Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1680 lines
48 KiB

// Ruler
// 1 2 3 4 5 6 7 8
//345678901234567890123456789012345678901234567890123456789012345678901234567890
/********************************************************************/
/* */
/* The standard layout. */
/* */
/* The standard layout for 'cpp' files in this code is as */
/* follows: */
/* */
/* 1. Include files. */
/* 2. Constants local to the class. */
/* 3. Data structures local to the class. */
/* 4. Data initializations. */
/* 5. Static functions. */
/* 6. Class functions. */
/* */
/* The constructor is typically the first function, class */
/* member functions appear in alphabetical order with the */
/* destructor appearing at the end of the file. Any section */
/* or function this is not required is simply omitted. */
/* */
/********************************************************************/
#include "InterfacePCH.hpp"
#include "Cache.hpp"
#include "Common.hpp"
#include "Find.hpp"
#include "Heap.hpp"
#include "New.hpp"
#include "NewPage.hpp"
#include "Rockall.hpp"
#include "Spinlock.hpp"
/********************************************************************/
/* */
/* Constants local to the class. */
/* */
/* The constants supplied here try to make the layout of the */
/* the caches easier to understand and update. */
/* */
/********************************************************************/
CONST SBIT32 EnableLookAside = 0;
CONST SBIT32 GlobalMask = (sizeof(SBIT64) - 1);
CONST SBIT32 GlobalPaddedSize = (sizeof(FIND) + GlobalMask);
CONST SBIT32 GlobalByteSize = (GlobalPaddedSize & ~GlobalMask);
CONST SBIT32 GlobalWordSize = (GlobalByteSize / sizeof(SBIT64));
/********************************************************************/
/* */
/* Static member initialization. */
/* */
/* Static member initialization sets the initial value for all */
/* static members. */
/* */
/********************************************************************/
STATIC SBIT64 GlobalFind[ GlobalWordSize ];
STATIC SBIT32 ReferenceCount = 0;
STATIC SPINLOCK Spinlock;
/********************************************************************/
/* */
/* Class constructor. */
/* */
/* The interface default constructor creates a null heap for */
/* internal use by selected classes. */
/* */
/********************************************************************/
ROCKALL::ROCKALL( void )
{
//
// A heap constructed by this constructor should
// never be used. Hence, we zero key pointers to
// ensure grave disorder will result if anyone tries.
//
Array = NULL;
Caches = NULL;
Find = NULL;
Heap = NULL;
NewPage = NULL;
GlobalDelete = True;
GuardWord = GuardValue;
NumberOfCaches = 0;
TotalSize = 0;
}
/********************************************************************/
/* */
/* Class constructor. */
/* */
/* The overall structure and layout of the heap is controlled */
/* by the various constants and calls made in this function. */
/* There is a significant amount of flexibility within heaps */
/* leading to potentially dramatically different properties. */
/* */
/********************************************************************/
ROCKALL::ROCKALL
(
CACHE_DETAILS *Caches1,
CACHE_DETAILS *Caches2,
int FindCacheSize,
int FindCacheThreshold,
int FindSize,
int MaxFreeSpace,
int *NewPageSizes,
bool Recycle,
bool SingleImage,
int Stride1,
int Stride2,
bool ThreadSafe
)
{
#ifdef DISABLE_STRUCTURED_EXCEPTIONS
TRY
#endif
{
REGISTER int AlignMask = ((int) (NaturalSize()-1));
REGISTER int Stride = (sizeof(CACHE_DETAILS));
REGISTER int Size1 = (ComputeSize( ((char*) Caches1),Stride ));
REGISTER int Size2 = (ComputeSize( ((char*) Caches2),Stride ));
REGISTER int Size3 = (ComputeSize( ((char*) NewPageSizes),sizeof(int) ));
//
// The interface pointer members are zeroed to
// ensure they do not end up containing random
// rubbish whatever happens.
//
Array = NULL;
Caches = NULL;
Find = NULL;
Heap = NULL;
NewPage = NULL;
//
// Set key flags and compute information about
// the number of caches and the total amount of
// space required for the low level heap structures.
//
GlobalDelete = SingleImage;
GuardWord = GuardValue;
NumberOfCaches = (Size1 + Size2);
TotalSize =
(
(NumberOfCaches * sizeof(CACHE*))
+
(NumberOfCaches * sizeof(CACHE))
+
((GlobalDelete) ? 0 : sizeof(FIND))
+
(sizeof(NEW_PAGE))
+
(sizeof(HEAP))
);
//
// Ensure the alignment mask is valid and we have
// at least four caches. If not the heap will be
// worthless.
//
if
(
(COMMON::PowerOfTwo( ((SBIT32) (AlignMask+1)) ))
&&
((Size1 >= 1) && (Size2 >= 3))
&&
((Stride1 > 0) && (COMMON::PowerOfTwo( Stride1 )))
&&
((Stride2 >= Stride1) && (COMMON::PowerOfTwo( Stride2 )))
)
{
REGISTER CHAR *NewMemory =
((CHAR*) NewArea( ((SBIT32) AlignMask),TotalSize,False ));
//
// We check to make sure that we can allocate space
// to store the low level heap control information.
// If not we exit.
//
if ( NewMemory != NULL )
{
REGISTER SBIT32 Count;
//
// Build the caches.
//
// The first step in creating a heap is to
// create all the caches and related buckets
// requested by the user.
//
Caches = ((CACHE*) NewMemory);
NewMemory += (NumberOfCaches * sizeof(CACHE));
for ( Count=0;Count < Size1;Count ++ )
{
REGISTER CACHE_DETAILS *Current = & Caches1[ Count ];
PLACEMENT_NEW( & Caches[ Count ],CACHE )
(
((SBIT32) Current -> AllocationSize),
((SBIT32) Current -> CacheSize),
((SBIT32) Current -> ChunkSize),
((SBIT32) Current -> PageSize),
((BOOLEAN) Recycle),
((BOOLEAN) ThreadSafe)
);
}
for ( Count=0;Count < Size2;Count ++ )
{
REGISTER CACHE_DETAILS *Current = & Caches2[ Count ];
PLACEMENT_NEW( & Caches[ (Count + Size1) ],CACHE )
(
((SBIT32) Current -> AllocationSize),
((SBIT32) Current -> CacheSize),
((SBIT32) Current -> ChunkSize),
((SBIT32) Current -> PageSize),
((BOOLEAN) Recycle),
((BOOLEAN) ThreadSafe)
);
}
//
// Build the cache array.
//
// After we have constructed all of the caches
// we take the address of each cache and load
// it into an array. This indirection allows
// caches to be shared between heaps.
//
Array = (CACHE**) NewMemory;
NewMemory += (NumberOfCaches * sizeof(CACHE*));
for ( Count=0;Count < NumberOfCaches;Count ++ )
{ Array[ Count ] = & Caches[ Count ]; }
//
// Configuration of the find hash table.
//
// The find hash table maps addresses to page
// descriptions and is a key part of the memory
// deallocation mechanism. Here we specify
// the size of the hash table. It is important
// to size it based on the expected number of
// memory allocations. Nonetheless, it will
// automatically grow if the correct option is
// set and it is clearly too small.
//
if ( GlobalDelete )
{
//
// We claim a lock just in case there
// are multiple threads.
//
Spinlock.ClaimLock();
//
// We create the global find hash table
// if we are the first thread to create
// a heap.
//
if ( (ReferenceCount ++) == 0 )
{
STATIC ROCKALL Rockall;
//
// Select the global find table
// and call the constructor.
//
Find = ((FIND*) GlobalFind);
PLACEMENT_NEW( Find,FIND )
(
((SBIT32) FindSize),
((SBIT32) FindCacheSize),
((SBIT32) EnableLookAside),
((ROCKALL*) & Rockall),
((BOOLEAN) True),
((BOOLEAN) (GlobalDelete || ThreadSafe))
);
}
else
{
//
// A global find has table already
// exists so just use it.
//
Find = ((FIND*) GlobalFind);
}
//
// Release the lock now.
//
Spinlock.ReleaseLock();
}
else
{
Find = (FIND*) NewMemory;
NewMemory += sizeof(FIND);
//
// We create a local find hash table
// if we are do not need to provide
// a single heap image.
//
PLACEMENT_NEW( Find,FIND )
(
((SBIT32) FindSize),
((SBIT32) FindCacheSize),
((SBIT32) FindCacheThreshold),
((ROCKALL*) this),
((BOOLEAN) True),
((BOOLEAN) ThreadSafe)
);
}
//
// Configuration of the allocation overhead.
//
// The allocation overhead is controlled by
// the size of the bit vectors used to keep
// track of the allocations. There is a built
// in limit of ((2^15)-1) elements in a single
// bit vector.
//
NewPage = (NEW_PAGE*) NewMemory;
NewMemory += sizeof(NEW_PAGE);
PLACEMENT_NEW( NewPage,NEW_PAGE )
(
((FIND*) Find),
((SBIT32*) NewPageSizes),
((ROCKALL*) this),
((SBIT32) Size3),
((BOOLEAN) ThreadSafe)
);
//
// Create the heap.
//
// We can now create the heap. We do this
// by passing pointers to all the parts of
// the heap that we have just created.
//
//
Heap = (HEAP*) NewMemory;
PLACEMENT_NEW( Heap,HEAP )
(
((CACHE**) & Array[0]),
((CACHE**) & Array[ Size1 ]),
((SBIT32) MaxFreeSpace),
((FIND*) Find),
((NEW_PAGE*) NewPage),
((ROCKALL*) this),
((SBIT32) Size1),
((SBIT32) Size2),
((SBIT32) Stride1),
((SBIT32) Stride2),
ThreadSafe
);
}
else
{ Failure( "Heap constructor failed in ROCKALL" ); }
}
else
{ Failure( "Cache size in constructor for ROCKALL" ); }
}
#ifdef DISABLE_STRUCTURED_EXCEPTIONS
#ifdef DEBUGGING
catch ( FAULT Message )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable, print a
// suitable message and exit.
//
GuardWord = AllocationFailure;
DebugPrint( "Exception caught: %s\n",(char*) Message );
}
#endif
catch ( ... )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#endif
}
/********************************************************************/
/* */
/* Compute the size of the caches. */
/* */
/* Compute the size of various data structures for internal */
/* sizing purposes. */
/* */
/********************************************************************/
int ROCKALL::ComputeSize( char *Array,int Stride )
{
register int Count;
for
(
Count=0;
((*((int*) & Array[ Count ])) != 0);
Count += Stride
);
return (Count / Stride);
}
/********************************************************************/
/* */
/* Memory deallocation. */
/* */
/* Lets start with some basic tests. If the address we have */
/* been given is special, clearly wrong or the heap has not */
/* been initialized then we fail and exit. */
/* */
/********************************************************************/
bool ROCKALL::Delete( void *Address,int Size )
{
TRY
{
//
// We verify that the parameters look
// reasonable and the heap is not corrupt
// and then try to delete the supplied
// allocation.
//
if ( Available() )
{ return (Heap -> Delete( ((VOID*) Address),((SBIT32) Size) )); }
}
#ifdef DISABLE_STRUCTURED_EXCEPTIONS
#ifdef DEBUGGING
catch ( FAULT Message )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable, print a
// suitable message and exit.
//
GuardWord = AllocationFailure;
DebugPrint( "Exception caught: %s\n",(char*) Message );
}
#endif
catch ( ... )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#else
__except ( EXCEPTION_EXECUTE_HANDLER )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#endif
return false;
}
/********************************************************************/
/* */
/* Delete all allocations. */
/* */
/* At certain places in am application we sometimes need to */
/* delete a significant number of allocations. If all of */
/* these allocations are placed into a single heap we can */
/* delete them all using this call. */
/* */
/********************************************************************/
void ROCKALL::DeleteAll( bool Recycle )
{
TRY
{
//
// The call appears to be valid so if the
// heap is not corrupt then pass it along
// for processing.
//
if ( Available() )
{ Heap -> DeleteAll( (BOOLEAN) Recycle ); }
}
#ifdef DISABLE_STRUCTURED_EXCEPTIONS
#ifdef DEBUGGING
catch ( FAULT Message )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable, print a
// suitable message and exit.
//
GuardWord = AllocationFailure;
DebugPrint( "Exception caught: %s\n",(char*) Message );
}
#endif
catch ( ... )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#else
__except ( EXCEPTION_EXECUTE_HANDLER )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#endif
}
/********************************************************************/
/* */
/* Delete allocation area. */
/* */
/* All memory requests are eventually sent back to the external */
/* deallocator. This function can be overloaded so that memory */
/* can be provided from any source. The default is to send */
/* the area back to the operating system. */
/* */
/********************************************************************/
void ROCKALL::DeleteArea( void *Memory,int Size,bool User )
{
REGISTER DWORD NewSize = ((Size == 0) ? Size : 0);
#ifdef DEBUGGING
#ifdef ENABLE_ALLOCATION_STATISTICS
//
// When we are debugging print out trace information.
//
DebugPrint( "Delete\t 0x%08x %d bytes\n",Memory,Size );
#endif
#endif
//
// The NT 'VirtualFree' call requires the 'Size'
// to be zero. This may not be true of all
// deallocators so we pass the value and then
// replace it with zero above.
//
if ( VirtualFree( Memory,NewSize,MEM_RELEASE ) == NULL )
{ Failure( "Delete fails in DeleteArea" ); }
}
/********************************************************************/
/* */
/* Memory allocation details. */
/* */
/* Lets start with some basic tests. If the address we have */
/* been given is special, clearly wrong or the heap has not */
/* been initialized then we fail the call appropriately. */
/* */
/********************************************************************/
bool ROCKALL::Details( void *Address,int *Space )
{
TRY
{
//
// The call appears to be valid so if the
// heap is not corrupt then pass it along
// for processing.
//
if ( Available() )
{ return (Heap -> Details( ((VOID*) Address),((SBIT32*) Space) )); }
}
#ifdef DISABLE_STRUCTURED_EXCEPTIONS
#ifdef DEBUGGING
catch ( FAULT Message )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable, print a
// suitable message and exit.
//
GuardWord = AllocationFailure;
DebugPrint( "Exception caught: %s\n",(char*) Message );
}
#endif
catch ( ... )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#else
__except ( EXCEPTION_EXECUTE_HANDLER )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#endif
return false;
}
/********************************************************************/
/* */
/* A known area. */
/* */
/* We have an address and don't have a clue which heap */
/* owns the space. Here we take a look at the address */
/* and figure out it it belongs to the current heap. */
/* */
/********************************************************************/
bool ROCKALL::KnownArea( void *Address )
{
TRY
{
//
// The call appears to be valid so if the
// heap is not corrupt then pass it along
// for processing.
//
if ( Available() )
{
return ( Heap -> KnownArea( ((VOID*) Address) ) );
}
}
#ifdef DISABLE_STRUCTURED_EXCEPTIONS
#ifdef DEBUGGING
catch ( FAULT Message )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable, print a
// suitable message and exit.
//
GuardWord = AllocationFailure;
DebugPrint( "Exception caught: %s\n",(char*) Message );
}
#endif
catch ( ... )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#else
__except ( EXCEPTION_EXECUTE_HANDLER )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#endif
return false;
}
/********************************************************************/
/* */
/* Claim all the heap locks. */
/* */
/* Lets start with some basic tests. If the address we have */
/* been given is special, clearly wrong or the heap has not */
/* been initialized then we fail and exit. */
/* */
/********************************************************************/
void ROCKALL::LockAll( VOID )
{
TRY
{
//
// The call appears to be valid so if the
// heap is not corrupt then pass it along
// for processing.
//
if ( Available() )
{ Heap -> LockAll(); }
}
#ifdef DISABLE_STRUCTURED_EXCEPTIONS
#ifdef DEBUGGING
catch ( FAULT Message )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable, print a
// suitable message and exit.
//
GuardWord = AllocationFailure;
DebugPrint( "Exception caught: %s\n",(char*) Message );
}
#endif
catch ( ... )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#else
__except ( EXCEPTION_EXECUTE_HANDLER )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#endif
}
/********************************************************************/
/* */
/* Multiple memory deallocations. */
/* */
/* Lets start with some basic tests. If the address we have */
/* been given is special, clearly wrong or the heap has not */
/* been initialized then we fail and exit. */
/* */
/********************************************************************/
bool ROCKALL::MultipleDelete
(
int Actual,
void *Array[],
int Size
)
{
TRY
{
//
// We verify that the parameters look
// reasonable and the heap is not corrupt
// and then try to delete the supplied
// allocations.
//
if ( (Actual > 0) && (Array != NULL) && (Available()) )
{
return
(
Heap -> MultipleDelete
(
((SBIT32) Actual),
((VOID**) Array),
((SBIT32) Size)
)
);
}
}
#ifdef DISABLE_STRUCTURED_EXCEPTIONS
#ifdef DEBUGGING
catch ( FAULT Message )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable, print a
// suitable message and exit.
//
GuardWord = AllocationFailure;
DebugPrint( "Exception caught: %s\n",(char*) Message );
}
#endif
catch ( ... )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#else
__except ( EXCEPTION_EXECUTE_HANDLER )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#endif
return false;
}
/********************************************************************/
/* */
/* Multiple memory allocations. */
/* */
/* Lets start with some basic tests. If the address we have */
/* been given is special, clearly wrong or the heap has not */
/* been initialized then we fail and exit. */
/* */
/********************************************************************/
bool ROCKALL::MultipleNew
(
int *Actual,
void *Array[],
int Requested,
int Size,
int *Space,
bool Zero
)
{
TRY
{
//
// We verify that the parameters look
// reasonable and the heap is not corrupt
// and then try to create the requested
// allocation.
//
if
(
((Array != NULL) && (Available()))
&&
((Requested > 0) && (Size >= 0))
)
{
return
(
Heap -> MultipleNew
(
((SBIT32*) Actual),
((VOID**) Array),
((SBIT32) Requested),
((SBIT32) ((Size > 0) ? Size : 1)),
((SBIT32*) Space),
((BOOLEAN) Zero)
)
);
}
}
#ifdef DISABLE_STRUCTURED_EXCEPTIONS
#ifdef DEBUGGING
catch ( FAULT Message )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable, print a
// suitable message and exit.
//
GuardWord = AllocationFailure;
DebugPrint( "Exception caught: %s\n",(char*) Message );
}
#endif
catch ( ... )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#else
__except ( EXCEPTION_EXECUTE_HANDLER )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#endif
return false;
}
/********************************************************************/
/* */
/* The natural allocation size. */
/* */
/* We would like to know a good default size for allocations. */
/* The default is to ask the operating system for the */
/* allocation granularity. */
/* */
/********************************************************************/
int ROCKALL::NaturalSize( void )
{
STATIC SBIT32 AllocationSize = 0;
//
// Ask the operation system for the allocation
// granularity.
//
if ( AllocationSize <= 0 )
{
AUTO SYSTEM_INFO SystemInformation;
GetSystemInfo( & SystemInformation );
AllocationSize = (SBIT32) SystemInformation.dwAllocationGranularity;
}
return ((int) AllocationSize);
}
/********************************************************************/
/* */
/* Memory allocation. */
/* */
/* Lets start with some basic tests. If the address we have */
/* been given is special, clearly wrong or the heap has not */
/* been initialized then we fail and exit. */
/* */
/********************************************************************/
void *ROCKALL::New( int Size,int *Space,bool Zero )
{
TRY
{
//
// We verify that the parameters look
// reasonable and the heap is not corrupt
// and then try to create the requested
// allocation.
//
if ( (Available()) && (Size >= 0) )
{
return
(
Heap -> New
(
((SBIT32) ((Size > 0) ? Size : 1)),
((SBIT32*) Space),
((BOOLEAN) Zero)
)
);
}
}
#ifdef DISABLE_STRUCTURED_EXCEPTIONS
#ifdef DEBUGGING
catch ( FAULT Message )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable, print a
// suitable message and exit.
//
GuardWord = AllocationFailure;
DebugPrint( "Exception caught: %s\n",(char*) Message );
}
#endif
catch ( ... )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#else
__except ( EXCEPTION_EXECUTE_HANDLER )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#endif
return ((void*) AllocationFailure);
}
/********************************************************************/
/* */
/* New allocation area. */
/* */
/* All memory requests are eventually sent to the new external */
/* allocator. This function can be overloaded so that memory */
/* can be provided from any source. The default is to get */
/* new memory from the operating system. */
/* */
/********************************************************************/
void *ROCKALL::NewArea( int AlignMask,int Size,bool User )
{
//
// When there is an alignment requirement greater
// than the natural alignment provided by the
// operating system we have to play various tricks
// to allocate a suitable block. If not then we
// just do a normal allocation call.
//
if ( AlignMask > NaturalSize() )
{
REGISTER SBIT32 NewSize = (AlignMask + Size);
//
// We need to allocate a block with an
// alignment requirement greater than
// the operating system default. So we
// allocate a much larger block and
// release the parts we don't need.
//
while ( True )
{
REGISTER VOID *Reserved =
(
VirtualAlloc
(
NULL,
((DWORD) NewSize),
MEM_RESERVE,
PAGE_READWRITE
)
);
//
// Lets ensure we were able to find a suitable
// memory block. If not then we exit.
//
if ( Reserved != NULL )
{
//
// We just want to return the parts of
// the block we don't need but 'NT' is
// not smart enough. So we free the
// entire block.
//
if ( VirtualFree( Reserved,0,MEM_RELEASE ) )
{
REGISTER LONG Address = ((LONG) Reserved);
REGISTER VOID *NewMemory;
//
// Compute the base address of the part
// of the block we really want to allocate.
//
Address = ((Address + AlignMask) & ~AlignMask);
//
// Finally, lets reallocate the part of
// the block we wanted but just released
// and hope that nobody else got it before
// us.
//
NewMemory =
(
VirtualAlloc
(
((LPVOID) Address),
((DWORD) Size),
(MEM_RESERVE | MEM_COMMIT),
PAGE_READWRITE
)
);
//
// If it all worked we can exit.
//
if ( NewMemory != NULL )
{
#ifdef DEBUGGING
#ifdef ENABLE_ALLOCATION_STATISTICS
//
// When we are debugging output
// out trace information.
//
DebugPrint
(
"New\t\t 0x%08x %d bytes\n",
NewMemory,
Size
);
#endif
#endif
return ((void*) NewMemory);
}
}
else
{ return ((void*) AllocationFailure); }
}
else
{ return ((void*) AllocationFailure); }
}
}
else
{
REGISTER VOID *NewMemory;
//
// We can allocate directly from the operating
// system as the default alignment requirement
// is enough for this case.
//
NewMemory =
(
VirtualAlloc
(
NULL,
((DWORD) Size),
MEM_COMMIT,
PAGE_READWRITE
)
);
#ifdef DEBUGGING
#ifdef ENABLE_ALLOCATION_STATISTICS
if ( NewMemory != NULL )
{
//
// When we are debugging output out trace
// information.
//
DebugPrint( "New\t\t 0x%08x %d bytes\n",NewMemory,Size );
}
#endif
#endif
return ((void*) NewMemory);
}
}
/********************************************************************/
/* */
/* Memory reallocation. */
/* */
/* Lets start with some basic tests. If the address we have */
/* been given is special, clearly wrong or the heap has not */
/* been initialized then we fail and exit. */
/* */
/********************************************************************/
void *ROCKALL::Resize
(
void *Address,
int NewSize,
int Move,
int *Space,
bool NoDelete,
bool Zero
)
{
TRY
{
//
// A well known practice is to try to
// resize a null pointer. This is really
// a very poor style but we support it
// in any case.
//
if ( Address != ((void*) AllocationFailure) )
{
//
// We verify that the parameters look
// reasonable and the heap is not corrupt
// and then try to resize the supplied
// allocation.
//
if ( (Available()) && (NewSize >= 0) )
{
return
(
Heap -> Resize
(
((VOID*) Address),
((SBIT32) ((NewSize > 0) ? NewSize : 1)),
((SBIT32) Move),
((SBIT32*) Space),
((BOOLEAN) NoDelete),
((BOOLEAN) Zero)
)
);
}
}
else
{ return (New( NewSize,Space,Zero )); }
}
#ifdef DISABLE_STRUCTURED_EXCEPTIONS
#ifdef DEBUGGING
catch ( FAULT Message )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable, print a
// suitable message and exit.
//
GuardWord = AllocationFailure;
DebugPrint( "Exception caught: %s\n",(char*) Message );
}
#endif
catch ( ... )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#else
__except ( EXCEPTION_EXECUTE_HANDLER )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#endif
return ((void*) AllocationFailure);
}
/********************************************************************/
/* */
/* Special memory allocation. */
/* */
/* We sometimes need to allocate some memory from the internal */
/* memory allocator which lives for the lifetime of the heap. */
/* */
/********************************************************************/
void *ROCKALL::SpecialNew( int Size )
{
TRY
{
//
// We verify that the parameters look
// reasonable and the heap is not corrupt
// and then try to create the requested
// allocation.
//
if ( (Available()) && (Size > 0) )
{ return (Heap -> SpecialNew( ((SBIT32) Size) )); }
}
#ifdef DISABLE_STRUCTURED_EXCEPTIONS
#ifdef DEBUGGING
catch ( FAULT Message )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable, print a
// suitable message and exit.
//
GuardWord = AllocationFailure;
DebugPrint( "Exception caught: %s\n",(char*) Message );
}
#endif
catch ( ... )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#else
__except ( EXCEPTION_EXECUTE_HANDLER )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#endif
return ((void*) AllocationFailure);
}
/********************************************************************/
/* */
/* Truncate the heap. */
/* */
/* We need to truncate the heap. This is pretty much a null */
/* call as we do this as we go along anyway. The only thing we */
/* can do is free any space the user suggested keeping earlier. */
/* */
/********************************************************************/
bool ROCKALL::Truncate( int MaxFreeSpace )
{
TRY
{
//
// The call appears to be valid so if the
// heap is not corrupt then pass it along
// for processing.
//
if ( Available() )
{ return (Heap -> Truncate( (SBIT32) MaxFreeSpace )); }
}
#ifdef DISABLE_STRUCTURED_EXCEPTIONS
#ifdef DEBUGGING
catch ( FAULT Message )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable, print a
// suitable message and exit.
//
GuardWord = AllocationFailure;
DebugPrint( "Exception caught: %s\n",(char*) Message );
}
#endif
catch ( ... )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#else
__except ( EXCEPTION_EXECUTE_HANDLER )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#endif
return false;
}
/********************************************************************/
/* */
/* Release all the heap locks. */
/* */
/* Lets start with some basic tests. If the address we have */
/* been given is special, clearly wrong or the heap has not */
/* been initialized then we fail and exit. */
/* */
/********************************************************************/
void ROCKALL::UnlockAll( VOID )
{
TRY
{
//
// The call appears to be valid so if the
// heap is not corrupt then pass it along
// for processing.
//
if ( Available() )
{ Heap -> UnlockAll(); }
}
#ifdef DISABLE_STRUCTURED_EXCEPTIONS
#ifdef DEBUGGING
catch ( FAULT Message )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable, print a
// suitable message and exit.
//
GuardWord = AllocationFailure;
DebugPrint( "Exception caught: %s\n",(char*) Message );
}
#endif
catch ( ... )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#else
__except ( EXCEPTION_EXECUTE_HANDLER )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#endif
}
/********************************************************************/
/* */
/* Verify a memory allocation details. */
/* */
/* Lets start with some basic tests. If the address we have */
/* been given is special, clearly wrong or the heap has not */
/* been initialized then we fail the call appropriately. */
/* */
/********************************************************************/
bool ROCKALL::Verify( void *Address,int *Space )
{
TRY
{
//
// The call appears to be valid so if the
// heap is not corrupt then pass it along
// for processing.
//
if ( Available() )
{
return
(
(Address == ((void*) AllocationFailure))
||
(Heap -> Verify( ((VOID*) Address),((SBIT32*) Space) ))
);
}
}
#ifdef DISABLE_STRUCTURED_EXCEPTIONS
#ifdef DEBUGGING
catch ( FAULT Message )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable, print a
// suitable message and exit.
//
GuardWord = AllocationFailure;
DebugPrint( "Exception caught: %s\n",(char*) Message );
}
#endif
catch ( ... )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#else
__except ( EXCEPTION_EXECUTE_HANDLER )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#endif
return false;
}
/********************************************************************/
/* */
/* Walk the heap. */
/* */
/* We have been asked to walk the heap. It is hard to know */
/* why anybody might want to do this given the rest of the */
/* functionality available. Nonetheless, we just do what is */
/* required to keep everyone happy. */
/* */
/********************************************************************/
bool ROCKALL::Walk( bool *Active,void **Address,int *Space )
{
TRY
{
//
// The call appears to be valid so if the
// heap is not corrupt then pass it along
// for processing.
//
if ( Available() )
{
AUTO BOOLEAN NewActive;
//
// Walk the active heap.
//
if
(
Heap -> Walk
(
((BOOLEAN*) & NewActive),
((VOID**) Address),
((SBIT32*) Space)
)
)
{
(*Active) = (NewActive != False);
return true;
}
}
}
#ifdef DISABLE_STRUCTURED_EXCEPTIONS
#ifdef DEBUGGING
catch ( FAULT Message )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable, print a
// suitable message and exit.
//
GuardWord = AllocationFailure;
DebugPrint( "Exception caught: %s\n",(char*) Message );
}
#endif
catch ( ... )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#else
__except ( EXCEPTION_EXECUTE_HANDLER )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#endif
return false;
}
/********************************************************************/
/* */
/* Class destructor. */
/* */
/* Destory the current heap. */
/* */
/********************************************************************/
ROCKALL::~ROCKALL( void )
{
TRY
{
//
// We are about to destroy a heap but before we
// start we make sure that the heap is not corrupt
// and seems to be in reasonable shape. If not we
// leave it alone to avoid possible trouble.
//
if ( (Available()) && (NumberOfCaches > 0) && (TotalSize > 0) )
{
REGISTER SBIT32 Count;
//
// Execute the heap destructor.
//
PLACEMENT_DELETE( Heap,HEAP );
//
// Execute the new page destructor.
//
PLACEMENT_DELETE( NewPage,NEW_PAGE );
//
// Execute the find hash table destructor.
//
if ( GlobalDelete )
{
//
// We only delete the global find hash
// table if the reference count is zero.
//
Spinlock.ClaimLock();
if ( (-- ReferenceCount) == 0 )
{ PLACEMENT_DELETE( Find,FIND ); }
Spinlock.ReleaseLock();
}
else
{ PLACEMENT_DELETE( Find,FIND ); }
//
// Execute the cache destructors.
//
for ( Count=0;Count < NumberOfCaches;Count ++ )
{ PLACEMENT_DELETE( & Caches[ Count ],CACHE ); }
//
// Deallocate the heap structures.
//
DeleteArea( ((VOID*) Caches),TotalSize,False );
//
// Finally, zero any remaining members.
// We really do not need to do this but
// just want to be sure that any following
// calls will clearly fail.
//
TotalSize = 0;
NumberOfCaches = 0;
GuardWord = 0;
GlobalDelete = False;
NewPage = NULL;
Heap = NULL;
Find = NULL;
Caches = NULL;
Array = NULL;
}
}
#ifdef DISABLE_STRUCTURED_EXCEPTIONS
#ifdef DEBUGGING
catch ( FAULT Message )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable, print a
// suitable message and exit.
//
GuardWord = AllocationFailure;
DebugPrint( "Exception caught: %s\n",(char*) Message );
}
#endif
catch ( ... )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#else
__except ( EXCEPTION_EXECUTE_HANDLER )
{
//
// It looks like the heap is corrupt. So
// lets just mark it as unusable and exit.
//
GuardWord = AllocationFailure;
}
#endif
}