m_fSet; }
const int CWait() const { OSSYNCAssert( FWait() ); return -m_cWaitNeg; }
const CKernelSemaphorePool::IRKSEM Irksem() const { OSSYNCAssert( FWait() ); return CKernelSemaphorePool::IRKSEM( m_irksem ); }
// debugging support
void Dump( CDumpContext& dc ) const;
private:
// data members
// transacted state representation (switched on bit 31)
union
{
// Mode 0: no waiters
volatile long m_fSet; // m_fSet = { 0, 1 }
// Mode 1: waiters
struct
{
volatile unsigned short m_irksem; // 0 <= m_irksem <= ( 1 << 16 ) - 2
volatile short m_cWaitNeg; // -( ( 1 << 15 ) - 1 ) <= m_cWaitNeg <= -1
};
};
};
// ctor
inline CAutoResetSignalState::CAutoResetSignalState( const int fSet )
{
// validate IN args
OSSYNCAssert( fSet == 0 || fSet == 1 );
// set state
m_fSet = long( fSet );
}
// ctor
inline CAutoResetSignalState::CAutoResetSignalState( const int cWait, const int irksem )
{
// validate IN args
OSSYNCAssert( cWait > 0 );
OSSYNCAssert( cWait <= 0x7FFF );
OSSYNCAssert( irksem >= 0 );
OSSYNCAssert( irksem <= 0xFFFE );
// set waiter count
m_cWaitNeg = short( -cWait );
// set semaphore
m_irksem = (unsigned short) irksem;
}
// changes the transacted state of the signal using a transacted memory
// compare/exchange operation, returning 0 on failure
inline const BOOL CAutoResetSignalState::FChange( const CAutoResetSignalState& stateCur, const CAutoResetSignalState& stateNew )
{
return AtomicCompareExchange( (long*)&m_fSet, stateCur.m_fSet, stateNew.m_fSet ) == stateCur.m_fSet;
}
// tries to set the signal state from either the set or reset with no waiters states
// using a transacted memory compare/exchange operation, returning fFalse on failure
__forceinline const BOOL CAutoResetSignalState::FSimpleSet()
{
// try forever to change the state of the signal
OSSYNC_FOREVER
{
// get current value
const long fSet = m_fSet;
// munge start value such that the transaction will only work if we are in
// mode 0 (we do this to save a branch)
const long fSetStart = fSet & 0x7FFFFFFF;
// compute end value relative to munged start value
const long fSetEnd = 1;
// validate transaction
OSSYNCAssert( fSet < 0 || ( ( fSetStart == 0 || fSetStart == 1 ) && fSetEnd == 1 ) );
// attempt the transaction
const long fSetOld = AtomicCompareExchange( (long*)&m_fSet, fSetStart, fSetEnd );
// the transaction succeeded
if ( fSetOld == fSetStart )
{
// return success
return fTrue;
}
// the transaction failed
else
{
// the transaction failed because of a collision with another context
if ( fSetOld >= 0 )
{
// try again
continue;
}
// the transaction failed because there are waiters
else
{
// return failure
return fFalse;
}
}
}
}
// tries to reset the signal state from either the set or reset with no waiters states
// using a transacted memory compare/exchange operation, returning fFalse on failure
__forceinline const BOOL CAutoResetSignalState::FSimpleReset()
{
// try forever to change the state of the signal
OSSYNC_FOREVER
{
// get current value
const long fSet = m_fSet;
// munge start value such that the transaction will only work if we are in
// mode 0 (we do this to save a branch)
const long fSetStart = fSet & 0x7FFFFFFF;
// compute end value relative to munged start value
const long fSetEnd = 0;
// validate transaction
OSSYNCAssert( fSet < 0 || ( ( fSetStart == 0 || fSetStart == 1 ) && fSetEnd == 0 ) );
// attempt the transaction
const long fSetOld = AtomicCompareExchange( (long*)&m_fSet, fSetStart, fSetEnd );
// the transaction succeeded
if ( fSetOld == fSetStart )
{
// return success
return fTrue;
}
// the transaction failed
else
{
// the transaction failed because of a collision with another context
if ( fSetOld >= 0 )
{
// try again
continue;
}
// the transaction failed because there are waiters
else
{
// return failure
return fFalse;
}
}
}
}
// Auto-Reset Signal
class CAutoResetSignal
: private CSyncObject,
private CEnhancedStateContainer< CAutoResetSignalState, CSyncStateInitNull, CAutoResetSignalInfo, CSyncBasicInfo >
{
public:
// member functions
// ctors / dtors
CAutoResetSignal( const CSyncBasicInfo& sbi );
~CAutoResetSignal();
// manipulators
void Wait();
const BOOL FTryWait();
const BOOL FWait( const int cmsecTimeout );
void Set();
void Reset();
void Pulse();
// debugging support
void Dump( CDumpContext& dc ) const;
private:
// member functions
// operators
CAutoResetSignal& operator=( CAutoResetSignal& ); // disallowed
// manipulators
const BOOL _FWait( const int cmsecTimeout );
void _Set();
void _Pulse();
};
// waits for the signal to be set, forever if necessary. when the wait completes,
// the signal will be reset
inline void CAutoResetSignal::Wait()
{
// we will wait forever, so we should not timeout
const BOOL fWait = FWait( cmsecInfinite );
OSSYNCAssert( fWait );
}
// tests the state of the signal without waiting or spinning, returning fFalse
// if the signal was not set. if the signal was set, the signal will be reset
inline const BOOL CAutoResetSignal::FTryWait()
{
// we can satisfy the wait if we can successfully change the state of the
// signal from set to reset with no waiters
const BOOL fSuccess = State().FChange( CAutoResetSignalState( 1 ), CAutoResetSignalState( 0 ) );
// we did not successfully wait for the signal
if ( !fSuccess )
{
// this is a contention
State().SetContend();
}
// we did successfully wait for the signal
else
{
// note that we acquired the signal
State().SetAcquire();
}
return fSuccess;
}
// wait for the signal to be set, but only for the specified interval,
// returning fFalse if the wait timed out before the signal was set. if the
// wait completes, the signal will be reset
inline const BOOL CAutoResetSignal::FWait( const int cmsecTimeout )
{
// first try to quickly pass through the signal. if that doesn't work,
// retry wait using the full state machine
return FTryWait() || _FWait( cmsecTimeout );
}
// sets the signal, releasing up to one waiter. if a waiter is released, then
// the signal will be reset. if a waiter is not released, the signal will
// remain set
inline void CAutoResetSignal::Set()
{
// we failed to change the signal state from reset with no waiters to set
// or from set to set (a nop)
if ( !State().FSimpleSet() )
{
// retry set using the full state machine
_Set();
}
}
// resets the signal
inline void CAutoResetSignal::Reset()
{
// if and only if the signal is in the set state, change it to the reset state
State().FChange( CAutoResetSignalState( 1 ), CAutoResetSignalState( 0 ) );
}
// resets the signal, releasing up to one waiter
inline void CAutoResetSignal::Pulse()
{
// wa failed to change the signal state from set to reset with no waiters
// or from reset with no waiters to reset with no waiters (a nop)
if ( !State().FSimpleReset() )
{
// retry pulse using the full state machine
_Pulse();
}
}
// Manual-Reset Signal Information
class CManualResetSignalInfo
: public CSyncBasicInfo,
public CSyncPerfWait,
public CSyncPerfAcquire
{
public:
// member functions
// ctors / dtors
CManualResetSignalInfo( const CSyncBasicInfo& sbi )
: CSyncBasicInfo( sbi )
{
}
// debugging support
void Dump( CDumpContext& dc ) const;
};
// Manual-Reset Signal State
class CManualResetSignalState
{
public:
// member functions
// ctors / dtors
CManualResetSignalState( const CSyncStateInitNull& null ) : m_fSet( 0 ) {}
CManualResetSignalState( const int fSet );
CManualResetSignalState( const int cWait, const int irksem );
~CManualResetSignalState() {}
// operators
CManualResetSignalState& operator=( CManualResetSignalState& state ) { m_fSet = state.m_fSet; return *this; }
// manipulators
const BOOL FChange( const CManualResetSignalState& stateCur, const CManualResetSignalState& stateNew );
const CManualResetSignalState Set();
const CManualResetSignalState Reset();
// accessors
const BOOL FNoWait() const { return m_fSet >= 0; }
const BOOL FWait() const { return m_fSet < 0; }
const BOOL FNoWaitAndSet() const { return m_fSet > 0; }
const BOOL FNoWaitAndNotSet() const { return m_fSet == 0; }
const BOOL FSet() const { OSSYNCAssert( FNoWait() ); return m_fSet; }
const int CWait() const { OSSYNCAssert( FWait() ); return -m_cWaitNeg; }
const CKernelSemaphorePool::IRKSEM Irksem() const { OSSYNCAssert( FWait() ); return CKernelSemaphorePool::IRKSEM( m_irksem ); }
// debugging support
void Dump( CDumpContext& dc ) const;
private:
// data members
// transacted state representation (switched on bit 31)
union
{
// Mode 0: no waiters
volatile long m_fSet; // m_fSet = { 0, 1 }
// Mode 1: waiters
struct
{
volatile unsigned short m_irksem; // 0 <= m_irksem <= ( 1 << 16 ) - 2
volatile short m_cWaitNeg; // -( ( 1 << 15 ) - 1 ) <= m_cWaitNeg <= -1
};
};
};
// ctor
inline CManualResetSignalState::CManualResetSignalState( const int fSet )
{
// set state
m_fSet = long( fSet );
}
// ctor
inline CManualResetSignalState::CManualResetSignalState( const int cWait, const int irksem )
{
// validate IN args
OSSYNCAssert( cWait > 0 );
OSSYNCAssert( cWait <= 0x7FFF );
OSSYNCAssert( irksem >= 0 );
OSSYNCAssert( irksem <= 0xFFFE );
// set waiter count
m_cWaitNeg = short( -cWait );
// set semaphore
m_irksem = (unsigned short) irksem;
}
// changes the transacted state of the signal using a transacted memory
// compare/exchange operation, returning fFalse on failure
inline const BOOL CManualResetSignalState::FChange( const CManualResetSignalState& stateCur, const CManualResetSignalState& stateNew )
{
return AtomicCompareExchange( (long*)&m_fSet, stateCur.m_fSet, stateNew.m_fSet ) == stateCur.m_fSet;
}
// changes the transacted state of the signal to set using a transacted memory
// exchange operation and returns the original state of the signal
inline const CManualResetSignalState CManualResetSignalState::Set()
{
const CManualResetSignalState stateNew( 1 );
return CManualResetSignalState( AtomicExchange( (long*)&m_fSet, stateNew.m_fSet ) );
}
// changes the transacted state of the signal to reset using a transacted memory
// exchange operation and returns the original state of the signal
inline const CManualResetSignalState CManualResetSignalState::Reset()
{
const CManualResetSignalState stateNew( 0 );
return CManualResetSignalState( AtomicExchange( (long*)&m_fSet, stateNew.m_fSet ) );
}
// Manual-Reset Signal
class CManualResetSignal
: private CSyncObject,
private CEnhancedStateContainer< CManualResetSignalState, CSyncStateInitNull, CManualResetSignalInfo, CSyncBasicInfo >
{
public:
// member functions
// ctors / dtors
CManualResetSignal( const CSyncBasicInfo& sbi );
~CManualResetSignal();
// manipulators
void Wait();
const BOOL FTryWait();
const BOOL FWait( const int cmsecTimeout );
void Set();
void Reset();
void Pulse();
// debugging support
void Dump( CDumpContext& dc ) const;
private:
// member functions
// operators
CManualResetSignal& operator=( CManualResetSignal& ); // disallowed
// manipulators
const BOOL _FWait( const int cmsecTimeout );
};
// waits for the signal to be set, forever if necessary
inline void CManualResetSignal::Wait()
{
// we will wait forever, so we should not timeout
int fWait = FWait( cmsecInfinite );
OSSYNCAssert( fWait );
}
// tests the state of the signal without waiting or spinning, returning fFalse
// if the signal was not set
inline const BOOL CManualResetSignal::FTryWait()
{
const BOOL fSuccess = State().FNoWaitAndSet();
// we did not successfully wait for the signal
if ( !fSuccess )
{
// this is a contention
State().SetContend();
}
// we did successfully wait for the signal
else
{
// note that we acquired the signal
State().SetAcquire();
}
return fSuccess;
}
// wait for the signal to be set, but only for the specified interval,
// returning fFalse if the wait timed out before the signal was set
inline const BOOL CManualResetSignal::FWait( const int cmsecTimeout )
{
// first try to quickly pass through the signal. if that doesn't work,
// retry wait using the full state machine
return FTryWait() || _FWait( cmsecTimeout );
}
// sets the signal, releasing any waiters
inline void CManualResetSignal::Set()
{
// change the signal state to set
const CManualResetSignalState stateOld = State().Set();
// there were waiters on the signal
if ( stateOld.FWait() )
{
// release all the waiters
ksempoolGlobal.Ksem( stateOld.Irksem(), this ).Release( stateOld.CWait() );
}
}
// resets the signal
inline void CManualResetSignal::Reset()
{
// if and only if the signal is in the set state, change it to the reset state
State().FChange( CManualResetSignalState( 1 ), CManualResetSignalState( 0 ) );
}
// resets the signal, releasing any waiters
inline void CManualResetSignal::Pulse()
{
// change the signal state to reset
const CManualResetSignalState stateOld = State().Reset();
// there were waiters on the signal
if ( stateOld.FWait() )
{
// release all the waiters
ksempoolGlobal.Ksem( stateOld.Irksem(), this ).Release( stateOld.CWait() );
}
}
// Lock Object Base Class
//
// All Lock Objects are derived from this class
class CLockObject
: public CSyncObject
{
public:
// member functions
// ctors / dtors
CLockObject() {}
~CLockObject() {}
private:
// member functions
// operators
CLockObject& operator=( CLockObject& ); // disallowed
};
// Lock Object Basic Information
class CLockBasicInfo
: public CSyncBasicInfo
{
public:
// member functions
// ctors / dtors
CLockBasicInfo( const CSyncBasicInfo& sbi, const int rank, const int subrank );
~CLockBasicInfo();
// accessors
#ifdef SYNC_DEADLOCK_DETECTION
const int Rank() const { return m_rank; }
const int SubRank() const { return m_subrank; }
#endif // SYNC_DEADLOCK_DETECTION
// debugging support
void Dump( CDumpContext& dc ) const;
private:
// member functions
// operators
CLockBasicInfo& operator=( CLockBasicInfo& ); // disallowed
// data members
#ifdef SYNC_DEADLOCK_DETECTION
// Rank and Subrank
int m_rank;
int m_subrank;
#endif // SYNC_DEADLOCK_DETECTION
};
// Lock Object Performance: Hold
class CLockPerfHold
{
public:
// member functions
// ctors / dtors
CLockPerfHold();
~CLockPerfHold();
// member functions
// manipulators
void StartHold();
void StopHold();
// accessors
#ifdef SYNC_ANALYZE_PERFORMANCE
QWORD CHoldTotal() const { return m_cHold; }
double CsecHoldElapsed() const { return (double)(signed __int64)m_qwHRTHoldElapsed /
(double)(signed __int64)QwOSTimeHRTFreq(); }
#endif // SYNC_ANALYZE_PERFORMANCE
// debugging support
void Dump( CDumpContext& dc ) const;
private:
// member functions
// operators
CLockPerfHold& operator=( CLockPerfHold& ); // disallowed
// data members
#ifdef SYNC_ANALYZE_PERFORMANCE
// hold count
volatile QWORD m_cHold;
// elapsed hold time
volatile QWORD m_qwHRTHoldElapsed;
#endif // SYNC_ANALYZE_PERFORMANCE
};
// starts the hold timer for the lock object
inline void CLockPerfHold::StartHold()
{
#ifdef SYNC_ANALYZE_PERFORMANCE
// increment the hold count
AtomicAdd( (QWORD*)&m_cHold, 1 );
// subtract the start hold time from the elapsed hold time. this starts
// an elapsed time computation for this context. StopHold() will later
// add the end hold time to the elapsed time, causing the following net
// effect:
//
// m_qwHRTHoldElapsed += <end time> - <start time>
//
// we simply choose to go ahead and do the subtraction now to save storage
AtomicAdd( (QWORD*)&m_qwHRTHoldElapsed, QWORD( -__int64( QwOSTimeHRTCount() ) ) );
#endif // SYNC_ANALYZE_PERFORMANCE
}
// stops the hold timer for the lock object
inline void CLockPerfHold::StopHold()
{
#ifdef SYNC_ANALYZE_PERFORMANCE
// add the end hold time to the elapsed hold time. this completes the
// computation started in StartHold()
AtomicAdd( (QWORD*)&m_qwHRTHoldElapsed, QwOSTimeHRTCount() );
#endif // SYNC_ANALYZE_PERFORMANCE
}
// Lock Owner Record
class CLockDeadlockDetectionInfo;
class COwner
{
public:
// member functions
// ctors / dtors
COwner();
~COwner();
void* operator new( size_t cb ) { return ESMemoryNew( cb ); }
void operator delete( void* pv ) { ESMemoryDelete( pv ); }
public:
// member functions
// operators
COwner& operator=( COwner& ); // disallowed
// data members
// owning context
CLS* m_pclsOwner;
// next context owning this lock
COwner* m_pownerContextNext;
// owned lock object
CLockDeadlockDetectionInfo* m_plddiOwned;
// next lock owned by this context
COwner* m_pownerLockNext;
// owning group for this context and lock
DWORD m_group;
};
// Lock Object Deadlock Detection Information
class CLockDeadlockDetectionInfo
{
public:
// types
// subrank used to disable deadlock detection at the subrank level
enum
{
subrankNoDeadlock = INT_MAX
};
// member functions
// ctors / dtors
CLockDeadlockDetectionInfo( const CLockBasicInfo& lbi );
~CLockDeadlockDetectionInfo();
// member functions
// manipulators
void AddAsWaiter( const DWORD group = -1 );
void RemoveAsWaiter( const DWORD group = -1 );
void AddAsOwner( const DWORD group = -1 );
void RemoveAsOwner( const DWORD group = -1 );
static void OSSYNCAPI NextOwnershipIsNotADeadlock();
static void OSSYNCAPI DisableOwnershipTracking();
static void OSSYNCAPI EnableOwnershipTracking();
// accessors
const BOOL FOwner( const DWORD group = -1 );
const BOOL FNotOwner( const DWORD group = -1 );
const BOOL FOwned();
const BOOL FNotOwned();
const BOOL FCanBeWaiter();
const BOOL FWaiter( const DWORD group = -1 );
const BOOL FNotWaiter( const DWORD group = -1 );
#ifdef SYNC_DEADLOCK_DETECTION
const CLockBasicInfo& Info() { return *m_plbiParent; }
#endif // SYNC_DEADLOCK_DETECTION
// debugging support
void Dump( CDumpContext& dc ) const;
private:
// member functions
// operators
CLockDeadlockDetectionInfo& operator=( CLockDeadlockDetectionInfo& ); // disallowed
// data members
#ifdef SYNC_DEADLOCK_DETECTION
// parent lock object information
const CLockBasicInfo* m_plbiParent;
// semaphore protecting owner list
CSemaphore m_semOwnerList;
// owner list head
COwner m_ownerHead;
#endif // SYNC_DEADLOCK_DETECTION
};
// adds the current context as a waiter for the lock object as a member of the
// specified group
inline void CLockDeadlockDetectionInfo::AddAsWaiter( const DWORD group )
{
// this context had better not be a waiter for the lock
OSSYNCAssert( FNotWaiter( group ) );
#ifdef SYNC_DEADLOCK_DETECTION
// we had better not already be waiting for something else!
CLS* const pcls = Pcls();
OSSYNCAssert( !pcls->plddiLockWait );
OSSYNCAssert( !pcls->groupLockWait );
// add this context as a waiter for the lock
pcls->plddiLockWait = this;
pcls->groupLockWait = group;
#endif // SYNC_DEADLOCK_DETECTION
// this context had better be a waiter for the lock
OSSYNCAssert( FWaiter( group ) );
}
// removes the current context as a waiter for the lock object
inline void CLockDeadlockDetectionInfo::RemoveAsWaiter( const DWORD group )
{
// this context had better be a waiter for the lock
OSSYNCAssert( FWaiter( group ) );
#ifdef SYNC_DEADLOCK_DETECTION
// remove this context as a waiter for the lock
CLS* const pcls = Pcls();
pcls->plddiLockWait = NULL;
pcls->groupLockWait = 0;
#endif // SYNC_DEADLOCK_DETECTION
// this context had better not be a waiter for the lock anymore
OSSYNCAssert( FNotWaiter( group ) );
}
// adds the current context as an owner of the lock object as a member of the
// specified group
inline void CLockDeadlockDetectionInfo::AddAsOwner( const DWORD group )
{
// this context had better not be an owner of the lock
OSSYNCAssert( FNotOwner( group ) );
#ifdef SYNC_DEADLOCK_DETECTION
// add this context as an owner of the lock
CLS* const pcls = Pcls();
if ( !pcls->cDisableOwnershipTracking )
{
COwner* powner = &m_ownerHead;
if ( AtomicCompareExchangePointer( (void **)&powner->m_pclsOwner, NULL, pcls ) != NULL )
{
powner = new COwner;
OSSYNCEnforceSz( powner, "Failed to allocate Deadlock Detection Owner Record" );
m_semOwnerList.Acquire();
powner->m_pclsOwner = pcls;
powner->m_pownerContextNext = m_ownerHead.m_pownerContextNext;
m_ownerHead.m_pownerContextNext = powner;
m_semOwnerList.Release();
}
powner->m_plddiOwned = this;
powner->m_pownerLockNext = pcls->pownerLockHead;
pcls->pownerLockHead = powner;
powner->m_group = group;
}
// reset override
pcls->fOverrideDeadlock = fFalse;
#endif // SYNC_DEADLOCK_DETECTION
// this context had better be an owner of the lock
OSSYNCAssert( FOwner( group ) );
}
// removes the current context as an owner of the lock object
inline void CLockDeadlockDetectionInfo::RemoveAsOwner( const DWORD group )
{
// this context had better be an owner of the lock
OSSYNCAssert( FOwner( group ) );
#ifdef SYNC_DEADLOCK_DETECTION
// remove this context as an owner of the lock
CLS* const pcls = Pcls();
if ( !pcls->cDisableOwnershipTracking )
{
COwner** ppownerLock = &pcls->pownerLockHead;
while ( (*ppownerLock)->m_plddiOwned != this || (*ppownerLock)->m_group != group )
{
ppownerLock = &(*ppownerLock)->m_pownerLockNext;
}
COwner* pownerLock = *ppownerLock;
*ppownerLock = pownerLock->m_pownerLockNext;
pownerLock->m_plddiOwned = NULL;
pownerLock->m_pownerLockNext = NULL;
pownerLock->m_group = 0;
if ( AtomicCompareExchangePointer( (void**) &m_ownerHead.m_pclsOwner, pcls, NULL ) != pcls )
{
m_semOwnerList.Acquire();
COwner** ppownerContext = &m_ownerHead.m_pownerContextNext;
while ( (*ppownerContext)->m_pclsOwner != pcls )
{
ppownerContext = &(*ppownerContext)->m_pownerContextNext;
}
COwner* pownerContext = *ppownerContext;
*ppownerContext = pownerContext->m_pownerContextNext;
m_semOwnerList.Release();
delete pownerContext;
}
}
#endif // SYNC_DEADLOCK_DETECTION
// this context had better not be an owner of the lock anymore
OSSYNCAssert( FNotOwner( group ) );
}
// overrides deadlock detection using ranks for the next ownership
inline void OSSYNCAPI CLockDeadlockDetectionInfo::NextOwnershipIsNotADeadlock()
{
#ifdef SYNC_DEADLOCK_DETECTION
Pcls()->fOverrideDeadlock = fTrue;
#endif // SYNC_DEADLOCK_DETECTION
}
// disables ownership tracking for this context
inline void OSSYNCAPI CLockDeadlockDetectionInfo::DisableOwnershipTracking()
{
#ifdef SYNC_DEADLOCK_DETECTION
Pcls()->cDisableOwnershipTracking++;
#endif // SYNC_DEADLOCK_DETECTION
}
// enables ownership tracking for this context
inline void OSSYNCAPI CLockDeadlockDetectionInfo::EnableOwnershipTracking()
{
#ifdef SYNC_DEADLOCK_DETECTION
Pcls()->cDisableOwnershipTracking--;
#endif // SYNC_DEADLOCK_DETECTION
}
// returns fTrue if the current context is an owner of the lock object
//
// NOTE: if deadlock detection is disabled, this function will always return
// fTrue
inline const BOOL CLockDeadlockDetectionInfo::FOwner( const DWORD group )
{
#ifdef SYNC_DEADLOCK_DETECTION
COwner* pownerLock = Pcls()->pownerLockHead;
while ( pownerLock && ( pownerLock->m_plddiOwned != this || pownerLock->m_group != group ) )
{
pownerLock = pownerLock->m_pownerLockNext;
}
return Pcls()->cDisableOwnershipTracking != 0 ||
pownerLock && pownerLock->m_group == group;
#else // !SYNC_DEADLOCK_DETECTION
return fTrue;
#endif // SYNC_DEADLOCK_DETECTION
}
// returns fTrue if the current context is not an owner of the lock object
//
// NOTE: if deadlock detection is disabled, this function will always return
// fTrue
inline const BOOL CLockDeadlockDetectionInfo::FNotOwner( const DWORD group )
{
#ifdef SYNC_DEADLOCK_DETECTION
return Pcls()->cDisableOwnershipTracking != 0 || !FOwner( group );
#else // !SYNC_DEADLOCK_DETECTION
return fTrue;
#endif // SYNC_DEADLOCK_DETECTION
}
// returns fTrue if any context is an owner of the lock object
//
// NOTE: if deadlock detection is disabled, this function will always return
// fTrue
inline const BOOL CLockDeadlockDetectionInfo::FOwned()
{
#ifdef SYNC_DEADLOCK_DETECTION
return m_ownerHead.m_pclsOwner || m_ownerHead.m_pownerContextNext;
#else // !SYNC_DEADLOCK_DETECTION
return fTrue;
#endif // SYNC_DEADLOCK_DETECTION
}
// returns fTrue if no context is an owner of the lock object
//
// NOTE: if deadlock detection is disabled, this function will always return
// fTrue
inline const BOOL CLockDeadlockDetectionInfo::FNotOwned()
{
#ifdef SYNC_DEADLOCK_DETECTION
return !FOwned();
#else // !SYNC_DEADLOCK_DETECTION
return fTrue;
#endif // SYNC_DEADLOCK_DETECTION
}
// returns fTrue if the current context can wait for the lock object without
// violating any deadlock constraints
//
// NOTE: if deadlock detection is disabled, this function will always return
// fTrue
inline const BOOL CLockDeadlockDetectionInfo::FCanBeWaiter()
{
#ifdef SYNC_DEADLOCK_DETECTION
// find the minimum rank, subrank of all locks owned by the current context
CLS* const pcls = Pcls();
COwner* powner = pcls->pownerLockHead;
int Rank = INT_MAX;
int SubRank = INT_MAX;
while ( powner )
{
if ( powner->m_plddiOwned->Info().Rank() < Rank ||
( powner->m_plddiOwned->Info().Rank() == Rank &&
powner->m_plddiOwned->Info().SubRank() < SubRank ) )
{
Rank = powner->m_plddiOwned->Info().Rank();
SubRank = powner->m_plddiOwned->Info().SubRank();
}
powner = powner->m_pownerLockNext;
}
// test this rank, subrank against our rank, subrank
return Rank > Info().Rank() ||
( Rank == Info().Rank() && SubRank > Info().SubRank() ) ||
( Rank == Info().Rank() && SubRank == Info().SubRank() &&
SubRank == subrankNoDeadlock ) ||
pcls->fOverrideDeadlock;
#else // !SYNC_DEADLOCK_DETECTION
return fTrue;
#endif // SYNC_DEADLOCK_DETECTION
}
// returns fTrue if the current context is a waiter of the lock object
//
// NOTE: if deadlock detection is disabled, this function will always return
// fTrue
inline const BOOL CLockDeadlockDetectionInfo::FWaiter( const DWORD group )
{
#ifdef SYNC_DEADLOCK_DETECTION
CLS* const pcls = Pcls();
return pcls->plddiLockWait == this && pcls->groupLockWait == group;
#else // !SYNC_DEADLOCK_DETECTION
return fTrue;
#endif // SYNC_DEADLOCK_DETECTION
}
// returns fTrue if the current context is not a waiter of the lock object
//
// NOTE: if deadlock detection is disabled, this function will always return
// fTrue
inline const BOOL CLockDeadlockDetectionInfo::FNotWaiter( const DWORD group )
{
#ifdef SYNC_DEADLOCK_DETECTION
return !FWaiter( group );
#else // !SYNC_DEADLOCK_DETECTION
return fTrue;
#endif // SYNC_DEADLOCK_DETECTION
}
// Critical Section (non-nestable) Information
class CCriticalSectionInfo
: public CLockBasicInfo,
public CLockPerfHold,
public CLockDeadlockDetectionInfo
{
public:
// member functions
// ctors / dtors
CCriticalSectionInfo( const CLockBasicInfo& lbi )
: CLockBasicInfo( lbi ),
CLockDeadlockDetectionInfo( (CLockBasicInfo&) *this )
{
}
// debugging support
void Dump( CDumpContext& dc ) const;
};
// Critical Section (non-nestable) State
class CCriticalSectionState
{
public:
// member functions
// ctors / dtors
CCriticalSectionState( const CSyncBasicInfo& sbi );
~CCriticalSectionState();
// accessors
CSemaphore& Semaphore() { return m_sem; }
// debugging support
void Dump( CDumpContext& dc ) const;
private:
// member functions
// operators
CCriticalSectionState& operator=( CCriticalSectionState& ); // disallowed
// data members
// semaphore
CSemaphore m_sem;
};
// Critical Section (non-nestable)
class CCriticalSection
: private CLockObject,
private CEnhancedStateContainer< CCriticalSectionState, CSyncBasicInfo, CCriticalSectionInfo, CLockBasicInfo >
{
public:
// member functions
// ctors / dtors
CCriticalSection( const CLockBasicInfo& lbi );
~CCriticalSection();
// manipulators
void Enter();
const BOOL FTryEnter();
const BOOL FEnter( const int cmsecTimeout );
void Leave();
// accessors
const int CWait() { return State().Semaphore().CWait(); }
const BOOL FOwner() { return State().FOwner(); }
const BOOL FNotOwner() { return State().FNotOwner(); }
// debugging support
void Dump( CDumpContext& dc ) const;
private:
// member functions
// operators
CCriticalSection& operator=( CCriticalSection& ); // disallowed
};
// enter the critical section, waiting forever if someone else is currently the
// owner. the critical section can not be re-entered until it has been left
inline void CCriticalSection::Enter()
{
// check for deadlock
OSSYNCAssertSzRTL( State().FCanBeWaiter(), "Potential Deadlock Detected (Rank Violation)" );
// acquire the semaphore
State().AddAsWaiter();
State().Semaphore().Acquire();
State().RemoveAsWaiter();
// there had better be no available counts on the semaphore
OSSYNCAssert( !State().Semaphore().CAvail() );
// we are now the owner of the critical section
State().AddAsOwner();
State().StartHold();
}
// try to enter the critical section without waiting or spinning, returning
// fFalse if someone else currently is the owner. the critical section can not
// be re-entered until it has been left
inline const BOOL CCriticalSection::FTryEnter()
{
// try to acquire the semaphore without waiting or spinning
//
// NOTE: there is no potential for deadlock here, so don't bother to check
BOOL fAcquire = State().Semaphore().FTryAcquire();
// we are now the owner of the critical section
if ( fAcquire )
{
// there had better be no available counts on the semaphore
OSSYNCAssert( !State().Semaphore().CAvail() );
// add ourself as the owner
State().AddAsOwner();
State().StartHold();
}
return fAcquire;
}
// try to enter the critical section waiting only for the specified interval,
// returning fFalse if the wait timed out before the critical section could be
// acquired. the critical section can not be re-entered until it has been left
inline const BOOL CCriticalSection::FEnter( const int cmsecTimeout )
{
// check for deadlock if we are waiting forever
OSSYNCAssertSzRTL( cmsecTimeout != cmsecInfinite || State().FCanBeWaiter(), "Potential Deadlock Detected (Rank Violation)" );
// try to acquire the semaphore, timing out as requested
//
// NOTE: there is still a potential for deadlock, but that will be detected
// at the OS level
State().AddAsWaiter();
BOOL fAcquire = State().Semaphore().FAcquire( cmsecTimeout );
State().RemoveAsWaiter();
// we are now the owner of the critical section
if ( fAcquire )
{
// there had better be no available counts on the semaphore
OSSYNCAssert( !State().Semaphore().CAvail() );
// add ourself as the owner
State().AddAsOwner();
State().StartHold();
}
return fAcquire;
}
// leaves the critical section, releasing it for ownership by someone else
inline void CCriticalSection::Leave()
{
// remove ourself as the owner
State().RemoveAsOwner();
// we are no longer holding the lock
State().StopHold();
// there had better be no available counts on the semaphore
OSSYNCAssert( !State().Semaphore().CAvail() );
// release the semaphore
State().Semaphore().Release();
}
// Nestable Critical Section Information
class CNestableCriticalSectionInfo
: public CLockBasicInfo,
public CLockPerfHold,
public CLockDeadlockDetectionInfo
{
public:
// member functions
// ctors / dtors
CNestableCriticalSectionInfo( const CLockBasicInfo& lbi )
: CLockBasicInfo( lbi ),
CLockDeadlockDetectionInfo( (CLockBasicInfo&) *this )
{
}
// debugging support
void Dump( CDumpContext& dc ) const;
};
// Nestable Critical Section State
class CNestableCriticalSectionState
{
public:
// member functions
// ctors / dtors
CNestableCriticalSectionState( const CSyncBasicInfo& sbi );
~CNestableCriticalSectionState();
// manipulators
void SetOwner( CLS* const pcls );
void Enter();
void Leave();
// accessors
CSemaphore& Semaphore() { return m_sem; }
CLS* PclsOwner() { return m_pclsOwner; }
int CEntry() { return m_cEntry; }
// debugging support
void Dump( CDumpContext& dc ) const;
private:
// member functions
// operators
CNestableCriticalSectionState& operator=( CNestableCriticalSectionState& ); // disallowed
// data members
// semaphore
CSemaphore m_sem;
// owning context (protected by the semaphore)
CLS* volatile m_pclsOwner;
// entry count (only valid when the owner id is valid)
volatile int m_cEntry;
};
// set the owner
inline void CNestableCriticalSectionState::SetOwner( CLS* const pcls )
{
// we had either be clearing the owner or setting a new owner. we should
// never be overwriting another owner
OSSYNCAssert( !pcls || !m_pclsOwner );
// set the new owner
m_pclsOwner = pcls;
}
// increment the entry count
inline void CNestableCriticalSectionState::Enter()
{
// we had better have an owner already!
OSSYNCAssert( m_pclsOwner );
// we should not overflow the entry count
OSSYNCAssert( int( m_cEntry + 1 ) >= 1 );
// increment the entry count
m_cEntry++;
}
// decrement the entry count
inline void CNestableCriticalSectionState::Leave()
{
// we had better have an owner already!
OSSYNCAssert( m_pclsOwner );
// decrement the entry count
m_cEntry--;
}
// Nestable Critical Section
class CNestableCriticalSection
: private CLockObject,
private CEnhancedStateContainer< CNestableCriticalSectionState, CSyncBasicInfo, CNestableCriticalSectionInfo, CLockBasicInfo >
{
public:
// member functions
// ctors / dtors
CNestableCriticalSection( const CLockBasicInfo& lbi );
~CNestableCriticalSection();
// manipulators
void Enter();
const BOOL FTryEnter();
const BOOL FEnter( const int cmsecTimeout );
void Leave();
// accessors
const int CWait() { return State().Semaphore().CWait(); }
const BOOL FOwner() { return State().FOwner(); }
const BOOL FNotOwner() { return State().FNotOwner(); }
// debugging support
void Dump( CDumpContext& dc ) const;
private:
// member functions
// operators
CNestableCriticalSection& operator=( CNestableCriticalSection& ); // disallowed
};
// enter the critical section, waiting forever if someone else is currently the
// owner. the critical section can be reentered without waiting or deadlocking
inline void CNestableCriticalSection::Enter()
{
// get our context
CLS* const pcls = Pcls();
// we own the critical section
if ( State().PclsOwner() == pcls )
{
// there had better be no available counts on the semaphore
OSSYNCAssert( !State().Semaphore().CAvail() );
// we should have at least one entry count
OSSYNCAssert( State().CEntry() >= 1 );
// increment our entry count
State().Enter();
}
// we do not own the critical section
else
{
OSSYNCAssert( State().PclsOwner() != pcls );
// check for deadlock
OSSYNCAssertSzRTL( State().FCanBeWaiter(), "Potential Deadlock Detected (Rank Violation)" );
// acquire the semaphore
State().AddAsWaiter();
State().Semaphore().Acquire();
State().RemoveAsWaiter();
// there had better be no available counts on the semaphore
OSSYNCAssert( !State().Semaphore().CAvail() );
// we are now the owner of the critical section
State().AddAsOwner();
State().StartHold();
// save our context as the owner
State().SetOwner( pcls );
// set initial entry count
State().Enter();
}
}
// try to enter the critical section without waiting or spinning, returning
// fFalse if someone else currently is the owner. the critical section can be
// reentered without waiting or deadlocking
inline const BOOL CNestableCriticalSection::FTryEnter()
{
// get our context
CLS* const pcls = Pcls();
// we own the critical section
if ( State().PclsOwner() == pcls )
{
// there had better be no available counts on the semaphore
OSSYNCAssert( !State().Semaphore().CAvail() );
// we should have at least one entry count
OSSYNCAssert( State().CEntry() >= 1 );
// increment our entry count
State().Enter();
// return success
return fTrue;
}
// we do not own the critical section
else
{
OSSYNCAssert( State().PclsOwner() != pcls );
// try to acquire the semaphore without waiting or spinning
//
// NOTE: there is no potential for deadlock here, so don't bother to check
const BOOL fAcquired = State().Semaphore().FTryAcquire();
// we now own the critical section
if ( fAcquired )
{
// there had better be no available counts on the semaphore
OSSYNCAssert( !State().Semaphore().CAvail() );
// add ourself as the owner
State().AddAsOwner();
State().StartHold();
// save our context as the owner
State().SetOwner( pcls );
// set initial entry count
State().Enter();
}
// return result
return fAcquired;
}
}
// try to enter the critical section waiting only for the specified interval,
// returning fFalse if the wait timed out before the critical section could be
// acquired. the critical section can be reentered without waiting or
// deadlocking
inline const BOOL CNestableCriticalSection::FEnter( const int cmsecTimeout )
{
// get our context
CLS* const pcls = Pcls();
// we own the critical section
if ( State().PclsOwner() == pcls )
{
// there had better be no available counts on the semaphore
OSSYNCAssert( !State().Semaphore().CAvail() );
// we should have at least one entry count
OSSYNCAssert( State().CEntry() >= 1 );
// increment our entry count
State().Enter();
// return success
return fTrue;
}
// we do not own the critical section
else
{
OSSYNCAssert( State().PclsOwner() != pcls );
// check for deadlock if we are waiting forever
OSSYNCAssertSzRTL( cmsecTimeout != cmsecInfinite || State().FCanBeWaiter(), "Potential Deadlock Detected (Rank Violation)" );
// try to acquire the semaphore, timing out as requested
//
// NOTE: there is still a potential for deadlock, but that will be detected
// at the OS level
State().AddAsWaiter();
const BOOL fAcquired = State().Semaphore().FAcquire( cmsecTimeout );
State().RemoveAsWaiter();
// we now own the critical section
if ( fAcquired )
{
// there had better be no available counts on the semaphore
OSSYNCAssert( !State().Semaphore().CAvail() );
// add ourself as the owner
State().AddAsOwner();
State().StartHold();
// save our context as the owner
State().SetOwner( pcls );
// set initial entry count
State().Enter();
}
// return result
return fAcquired;
}
}
// leave the critical section. if leave has been called for every enter that
// has completed successfully, the critical section is released for ownership
// by someone else
inline void CNestableCriticalSection::Leave()
{
// we had better be the current owner
OSSYNCAssert( State().PclsOwner() == Pcls() );
// there had better be no available counts on the semaphore
OSSYNCAssert( !State().Semaphore().CAvail() );
// there had better be at least one entry count
OSSYNCAssert( State().CEntry() >= 1 );
// release one entry count
State().Leave();
// we released the last entry count
if ( !State().CEntry() )
{
// reset the owner id
State().SetOwner( 0 );
// remove ourself as the owner
State().RemoveAsOwner();
// we are no longer holding the lock
State().StopHold();
// release the semaphore
State().Semaphore().Release();
}
}
// Gate Information
class CGateInfo
: public CSyncBasicInfo,
public CSyncPerfWait
{
public:
// member functions
// ctors / dtors
CGateInfo( const CSyncBasicInfo& sbi )
: CSyncBasicInfo( sbi )
{
}
// debugging support
void Dump( CDumpContext& dc ) const;
};
// Gate State
class CGateState
{
public:
// member functions
// ctors / dtors
CGateState( const CSyncStateInitNull& null ) : m_cWait( 0 ), m_irksem( CKernelSemaphorePool::irksemNil ) {}
CGateState( const int cWait, const int irksem );
~CGateState() {}
// manipulators
void SetWaitCount( const int cWait );
void SetIrksem( const CKernelSemaphorePool::IRKSEM irksem );
// accessors
const int CWait() const { return m_cWait; }
const CKernelSemaphorePool::IRKSEM Irksem() const { return CKernelSemaphorePool::IRKSEM( m_irksem ); }
// debugging support
void Dump( CDumpContext& dc ) const;
private:
// member functions
// operators
CGateState& operator=( CGateState& ); // disallowed
// data members
// waiter count
volatile short m_cWait; // 0 <= m_cWait <= ( 1 << 15 ) - 1
// reference kernel semaphore
volatile unsigned short m_irksem; // 0 <= m_irksem <= ( 1 << 16 ) - 2
};
// sets the wait count for the gate
inline void CGateState::SetWaitCount( const int cWait )
{
// it must be a valid wait count
OSSYNCAssert( cWait >= 0 );
OSSYNCAssert( cWait <= 0x7FFF );
// set the wait count
m_cWait = (unsigned short) cWait;
}
// sets the referenced kernel semaphore for the gate
inline void CGateState::SetIrksem( const CKernelSemaphorePool::IRKSEM irksem )
{
// it must be a valid irksem
OSSYNCAssert( irksem >= 0 );
OSSYNCAssert( irksem <= 0xFFFF );
// set the irksem
m_irksem = (unsigned short) irksem;
}
// Gate
class CGate
: private CSyncObject,
private CEnhancedStateContainer< CGateState, CSyncStateInitNull, CGateInfo, CSyncBasicInfo >
{
public:
// member functions
// ctors / dtors
CGate( const CSyncBasicInfo& sbi );
~CGate();
// manipulators
void Wait( CCriticalSection& crit );
void Release( CCriticalSection& crit, const int cToRelease = 1 );
void ReleaseAndHold( CCriticalSection& crit, const int cToRelease = 1 );
// accessors
const int CWait() const { return State().CWait(); }
// debugging support
void Dump( CDumpContext& dc ) const;
private:
// member functions
// operators
CGate& operator=( CGate& ); // disallowed
};
// Null Lock Object State Initializer
class CLockStateInitNull
{
};
extern const CLockStateInitNull lockstateNull;
// Binary Lock Performance Information
class CBinaryLockPerfInfo
: public CSyncPerfWait,
public CSyncPerfAcquire,
public CLockPerfHold
{
public:
// member functions
// ctors / dtors
CBinaryLockPerfInfo()
{
}
// debugging support
void Dump( CDumpContext& dc ) const;
};
// Binary Lock Group Information
class CBinaryLockGroupInfo
{
public:
// member functions
// ctors / dtors
CBinaryLockGroupInfo() {}
~CBinaryLockGroupInfo() {}
// manipulators
void StartWait( const int iGroup ) { m_rginfo[iGroup].StartWait(); }
void StopWait( const int iGroup ) { m_rginfo[iGroup].StopWait(); }
void SetAcquire( const int iGroup ) { m_rginfo[iGroup].SetAcquire(); }
void SetContend( const int iGroup ) { m_rginfo[iGroup].SetContend(); }
void StartHold( const int iGroup ) { m_rginfo[iGroup].StartHold(); }
void StopHold( const int iGroup ) { m_rginfo[iGroup].StopHold(); }
// accessors
#ifdef SYNC_ANALYZE_PERFORMANCE
QWORD CWaitTotal( const int iGroup ) const { return m_rginfo[iGroup].CWaitTotal(); }
double CsecWaitElapsed( const int iGroup ) const { return m_rginfo[iGroup].CsecWaitElapsed(); }
QWORD CAcquireTotal( const int iGroup ) const { return m_rginfo[iGroup].CAcquireTotal(); }
QWORD CContendTotal( const int iGroup ) const { return m_rginfo[iGroup].CContendTotal(); }
QWORD CHoldTotal( const int iGroup ) const { return m_rginfo[iGroup].CHoldTotal(); }
double CsecHoldElapsed( const int iGroup ) const { return m_rginfo[iGroup].CsecHoldElapsed(); }
#endif // SYNC_ANALYZE_PERFORMANCE
// debugging support
void Dump( CDumpContext& dc ) const;
private:
// member functions
// operators
CBinaryLockGroupInfo& operator=( CBinaryLockGroupInfo& ); // disallowed
// data members
// performance info for each group
CBinaryLockPerfInfo m_rginfo[2];
};
// Binary Lock Information
class CBinaryLockInfo
: public CLockBasicInfo,
public CBinaryLockGroupInfo,
public CLockDeadlockDetectionInfo
{
public:
// member functions
// ctors / dtors
CBinaryLockInfo( const CLockBasicInfo& lbi )
: CLockBasicInfo( lbi ),
CLockDeadlockDetectionInfo( (CLockBasicInfo&) *this )
{
}
// debugging support
void Dump( CDumpContext& dc ) const;
};
// Binary Lock State
class CBinaryLockState
{
public:
// types
// control word
typedef DWORD ControlWord;
// member functions
// ctors / dtors
CBinaryLockState( const CSyncBasicInfo& sbi );
~CBinaryLockState();
// debugging support
void Dump( CDumpContext& dc ) const;
// data members
// control word
union
{
volatile ControlWord m_cw;
struct
{
volatile DWORD m_cOOW1:15;
volatile DWORD m_fQ1:1;
volatile DWORD m_cOOW2:15;
volatile DWORD m_fQ2:1;
};
};
// quiesced owner count
volatile DWORD m_cOwner;
// sempahore used by Group 1 to wait for lock ownership
CSemaphore m_sem1;
// sempahore used by Group 2 to wait for lock ownership
CSemaphore m_sem2;
private:
// member functions
// operators
CBinaryLockState& operator=( CBinaryLockState& ); // disallowed
};
// Binary Lock
class CBinaryLock
: private CLockObject,
private CEnhancedStateContainer< CBinaryLockState, CSyncBasicInfo, CBinaryLockInfo, CLockBasicInfo >
{
public:
// types
// control word
typedef CBinaryLockState::ControlWord ControlWord;
// transition reasons for state machine
enum TransitionReason
{
trIllegal = 0,
trEnter1 = 1,
trLeave1 = 2,
trEnter2 = 4,
trLeave2 = 8,
};
// member functions
// ctors / dtors
CBinaryLock( const CLockBasicInfo& lbi );
~CBinaryLock();
// manipulators
void Enter1();
const BOOL FTryEnter1();
void Leave1();
void Enter2();
const BOOL FTryEnter2();
void Leave2();
// accessors
const BOOL FGroup1Quiesced() { return State().m_cw & 0x00008000; }
const BOOL FGroup2Quiesced() { return State().m_cw & 0x80000000; }
const BOOL FMemberOfGroup1() { return State().FOwner( 0 ); }
const BOOL FNotMemberOfGroup1() { return State().FNotOwner( 0 ); }
const BOOL FMemberOfGroup2() { return State().FOwner( 1 ); }
const BOOL FNotMemberOfGroup2() { return State().FNotOwner( 1 ); }
// debugging support
void Dump( CDumpContext& dc ) const;
private:
// member functions
// operators
CBinaryLock& operator=( CBinaryLock& ); // disallowed
// verification
int _StateFromControlWord( const ControlWord cw );
BOOL _FValidStateTransition( const ControlWord cwBI,
const ControlWord cwAI,
const TransitionReason tr );
// manipulators
void _Enter1( const ControlWord cwBIOld );
void _Enter2( const ControlWord cwBIOld );
void _UpdateQuiescedOwnerCountAsGroup1( const DWORD cOwnerDelta );
void _UpdateQuiescedOwnerCountAsGroup2( const DWORD cOwnerDelta );
};
// enters the binary lock as a member of Group 1, waiting forever if necessary
//
// NOTE: trying to enter the lock as a member of Group 1 when you already own
// the lock as a member of Group 2 will cause a deadlock.
inline void CBinaryLock::Enter1()
{
// we had better not already own this lock as either group
OSSYNCAssert( State().FNotOwner( 0 ) );
OSSYNCAssert( State().FNotOwner( 1 ) );
// check for deadlock
OSSYNCAssertSzRTL( State().FCanBeWaiter(), "Potential Deadlock Detected (Rank Violation)" );
// try forever until we successfully change the lock state
OSSYNC_FOREVER
{
// read the current state of the control word as our expected before image
const ControlWord cwBIExpected = State().m_cw;
// compute the after image of the control word by performing the global
// transform for the Enter1 state transition
const ControlWord cwAI = ControlWord( ( ( cwBIExpected & ( ( LONG_PTR( long( cwBIExpected ) ) >> 31 ) |
0x0000FFFF ) ) | 0x80000000 ) + 0x00000001 );
// validate the transaction
OSSYNCAssert( _FValidStateTransition( cwBIExpected, cwAI, trEnter1 ) );
// attempt to perform the transacted state transition on the control word
const ControlWord cwBI = AtomicCompareExchange( (long*)&State().m_cw, cwBIExpected, cwAI );
// the transaction failed or Group 1 was quiesced from ownership
if ( ( cwBI ^ cwBIExpected ) | ( cwBI & 0x00008000 ) )
{
// the transaction failed because another context changed the control word
if ( cwBI != cwBIExpected )
{
// try again
continue;
}
// the transaction succeeded but Group 1 was quiesced from ownership
else
{
// this is a contention for Group 1
State().SetContend( 0 );
// wait to own the lock as a member of Group 1
_Enter1( cwBI );
// we now own the lock, so we're done
break;
}
}
// the transaction succeeded and Group 1 was not quiesced from ownership
else
{
// we now own the lock, so we're done
break;
}
}
// we are now an owner of the lock for Group 1
State().SetAcquire( 0 );
State().AddAsOwner( 0 );
State().StartHold( 0 );
}
// tries to enter the binary lock as a member of Group 1 without waiting or
// spinning, returning fFalse if Group 1 is quiesced from ownership
//
// NOTE: trying to enter the lock as a member of Group 1 when you already own
// the lock as a member of Group 2 will cause a deadlock.
inline const BOOL CBinaryLock::FTryEnter1()
{
// we had better not already own this lock as either group
OSSYNCAssert( State().FNotOwner( 0 ) );
OSSYNCAssert( State().FNotOwner( 1 ) );
// try forever until we successfully change the lock state
OSSYNC_FOREVER
{
// read the current state of the control word as our expected before image
ControlWord cwBIExpected = State().m_cw;
// change the expected before image so that the transaction will only work if
// Group 1 ownership is not quiesced
cwBIExpected = cwBIExpected & 0xFFFF7FFF;
// compute the after image of the control word by performing the global
// transform for the Enter1 state transition
const ControlWord cwAI = ControlWord( ( ( cwBIExpected & ( ( LONG_PTR( long( cwBIExpected ) ) >> 31 ) |
0x0000FFFF ) ) | 0x80000000 ) + 0x00000001 );
// validate the transaction
OSSYNCAssert( _StateFromControlWord( cwBIExpected ) < 0 ||
_FValidStateTransition( cwBIExpected, cwAI, trEnter1 ) );
// attempt to perform the transacted state transition on the control word
const ControlWord cwBI = AtomicCompareExchange( (long*)&State().m_cw, cwBIExpected, cwAI );
// the transaction failed
if ( cwBI != cwBIExpected )
{
// the transaction failed because Group 1 ownership is quiesced
if ( cwBI & 0x00008000 )
{
// return failure
return fFalse;
}
// the transaction failed because another context changed the control word
else
{
// try again
continue;
}
}
// the transaction succeeded
else
{
// we are now an owner of the lock for Group 1
State().SetAcquire( 0 );
State().AddAsOwner( 0 );
State().StartHold( 0 );
// return success
return fTrue;
}
}
}
// leaves the binary lock as a member of Group 1
//
// NOTE: you must leave the lock as a member of the same Group for which you entered
// the lock or deadlocks may occur
inline void CBinaryLock::Leave1()
{
// we are no longer an owner of the lock
State().RemoveAsOwner( 0 );
// we are no longer holding the lock
State().StopHold( 0 );
// try forever until we successfully change the lock state
OSSYNC_FOREVER
{
// read the current state of the control word as our expected before image
ControlWord cwBIExpected = State().m_cw;
// change the expected before image so that the transaction will only work if
// Group 1 ownership is not quiesced
cwBIExpected = cwBIExpected & 0xFFFF7FFF;
// compute the after image of the control word by performing the transform that
// will take us either from state 2 to state 0 or state 2 to state 2
ControlWord cwAI = cwBIExpected + 0xFFFFFFFF;
cwAI = cwAI - ( ( ( cwAI + 0xFFFFFFFF ) << 16 ) & 0x80000000 );
// validate the transaction
OSSYNCAssert( _StateFromControlWord( cwBIExpected ) < 0 ||
_FValidStateTransition( cwBIExpected, cwAI, trLeave1 ) );
// attempt to perform the transacted state transition on the control word
const ControlWord cwBI = AtomicCompareExchange( (long*)&State().m_cw, cwBIExpected, cwAI );
// the transaction failed
if ( cwBI != cwBIExpected )
{
// the transaction failed because Group 1 ownership is quiesced
if ( cwBI & 0x00008000 )
{
// leave the lock as a quiesced owner
_UpdateQuiescedOwnerCountAsGroup1( 0xFFFFFFFF );
// we're done
break;
}
// the transaction failed because another context changed the control word
else
{
// try again
continue;
}
}
// the transaction succeeded
else
{
// we're done
break;
}
}
}
// enters the binary lock as a member of Group 2, waiting forever if necessary
//
// NOTE: trying to enter the lock as a member of Group 2 when you already own
// the lock as a member of Group 1 will cause a deadlock.
inline void CBinaryLock::Enter2()
{
// we had better not already own this lock as either group
OSSYNCAssert( State().FNotOwner( 0 ) );
OSSYNCAssert( State().FNotOwner( 1 ) );
// check for deadlock
OSSYNCAssertSzRTL( State().FCanBeWaiter(), "Potential Deadlock Detected (Rank Violation)" );
// try forever until we successfully change the lock state
OSSYNC_FOREVER
{
// read the current state of the control word as our expected before image
const ControlWord cwBIExpected = State().m_cw;
// compute the after image of the control word by performing the global
// transform for the Enter2 state transition
const ControlWord cwAI = ControlWord( ( ( cwBIExpected & ( ( LONG_PTR( long( cwBIExpected << 16 ) ) >> 31 ) |
0xFFFF0000 ) ) | 0x00008000 ) + 0x00010000 );
// validate the transaction
OSSYNCAssert( _FValidStateTransition( cwBIExpected, cwAI, trEnter2 ) );
// attempt to perform the transacted state transition on the control word
const ControlWord cwBI = AtomicCompareExchange( (long*)&State().m_cw, cwBIExpected, cwAI );
// the transaction failed or Group 2 was quiesced from ownership
if ( ( cwBI ^ cwBIExpected ) | ( cwBI & 0x80000000 ) )
{
// the transaction failed because another context changed the control word
if ( cwBI != cwBIExpected )
{
// try again
continue;
}
// the transaction succeeded but Group 2 was quiesced from ownership
else
{
// this is a contention for Group 2
State().SetContend( 1 );
// wait to own the lock as a member of Group 2
_Enter2( cwBI );
// we now own the lock, so we're done
break;
}
}
// the transaction succeeded and Group 2 was not quiesced from ownership
else
{
// we now own the lock, so we're done
break;
}
}
// we are now an owner of the lock for Group 2
State().SetAcquire( 1 );
State().AddAsOwner( 1 );
State().StartHold( 1 );
}
// tries to enter the binary lock as a member of Group 2 without waiting or
// spinning, returning fFalse if Group 2 is quiesced from ownership
//
// NOTE: trying to enter the lock as a member of Group 2 when you already own
// the lock as a member of Group 1 will cause a deadlock.
inline const BOOL CBinaryLock::FTryEnter2()
{
// we had better not already own this lock as either group
OSSYNCAssert( State().FNotOwner( 0 ) );
OSSYNCAssert( State().FNotOwner( 1 ) );
// try forever until we successfully change the lock state
OSSYNC_FOREVER
{
// read the current state of the control word as our expected before image
ControlWord cwBIExpected = State().m_cw;
// change the expected before image so that the transaction will only work if
// Group 2 ownership is not quiesced
cwBIExpected = cwBIExpected & 0x7FFFFFFF;
// compute the after image of the control word by performing the global
// transform for the Enter2 state transition
const ControlWord cwAI = ControlWord( ( ( cwBIExpected & ( ( LONG_PTR( long( cwBIExpected << 16 ) ) >> 31 ) |
0xFFFF0000 ) ) | 0x00008000 ) + 0x00010000 );
// validate the transaction
OSSYNCAssert( _StateFromControlWord( cwBIExpected ) < 0 ||
_FValidStateTransition( cwBIExpected, cwAI, trEnter2 ) );
// attempt to perform the transacted state transition on the control word
const ControlWord cwBI = AtomicCompareExchange( (long*)&State().m_cw, cwBIExpected, cwAI );
// the transaction failed
if ( cwBI != cwBIExpected )
{
// the transaction failed because Group 2 ownership is quiesced
if ( cwBI & 0x80000000 )
{
// return failure
return fFalse;
}
// the transaction failed because another context changed the control word
else
{
// try again
continue;
}
}
// the transaction succeeded
else
{
// we are now an owner of the lock for Group 2
State().SetAcquire( 1 );
State().AddAsOwner( 1 );
State().StartHold( 1 );
// return success
return fTrue;
}
}
}
// leaves the binary lock as a member of Group 2
//
// NOTE: you must leave the lock as a member of the same Group for which you entered
// the lock or deadlocks may occur
inline void CBinaryLock::Leave2()
{
// we are no longer an owner of the lock
State().RemoveAsOwner( 1 );
// we are no longer holding the lock
State().StopHold( 1 );
// try forever until we successfully change the lock state
OSSYNC_FOREVER
{
// read the current state of the control word as our expected before image
ControlWord cwBIExpected = State().m_cw;
// change the expected before image so that the transaction will only work if
// Group 2 ownership is not quiesced
cwBIExpected = cwBIExpected & 0x7FFFFFFF;
// compute the after image of the control word by performing the transform that
// will take us either from state 1 to state 0 or state 1 to state 1
ControlWord cwAI = cwBIExpected + 0xFFFF0000;
cwAI = cwAI - ( ( ( cwAI + 0xFFFF0000 ) >> 16 ) & 0x00008000 );
// validate the transaction
OSSYNCAssert( _StateFromControlWord( cwBIExpected ) < 0 ||
_FValidStateTransition( cwBIExpected, cwAI, trLeave2 ) );
// attempt to perform the transacted state transition on the control word
const ControlWord cwBI = AtomicCompareExchange( (long*)&State().m_cw, cwBIExpected, cwAI );
// the transaction failed
if ( cwBI != cwBIExpected )
{
// the transaction failed because Group 2 ownership is quiesced
if ( cwBI & 0x80000000 )
{
// leave the lock as a quiesced owner
_UpdateQuiescedOwnerCountAsGroup2( 0xFFFFFFFF );
// we're done
break;
}
// the transaction failed because another context changed the control word
else
{
// try again
continue;
}
}
// the transaction succeeded
else
{
// we're done
break;
}
}
}
// Reader / Writer Lock Performance Information
class CReaderWriterLockPerfInfo
: public CSyncPerfWait,
public CSyncPerfAcquire,
public CLockPerfHold
{
public:
// member functions
// ctors / dtors
CReaderWriterLockPerfInfo()
{
}
// debugging support
void Dump( CDumpContext& dc ) const;
};
// Reader / Writer Lock Group Information
class CReaderWriterLockGroupInfo
{
public:
// member functions
// ctors / dtors
CReaderWriterLockGroupInfo() {}
~CReaderWriterLockGroupInfo() {}
// manipulators
void StartWait( const int iGroup ) { m_rginfo[iGroup].StartWait(); }
void StopWait( const int iGroup ) { m_rginfo[iGroup].StopWait(); }
void SetAcquire( const int iGroup ) { m_rginfo[iGroup].SetAcquire(); }
void SetContend( const int iGroup ) { m_rginfo[iGroup].SetContend(); }
void StartHold( const int iGroup ) { m_rginfo[iGroup].StartHold(); }
void StopHold( const int iGroup ) { m_rginfo[iGroup].StopHold(); }
// accessors
#ifdef SYNC_ANALYZE_PERFORMANCE
QWORD CWaitTotal( const int iGroup ) const { return m_rginfo[iGroup].CWaitTotal(); }
double CsecWaitElapsed( const int iGroup ) const { return m_rginfo[iGroup].CsecWaitElapsed(); }
QWORD CAcquireTotal( const int iGroup ) const { return m_rginfo[iGroup].CAcquireTotal(); }
QWORD CContendTotal( const int iGroup ) const { return m_rginfo[iGroup].CContendTotal(); }
QWORD CHoldTotal( const int iGroup ) const { return m_rginfo[iGroup].CHoldTotal(); }
double CsecHoldElapsed( const int iGroup ) const { return m_rginfo[iGroup].CsecHoldElapsed(); }
#endif // SYNC_ANALYZE_PERFORMANCE
// debugging support
void Dump( CDumpContext& dc ) const;
private:
// member functions
// operators
CReaderWriterLockGroupInfo& operator=( CReaderWriterLockGroupInfo& ); // disallowed
// data members
// performance info for each group
CReaderWriterLockPerfInfo m_rginfo[2];
};
// Reader / Writer Lock Information
class CReaderWriterLockInfo
: public CLockBasicInfo,
public CReaderWriterLockGroupInfo,
public CLockDeadlockDetectionInfo
{
public:
// member functions
// ctors / dtors
CReaderWriterLockInfo( const CLockBasicInfo& lbi )
: CLockBasicInfo( lbi ),
CLockDeadlockDetectionInfo( (CLockBasicInfo&) *this )
{
}
// debugging support
void Dump( CDumpContext& dc ) const;
};
// Reader / Writer Lock State
class CReaderWriterLockState
{
public:
// types
// control word
typedef DWORD ControlWord;
// member functions
// ctors / dtors
CReaderWriterLockState( const CSyncBasicInfo& sbi );
~CReaderWriterLockState();
// debugging support
void Dump( CDumpContext& dc ) const;
// data members
// control word
union
{
volatile ControlWord m_cw;
struct
{
volatile DWORD m_cOAOWW:15;
volatile DWORD m_fQW:1;
volatile DWORD m_cOOWR:15;
volatile DWORD m_fQR:1;
};
};
// quiesced owner count
volatile DWORD m_cOwner;
// sempahore used by writers to wait for lock ownership
CSemaphore m_semWriter;
// sempahore used by readers to wait for lock ownership
CSemaphore m_semReader;
private:
// member functions
// operators
CReaderWriterLockState& operator=( CReaderWriterLockState& ); // disallowed
};
// Reader / Writer Lock
class CReaderWriterLock
: private CLockObject,
private CEnhancedStateContainer< CReaderWriterLockState, CSyncBasicInfo, CReaderWriterLockInfo, CLockBasicInfo >
{
public:
// types
// control word
typedef CReaderWriterLockState::ControlWord ControlWord;
// transition reasons for state machine
enum TransitionReason
{
trIllegal = 0,
trEnterAsWriter = 1,
trLeaveAsWriter = 2,
trEnterAsReader = 4,
trLeaveAsReader = 8,
};
// member functions
// ctors / dtors
CReaderWriterLock( const CLockBasicInfo& lbi );
~CReaderWriterLock();
// manipulators
void EnterAsWriter();
const BOOL FTryEnterAsWriter();
void LeaveAsWriter();
void EnterAsReader();
const BOOL FTryEnterAsReader();
void LeaveAsReader();
// accessors
const BOOL FWritersQuiesced() { return State().m_cw & 0x00008000; }
const BOOL FReadersQuiesced() { return State().m_cw & 0x80000000; }
const BOOL FWriter() { return State().FOwner( 0 ); }
const BOOL FNotWriter() { return State().FNotOwner( 0 ); }
const BOOL FReader() { return State().FOwner( 1 ); }
const BOOL FNotReader() { return State().FNotOwner( 1 ); }
// debugging support
void Dump( CDumpContext& dc ) const;
private:
// member functions
// operators
CReaderWriterLock& operator=( CReaderWriterLock& ); // disallowed
// verification
int _StateFromControlWord( const ControlWord cw );
BOOL _FValidStateTransition( const ControlWord cwBI,
const ControlWord cwAI,
const TransitionReason tr );
// manipulators
void _EnterAsWriter( const ControlWord cwBIOld );
void _EnterAsReader( const ControlWord cwBIOld );
void _UpdateQuiescedOwnerCountAsWriter( const DWORD cOwnerDelta );
void _UpdateQuiescedOwnerCountAsReader( const DWORD cOwnerDelta );
};
// enters the reader / writer lock as a writer, waiting forever if necessary
//
// NOTE: trying to enter the lock as a writer when you already own the lock
// as a reader will cause a deadlock.
inline void CReaderWriterLock::EnterAsWriter()
{
// we had better not already own this lock as either a reader or a writer
OSSYNCAssert( State().FNotOwner( 0 ) );
OSSYNCAssert( State().FNotOwner( 1 ) );
// check for deadlock
OSSYNCAssertSzRTL( State().FCanBeWaiter(), "Potential Deadlock Detected (Rank Violation)");
// try forever until we successfully change the lock state
OSSYNC_FOREVER
{
// read the current state of the control word as our expected before image
const ControlWord cwBIExpected = State().m_cw;
// compute the after image of the control word by performing the global
// transform for the EnterAsWriter state transition
const ControlWord cwAI = ControlWord( ( ( cwBIExpected & ( ( LONG_PTR( long( cwBIExpected ) ) >> 31 ) |
0x0000FFFF ) ) | 0x80000000 ) + 0x00000001 );
// validate the transaction
OSSYNCAssert( _FValidStateTransition( cwBIExpected, cwAI, trEnterAsWriter ) );
// attempt to perform the transacted state transition on the control word
const ControlWord cwBI = AtomicCompareExchange( (long*)&State().m_cw, cwBIExpected, cwAI );
// the transaction failed or writers are quiesced from ownership or a
// writer already owns the lock
if ( ( cwBI ^ cwBIExpected ) | ( cwBI & 0x0000FFFF ) )
{
// the transaction failed because another context changed the control word
if ( cwBI != cwBIExpected )
{
// try again
continue;
}
// the transaction succeeded but writers are quiesced from ownership
// or a writer already owns the lock
else
{
// this is a contention for writers
State().SetContend( 0 );
// wait to own the lock as a writer
_EnterAsWriter( cwBI );
// we now own the lock, so we're done
break;
}
}
// the transaction succeeded and writers were not quiesced from ownership
// and a writer did not already own the lock
else
{
// we now own the lock, so we're done
break;
}
}
// we are now an owner of the lock for writers
State().SetAcquire( 0 );
State().AddAsOwner( 0 );
State().StartHold( 0 );
}
// tries to enter the reader / writer lock as a writer without waiting or
// spinning, returning fFalse if writers are quiesced from ownership or
// another writer already owns the lock
//
// NOTE: trying to enter the lock as a writer when you already own the lock
// as a reader will cause a deadlock.
inline const BOOL CReaderWriterLock::FTryEnterAsWriter()
{
// we had better not already own this lock as either a reader or a writer
OSSYNCAssert( State().FNotOwner( 0 ) );
OSSYNCAssert( State().FNotOwner( 1 ) );
// try forever until we successfully change the lock state
OSSYNC_FOREVER
{
// read the current state of the control word as our expected before image
ControlWord cwBIExpected = State().m_cw;
// change the expected before image so that the transaction will only work if
// writers were not quiesced from ownership and another writer doesn't already
// own the lock
cwBIExpected = cwBIExpected & 0xFFFF0000;
// compute the after image of the control word by performing the global
// transform for the EnterAsWriter state transition
const ControlWord cwAI = ControlWord( ( ( cwBIExpected & ( ( LONG_PTR( long( cwBIExpected ) ) >> 31 ) |
0x0000FFFF ) ) | 0x80000000 ) + 0x00000001 );
// validate the transaction
OSSYNCAssert( _StateFromControlWord( cwBIExpected ) < 0 ||
_FValidStateTransition( cwBIExpected, cwAI, trEnterAsWriter ) );
// attempt to perform the transacted state transition on the control word
const ControlWord cwBI = AtomicCompareExchange( (long*)&State().m_cw, cwBIExpected, cwAI );
// the transaction failed
if ( cwBI != cwBIExpected )
{
// the transaction failed because writers were quiesced from ownership
// or another writer already owns the lock
if ( cwBI & 0x0000FFFF )
{
// return failure
return fFalse;
}
// the transaction failed because another context changed the control word
else
{
// try again
continue;
}
}
// the transaction succeeded
else
{
// we are now an owner of the lock for writers
State().SetAcquire( 0 );
State().AddAsOwner( 0 );
State().StartHold( 0 );
// return success
return fTrue;
}
}
}
// leaves the reader / writer lock as a writer
//
// NOTE: you must leave the lock as a member of the same group for which you entered
// the lock or deadlocks may occur
inline void CReaderWriterLock::LeaveAsWriter()
{
// we are no longer an owner of the lock
State().RemoveAsOwner( 0 );
// we are no longer holding the lock
State().StopHold( 0 );
// try forever until we successfully change the lock state
OSSYNC_FOREVER
{
// read the current state of the control word as our expected before image
ControlWord cwBIExpected = State().m_cw;
// change the expected before image so that the transaction will only work if
// writers were not quiesced from ownership
cwBIExpected = cwBIExpected & 0xFFFF7FFF;
// compute the after image of the control word by performing the transform that
// will take us either from state 2 to state 0 or state 2 to state 2
ControlWord cwAI = cwBIExpected + 0xFFFFFFFF;
cwAI = cwAI - ( ( ( cwAI + 0xFFFFFFFF ) << 16 ) & 0x80000000 );
// validate the transaction
OSSYNCAssert( _StateFromControlWord( cwBIExpected ) < 0 ||
_FValidStateTransition( cwBIExpected, cwAI, trLeaveAsWriter ) );
// attempt to perform the transacted state transition on the control word
const ControlWord cwBI = AtomicCompareExchange( (long*)&State().m_cw, cwBIExpected, cwAI );
// the transaction failed
if ( cwBI != cwBIExpected )
{
// the transaction failed because writers were quiesced from ownership
if ( cwBI & 0x00008000 )
{
// leave the lock as a quiesced owner
_UpdateQuiescedOwnerCountAsWriter( 0xFFFFFFFF );
// we're done
break;
}
// the transaction failed because another context changed the control word
else
{
// try again
continue;
}
}
// the transaction succeeded
else
{
// there were other writers waiting for ownership of the lock
if ( cwAI & 0x00007FFF )
{
// release the next writer into ownership of the lock
State().m_semWriter.Release();
}
// we're done
break;
}
}
}
// enters the reader / writer lock as a reader, waiting forever if necessary
//
// NOTE: trying to enter the lock as a reader when you already own the lock
// as a writer will cause a deadlock.
inline void CReaderWriterLock::EnterAsReader()
{
// we had better not already own this lock as either a reader or a writer
OSSYNCAssert( State().FNotOwner( 0 ) );
OSSYNCAssert( State().FNotOwner( 1 ) );
// check for deadlock
OSSYNCAssertSzRTL( State().FCanBeWaiter(), "Potential Deadlock Detected (Rank Violation)" );
// try forever until we successfully change the lock state
OSSYNC_FOREVER
{
// read the current state of the control word as our expected before image
const ControlWord cwBIExpected = State().m_cw;
// compute the after image of the control word by performing the global
// transform for the EnterAsReader state transition
const ControlWord cwAI = ( cwBIExpected & 0xFFFF7FFF ) +
( ( cwBIExpected & 0x80008000 ) == 0x80000000 ?
0x00017FFF :
0x00018000 );
// validate the transaction
OSSYNCAssert( _FValidStateTransition( cwBIExpected, cwAI, trEnterAsReader ) );
// attempt to perform the transacted state transition on the control word
const ControlWord cwBI = AtomicCompareExchange( (long*)&State().m_cw, cwBIExpected, cwAI );
// the transaction failed or readers were quiesced from ownership
if ( ( cwBI ^ cwBIExpected ) | ( cwBI & 0x80000000 ) )
{
// the transaction failed because another context changed the control word
if ( cwBI != cwBIExpected )
{
// try again
continue;
}
// the transaction succeeded but readers were quiesced from ownership
else
{
// this is a contention for readers
State().SetContend( 1 );
// wait to own the lock as a reader
_EnterAsReader( cwBI );
// we now own the lock, so we're done
break;
}
}
// the transaction succeeded and readers were not quiesced from ownership
else
{
// we now own the lock, so we're done
break;
}
}
// we are now an owner of the lock for readers
State().SetAcquire( 1 );
State().AddAsOwner( 1 );
State().StartHold( 1 );
}
// tries to enter the reader / writer lock as a reader without waiting or
// spinning, returning fFalse if readers are quiesced from ownership
//
// NOTE: trying to enter the lock as a reader when you already own the lock
// as a writer will cause a deadlock.
inline const BOOL CReaderWriterLock::FTryEnterAsReader()
{
// we had better not already own this lock as either a reader or a writer
OSSYNCAssert( State().FNotOwner( 0 ) );
OSSYNCAssert( State().FNotOwner( 1 ) );
// try forever until we successfully change the lock state
OSSYNC_FOREVER
{
// read the current state of the control word as our expected before image
ControlWord cwBIExpected = State().m_cw;
// change the expected before image so that the transaction will only work if
// readers were not quiesced from ownership
cwBIExpected = cwBIExpected & 0x7FFFFFFF;
// compute the after image of the control word by performing the global
// transform for the EnterAsReader state transition
const ControlWord cwAI = ( cwBIExpected & 0xFFFF7FFF ) +
( ( cwBIExpected & 0x80008000 ) == 0x80000000 ?
0x00017FFF :
0x00018000 );
// validate the transaction
OSSYNCAssert( _StateFromControlWord( cwBIExpected ) < 0 ||
_FValidStateTransition( cwBIExpected, cwAI, trEnterAsReader ) );
// attempt to perform the transacted state transition on the control word
const ControlWord cwBI = AtomicCompareExchange( (long*)&State().m_cw, cwBIExpected, cwAI );
// the transaction failed
if ( cwBI != cwBIExpected )
{
// the transaction failed because readers were quiesced from ownership
if ( cwBI & 0x80000000 )
{
// return failure
return fFalse;
}
// the transaction failed because another context changed the control word
else
{
// try again
continue;
}
}
// the transaction succeeded
else
{
// we are now an owner of the lock for readers
State().SetAcquire( 1 );
State().AddAsOwner( 1 );
State().StartHold( 1 );
// return success
return fTrue;
}
}
}
// leaves the reader / writer lock as a reader
//
// NOTE: you must leave the lock as a member of the same group for which you entered
// the lock or deadlocks may occur
inline void CReaderWriterLock::LeaveAsReader()
{
// we are no longer an owner of the lock
State().RemoveAsOwner( 1 );
// we are no longer holding the lock
State().StopHold( 1 );
// try forever until we successfully change the lock state
OSSYNC_FOREVER
{
// read the current state of the control word as our expected before image
ControlWord cwBIExpected = State().m_cw;
// change the expected before image so that the transaction will only work if
// readers were not quiesced from ownership
cwBIExpected = cwBIExpected & 0x7FFFFFFF;
// compute the after image of the control word by performing the transform that
// will take us either from state 1 to state 0 or state 1 to state 1
const ControlWord cwAI = ControlWord( cwBIExpected + 0xFFFF0000 +
( ( LONG_PTR( long( cwBIExpected + 0xFFFE0000 ) ) >> 31 ) & 0xFFFF8000 ) );
// validate the transaction
OSSYNCAssert( _StateFromControlWord( cwBIExpected ) < 0 ||
_FValidStateTransition( cwBIExpected, cwAI, trLeaveAsReader ) );
// attempt to perform the transacted state transition on the control word
const ControlWord cwBI = AtomicCompareExchange( (long*)&State().m_cw, cwBIExpected, cwAI );
// the transaction failed
if ( cwBI != cwBIExpected )
{
// the transaction failed because readers were quiesced from ownership
if ( cwBI & 0x80000000 )
{
// leave the lock as a quiesced owner
_UpdateQuiescedOwnerCountAsReader( 0xFFFFFFFF );
// we're done
break;
}
// the transaction failed because another context changed the control word
else
{
// try again
continue;
}
}
// the transaction succeeded
else
{
// we're done
break;
}
}
}
// Metered Section
class CMeteredSection
: private CSyncObject
{
public:
// types
// control word
typedef DWORD ControlWord;
// callback used to notify the user when a partition of the current
// group has been completed
typedef void (*PFNPARTITIONCOMPLETE)( const DWORD_PTR dwCompletionKey );
// member functions
// ctors / dtors
CMeteredSection();
~CMeteredSection();
// manipulators
int Enter();
void Leave( const int group );
void Partition( const PFNPARTITIONCOMPLETE pfnPartitionComplete = NULL,
const DWORD_PTR dwCompletionKey = NULL );
// accessors
int ActiveGroup() { return int( m_groupCurrent ); }
// debugging support
void Dump( CDumpContext& dc ) const;
private:
// data members
// partition complete callback
PFNPARTITIONCOMPLETE m_pfnPartitionComplete;
DWORD_PTR m_dwPartitionCompleteKey;
// control word
union
{
volatile ControlWord m_cw;
struct
{
volatile DWORD m_cCurrent:15;
volatile DWORD m_groupCurrent:1;
volatile DWORD m_cQuiesced:15;
volatile DWORD m_groupQuiesced:1;
};
};
// member functions
// operators
CMeteredSection& operator=( CMeteredSection& ); // disallowed
// manipulators
void _PartitionAsync( const PFNPARTITIONCOMPLETE pfnPartitionComplete,
const DWORD_PTR dwCompletionKey );
static void _PartitionSyncComplete( CAutoResetSignal* const pasig );
};
// ctor
inline CMeteredSection::CMeteredSection()
: m_cw( 0x80000000 ),
m_pfnPartitionComplete( NULL ),
m_dwPartitionCompleteKey( NULL )
{
}
// dtor
inline CMeteredSection::~CMeteredSection()
{
}
// enter the metered section, returning the group id for which the current
// context has acquired the metered section
inline int CMeteredSection::Enter()
{
// increment the count for the current group
const DWORD cwDelta = 0x00000001;
const DWORD cwBI = AtomicExchangeAdd( (long*) &m_cw, (long) cwDelta );
// there had better not be any overflow!
OSSYNCAssert( ( cwBI & 0x80008000 ) == ( ( cwBI + cwDelta ) & 0x80008000 ) );
// return the group we referenced
return int( ( cwBI >> 15 ) & 1 );
}
// leave the metered section using the specified group id. this group id must
// be the group id returned by the corresponding call to Enter()
inline void CMeteredSection::Leave( const int group )
{
// try forever until we successfully leave
OSSYNC_FOREVER
{
// read the current state of the control word as our expected before image
const ControlWord cwBIExpected = m_cw;
// compute the after image of the control word
const ControlWord cwAI = cwBIExpected - ( ( ( ( cwBIExpected & 0x80008000 ) ^ 0x80008000 ) >> 15 ) ^ ( ( group << 16 ) | group ) );
// there had better not be any underflow!
OSSYNCAssert( ( cwBIExpected & 0x80008000 ) == ( cwAI & 0x80008000 ) );
// attempt to perform the transacted state transition on the control word
const ControlWord cwBI = AtomicCompareExchange( (long*)&m_cw, cwBIExpected, cwAI );
// the transaction failed
if ( cwBI != cwBIExpected )
{
// try again
continue;
}
// the transaction succeeded
else
{
// our update resulted in a partition completion
if ( ( cwBI & 0x7FFF0000 ) + ( cwAI & 0x7FFF0000 ) == 0x00010000 )
{
// execute the completion function
m_pfnPartitionComplete( m_dwPartitionCompleteKey );
}
// we're done
break;
}
}
}
// partitions all execution contexts entering the metered section into two groups.
// all contexts entering the section after this call are in a different group than
// all the contexts that entered the section before this call. when all contexts
// in the old group have left the metered section, the partition will be completed
//
// there are two ways to complete a partition: asynchronously and synchronously.
// asynchronous operation is selected if a completion function and key are provided.
// the last thread to leave the metered section for the previous group will
// execute asynchronous completions
//
// NOTE: it is illegal to have multiple concurrent partition requests. any attempt
// to do so will result in undefined behavior
inline void CMeteredSection::Partition( const PFNPARTITIONCOMPLETE pfnPartitionComplete,
const DWORD_PTR dwCompletionKey )
{
// this is an async partition request
if ( pfnPartitionComplete )
{
// execute the parititon request
_PartitionAsync( pfnPartitionComplete, dwCompletionKey );
}
// this is a sync partition request
else
{
// create a signal to wait for completion
CAutoResetSignal asig( CSyncBasicInfo( "CMeteredSection::Partition()::asig" ) );
// issue an async partition request
_PartitionAsync( PFNPARTITIONCOMPLETE( _PartitionSyncComplete ),
DWORD_PTR( &asig ) );
// wait for the partition to complete
asig.Wait();
}
}
// performs an async partition request
inline void CMeteredSection::_PartitionAsync( const PFNPARTITIONCOMPLETE pfnPartitionComplete,
const DWORD_PTR dwCompletionKey )
{
// we should not be calling this if there is already a partition pending
OSSYNCAssertSz( !( m_cw & 0x7FFF0000 ), "Illegal concurrent use of Partitioning" );
// save the callback and key for the future completion
m_pfnPartitionComplete = pfnPartitionComplete;
m_dwPartitionCompleteKey = dwCompletionKey;
// try forever until we successfully partition
OSSYNC_FOREVER
{
// read the current state of the control word as our expected before image
const ControlWord cwBIExpected = m_cw;
// compute the after image of the control word
const ControlWord cwAI = ( cwBIExpected >> 16 ) | ( cwBIExpected << 16 );
// attempt to perform the transacted state transition on the control word
const ControlWord cwBI = AtomicCompareExchange( (long*)&m_cw, cwBIExpected, cwAI );
// the transaction failed
if ( cwBI != cwBIExpected )
{
// try again
continue;
}
// the transaction succeeded
else
{
// our update resulted in a partition completion
if ( !( cwAI & 0x7FFF0000 ) )
{
// execute the completion function
m_pfnPartitionComplete( m_dwPartitionCompleteKey );
}
// we're done
break;
}
}
}
// partition completion function used for sync partition requests
inline void CMeteredSection::_PartitionSyncComplete( CAutoResetSignal* const pasig )
{
// set the signal
pasig->Set();
}
// S / X / W Latch Performance Information
class CSXWLatchPerfInfo
: public CSyncPerfWait,
public CSyncPerfAcquire,
public CLockPerfHold
{
public:
// member functions
// ctors / dtors
CSXWLatchPerfInfo()
{
}
// debugging support
void Dump( CDumpContext& dc ) const;
};
// S / X / W Latch Group Information
class CSXWLatchGroupInfo
{
public:
// member functions
// ctors / dtors
CSXWLatchGroupInfo() {}
~CSXWLatchGroupInfo() {}
// manipulators
void StartWait( const int iGroup ) { m_rginfo[iGroup].StartWait(); }
void StopWait( const int iGroup ) { m_rginfo[iGroup].StopWait(); }
void SetAcquire( const int iGroup ) { m_rginfo[iGroup].SetAcquire(); }
void SetContend( const int iGroup ) { m_rginfo[iGroup].SetContend(); }
void StartHold( const int iGroup ) { m_rginfo[iGroup].StartHold(); }
void StopHold( const int iGroup ) { m_rginfo[iGroup].StopHold(); }
// accessors
#ifdef SYNC_ANALYZE_PERFORMANCE
QWORD CWaitTotal( const int iGroup ) const { return m_rginfo[iGroup].CWaitTotal(); }
double CsecWaitElapsed( const int iGroup ) const { return m_rginfo[iGroup].CsecWaitElapsed(); }
QWORD CAcquireTotal( const int iGroup ) const { return m_rginfo[iGroup].CAcquireTotal(); }
QWORD CContendTotal( const int iGroup ) const { return m_rginfo[iGroup].CContendTotal(); }
QWORD CHoldTotal( const int iGroup ) const { return m_rginfo[iGroup].CHoldTotal(); }
double CsecHoldElapsed( const int iGroup ) const { return m_rginfo[iGroup].CsecHoldElapsed(); }
#endif // SYNC_ANALYZE_PERFORMANCE
// debugging support
void Dump( CDumpContext& dc ) const;
private:
// member functions
// operators
CSXWLatchGroupInfo& operator=( CSXWLatchGroupInfo& ); // disallowed
// data members
// performance info for each group
CSXWLatchPerfInfo m_rginfo[3];
};
// S / X / W Latch Information
class CSXWLatchInfo
: public CLockBasicInfo,
public CSXWLatchGroupInfo,
public CLockDeadlockDetectionInfo
{
public:
// member functions
// ctors / dtors
CSXWLatchInfo( const CLockBasicInfo& lbi )
: CLockBasicInfo( lbi ),
CLockDeadlockDetectionInfo( (CLockBasicInfo&) *this )
{
}
// debugging support
void Dump( CDumpContext& dc ) const;
};
// S / X / W Latch State
class CSXWLatchState
{
public:
// types
// control word
typedef DWORD ControlWord;
// member functions
// ctors / dtors
CSXWLatchState( const CSyncBasicInfo& sbi );
~CSXWLatchState();
// debugging support
void Dump( CDumpContext& dc ) const;
// data members
// control word
union
{
volatile ControlWord m_cw;
struct
{
volatile DWORD m_cOOWS:15;
volatile DWORD m_fQS:1;
volatile DWORD m_cOAWX:16;
};
};
// quiesced share latch count
volatile DWORD m_cQS;
// sempahore used to wait for the shared latch
CSemaphore m_semS;
// sempahore used to wait for the exclusive latch
CSemaphore m_semX;
// sempahore used to wait for the write latch
CSemaphore m_semW;
private:
// member functions
// operators
CSXWLatchState& operator=( CSXWLatchState& ); // disallowed
};
// S / X / W Latch
class CSXWLatch
: private CLockObject,
private CEnhancedStateContainer< CSXWLatchState, CSyncBasicInfo, CSXWLatchInfo, CLockBasicInfo >
{
public:
// types
// control word
typedef CSXWLatchState::ControlWord ControlWord;
// API Error Codes
enum ERR
{
errSuccess,
errWaitForSharedLatch,
errWaitForExclusiveLatch,
errWaitForWriteLatch,
errLatchConflict
};
// member functions
// ctors / dtors
CSXWLatch( const CLockBasicInfo& lbi );
~CSXWLatch();
// manipulators
ERR ErrAcquireSharedLatch();
ERR ErrTryAcquireSharedLatch();
ERR ErrAcquireExclusiveLatch();
ERR ErrTryAcquireExclusiveLatch();
ERR ErrTryAcquireWriteLatch();
ERR ErrUpgradeSharedLatchToExclusiveLatch();
ERR ErrUpgradeSharedLatchToWriteLatch();
ERR ErrUpgradeExclusiveLatchToWriteLatch();
ERR ErrTryUpgradeSharedLatchToWriteLatch();
void DowngradeWriteLatchToExclusiveLatch();
void DowngradeWriteLatchToSharedLatch();
void DowngradeExclusiveLatchToSharedLatch();
void ReleaseWriteLatch();
void ReleaseExclusiveLatch();
void ReleaseSharedLatch();
void WaitForSharedLatch();
void WaitForExclusiveLatch();
void WaitForWriteLatch();
void ClaimOwnership( const DWORD group );
void ReleaseOwnership( const DWORD group );
// accessors
BOOL FOwnSharedLatch() { return State().FOwner( 0 ); }
BOOL FNotOwnSharedLatch() { return State().FNotOwner( 0 ); }
BOOL FOwnExclusiveLatch() { return State().FOwner( 1 ); }
BOOL FNotOwnExclusiveLatch() { return State().FNotOwner( 1 ); }
BOOL FOwnWriteLatch() { return State().FOwner( 2 ); }
BOOL FNotOwnWriteLatch() { return State().FNotOwner( 2 ); }
// debugging support
void Dump( CDumpContext& dc ) const;
private:
// member functions
// operators
CSXWLatch& operator=( CSXWLatch& ); // disallowed
// manipulators
void _UpdateQuiescedSharedLatchCount( const DWORD cQSDelta );
};
// declares the current context as an owner or waiter of a shared latch. if
// the shared latch is acquired immediately, errSuccess will be returned. if
// the shared latch is not acquired immediately, errWaitForSharedLatch will be
// returned and WaitForSharedLatch() must be called to gain ownership of the
// shared latch
inline CSXWLatch::ERR CSXWLatch::ErrAcquireSharedLatch()
{
// we had better not already have a shared, exclusive, or write latch
OSSYNCAssert( FNotOwnSharedLatch() );
OSSYNCAssert( FNotOwnExclusiveLatch() );
OSSYNCAssert( FNotOwnWriteLatch() );
// add ourself as an owner or waiter for the shared latch
const ControlWord cwDelta = 0x00000001;
const ControlWord cwBI = AtomicExchangeAdd( (long*)&State().m_cw, cwDelta );
// shared latches are quiesced
if ( cwBI & 0x00008000 )
{
// this is a contention for a shared latch
State().SetContend( 0 );
// we are now a waiter for the shared latch
State().AddAsWaiter( 0 );
State().StartWait( 0 );
// we will need to block
return errWaitForSharedLatch;
}
// shared latches are not quiesced
else
{
// we are now an owner of a shared latch
State().SetAcquire( 0 );
State().AddAsOwner( 0 );
State().StartHold( 0 );
// we now own the shared latch
return errSuccess;
}
}
// tries to declare the current context as an owner of a shared latch. if
// the shared latch is acquired immediately, errSuccess will be returned. if
// the shared latch is not acquired immediately, errLatchConflict will be
// returned
inline CSXWLatch::ERR CSXWLatch::ErrTryAcquireSharedLatch()
{
// we had better not already have a shared, exclusive, or write latch
OSSYNCAssert( FNotOwnSharedLatch() );
OSSYNCAssert( FNotOwnExclusiveLatch() );
OSSYNCAssert( FNotOwnWriteLatch() );
// try forever until we successfully change the latch state
OSSYNC_FOREVER
{
// read the current state of the control word as our expected before image
ControlWord cwBIExpected = State().m_cw;
// change the expected before image so that the transaction will only work if
// shared latches are not quiesced
cwBIExpected = cwBIExpected & 0xFFFF7FFF;
// compute the after image of the control word by performing the transform
// that will acquire a shared latch iff shared latches are not quiesced
const ControlWord cwAI = cwBIExpected + 0x00000001;
// attempt to perform the transacted state transition on the control word
const ControlWord cwBI = AtomicCompareExchange( (long*)&State().m_cw, cwBIExpected, cwAI );
// the transaction failed
if ( cwBI != cwBIExpected )
{
// the transaction failed because shared latches were quiesced
if ( cwBI & 0x00008000 )
{
// this is a contention for the shared latch
State().SetContend( 0 );
// this is a latch conflict
return errLatchConflict;
}
// the transaction failed because another context changed the control
// word
else
{
// try again
continue;
}
}
// the transaction succeeded
else
{
// we are now an owner of a shared latch
State().SetAcquire( 0 );
State().AddAsOwner( 0 );
State().StartHold( 0 );
// we now own the shared latch
return errSuccess;
}
}
}
// declares the current context as an owner or waiter of the exclusive latch.
// if the exclusive latch is acquired immediately, errSuccess will be returned.
// if the exclusive latch is not acquired immediately, errWaitForExclusiveLatch
// will be returned and WaitForExclusiveLatch() must be called to gain ownership
// of the exclusive latch
inline CSXWLatch::ERR CSXWLatch::ErrAcquireExclusiveLatch()
{
// we had better not already have a shared, exclusive, or write latch
OSSYNCAssert( FNotOwnSharedLatch() );
OSSYNCAssert( FNotOwnExclusiveLatch() );
OSSYNCAssert( FNotOwnWriteLatch() );
// add ourself as an owner or waiter for the exclusive latch
const ControlWord cwDelta = 0x00010000;
const ControlWord cwBI = AtomicExchangeAdd( (long*)&State().m_cw, cwDelta );
// we are not the owner of the exclusive latch
if ( cwBI & 0xFFFF0000 )
{
// this is a contention for the exclusive latch
State().SetContend( 1 );
// we are now a waiter for the exclusive latch
State().AddAsWaiter( 1 );
State().StartWait( 1 );
// we will need to block
return errWaitForExclusiveLatch;
}
// we are the owner of the exclusive latch
else
{
// we are now an owner of the exclusive latch
State().SetAcquire( 1 );
State().AddAsOwner( 1 );
State().StartHold( 1 );
// we now own the exclusive latch
return errSuccess;
}
}
// tries to declare the current context as an owner of the exclusive latch. if
// the exclusive latch is acquired immediately, errSuccess will be returned. if
// the exclusive latch is not acquired immediately, errLatchConflict will be
// returned
inline CSXWLatch::ERR CSXWLatch::ErrTryAcquireExclusiveLatch()
{
// we had better not already have a shared, exclusive, or write latch
OSSYNCAssert( FNotOwnSharedLatch() );
OSSYNCAssert( FNotOwnExclusiveLatch() );
OSSYNCAssert( FNotOwnWriteLatch() );
// try forever until we successfully change the latch state
OSSYNC_FOREVER
{
// read the current state of the control word as our expected before image
ControlWord cwBIExpected = State().m_cw;
// change the expected before image so that the transaction will only work if
// the exclusive latch is not already owned
cwBIExpected = cwBIExpected & 0x0000FFFF;
// compute the after image of the control word by performing the transform
// that will acquire the exclusive latch iff it is not already owned
const ControlWord cwAI = cwBIExpected + 0x00010000;
// attempt to perform the transacted state transition on the control word
const ControlWord cwBI = AtomicCompareExchange( (long*)&State().m_cw, cwBIExpected, cwAI );
// the transaction failed
if ( cwBI != cwBIExpected )
{
// the transaction failed because the exclusive latch was already
// owned
if ( cwBI & 0xFFFF0000 )
{
// this is a contention for the exclusive latch
State().SetContend( 1 );
// this is a latch conflict
return errLatchConflict;
}
// the transaction failed because another context changed the control
// word
else
{
// try again
continue;
}
}
// the transaction succeeded
else
{
// we are now an owner of the exclusive latch
State().SetAcquire( 1 );
State().AddAsOwner( 1 );
State().StartHold( 1 );
// we now own the exclusive latch
return errSuccess;
}
}
}
// tries to declare the current context as an owner of the write latch. if
// the write latch is acquired immediately, errSuccess will be returned. if
// the write latch is not acquired immediately, errLatchConflict will be
// returned. note that a latch conflict will effectively occur if any other
// context currently owns or is waiting to own any type of latch
inline CSXWLatch::ERR CSXWLatch::ErrTryAcquireWriteLatch()
{
// we had better not already have a shared, exclusive, or write latch
OSSYNCAssert( FNotOwnSharedLatch() );
OSSYNCAssert( FNotOwnExclusiveLatch() );
OSSYNCAssert( FNotOwnWriteLatch() );
// try forever until we successfully change the latch state
OSSYNC_FOREVER
{
// set the expected before image so that the transaction will only work if
// no other context currently owns or is waiting to own any type of latch
const ControlWord cwBIExpected = 0x00000000;
// set the after image of the control word to a single write latch
const ControlWord cwAI = 0x00018000;
// attempt to perform the transacted state transition on the control word
const ControlWord cwBI = AtomicCompareExchange( (long*)&State().m_cw, cwBIExpected, cwAI );
// the transaction failed
if ( cwBI != cwBIExpected )
{
// this is a contention for the write latch
State().SetContend( 2 );
// this is a latch conflict
return errLatchConflict;
}
// the transaction succeeded
else
{
// we are now an owner of the write latch
State().SetAcquire( 2 );
State().AddAsOwner( 2 );
State().StartHold( 2 );
// we now own the write latch
return errSuccess;
}
}
}
// attempts to upgrade a shared latch to the exclusive latch. if the exclusive
// latch is not available, errLatchConflict will be returned. if the exclusive
// latch is available, it will be acquired and errSuccess will be returned
inline CSXWLatch::ERR CSXWLatch::ErrUpgradeSharedLatchToExclusiveLatch()
{
// we had better already have only a shared latch
OSSYNCAssert( FOwnSharedLatch() );
OSSYNCAssert( FNotOwnExclusiveLatch() );
OSSYNCAssert( FNotOwnWriteLatch() );
// try forever until we successfully change the latch state
OSSYNC_FOREVER
{
// read the current state of the control word as our expected before image
ControlWord cwBIExpected = State().m_cw;
// change the expected before image so that the transaction will only work if
// the exclusive latch is not already owned
cwBIExpected = cwBIExpected & 0x0000FFFF;
// compute the after image of the control word by performing the transform
// that will set an exclusive latch iff there is no current owner of the
// exclusive latch and release our shared latch
const ControlWord cwAI = cwBIExpected + 0x0000FFFF;
// attempt to perform the transacted state transition on the control word
const ControlWord cwBI = AtomicCompareExchange( (long*)&State().m_cw, cwBIExpected, cwAI );
// the transaction failed
if ( cwBI != cwBIExpected )
{
// the transaction failed because the exclusive latch was already owned
if ( cwBI & 0xFFFF0000 )
{
// this is a contention for the exclusive latch
State().SetContend( 1 );
// this is a latch conflict
return errLatchConflict;
}
// the transaction failed because another context changed the control
// word
else
{
// try again
continue;
}
}
// the transaction succeeded
else
{
// we are no longer an owner of a shared latch
State().RemoveAsOwner( 0 );
State().StopHold( 0 );
// we are now an owner of the exclusive latch
State().SetAcquire( 1 );
State().AddAsOwner( 1 );
State().StartHold( 1 );
// we now own the exclusive latch
return errSuccess;
}
}
}
// attempts to upgrade a shared latch to the write latch. if the write latch
// is not available, errLatchConflict will be returned. if the write latch is
// available, it will be acquired. if the write latch is acquired immediately,
// errSuccess will be returned. if the write latch is not acquired immediately,
// errWaitForWriteLatch will be returned and WaitForWriteLatch() must be called
// to gain ownership of the write latch
inline CSXWLatch::ERR CSXWLatch::ErrUpgradeSharedLatchToWriteLatch()
{
// we had better already have only a shared latch
OSSYNCAssert( FOwnSharedLatch() );
OSSYNCAssert( FNotOwnExclusiveLatch() );
OSSYNCAssert( FNotOwnWriteLatch() );
// try forever until we successfully change the latch state
OSSYNC_FOREVER
{
// read the current state of the control word as our expected before image
ControlWord cwBIExpected = State().m_cw;
// change the expected before image so that the transaction will only work if
// the exclusive latch is not already owned
cwBIExpected = cwBIExpected & 0x0000FFFF;
// compute the after image of the control word by performing the transform
// that will set a write latch iff there is no current owner of the
// exclusive latch, quiescing any remaining shared latches
const ControlWord cwAI = 0x00018000;
// attempt to perform the transacted state transition on the control word
const ControlWord cwBI = AtomicCompareExchange( (long*)&State().m_cw, cwBIExpected, cwAI );
// the transaction failed
if ( cwBI != cwBIExpected )
{
// the transaction failed because the write latch was already owned
if ( cwBI & 0xFFFF0000 )
{
// this is a contention for the write latch
State().SetContend( 2 );
// this is a latch conflict
return errLatchConflict;
}
// the transaction failed because another context changed the control
// word
else
{
// try again
continue;
}
}
// the transaction succeeded
else
{
// shared latches were just quiesced
if ( cwBI != 0x00000001 )
{
// we are no longer an owner of a shared latch
State().RemoveAsOwner( 0 );
State().StopHold( 0 );
// update the quiesced shared latch count with the shared latch count
// that we displaced from the control word, possibly releasing waiters.
// we update the count as if we we had a shared latch as a write latch
// (namely ours) can be released. don't forget to deduct our shared
// latch from this count
_UpdateQuiescedSharedLatchCount( cwBI - 1 );
// we are now a waiter for the write latch
State().AddAsWaiter( 2 );
State().StartWait( 2 );
// we will need to block
return errWaitForWriteLatch;
}
// shared latches were not just quiesced
else
{
// we are no longer an owner of a shared latch
State().RemoveAsOwner( 0 );
State().StopHold( 0 );
// we are now an owner of the write latch
State().SetAcquire( 2 );
State().AddAsOwner( 2 );
State().StartHold( 2 );
// we now own the write latch
return errSuccess;
}
}
}
}
// upgrades the exclusive latch to the write latch. if the write latch is
// acquired immediately, errSuccess will be returned. if the write latch is
// not acquired immediately, errWaitForWriteLatch is returned and
// WaitForWriteLatch() must be called to gain ownership of the write latch
inline CSXWLatch::ERR CSXWLatch::ErrUpgradeExclusiveLatchToWriteLatch()
{
// we had better already have only an exclusive latch
OSSYNCAssert( FNotOwnSharedLatch() );
OSSYNCAssert( FOwnExclusiveLatch() );
OSSYNCAssert( FNotOwnWriteLatch() );
// we are no longer an owner of the exclusive latch
State().RemoveAsOwner( 1 );
State().StopHold( 1 );
// try forever until we successfully change the latch state
OSSYNC_FOREVER
{
// read the current state of the control word as our expected before image
const ControlWord cwBIExpected = State().m_cw;
// compute the after image of the control word by performing the transform that
// will quiesce shared latches by setting the fQS flag and removing the current
// shared latch count from the control word
const ControlWord cwAI = ( cwBIExpected & 0xFFFF0000 ) | 0x00008000;
// attempt to perform the transacted state transition on the control word
const ControlWord cwBI = AtomicCompareExchange( (long*)&State().m_cw, cwBIExpected, cwAI );
// the transaction failed
if ( cwBI != cwBIExpected )
{
// try again
continue;
}
// the transaction succeeded
else
{
// shared latches were just quiesced
if ( cwBI & 0x00007FFF )
{
// this is a contention for the write latch
State().SetContend( 2 );
// update the quiesced shared latch count with the shared latch
// count that we displaced from the control word, possibly
// releasing waiters. we update the count as if we we had a
// shared latch as a write latch (namely ours) can be released
_UpdateQuiescedSharedLatchCount( cwBI & 0x00007FFF );
// we are now a waiter for the write latch
State().AddAsWaiter( 2 );
State().StartWait( 2 );
// we will need to block
return errWaitForWriteLatch;
}
// shared latches were not just quiesced
else
{
// we are now an owner of the write latch
State().SetAcquire( 2 );
State().AddAsOwner( 2 );
State().StartHold( 2 );
// we now own the write latch
return errSuccess;
}
}
}
}
// tries to upgrade a shared latch owned by this context to the write latch.
// if the write latch is acquired immediately, errSuccess will be returned.
// if the write latch is not acquired immediately, errLatchConflict will be
// returned. note that a latch conflict will effectively occur if any other
// context currently owns or is waiting to own any type of latch
inline CSXWLatch::ERR CSXWLatch::ErrTryUpgradeSharedLatchToWriteLatch()
{
// we had better already have only a shared latch
OSSYNCAssert( FOwnSharedLatch() );
OSSYNCAssert( FNotOwnExclusiveLatch() );
OSSYNCAssert( FNotOwnWriteLatch() );
// try forever until we successfully change the latch state
OSSYNC_FOREVER
{
// set the expected before image so that the transaction will only work if
// we are the only owner of a latch and it is a share latch
const ControlWord cwBIExpected = 0x00000001;
// set the after image of the control word to a single write latch
const ControlWord cwAI = 0x00018000;
// attempt to perform the transacted state transition on the control word
const ControlWord cwBI = AtomicCompareExchange( (long*)&State().m_cw, cwBIExpected, cwAI );
// the transaction failed
if ( cwBI != cwBIExpected )
{
// this is a contention for the write latch
State().SetContend( 2 );
// this is a latch conflict
return errLatchConflict;
}
// the transaction succeeded
else
{
// we are no longer an owner of a shared latch
State().RemoveAsOwner( 0 );
State().StopHold( 0 );
// we are now an owner of the write latch
State().SetAcquire( 2 );
State().AddAsOwner( 2 );
State().StartHold( 2 );
// we now own the write latch
return errSuccess;
}
}
}
// releases the write latch in exchange for the exclusive latch
inline void CSXWLatch::DowngradeWriteLatchToExclusiveLatch()
{
// we had better already have only a write latch
OSSYNCAssert( FNotOwnSharedLatch() );
OSSYNCAssert( FNotOwnExclusiveLatch() );
OSSYNCAssert( FOwnWriteLatch() );
// stop quiescing shared latches by resetting the fQS flag
const ControlWord cwDelta = 0xFFFF8000;
const ControlWord cwBI = AtomicExchangeAdd( (long*)&State().m_cw, cwDelta );
// transfer ownership from the write latch to the exclusive latch
State().RemoveAsOwner( 2 );
State().StopHold( 2 );
State().SetAcquire( 1 );
State().AddAsOwner( 1 );
State().StartHold( 1 );
// release any quiesced shared latches
if ( cwBI & 0x00007FFF )
{
State().m_semS.Release( cwBI & 0x00007FFF );
}
}
// releases the write latch in exchange for a shared latch
inline void CSXWLatch::DowngradeWriteLatchToSharedLatch()
{
// we had better already have only a write latch
OSSYNCAssert( FNotOwnSharedLatch() );
OSSYNCAssert( FNotOwnExclusiveLatch() );
OSSYNCAssert( FOwnWriteLatch() );
// stop quiescing shared latches by resetting the fQS flag, release our
// exclusive latch, and acquire a shared latch
const ControlWord cwDelta = 0xFFFE8001;
const ControlWord cwBI = AtomicExchangeAdd( (long*)&State().m_cw, cwDelta );
// transfer ownership from the write latch to a shared latch
State().RemoveAsOwner( 2 );
State().StopHold( 2 );
State().SetAcquire( 0 );
State().AddAsOwner( 0 );
State().StartHold( 0 );
// release any quiesced shared latches
if ( cwBI & 0x00007FFF )
{
State().m_semS.Release( cwBI & 0x00007FFF );
}
// release a waiter for the exclusive latch, if any
if ( cwBI >= 0x00020000 )
{
State().m_semX.Release();
}
}
// releases the exclusive latch in exchange for a shared latch
inline void CSXWLatch::DowngradeExclusiveLatchToSharedLatch()
{
// we had better already have only an exclusive latch
OSSYNCAssert( FNotOwnSharedLatch() );
OSSYNCAssert( FOwnExclusiveLatch() );
OSSYNCAssert( FNotOwnWriteLatch() );
// release our exclusive latch and acquire a shared latch
const ControlWord cwDelta = 0xFFFF0001;
const ControlWord cwBI = AtomicExchangeAdd( (long*)&State().m_cw, cwDelta );
// transfer ownership from the exclusive latch to a shared latch
State().RemoveAsOwner( 1 );
State().StopHold( 1 );
State().SetAcquire( 0 );
State().AddAsOwner( 0 );
State().StartHold( 0 );
// release a waiter for the exclusive latch, if any
if ( cwBI >= 0x00020000 )
{
State().m_semX.Release();
}
}
// releases the write latch
inline void CSXWLatch::ReleaseWriteLatch()
{
// we had better already have only a write latch
OSSYNCAssert( FNotOwnSharedLatch() );
OSSYNCAssert( FNotOwnExclusiveLatch() );
OSSYNCAssert( FOwnWriteLatch() );
// stop quiescing shared latches by resetting the fQS flag and release our
// exclusive latch
const ControlWord cwDelta = 0xFFFE8000;
const ControlWord cwBI = AtomicExchangeAdd( (long*)&State().m_cw, cwDelta );
// release ownership of the write latch
State().RemoveAsOwner( 2 );
State().StopHold( 2 );
// release any quiesced shared latches
if ( cwBI & 0x00007FFF )
{
State().m_semS.Release( cwBI & 0x00007FFF );
}
// release a waiter for the exclusive latch, if any
if ( cwBI >= 0x00020000 )
{
State().m_semX.Release();
}
}
// releases the exclusive latch
inline void CSXWLatch::ReleaseExclusiveLatch()
{
// we had better already have only an exclusive latch
OSSYNCAssert( FNotOwnSharedLatch() );
OSSYNCAssert( FOwnExclusiveLatch() );
OSSYNCAssert( FNotOwnWriteLatch() );
// release our exclusive latch
const ControlWord cwDelta = 0xFFFF0000;
const ControlWord cwBI = AtomicExchangeAdd( (long*)&State().m_cw, cwDelta );
// release ownership of the exclusive latch
State().RemoveAsOwner( 1 );
State().StopHold( 1 );
// release a waiter for the exclusive latch, if any
if ( cwBI >= 0x00020000 )
{
State().m_semX.Release();
}
}
// releases a shared latch
inline void CSXWLatch::ReleaseSharedLatch()
{
// we had better already have only a shared latch
OSSYNCAssert( FOwnSharedLatch() );
OSSYNCAssert( FNotOwnExclusiveLatch() );
OSSYNCAssert( FNotOwnWriteLatch() );
// we are no longer an owner of a shared latch
State().RemoveAsOwner( 0 );
State().StopHold( 0 );
// try forever until we successfully change the latch state
OSSYNC_FOREVER
{
// read the current state of the control word as our expected before image
ControlWord cwBIExpected = State().m_cw;
// change the expected before image so that the transaction will only work if
// shared latches are not quiesced
cwBIExpected = cwBIExpected & 0xFFFF7FFF;
// compute the after image of the control word by performing the transform that
// will release our shared latch
const ControlWord cwAI = cwBIExpected + 0xFFFFFFFF;
// attempt to perform the transacted state transition on the control word
const ControlWord cwBI = AtomicCompareExchange( (long*)&State().m_cw, cwBIExpected, cwAI );
// the transaction failed
if ( cwBI != cwBIExpected )
{
// the transaction failed because shared latches were quiesced
if ( cwBI & 0x00008000 )
{
// leave the latch as a quiesced shared latch
_UpdateQuiescedSharedLatchCount( 0xFFFFFFFF );
// we're done
break;
}
// the transaction failed because another context changed the control word
else
{
// try again
continue;
}
}
// the transaction succeeded
else
{
// we're done
break;
}
}
}
// waits for ownership of a shared latch in response to receiving an
// errWaitForSharedLatch from the API. this function must not be called at any
// other time
inline void CSXWLatch::WaitForSharedLatch()
{
// check for deadlock
OSSYNCAssertSzRTL( State().FCanBeWaiter(), "Potential Deadlock Detected (Rank Violation)");
// we had better already be declared a waiter
OSSYNCAssert( State().FWaiter( 0 ) );
// wait for ownership of a shared latch on the shared latch semaphore
State().m_semS.Acquire();
State().StopWait( 0 );
State().RemoveAsWaiter( 0 );
State().SetAcquire( 0 );
State().AddAsOwner( 0 );
State().StartHold( 0 );
}
// waits for ownership of the exclusive latch in response to receiving an
// errWaitForExclusiveLatch from the API. this function must not be called at any
// other time
inline void CSXWLatch::WaitForExclusiveLatch()
{
// check for deadlock
OSSYNCAssertSzRTL( State().FCanBeWaiter(), "Potential Deadlock Detected (Rank Violation)");
// we had better already be declared a waiter
OSSYNCAssert( State().FWaiter( 1 ) );
// wait for ownership of the exclusive latch on the exclusive latch semaphore
State().m_semX.Acquire();
State().StopWait( 1 );
State().RemoveAsWaiter( 1 );
State().SetAcquire( 1 );
State().AddAsOwner( 1 );
State().StartHold( 1 );
}
// waits for ownership of the write latch in response to receiving an
// errWaitForWriteLatch from the API. this function must not be called at any
// other time
inline void CSXWLatch::WaitForWriteLatch()
{
// check for deadlock
OSSYNCAssertSzRTL( State().FCanBeWaiter(), "Potential Deadlock Detected (Rank Violation)");
// we had better already be declared a waiter
OSSYNCAssert( State().FWaiter( 2 ) );
// wait for ownership of the write latch on the write latch semaphore
State().m_semW.Acquire();
State().StopWait( 2 );
State().RemoveAsWaiter( 2 );
State().SetAcquire( 2 );
State().AddAsOwner( 2 );
State().StartHold( 2 );
}
// claims ownership of the latch for the specified group for deadlock detection
inline void CSXWLatch::ClaimOwnership( const DWORD group )
{
State().AddAsOwner( group );
}
// releases ownership of the latch for the specified group for deadlock detection
inline void CSXWLatch::ReleaseOwnership( const DWORD group )
{
State().RemoveAsOwner( group );
}
// updates the quiesced shared latch count, possibly releasing a waiter for
// the write latch
inline void CSXWLatch::_UpdateQuiescedSharedLatchCount( const DWORD cQSDelta )
{
// update the quiesced shared latch count using the provided delta
const DWORD cQSBI = AtomicExchangeAdd( (long*)&State().m_cQS, cQSDelta );
const DWORD cQSAI = cQSBI + cQSDelta;
// our update resulted in a zero quiesced shared latch count
if ( !cQSAI )
{
// release the waiter for the write latch
State().m_semW.Release();
}
}
// init sync subsystem
const BOOL OSSYNCAPI FOSSyncPreinit();
#define FOSSyncInit FOSSyncPreinit
// terminate sync subsystem
void OSSYNCAPI OSSyncPostterm();
#define OSSyncTerm OSSyncPostterm
// attach the current context to the sync subsystem
BOOL OSSYNCAPI FOSSyncAttach();
// detach the current context from the sync subsystem
void OSSYNCAPI OSSyncDetach();
// special init/term API's for Enhanced State only
const BOOL OSSYNCAPI FOSSyncInitForES();
void OSSYNCAPI OSSyncTermForES();
}; // namespace OSSYNC
using namespace OSSYNC;
#endif // _SYNC_HXX_INCLUDED