Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

912 lines
24 KiB

// SymbolTable.cpp: implementation of the CSymbolTable class.
//
// (c) Copyright Schlumberger Technology Corp., unpublished work, created
// 1999. This computer program includes Confidential, Proprietary
// Information and is a Trade Secret of Schlumberger Technology Corp. All
// use, disclosure, and/or reproduction is prohibited unless authorized
// in writing. All Rights Reserved.
//////////////////////////////////////////////////////////////////////
#include "NoWarning.h"
// Don't allow the min & max macros in WINDEF.H to be defined so the
// min/max methods declared in limits are accessible.
#define NOMINMAX
#include <limits>
#include <slbCrc32.h>
#include <scuArrayP.h>
// must include this file first (there is probably an error in some header file) (scm)
#include "cciExc.h"
#include "cciCard.h"
#include "SymbolTable.h"
#ifdef _DEBUG
#include <iostream>
#endif
using namespace std;
using namespace scu;
using namespace cci;
using namespace iop;
#define CONCAT_BYTES(hi,lo) ((unsigned short)(hi*256 + lo))
//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
CSymbolTable::CSymbolTable(CSmartCard &rSmartCard,
const string &rPath,
unsigned short Offset)
: m_rSmartCard(rSmartCard),
m_Offset(Offset),
m_aastrCachedStrings(),
m_aafCacheMask(),
m_aasHashTable(),
m_aasOffsetTable(),
m_aasLengthTable(),
m_fSymbolTableLoaded(false),
m_Path(rPath),
m_sMaxNumSymbols(),
m_sFirstFreeBlock(),
m_sTableSize()
{
m_aastrCachedStrings = AutoArrayPtr<string>(new string[NumSymbols()]);
m_aafCacheMask = AutoArrayPtr<bool>(new bool[NumSymbols()]);
for (int i = 0; i < NumSymbols(); i++)
{
m_aastrCachedStrings[i] = "";
m_aafCacheMask[i] = false;
}
}
CSymbolTable::~CSymbolTable()
{}
bool CSymbolTable::Remove(const SymbolID &rsid)
{
if (!m_fSymbolTableLoaded)
GetSymbolTable();
else
SelectSymbolFile();
if(rsid<1 || rsid>NumSymbols())
throw Exception(ccSymbolNotFound);
BYTE sidx = rsid-1;
if (m_aasOffsetTable[sidx] == 0)
{
// We have a bad reference!
throw Exception(ccSymbolNotFound);
}
// Let's read in the header info for the string we want to delete.
BYTE bBuffer[5];
ReadSymbolFile(m_aasOffsetTable[sidx], 3, bBuffer);
unsigned short sStrLen, sBlockLen;
BYTE bRefCount;
sStrLen = m_aasLengthTable[sidx];
sBlockLen = CONCAT_BYTES(bBuffer[1],bBuffer[0]);
bRefCount = bBuffer[2];
// The trivial case is when the refcount is greater than one. In that
// case we just dec the count!
if (bRefCount > 1)
{
bRefCount--;
WriteSymbolFile(m_aasOffsetTable[sidx] + 2, 1, &bRefCount);
return true;
}
// Need to take it out of the cache
m_aastrCachedStrings[sidx] = "";
m_aafCacheMask[sidx] = false;
// Simply connect the deleted block to the head of the free list.
bBuffer[0] = LOBYTE(FirstFreeBlock());
bBuffer[1] = HIBYTE(FirstFreeBlock());
WriteSymbolFile(m_aasOffsetTable[sidx]+2, 2, bBuffer);
FirstFreeBlock(m_aasOffsetTable[sidx]);
ClearTableEntry(sidx);
return true;
}
void CSymbolTable::Replace(SymbolID const &rsid, string const &rstrUpd)
{
if (!m_fSymbolTableLoaded)
GetSymbolTable();
else
SelectSymbolFile();
if(rsid<1 || rsid>NumSymbols())
throw Exception(ccSymbolNotFound);
BYTE sidx = rsid-1;
if (m_aasOffsetTable[sidx] == 0)
throw Exception(ccSymbolNotFound);
// This implementation require the new string to have the same size as the old.
// It may be that this requirement should be lifted later, however it is essential
// that the SymbolID is not changed by this function.
if(rstrUpd.size() != m_aasLengthTable[sidx])
throw Exception(ccBadLength);
WriteSymbolFile(m_aasOffsetTable[sidx] + 3,
static_cast<BYTE>(rstrUpd.size()),
reinterpret_cast<BYTE const *>(rstrUpd.data()));
unsigned short sHash = Hash(rstrUpd);
UpdateTableEntry(sidx, sHash, m_aasOffsetTable[sidx], m_aasLengthTable[sidx]);
m_aastrCachedStrings[sidx] = rstrUpd;
m_aafCacheMask[sidx] = true;
}
SymbolID CSymbolTable::Add(const string &rstrNew, ShareMode mode)
{
if (!m_fSymbolTableLoaded)
GetSymbolTable();
else
SelectSymbolFile();
SymbolID rsid;
BYTE sidx;
if(mode==smShared) {
bool fFind = Find(rstrNew, &rsid);
if (fFind)
{
sidx = rsid-1;
// The string is already in the table. Just bump the ref count.
BYTE bRefCount;
ReadSymbolFile(m_aasOffsetTable[sidx] + 2, 1, &bRefCount);
bRefCount++;
WriteSymbolFile(m_aasOffsetTable[sidx] + 2, 1, &bRefCount);
return sidx+1;
}
// String is not in the table. We have to add it.
}
// Need to allocate a new string. First make sure
// that there is a free slot in the hash table.
sidx = 0;
while (sidx < NumSymbols())
{
if (m_aasOffsetTable[sidx] == 0)
break;
sidx++;
}
if(sidx == NumSymbols())
throw Exception(ccOutOfSymbolTableEntries);
// Let's see if we have space for the new string. To do this, we just
// cruise the empty block chain until we find an available block
unsigned short sLength = static_cast<unsigned short>(rstrNew.length());
unsigned short sExtra = (sLength) ? 0 : 1; // To make sure that the block is minimum 4 bytes since
// this is the minimum size for a free block.
// If there is no first free block, then the card is completely full. Need
// to throw an error.
if (FirstFreeBlock() == 0)
throw Exception(ccOutOfSymbolTableSpace);
// When we finally find a block of appropriate size, we need to keep track of the
// previous block, so that we can chain together the empty spaces.
// Set of free block pointers that we will use to track the free space.
auto_ptr<CFreeBlock> apFreeBlock(new CFreeBlock(this, FirstFreeBlock()));
auto_ptr<CFreeBlock> apNewLocation;
auto_ptr<CFreeBlock> apPrevious;
unsigned short sTotalFreeSize = 0;
// We will loop until we find a free block that is large enough, or we
// will throw an error.
while (!apNewLocation.get())
{
// Remember that not only the string but the header info must fit into the
// space.
sTotalFreeSize += apFreeBlock->m_sBlockLength;
if (apFreeBlock->m_sBlockLength >= sLength + 3 + sExtra)
{
// The string fits in this block
apNewLocation = apFreeBlock;
}
else
{
// String doesn't fit. See if it fits in the next block.
apPrevious = apFreeBlock;
apFreeBlock = apPrevious->Next();
// The Next() method returns 0 if we are out of free spots
if (!apFreeBlock.get())
{
if (sTotalFreeSize < sLength + 3 + sExtra)
throw Exception(ccOutOfSymbolTableSpace);
else
{
Compress();
return Add(rstrNew);
}
}
}
}
// The block of space that is my size is sitting in pNewLocation.
// I need to chain the empty spaces on either side together.
// How much space will be left in this empty block after I put my string in it?
unsigned short sRemaining =
apNewLocation->m_sBlockLength - (sLength + 3 + sExtra);
// If less than 6 bytes remain, it isn't really worth splitting this block
if (sRemaining < 6)
{
sExtra += sRemaining;
if (apPrevious.get())
{
apPrevious->m_sNextBlock = apNewLocation->m_sNextBlock;
apPrevious->Update();
}
else
FirstFreeBlock(apNewLocation->m_sNextBlock);
}
else
{
// There is enough space in the block to make splitting worthwhile
unsigned short sNewOffset =
apNewLocation->m_sStartLoc + sLength + 3 + sExtra;
BYTE bBuffer[4];
bBuffer[0] = LOBYTE(sRemaining);
bBuffer[1] = HIBYTE(sRemaining);
bBuffer[2] = LOBYTE(apNewLocation->m_sNextBlock);
bBuffer[3] = HIBYTE(apNewLocation->m_sNextBlock);
WriteSymbolFile(sNewOffset, 4, bBuffer);
if (apPrevious.get())
{
apPrevious->m_sNextBlock = sNewOffset;
apPrevious->Update();
}
else
FirstFreeBlock(sNewOffset);
}
// Drop the string in the empty slot
AutoArrayPtr<BYTE> aabTemp(new BYTE[3 + sLength]);
aabTemp[0] = LOBYTE(sLength + 3 + sExtra);
aabTemp[1] = HIBYTE(sLength + 3 + sExtra);
// Shared symbols are indicated by a ref-count >=1
if(mode==smShared) aabTemp[2] = 1;
else aabTemp[2] = 0;
memcpy(&aabTemp[3], rstrNew.data(), sLength);
WriteSymbolFile(apNewLocation->m_sStartLoc, 3 + sLength, aabTemp.Get());
// cout << "Adding " << strNew << " at " << pNewLocation->m_sStartLoc << endl;
// cout << "Length = " << sLength << " Block Length = " << sLength + 5 + sExtra << endl;
// Populate the hash table entry
unsigned short sHash = Hash(rstrNew);
UpdateTableEntry(sidx, sHash, apNewLocation->m_sStartLoc, sLength);
m_aastrCachedStrings[sidx] = rstrNew;
m_aafCacheMask[sidx] = true;
return sidx+1;
}
void CSymbolTable::GetSymbolTable()
{
// There are 6 bytes in each entry of the symbol table, and we'll go ahead and
// read in the whole table.
unsigned short sTableSize = 6 * NumSymbols();
AutoArrayPtr<BYTE> aabBuffer(new BYTE[sTableSize]);
SelectSymbolFile();
ReadSymbolFile(SymbHashTableLoc, sTableSize, aabBuffer.Get());
m_aasHashTable =
AutoArrayPtr<unsigned short>(new unsigned short[NumSymbols()]);
m_aasOffsetTable =
AutoArrayPtr<unsigned short>(new unsigned short[NumSymbols()]);
m_aasLengthTable =
AutoArrayPtr<unsigned short>(new unsigned short[NumSymbols()]);
m_fSymbolTableLoaded = true;
for (int i = 0; i < NumSymbols(); i++)
{
m_aasHashTable[i] = CONCAT_BYTES(aabBuffer[1 + i*6],
aabBuffer[0 + i*6]);
m_aasOffsetTable[i] = CONCAT_BYTES(aabBuffer[3 + i*6],
aabBuffer[2 + i*6]);
m_aasLengthTable[i] = CONCAT_BYTES(aabBuffer[5 + i*6],
aabBuffer[4 + i*6]);
}
}
WORD CSymbolTable::Hash(const string &rstr)
{
// A 32-bit CRC is used to produce a 16-bit hash value is used.
// There are several reasons for using a 32-bit CRC instead of a
// 16-bit version:
//
// 1. A 16-bit CRC has the characteristics that the hash value 1
// would occur twice for every 65536 CRC runs where all other values
// would occur only once on average. Using a 32-bit CRC the hash
// values are spread evenly within a small percentage fraction
// this problem doesn't occur.
//
// 2. The CCI uses a compression algorithm based on the same
// 32-bit CRC. The CRC algorithm is implemented with a table.
// Using a 16-bit CRC would result in an additional CRC lookup
// table of 512-bytes or require one of the algorithms not to be
// table-driven and therefore slower.
//
// 3. On 32-bit architectures, a 32-bit CRC algorithm is faster
// than a 16-bit algorithm.
//
DWORD crc = Crc32(rstr.data(), rstr.length());
DWORD remainder = crc % std::numeric_limits<WORD>::max();
WORD Value = static_cast<WORD>(remainder);
return Value;
}
vector <string> CSymbolTable::EnumStrings()
{
vector <string> vStrings;
if (!m_fSymbolTableLoaded)
GetSymbolTable();
for (BYTE sidx = 0; sidx < NumSymbols(); sidx++)
{
if (m_aasOffsetTable[sidx])
{
vStrings.push_back(Find((SymbolID)(sidx+1)));
}
}
return vStrings;
}
bool CSymbolTable::Find(const string &rsOrig, SymbolID *sid)
{
unsigned short sICV = 0;
unsigned short sHash = Hash(rsOrig);
if (!m_fSymbolTableLoaded)
GetSymbolTable();
else
SelectSymbolFile();
for (BYTE sidx = 0; sidx < NumSymbols(); sidx++)
{
if (m_aasOffsetTable[sidx] && sHash == m_aasHashTable[sidx])
{
// This is a potential match
if (rsOrig == Find(sidx+1))
{
// Check that it is allowed to share it.
if(RefCount(sidx)) {
*sid = (SymbolID)(sidx+1);
return true;
}
}
}
}
return false;
}
string CSymbolTable::Find(const SymbolID &rsid)
{
if(rsid<1 || rsid>NumSymbols())
throw Exception(ccSymbolNotFound);
BYTE sidx = rsid-1;
if (m_aafCacheMask[sidx])
return m_aastrCachedStrings[sidx];
if (!m_fSymbolTableLoaded)
GetSymbolTable();
else
SelectSymbolFile();
if (m_aasOffsetTable[sidx] == 0)
return string();
unsigned short sLength = m_aasLengthTable[sidx];
if (0 == sLength)
return string();
AutoArrayPtr<BYTE> aabBuffer(new BYTE[sLength]);
ReadSymbolFile(m_aasOffsetTable[sidx] + 3, sLength, aabBuffer.Get());
string strRetVal((char*)aabBuffer.Get(), sLength);
// Verify the data isn't corrupted by hashing the data retrieved
// and comparing that resulting hash against the hashed used to
// find the data originally. This provides checking for both the
// string and the hash used to store the string.
DWORD const dwHash = Hash(strRetVal);
if (dwHash != m_aasHashTable[sidx])
throw Exception(ccSymbolDataCorrupted);
m_aastrCachedStrings[sidx] = strRetVal;
m_aafCacheMask[sidx] = true;
return strRetVal;
}
BYTE CSymbolTable::RefCount(const BYTE &sidx)
{
if (!m_fSymbolTableLoaded)
GetSymbolTable();
else
SelectSymbolFile();
if (m_aasOffsetTable[sidx] == 0)
{
return 0;
}
BYTE bBuffer;
ReadSymbolFile(m_aasOffsetTable[sidx] + 2, 1, &bBuffer);
return bBuffer;
}
unsigned short CSymbolTable::NumSymbols()
{
if (!m_sMaxNumSymbols.IsCached())
{
SelectSymbolFile();
BYTE bSymbols[2];
ReadSymbolFile(SymbNumSymbolLoc, 1, bSymbols);
m_sMaxNumSymbols.Value(bSymbols[0]);
}
return m_sMaxNumSymbols.Value();
}
void CSymbolTable::FirstFreeBlock(unsigned short sOffset)
{
BYTE bFBlock[2];
bFBlock[0] = LOBYTE(sOffset);
bFBlock[1] = HIBYTE(sOffset);
SelectSymbolFile();
WriteSymbolFile(SymbFreeListLoc, 2, bFBlock);
m_sFirstFreeBlock.Value(sOffset);
}
unsigned short CSymbolTable::FirstFreeBlock()
{
if (!m_sFirstFreeBlock.IsCached())
{
BYTE bSymbols[2];
SelectSymbolFile();
ReadSymbolFile(SymbFreeListLoc, 2, bSymbols);
m_sFirstFreeBlock.Value(CONCAT_BYTES(bSymbols[1],bSymbols[0]));
}
return m_sFirstFreeBlock.Value();
}
unsigned short CSymbolTable::TableSize()
{
if (!m_sTableSize.IsCached())
{
SelectSymbolFile();
BYTE bSymbols[2];
ReadSymbolFile(SymbTableSizeLoc,2, bSymbols);
m_sTableSize.Value(CONCAT_BYTES(bSymbols[1],bSymbols[0]));
}
return m_sTableSize.Value();
}
unsigned short CSymbolTable::FreeSpace()
{
unsigned short sTotalFreeSize = 0;
if(FirstFreeBlock())
{
SelectSymbolFile();
auto_ptr<CFreeBlock> apNextFreeBlock;
auto_ptr<CFreeBlock> apFreeBlock(new CFreeBlock(this, FirstFreeBlock()));
sTotalFreeSize += apFreeBlock->m_sBlockLength;
while(apFreeBlock->m_sNextBlock)
{
apNextFreeBlock = apFreeBlock->Next();
apFreeBlock = apNextFreeBlock;
sTotalFreeSize += apFreeBlock->m_sBlockLength;
}
}
return sTotalFreeSize;
}
void CSymbolTable::SelectSymbolFile()
{
m_rSmartCard.Select(m_Path.c_str());
}
void CSymbolTable::ReadSymbolFile(const WORD wOffset, const WORD wDataLength, BYTE* bDATA)
{
m_rSmartCard.ReadBinary(wOffset+m_Offset,wDataLength,bDATA);
}
void CSymbolTable::WriteSymbolFile(const WORD wOffset, const WORD wDataLength, const BYTE* bDATA)
{
m_rSmartCard.WriteBinary(wOffset+m_Offset,wDataLength,bDATA);
}
#ifdef _DEBUG
void CSymbolTable::DumpState()
{
cout << "Dumping card state." << endl;
cout << "Symbol Table Global Info:" << endl;
cout << " Number of Symbols: " << NumSymbols();
cout << " Total table size: " << TableSize();
cout << " First free block: " << hex << FirstFreeBlock() << endl;
cout << "Hash Table contents: " << endl;
GetSymbolTable();
cout << "Hash Offset Length" << endl;
for (int i = 0; i < NumSymbols(); i++)
cout << hex << m_aasHashTable[i] << "\t" << m_aasOffsetTable[i] << "\t" << m_aasLengthTable[i] << endl;
unsigned short sFBOffset = FirstFreeBlock();
cout << "Free Block List" << endl;
if (!FirstFreeBlock())
cout << endl << "NO FREE BLOCKS" << endl <<endl;
else
{
CFreeBlock fb(this, sFBOffset);
cout << dec << fb.m_sBlockLength << " bytes starting at " << hex << fb.m_sStartLoc
<< "\tNext = " << fb.m_sNextBlock << endl;
while (fb.m_sNextBlock)
{
fb = CFreeBlock(this, fb.m_sNextBlock);
cout << dec << fb.m_sBlockLength << " bytes starting at " << hex << fb.m_sStartLoc
<< "\tNext = " << fb.m_sNextBlock << endl;
}
}
cout << "String List" << endl;
cout << "Offset StrLen BlkLen Refcnt String" << endl;
for (i = 0; i < NumSymbols(); i++)
if (m_aasOffsetTable[i])
{
// Read in the header
BYTE bHeader[5];
ReadSymbolFile(m_aasOffsetTable[i], 3, bHeader);
unsigned short sStrLen = m_aasLengthTable[i];
unsigned short sBlockLen = CONCAT_BYTES(bHeader[1],bHeader[0]);
BYTE bRefCnt = bHeader[2];
AutoArrayPtr<BYTE> aabString(new BYTE[sStrLen]);
ReadSymbolFile(m_aasOffsetTable[i] + 3, sStrLen, aabString.Get());
string s1((char*)aabString.Get(), sStrLen);
// cout << hex << m_aasOffsetTable[i] << "\t" << sStrLen << "\t" << sBlockLen
// << "\t" << (int)bRefCnt << "\t" << s1 << endl;
}
}
#endif
void CSymbolTable::Reset()
{
unsigned short sSize = TableSize();
unsigned short sNumSym = NumSymbols();
unsigned short sTotalSize = SymbHashTableLoc + 6 * sNumSym + sSize;
unsigned short sFirstFree = SymbHashTableLoc + 6 * sNumSym;
AutoArrayPtr<BYTE> aabBuffer(new BYTE[sTotalSize]);
memset(aabBuffer.Get(), 0, sTotalSize);
aabBuffer[SymbNumSymbolLoc] = sNumSym & 0xFF;
aabBuffer[SymbFreeListLoc] = LOBYTE(sFirstFree);
aabBuffer[SymbFreeListLoc+1] = HIBYTE(sFirstFree);
aabBuffer[SymbTableSizeLoc] = LOBYTE(sSize);
aabBuffer[SymbTableSizeLoc+1] = HIBYTE(sSize);
aabBuffer[sFirstFree] = LOBYTE(sSize);
aabBuffer[sFirstFree + 1] = HIBYTE(sSize);
m_fSymbolTableLoaded = false;
SelectSymbolFile();
WriteSymbolFile( 0, sTotalSize, aabBuffer.Get());
for (int i = 0; i < NumSymbols(); i++)
{
m_aafCacheMask[i] = false;
m_aastrCachedStrings[i] = "";
}
m_sFirstFreeBlock.Dirty();
GetSymbolTable();
}
void CSymbolTable::Compress()
{
unsigned short sSize = TableSize();
unsigned short sNumSym = NumSymbols();
unsigned short sStringStart = SymbHashTableLoc + 6 * sNumSym;
unsigned short sTotalSize = sStringStart + sSize;
// cout << "Compressing..." << endl;
GetSymbolTable();
vector<string> vStringTable;
AutoArrayPtr<unsigned short> aasStringSize(new unsigned short[sNumSym]);
// cout << "Building table" << endl;
BYTE sidx;
for (sidx = 0; sidx < sNumSym; sidx++)
{
string strTemp;
if (m_aasOffsetTable[sidx]) {
strTemp = Find(sidx+1);
aasStringSize[sidx] = static_cast<unsigned short>(strTemp.size());
} else {
strTemp = "";
}
// cout << " Adding to table: " << strTemp << endl;
vStringTable.push_back(strTemp);
}
AutoArrayPtr<BYTE> aabNewTable(new BYTE[sTotalSize]);
memset(aabNewTable.Get(), 0, sTotalSize);
aabNewTable[SymbNumSymbolLoc] = sNumSym & 0xFF;
aabNewTable[SymbTableSizeLoc] = LOBYTE(sSize);
aabNewTable[SymbTableSizeLoc+1] = HIBYTE(sSize);
unsigned short sCurrentWrite = sStringStart;
for (sidx = 0; sidx < sNumSym; sidx++)
{
if (m_aasOffsetTable[sidx])
{
BYTE bTableEntry[6];
bTableEntry[0] = LOBYTE(m_aasHashTable[sidx]);
bTableEntry[1] = HIBYTE(m_aasHashTable[sidx]);
bTableEntry[2] = LOBYTE(sCurrentWrite);
bTableEntry[3] = HIBYTE(sCurrentWrite);
bTableEntry[4] = LOBYTE(m_aasLengthTable[sidx]);
bTableEntry[5] = HIBYTE(m_aasLengthTable[sidx]);
// cout << "Placing '"<< vStringTable[i] << " at location " << hex << sCurrentWrite << endl;
unsigned short sExtra = (aasStringSize[sidx]) ? 0 : 1; // To make sure that the block is minimum
// 4 bytes since this is the minimum size
// for a free block.
AutoArrayPtr<BYTE> aabStringEntry(new BYTE[aasStringSize[sidx] + 3]);
aabStringEntry[0] = LOBYTE(aasStringSize[sidx] + 3 + sExtra);
aabStringEntry[1] = HIBYTE(aasStringSize[sidx] + 3 + sExtra);
aabStringEntry[2] = RefCount(sidx);
memcpy(&aabStringEntry[3], vStringTable[sidx].data(),
aasStringSize[sidx]);
// Write the new entries
memcpy(&aabNewTable[SymbHashTableLoc + sidx * 6], bTableEntry, 6);
memcpy(&aabNewTable[sCurrentWrite], aabStringEntry.Get(),
aasStringSize[sidx] + 3);
sCurrentWrite += aasStringSize[sidx] + 3 + sExtra;
}
}
m_fSymbolTableLoaded = false;
unsigned short sFreeSpace = sStringStart + sSize - sCurrentWrite;
if (sFreeSpace < 8)
{
// Then there is essentially no more space on the card
aabNewTable[SymbFreeListLoc] = 0;
aabNewTable[SymbFreeListLoc+1] = 0;
}
else
{
aabNewTable[SymbFreeListLoc] = LOBYTE(sCurrentWrite);
aabNewTable[SymbFreeListLoc+1] = HIBYTE(sCurrentWrite);
// Need to set up the last empty block as well.
aabNewTable[sCurrentWrite] = LOBYTE(sFreeSpace);
aabNewTable[sCurrentWrite + 1] = HIBYTE(sFreeSpace);
}
// Phew! Write the table back to the card.
WriteSymbolFile(0, sTotalSize, aabNewTable.Get());
m_sFirstFreeBlock.Dirty();
// Clean up
for (sidx = 0; sidx < NumSymbols(); sidx++)
{
m_aafCacheMask[sidx] = false;
m_aastrCachedStrings[sidx] = "";
}
}
void CSymbolTable::ClearTableEntry(BYTE const &sidx)
{
UpdateTableEntry(sidx, 0, 0, 0);
}
void CSymbolTable::UpdateTableEntry(BYTE const &sidx,
WORD wNewHash,
WORD wNewOffset,
WORD wNewLength)
{
BYTE bBuffer[6];
bBuffer[0] = LOBYTE(wNewHash);
bBuffer[1] = HIBYTE(wNewHash);
bBuffer[2] = LOBYTE(wNewOffset);
bBuffer[3] = HIBYTE(wNewOffset);
bBuffer[4] = LOBYTE(wNewLength);
bBuffer[5] = HIBYTE(wNewLength);
WriteSymbolFile(SymbHashTableLoc + (sidx * sizeof bBuffer),
sizeof bBuffer, bBuffer);
m_aasHashTable[sidx] = wNewHash;
m_aasOffsetTable[sidx] = wNewOffset;
m_aasLengthTable[sidx] = wNewLength;
}
CFreeBlock::CFreeBlock(CSymbolTable *pSymTable, unsigned short sStartLocation)
{
m_pSymbolTable = pSymTable;
m_sStartLoc = sStartLocation;
BYTE bBuffer[4];
m_pSymbolTable->ReadSymbolFile(m_sStartLoc, sizeof(bBuffer), bBuffer);
m_sBlockLength = CONCAT_BYTES(bBuffer[1], bBuffer[0]);
m_sNextBlock = CONCAT_BYTES(bBuffer[3], bBuffer[2]);
}
void CFreeBlock::Update()
{
BYTE bBuffer[4];
bBuffer[0] = LOBYTE(m_sBlockLength);
bBuffer[1] = HIBYTE(m_sBlockLength);
bBuffer[2] = LOBYTE(m_sNextBlock);
bBuffer[3] = HIBYTE(m_sNextBlock);
m_pSymbolTable->WriteSymbolFile(m_sStartLoc, 4, bBuffer);
}
auto_ptr<CFreeBlock>
CFreeBlock::Next()
{
auto_ptr<CFreeBlock> apNext((0 == m_sNextBlock)
? 0
: new CFreeBlock(m_pSymbolTable,
m_sNextBlock));
return apNext;
}