Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

610 lines
25 KiB

/*============================================================================
*
* Copyright (C) 1999-2000 Microsoft Corporation. All Rights Reserved.
*
* File: bspline.cpp
* Content: Implementation for B-Splines
*
****************************************************************************/
#include "pch.cpp"
#pragma hdrstop
//-----------------------------------------------------------------------------
// RefDev::ProcessBSpline
//-----------------------------------------------------------------------------
HRESULT RefDev::ProcessBSpline( DWORD dwOffW, DWORD dwOffH,
DWORD dwWidth, DWORD dwHeight,
DWORD dwStride, DWORD order,
FLOAT *pPrimSegments )
{
if(order == 0)
{
order = 2;
}
else
{
++order;
}
int u_range = dwWidth - (order - 1);
int v_range = dwHeight - (order - 1);
if(u_range <= 0 || v_range <= 0)
{
DPFERR("Insufficient control vertices for current order");
return DDERR_INVALIDPARAMS;
}
RDBSpline bsp(dwWidth, dwHeight, order, order);
static const unsigned M[4] = {0, 0, 0, 0}, N[4] = {0, 0, 0, 0};
unsigned u_segs, v_segs, u_start, v_start;
if(pPrimSegments != 0)
{
u_segs = unsigned(double(unsigned(pPrimSegments[0]) + unsigned(pPrimSegments[2])) / 2.0 + 0.5);
v_segs = unsigned(double(unsigned(pPrimSegments[1]) + unsigned(pPrimSegments[3])) / 2.0 + 0.5);
if(u_segs == 0)
{
u_segs = 1;
}
if(v_segs == 0)
{
v_segs = 1;
}
if(unsigned(pPrimSegments[0]) != unsigned(pPrimSegments[2]) || unsigned(pPrimSegments[1]) != unsigned(pPrimSegments[3]))
{
// First, gulp, the irregular outside
// To make life easier, we don't want to deal with the case when u_segs or v_segs is one
// This ensures that there is at least one inside point
if(u_segs == 1)
{
u_segs = 2;
}
if(v_segs == 1)
{
v_segs = 2;
}
// Start with top edge
unsigned segs = unsigned(pPrimSegments[0]);
unsigned k_outer = 0;
unsigned k_inner = 1;
unsigned outer_inc = u_segs - 2;
unsigned inner_inc = segs;
unsigned outer = 0;
unsigned inner = 0;
double u0, v0, u1, v1, u2, v2;
while(outer_inc != 0 ? (inner != inner_inc * outer_inc || outer != inner_inc * outer_inc) : (k_outer < segs))
{
if(inner < outer)
{
_ASSERT(k_inner < u_segs - 1, "Error in logic");
u0 = double(u_range * k_inner) / double(u_segs) + double(order - 1);
v0 = double(v_range) / double(v_segs) + double(order - 1);
u1 = double(u_range * k_outer) / double(segs) + double(order - 1);
v1 = double(order - 1);
u2 = double(u_range * (k_inner + 1)) / double(u_segs) + double(order - 1);
v2 = v0;
++k_inner;
inner += inner_inc;
}
else
{
_ASSERT(k_outer < segs, "Error in logic");
u0 = double(u_range * k_inner) / double(u_segs) + double(order - 1);
v0 = double(v_range) / double(v_segs) + double(order - 1);
u1 = double(u_range * k_outer) / double(segs) + double(order - 1);
v1 = double(order - 1);
u2 = double(u_range * (k_outer + 1)) / double(segs) + double(order - 1);
v2 = v1;
++k_outer;
outer += outer_inc;
}
HRESULT hr = DrawTessTri(bsp, dwOffW, dwOffH, dwStride, M, N, u0, v0, u1, v1, u2, v2,
bsp.TexCoordU(u0), bsp.TexCoordV(v0),
bsp.TexCoordU(u1), bsp.TexCoordV(v1),
bsp.TexCoordU(u2), bsp.TexCoordV(v2),
false, false, false);
if(FAILED(hr))
{
return hr;
}
}
// bottom edge
segs = unsigned(pPrimSegments[2]);
k_outer = segs;
k_inner = u_segs - 1;
inner_inc = segs;
outer = 0;
inner = 0;
while(outer_inc != 0 ? (inner != inner_inc * outer_inc || outer != inner_inc * outer_inc) : (k_outer > 0))
{
if(inner < outer)
{
_ASSERT(k_inner > 1, "Error in logic");
u0 = double(u_range * k_inner) / double(u_segs) + double(order - 1);
v0 = double(v_range * (v_segs - 1)) / double(v_segs) + double(order - 1);
u1 = double(u_range * k_outer) / double(segs) + double(order - 1);
v1 = double(v_range + order - 1);
u2 = double(u_range * (k_inner - 1)) / double(u_segs) + double(order - 1);
v2 = v0;
--k_inner;
inner += inner_inc;
}
else
{
_ASSERT(k_outer > 0, "Error in logic");
u0 = double(u_range * k_inner) / double(u_segs) + double(order - 1);
v0 = double(v_range * (v_segs - 1)) / double(v_segs) + double(order - 1);
u1 = double(u_range * k_outer) / double(segs) + double(order - 1);
v1 = double(v_range + order - 1);
u2 = double(u_range * (k_outer - 1)) / double(segs) + double(order - 1);
v2 = v1;
--k_outer;
outer += outer_inc;
}
HRESULT hr = DrawTessTri(bsp, dwOffW, dwOffH, dwStride, M, N, u0, v0, u1, v1, u2, v2,
bsp.TexCoordU(u0), bsp.TexCoordV(v0),
bsp.TexCoordU(u1), bsp.TexCoordV(v1),
bsp.TexCoordU(u2), bsp.TexCoordV(v2),
false, false, false);
if(FAILED(hr))
{
return hr;
}
}
// right edge
segs = unsigned(pPrimSegments[1]);
k_outer = 0;
k_inner = 1;
outer_inc = v_segs - 2;
inner_inc = segs;
outer = 0;
inner = 0;
while(outer_inc != 0 ? (inner != inner_inc * outer_inc || outer != inner_inc * outer_inc) : (k_outer < segs))
{
if(inner < outer)
{
_ASSERT(k_inner < v_segs - 1, "Error in logic");
u0 = double(u_range * (u_segs - 1)) / double(u_segs) + double(order - 1);
v0 = double(v_range * k_inner) / double(v_segs) + double(order - 1);
u1 = double(u_range + order - 1);
v1 = double(v_range * k_outer) / double(segs) + double(order - 1);
u2 = u0;
v2 = double(v_range * (k_inner + 1)) / double(v_segs) + double(order - 1);
++k_inner;
inner += inner_inc;
}
else
{
_ASSERT(k_outer < segs, "Error in logic");
u0 = double(u_range * (u_segs - 1)) / double(u_segs) + double(order - 1);
v0 = double(v_range * k_inner) / double(v_segs) + double(order - 1);
u1 = double(u_range + order - 1);
v1 = double(v_range * k_outer) / double(segs) + double(order - 1);
u2 = u1;
v2 = double(v_range * (k_outer + 1)) / double(segs) + double(order - 1);
++k_outer;
outer += outer_inc;
}
HRESULT hr = DrawTessTri(bsp, dwOffW, dwOffH, dwStride, M, N, u0, v0, u1, v1, u2, v2,
bsp.TexCoordU(u0), bsp.TexCoordV(v0),
bsp.TexCoordU(u1), bsp.TexCoordV(v1),
bsp.TexCoordU(u2), bsp.TexCoordV(v2),
false, false, false);
if(FAILED(hr))
{
return hr;
}
}
// left edge
segs = unsigned(pPrimSegments[3]);
k_outer = segs;
k_inner = v_segs - 1;
inner_inc = segs;
outer = 0;
inner = 0;
while(outer_inc != 0 ? (inner != inner_inc * outer_inc || outer != inner_inc * outer_inc) : (k_outer > 0))
{
if(inner < outer)
{
_ASSERT(k_inner > 1, "Error in logic");
u0 = double(u_range) / double(u_segs) + double(order - 1);
v0 = double(v_range * k_inner) / double(v_segs) + double(order - 1);
u1 = double(order - 1);
v1 = double(v_range * k_outer) / double(segs) + double(order - 1);
u2 = u0;
v2 = double(v_range * (k_inner - 1)) / double(v_segs) + double(order - 1);
--k_inner;
inner += inner_inc;
}
else
{
_ASSERT(k_outer > 0, "Error in logic");
u0 = double(u_range) / double(u_segs) + double(order - 1);
v0 = double(v_range * k_inner) / double(v_segs) + double(order - 1);
u1 = double(order - 1);
v1 = double(v_range * k_outer) / double(segs) + double(order - 1);
u2 = u1;
v2 = double(v_range * (k_outer - 1)) / double(segs) + double(order - 1);
--k_outer;
outer += outer_inc;
}
HRESULT hr = DrawTessTri(bsp, dwOffW, dwOffH, dwStride, M, N, u0, v0, u1, v1, u2, v2,
bsp.TexCoordU(u0), bsp.TexCoordV(v0),
bsp.TexCoordU(u1), bsp.TexCoordV(v1),
bsp.TexCoordU(u2), bsp.TexCoordV(v2),
false, false, false);
if(FAILED(hr))
{
return hr;
}
}
// Now do the regular interior
u_start = 1;
v_start = 1;
}
else
{
// It can be done regularly
u_start = 0;
v_start = 0;
}
}
else
{
unsigned segs = unsigned(GetRSf()[D3DRS_PATCHSEGMENTS]);
if(segs == 0)
{
segs = 1;
}
u_start = 0;
v_start = 0;
u_segs = segs;
v_segs = segs;
}
for(unsigned i = v_start; i < v_segs - v_start; ++i)
{
double v0 = double(v_range * i) / double(v_segs) + double(order - 1);
double v1 = double(v_range * (i + 1)) / double(v_segs) + double(order - 1);
for(unsigned j = u_start; j < u_segs - u_start; ++j)
{
double u0 = double(u_range * j) / double(u_segs) + double(order - 1);
double u1 = double(u_range * (j + 1)) / double(u_segs) + double(order - 1);
HRESULT hr = DrawTessQuad(bsp, dwOffW, dwOffH, dwStride, M, N, u0, v0, u1, v1,
bsp.TexCoordU(u0), bsp.TexCoordV(v0),
bsp.TexCoordU(u1), bsp.TexCoordV(v1),
false);
if(FAILED(hr))
{
return hr;
}
}
}
return S_OK;
}
//-----------------------------------------------------------------------------
// RDBSpline::Sample
//-----------------------------------------------------------------------------
void RDBSpline::Sample(DWORD dwDataType, double u, double v, const BYTE *pRow, DWORD dwStride, DWORD dwPitch, BYTE *Q) const
{
double Acc[4] = {0.0, 0.0, 0.0, 0.0};
unsigned dwElements = 0;
switch(dwDataType)
{
case D3DVSDT_FLOAT4:
++dwElements;
case D3DVSDT_FLOAT3:
++dwElements;
case D3DVSDT_FLOAT2:
++dwElements;
case D3DVSDT_FLOAT1:
++dwElements;
{
for(unsigned i = 0; i < m_dwHeight; ++i)
{
double N = Basis(i, m_dwOrderV, v);
const BYTE *pCol = pRow;
for(unsigned j = 0; j < m_dwWidth; ++j)
{
double NM = N * Basis(j, m_dwOrderU, u);
const FLOAT *B = (FLOAT*)pCol;
for(unsigned e = 0; e < dwElements; ++e)
{
Acc[e] += double(B[e]) * NM;
}
pCol += dwStride;
}
pRow += dwPitch;
}
for(unsigned e = 0; e < dwElements; ++e)
{
((FLOAT*)Q)[e] = FLOAT(Acc[e]);
}
}
break;
case D3DVSDT_D3DCOLOR:
case D3DVSDT_UBYTE4:
dwElements = 4;
{
for(unsigned i = 0; i < m_dwHeight; ++i)
{
double N = Basis(i, m_dwOrderV, v);
const BYTE *pCol = pRow;
for(unsigned j = 0; j < m_dwWidth; ++j)
{
double NM = N * Basis(j, m_dwOrderU, u);
const BYTE *B = pCol;
for(unsigned e = 0; e < 4; ++e)
{
Acc[e] += double(B[e]) * NM;
}
pCol += dwStride;
}
pRow += dwPitch;
}
for(unsigned e = 0; e < 4; ++e)
{
int t = int(Acc[e]);
Q[e] = BYTE(t < 0 ? 0 : (t > 255 ? 255 : t));
}
}
break;
case D3DVSDT_SHORT4:
dwElements += 2;
case D3DVSDT_SHORT2:
dwElements += 2;
{
for(unsigned i = 0; i < m_dwHeight; ++i)
{
double N = Basis(i, m_dwOrderV, v);
const BYTE *pCol = pRow;
for(unsigned j = 0; j < m_dwWidth; ++j)
{
double NM = N * Basis(j, m_dwOrderU, u);
const SHORT *B = (SHORT*)pCol;
for(unsigned e = 0; e < dwElements; ++e)
{
Acc[e] += double(B[e]) * NM;
}
pCol += dwStride;
}
pRow += dwPitch;
}
for(unsigned e = 0; e < dwElements; ++e)
{
((SHORT*)Q)[e] = SHORT(Acc[e]);
}
}
break;
default:
_ASSERT(FALSE, "Ununderstood vertex element data type");
}
}
//-----------------------------------------------------------------------------
// RDBSpline::SampleNormal
//-----------------------------------------------------------------------------
void RDBSpline::SampleNormal(DWORD dwDataType, double u, double v, const BYTE *pRow, DWORD dwStride, DWORD dwPitch, BYTE *Q) const
{
double Acc[2][3] = {{0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}};
// Fudge u and v if they are on the boundary. This is because the derivative is discontinuous on the boundary
// and we really want it to be slightly inside the boundary.
if(v == double(m_dwHeight))
{
v -= v * DBL_EPSILON;
}
if(u == double(m_dwWidth))
{
u -= u * DBL_EPSILON;
}
switch(dwDataType)
{
case D3DVSDT_FLOAT4:
case D3DVSDT_FLOAT3:
{
for(unsigned i = 0; i < m_dwHeight; ++i)
{
double N = Basis(i, m_dwOrderV, v);
double NPrime = BasisPrime(i, m_dwOrderV, v);
const BYTE *pCol = pRow;
for(unsigned j = 0; j < m_dwWidth; ++j)
{
double NMPrime = N * BasisPrime(j, m_dwOrderU, u);
double NPrimeM = NPrime * Basis(j, m_dwOrderU, u);
const FLOAT *B = (FLOAT*)pCol;
for(unsigned e = 0; e < 3; ++e)
{
Acc[0][e] += double(B[e]) * NMPrime;
Acc[1][e] += double(B[e]) * NPrimeM;
}
pCol += dwStride;
}
pRow += dwPitch;
}
((FLOAT*)Q)[0] = FLOAT(Acc[0][1] * Acc[1][2] - Acc[0][2] * Acc[1][1]);
((FLOAT*)Q)[1] = FLOAT(Acc[0][2] * Acc[1][0] - Acc[0][0] * Acc[1][2]);
((FLOAT*)Q)[2] = FLOAT(Acc[0][0] * Acc[1][1] - Acc[0][1] * Acc[1][0]);
}
break;
case D3DVSDT_D3DCOLOR:
case D3DVSDT_UBYTE4:
{
for(unsigned i = 0; i < m_dwHeight; ++i)
{
double N = Basis(i, m_dwOrderV, v);
double NPrime = BasisPrime(i, m_dwOrderV, v);
const BYTE *pCol = pRow;
for(unsigned j = 0; j < m_dwWidth; ++j)
{
double NMPrime = N * BasisPrime(j, m_dwOrderU, u);
double NPrimeM = NPrime * Basis(j, m_dwOrderU, u);
const BYTE *B = pCol;
for(unsigned e = 0; e < 3; ++e)
{
Acc[0][e] += double(B[e]) * NMPrime;
Acc[1][e] += double(B[e]) * NPrimeM;
}
pCol += dwStride;
}
pRow += dwPitch;
}
((FLOAT*)Q)[0] = FLOAT(Acc[0][1] * Acc[1][2] - Acc[0][2] * Acc[1][1]);
((FLOAT*)Q)[1] = FLOAT(Acc[0][2] * Acc[1][0] - Acc[0][0] * Acc[1][2]);
((FLOAT*)Q)[2] = FLOAT(Acc[0][0] * Acc[1][1] - Acc[0][1] * Acc[1][0]);
}
break;
case D3DVSDT_SHORT4:
{
for(unsigned i = 0; i < m_dwHeight; ++i)
{
double N = Basis(i, m_dwOrderV, v);
double NPrime = BasisPrime(i, m_dwOrderV, v);
const BYTE *pCol = pRow;
for(unsigned j = 0; j < m_dwWidth; ++j)
{
double NMPrime = N * BasisPrime(j, m_dwOrderU, u);
double NPrimeM = NPrime * Basis(j, m_dwOrderU, u);
const SHORT *B = (SHORT*)pCol;
for(unsigned e = 0; e < 3; ++e)
{
Acc[0][e] += double(B[e]) * NMPrime;
Acc[1][e] += double(B[e]) * NPrimeM;
}
pCol += dwStride;
}
pRow += dwPitch;
}
((FLOAT*)Q)[0] = FLOAT(Acc[0][1] * Acc[1][2] - Acc[0][2] * Acc[1][1]);
((FLOAT*)Q)[1] = FLOAT(Acc[0][2] * Acc[1][0] - Acc[0][0] * Acc[1][2]);
((FLOAT*)Q)[2] = FLOAT(Acc[0][0] * Acc[1][1] - Acc[0][1] * Acc[1][0]);
}
break;
case D3DVSDT_SHORT2:
case D3DVSDT_FLOAT2:
case D3DVSDT_FLOAT1:
default:
_ASSERT(FALSE, "Ununderstood vertex element data type");
}
}
//-----------------------------------------------------------------------------
// RDBSpline::SampleDegenerateNormal
//-----------------------------------------------------------------------------
void RDBSpline::SampleDegenerateNormal(DWORD dwDataType, const BYTE *pRow, DWORD dwStride, DWORD dwPitch, BYTE *Q) const
{
double Acc[2][3] = {{0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}};
switch(dwDataType)
{
case D3DVSDT_FLOAT4:
case D3DVSDT_FLOAT3:
{
for(unsigned i = 0; i < m_dwHeight; ++i)
{
double JPrime = BasisPrime(i, m_dwOrderV, 0.0);
const FLOAT *B1 = (FLOAT*)pRow;
const FLOAT *B2 = (FLOAT*)(pRow + (m_dwWidth - 1) * dwStride);
for(unsigned e = 0; e < 3; ++e)
{
Acc[0][e] += double(B2[e]) * JPrime;
Acc[1][e] += double(B1[e]) * JPrime;
}
pRow += dwPitch;
}
((FLOAT*)Q)[0] = FLOAT(Acc[0][1] * Acc[1][2] - Acc[0][2] * Acc[1][1]);
((FLOAT*)Q)[1] = FLOAT(Acc[0][2] * Acc[1][0] - Acc[0][0] * Acc[1][2]);
((FLOAT*)Q)[2] = FLOAT(Acc[0][0] * Acc[1][1] - Acc[0][1] * Acc[1][0]);
}
break;
case D3DVSDT_D3DCOLOR:
case D3DVSDT_UBYTE4:
{
for(unsigned i = 0; i < m_dwHeight; ++i)
{
double JPrime = BasisPrime(i, m_dwOrderV, 0.0);
const BYTE *B1 = pRow;
const BYTE *B2 = pRow + (m_dwWidth - 1) * dwStride;
for(unsigned e = 0; e < 3; ++e)
{
Acc[0][e] += double(B2[e]) * JPrime;
Acc[1][e] += double(B1[e]) * JPrime;
}
pRow += dwPitch;
}
((FLOAT*)Q)[0] = FLOAT(Acc[0][1] * Acc[1][2] - Acc[0][2] * Acc[1][1]);
((FLOAT*)Q)[1] = FLOAT(Acc[0][2] * Acc[1][0] - Acc[0][0] * Acc[1][2]);
((FLOAT*)Q)[2] = FLOAT(Acc[0][0] * Acc[1][1] - Acc[0][1] * Acc[1][0]);
}
break;
case D3DVSDT_SHORT4:
{
for(unsigned i = 0; i < m_dwHeight; ++i)
{
double JPrime = BasisPrime(i, m_dwOrderV, 0.0);
const SHORT *B1 = (SHORT*)pRow;
const SHORT *B2 = (SHORT*)(pRow + (m_dwWidth - 1) * dwStride);
for(unsigned e = 0; e < 3; ++e)
{
Acc[0][e] += double(B2[e]) * JPrime;
Acc[1][e] += double(B1[e]) * JPrime;
}
pRow += dwPitch;
}
((FLOAT*)Q)[0] = FLOAT(Acc[0][1] * Acc[1][2] - Acc[0][2] * Acc[1][1]);
((FLOAT*)Q)[1] = FLOAT(Acc[0][2] * Acc[1][0] - Acc[0][0] * Acc[1][2]);
((FLOAT*)Q)[2] = FLOAT(Acc[0][0] * Acc[1][1] - Acc[0][1] * Acc[1][0]);
}
break;
case D3DVSDT_FLOAT2:
case D3DVSDT_FLOAT1:
case D3DVSDT_SHORT2:
default:
_ASSERT(FALSE, "Ununderstood vertex element data type");
}
}
//-----------------------------------------------------------------------------
// RDBSpline::Basis
//-----------------------------------------------------------------------------
double RDBSpline::Basis(unsigned i, unsigned k, double s) const
{
if(k == 1)
{
if(Knot(i) <= s && s < Knot(i + 1))
{
return 1.0;
}
else
{
return 0.0;
}
}
else
{
_ASSERT(k != 0, "Arithmatic error in RDBSpline::Basis");
return ((s - Knot(i)) * Basis(i, k - 1, s)) / (Knot(i + k - 1) - Knot(i)) +
((Knot(i + k) - s) * Basis(i + 1, k - 1, s)) / (Knot(i + k) - Knot(i + 1));
}
}
//-----------------------------------------------------------------------------
// RDBSpline::BasisPrime
//-----------------------------------------------------------------------------
double RDBSpline::BasisPrime(unsigned i, unsigned k, double s) const
{
if(k == 1)
{
return 0.0;
}
else
{
_ASSERT(k != 0, "Arithmatic error in RDBSpline::BasisPrime");
return (Basis(i, k - 1, s) + (s - Knot(i)) * BasisPrime(i, k - 1, s)) / (Knot(i + k - 1) - Knot(i)) +
((Knot(i + k) - s) * BasisPrime(i + 1, k - 1, s) - Basis(i + 1, k - 1, s)) / (Knot(i + k) - Knot(i + 1));
}
}