Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1418 lines
44 KiB

/*++
Copyright (c) 1989 Microsoft Corporation
Module Name:
buffer.c
Abstract:
This module contains routines for handling non-bufferring TDI
providers. The AFD interface assumes that bufferring will be done
below AFD; if the TDI provider doesn't buffer, then AFD must.
Author:
David Treadwell (davidtr) 21-Feb-1992
Revision History:
--*/
#include "afdp.h"
PAFD_BUFFER
AfdInitializeBuffer (
IN PVOID MemBlock,
IN ULONG BufferDataSize,
IN ULONG AddressSize,
IN CCHAR StackSize
);
VOID
AfdInitializeBufferTag (
IN PAFD_BUFFER_TAG AfdBufferTag,
IN ULONG AddressSize
);
PAFD_BUFFER
AfdGetBufferSlow (
IN ULONG BufferDataSize,
IN ULONG AddressSize,
IN PEPROCESS Process,
IN CCHAR StackSize
);
#if DBG
VOID
AfdFreeBufferReal (
PVOID AfdBuffer
);
#endif
#ifdef ALLOC_PRAGMA
#pragma alloc_text( PAGEAFD, AfdAllocateBuffer )
#pragma alloc_text( PAGEAFD, AfdFreeBuffer )
#if DBG
#pragma alloc_text( PAGEAFD, AfdFreeBufferReal )
#endif
#pragma alloc_text( PAGEAFD, AfdCalculateBufferSize )
#pragma alloc_text( PAGEAFD, AfdInitializeBuffer )
#pragma alloc_text( PAGEAFD, AfdGetBufferFast )
#ifdef _AFD_VARIABLE_STACK_
#pragma alloc_text( PAGEAFD, AfdGetBufferWithMaxStackSize )
#endif //_AFD_VARIABLE_STACK_
#pragma alloc_text( PAGEAFD, AfdGetBufferSlow )
#pragma alloc_text( PAGEAFD, AfdReturnBuffer )
#pragma alloc_text( PAGEAFD, AfdAllocateBufferTag )
#pragma alloc_text( PAGEAFD, AfdFreeBufferTag )
#pragma alloc_text( PAGEAFD, AfdAllocateRemoteAddress )
#pragma alloc_text( PAGEAFD, AfdFreeRemoteAddress )
#pragma alloc_text( PAGEAFD, AfdInitializeBufferTag )
#pragma alloc_text( PAGEAFD, AfdGetBufferTag )
#pragma alloc_text( INIT, AfdInitializeBufferManager)
#endif
PVOID
AfdAllocateBuffer (
IN POOL_TYPE PoolType,
IN SIZE_T NumberOfBytes,
IN ULONG Tag
)
/*++
Routine Description:
Used by the lookaside list allocation function to allocate a new
AFD buffer structure. The returned structure will be fully
initialized.
Arguments:
PoolType - passed to ExAllocatePoolWithTag.
NumberOfBytes - the number of bytes required for the data buffer
portion of the AFD buffer.
Tag - passed to ExAllocatePoolWithTag.
Return Value:
PVOID - a fully initialized PAFD_BUFFER, or NULL if the allocation
attempt fails.
--*/
{
ULONG dataLength;
PVOID memBlock;
//
// Get nonpaged pool for the buffer.
//
memBlock = AFD_ALLOCATE_POOL( PoolType, NumberOfBytes, Tag );
if ( memBlock == NULL ) {
return NULL;
}
if (NumberOfBytes==AfdLookasideLists->SmallBufferList.L.Size) {
dataLength = AfdSmallBufferSize;
}
else if (NumberOfBytes==AfdLookasideLists->MediumBufferList.L.Size) {
dataLength = AfdMediumBufferSize;
}
else if (NumberOfBytes==AfdLookasideLists->LargeBufferList.L.Size) {
dataLength = AfdLargeBufferSize;
}
else {
ASSERT (!"Unknown buffer length");
return NULL;
}
//
// Initialize the buffer and return a pointer to it.
//
#if DBG
{
PAFD_BUFFER afdBuffer = AfdInitializeBuffer( memBlock,
dataLength,
AfdStandardAddressLength,
AfdTdiStackSize );
ASSERT ((PCHAR)afdBuffer+sizeof (AFD_BUFFER)<=(PCHAR)memBlock+NumberOfBytes &&
(PCHAR)afdBuffer->Buffer+dataLength<=(PCHAR)memBlock+NumberOfBytes &&
(PCHAR)afdBuffer->Irp+IoSizeOfIrp(AfdTdiStackSize)<=(PCHAR)memBlock+NumberOfBytes &&
(PCHAR)afdBuffer->Mdl+MmSizeOfMdl(afdBuffer->Buffer, dataLength)<=(PCHAR)memBlock+NumberOfBytes &&
(PCHAR)afdBuffer->TdiInfo.RemoteAddress+AfdStandardAddressLength<=(PCHAR)memBlock+NumberOfBytes);
return afdBuffer;
}
#else
return AfdInitializeBuffer( memBlock, dataLength, AfdStandardAddressLength, AfdTdiStackSize );
#endif
} // AfdAllocateBuffer
VOID
NTAPI
AfdFreeBuffer (
PVOID AfdBuffer
)
{
ASSERT( ((PAFD_BUFFER)AfdBuffer)->BufferLength == AfdSmallBufferSize ||
((PAFD_BUFFER)AfdBuffer)->BufferLength == AfdMediumBufferSize ||
((PAFD_BUFFER)AfdBuffer)->BufferLength == AfdLargeBufferSize );
#if DBG
AfdFreeBufferReal (AfdBuffer);
}
VOID
NTAPI
AfdFreeBufferReal (
PVOID AfdBuffer
)
{
#endif
{
PAFD_BUFFER hdr = AfdBuffer;
switch (hdr->Placement) {
case AFD_PLACEMENT_BUFFER:
AfdBuffer = hdr->Buffer;
break;
case AFD_PLACEMENT_HDR:
AfdBuffer = hdr;
break;
case AFD_PLACEMENT_MDL:
AfdBuffer = hdr->Mdl;
break;
case AFD_PLACEMENT_IRP:
AfdBuffer = hdr->Irp;
break;
default:
ASSERT (!"Unknown placement!");
__assume (0);
}
if (hdr->AlignmentAdjusted) {
//
// The original memory block was adjusted to meet alignment
// requirement of AFD buffers.
// The amount of adjustment should be stored in the space
// used for adjustment (right below the first piece).
//
ASSERT ((*(((PSIZE_T)AfdBuffer)-1))>0 &&
(*(((PSIZE_T)AfdBuffer)-1))<AfdBufferAlignment);
AfdBuffer = (PUCHAR)AfdBuffer - (*(((PSIZE_T)AfdBuffer)-1));
}
AFD_FREE_POOL (AfdBuffer, AFD_DATA_BUFFER_POOL_TAG);
}
}
PVOID
AfdAllocateBufferTag (
IN POOL_TYPE PoolType,
IN SIZE_T NumberOfBytes,
IN ULONG Tag
)
/*++
Routine Description:
Used by the lookaside list allocation function to allocate a new
AFD buffer tag structure. The returned structure will be fully
initialized.
Arguments:
PoolType - passed to ExAllocatePoolWithTag.
NumberOfBytes - the number of bytes required for the data buffer
portion of the AFD buffer tag (0).
Tag - passed to ExAllocatePoolWithTag.
Return Value:
PVOID - a fully initialized PAFD_BUFFER_TAG, or NULL if the allocation
attempt fails.
--*/
{
PAFD_BUFFER_TAG afdBufferTag;
//
// The requested length must be the same as buffer tag size
//
ASSERT(NumberOfBytes == sizeof (AFD_BUFFER_TAG) );
//
// Get nonpaged pool for the buffer tag.
//
afdBufferTag = AFD_ALLOCATE_POOL( PoolType, NumberOfBytes, Tag );
if ( afdBufferTag == NULL ) {
return NULL;
}
//
// Initialize the buffer tag and return a pointer to it.
//
AfdInitializeBufferTag( afdBufferTag, 0 );
return afdBufferTag;
} // AfdAllocateBufferTag
VOID
NTAPI
AfdFreeBufferTag (
PVOID AfdBufferTag
)
{
AFD_FREE_POOL (AfdBufferTag, AFD_DATA_BUFFER_POOL_TAG);
}
PVOID
AfdAllocateRemoteAddress (
IN POOL_TYPE PoolType,
IN SIZE_T NumberOfBytes,
IN ULONG Tag
)
/*++
Routine Description:
Used by the lookaside list allocation function to allocate a new
remote address structure. The returned structure will be fully
initialized.
Arguments:
PoolType - passed to ExAllocatePoolWithTag.
NumberOfBytes - the number of bytes required for the data buffer
portion of the AFD buffer tag (0).
Tag - passed to ExAllocatePoolWithTag.
Return Value:
PVOID - a fully initialized remote address, or NULL if the allocation
attempt fails.
--*/
{
//
// The requested length must be the same as standard address size
//
ASSERT(NumberOfBytes == AfdStandardAddressLength );
//
// Get nonpaged pool for the remote address.
//
return AFD_ALLOCATE_POOL( PoolType, NumberOfBytes, Tag );
} // AfdAllocateRemoteAddress
VOID
NTAPI
AfdFreeRemoteAddress (
PVOID AfdBufferTag
)
{
AFD_FREE_POOL (AfdBufferTag, AFD_REMOTE_ADDRESS_POOL_TAG);
}
ULONG
AfdCalculateBufferSize (
IN ULONG BufferDataSize,
IN ULONG AddressSize,
IN CCHAR StackSize
)
/*++
Routine Description:
Determines the size of an AFD buffer structure given the amount of
data that the buffer contains.
Arguments:
BufferDataSize - data length of the buffer.
AddressSize - length of address structure for the buffer.
Return Value:
Number of bytes needed for an AFD_BUFFER structure for data of
this size.
--*/
{
ULONG irpSize;
ULONG mdlSize;
ULONG hdrSize;
ULONG size;
//
// Determine the sizes of the various components of an AFD_BUFFER
// structure.
//
hdrSize = sizeof (AFD_BUFFER);
irpSize = IoSizeOfIrp( StackSize );
//
// For mdl size calculation we rely on ex guarantee that buffer will be
// aligned on the page boundary (for allocations >= PAGE_SIZE)
// or will not spawn pages (for allocations < PAGE_SIZE).
//
mdlSize = (CLONG)MmSizeOfMdl( NULL, BufferDataSize );
size = ALIGN_UP_A(hdrSize,AFD_MINIMUM_BUFFER_ALIGNMENT) +
ALIGN_UP_A(irpSize,AFD_MINIMUM_BUFFER_ALIGNMENT) +
ALIGN_UP_A(mdlSize,AFD_MINIMUM_BUFFER_ALIGNMENT) +
ALIGN_UP_A(BufferDataSize,AFD_MINIMUM_BUFFER_ALIGNMENT) +
AddressSize;
if (size>=PAGE_SIZE) {
return size;
}
else {
if (StackSize==AfdTdiStackSize) {
size += AfdAlignmentOverhead;
}
else {
size += AfdBufferAlignment-AFD_MINIMUM_BUFFER_ALIGNMENT;
}
if (size>=PAGE_SIZE) {
//
// PAGE_SIZE allocations are aligned, ignore any extra overhead
//
return PAGE_SIZE;
}
else {
return size;
}
}
} // AfdCalculateBufferSize
PAFD_BUFFER
FASTCALL
AfdGetBufferFast (
IN ULONG BufferDataSize,
IN ULONG AddressSize,
IN PEPROCESS Process
)
/*++
Routine Description:
Obtains a buffer of the appropriate size for the caller. Uses
the preallocated buffers if possible, or else allocates a new buffer
structure if required.
Arguments:
BufferDataSize - the size of the data buffer that goes along with the
buffer structure.
AddressSize - size of the address field required for the buffer.
Return Value:
PAFD_BUFFER - a pointer to an AFD_BUFFER structure, or NULL if one
was not available or could not be allocated.
--*/
{
PAFD_BUFFER afdBuffer;
NTSTATUS status;
//
// If possible, allocate the buffer from one of the lookaside lists.
//
if ( AddressSize <= AfdStandardAddressLength &&
BufferDataSize <= AfdLargeBufferSize ) {
PNPAGED_LOOKASIDE_LIST lookasideList;
if ( BufferDataSize <= AfdSmallBufferSize ) {
lookasideList = &AfdLookasideLists->SmallBufferList;
} else if ( BufferDataSize <= AfdMediumBufferSize ) {
lookasideList = &AfdLookasideLists->MediumBufferList;
} else {
lookasideList = &AfdLookasideLists->LargeBufferList;
}
afdBuffer = ExAllocateFromNPagedLookasideList( lookasideList );
if ( afdBuffer != NULL) {
if (!afdBuffer->Lookaside) {
status = PsChargeProcessPoolQuota (
(PEPROCESS)((ULONG_PTR)Process & (~AFDB_RAISE_ON_FAILURE)),
NonPagedPool,
lookasideList->L.Size);
if (!NT_SUCCESS (status)) {
AfdFreeBuffer (afdBuffer);
goto ExitQuotaFailure;
}
AfdRecordQuotaHistory(
process,
(LONG)lookasideList->L.Size,
"BuffAlloc ",
afdBuffer
);
AfdRecordPoolQuotaCharged(lookasideList->L.Size);
}
#if DBG
RtlGetCallersAddress(
&afdBuffer->Caller,
&afdBuffer->CallersCaller
);
#endif
return afdBuffer;
}
}
else {
afdBuffer = AfdGetBufferSlow (BufferDataSize, AddressSize, Process, AfdTdiStackSize);
#if DBG
if (afdBuffer!=NULL) {
RtlGetCallersAddress(
&afdBuffer->Caller,
&afdBuffer->CallersCaller
);
}
#endif
return afdBuffer;
}
status = STATUS_INSUFFICIENT_RESOURCES;
ExitQuotaFailure:
if ((ULONG_PTR)Process & AFDB_RAISE_ON_FAILURE) {
ExRaiseStatus (status);
}
return NULL;
} // AfdGetBuffer
#ifdef _AFD_VARIABLE_STACK_
PAFD_BUFFER
FASTCALL
AfdGetBufferWithMaxStackSize (
IN ULONG BufferDataSize,
IN ULONG AddressSize,
IN PEPROCESS Process
)
{
PAFD_BUFFER afdBuffer;
afdBuffer = AfdGetBufferSlow (BufferDataSize, AddressSize, Process, AfdMaxStackSize);
#if DBG
if (afdBuffer!=NULL) {
RtlGetCallersAddress(
&afdBuffer->Caller,
&afdBuffer->CallersCaller
);
}
#endif
return afdBuffer;
}
#endif // _AFD_VARIABLE_STACK_
PAFD_BUFFER
AfdGetBufferSlow (
IN ULONG BufferDataSize,
IN ULONG AddressSize,
IN PEPROCESS Process,
IN CCHAR StackSize
)
{
NTSTATUS status;
if (AddressSize<=0xFFFF) {
PVOID memBlock;
LONG sz;
ULONG bufferSize;
//
// Couldn't find an appropriate buffer that was preallocated.
// Allocate one manually. If the buffer size requested was
// zero bytes, give them four bytes. This is because some of
// the routines like MmSizeOfMdl() cannot handle getting passed
// in a length of zero.
//
// !!! It would be good to ROUND_TO_PAGES for this allocation
// if appropriate, then use entire buffer size.
//
if ( BufferDataSize == 0 ) {
BufferDataSize = sizeof(ULONG);
}
bufferSize = AfdCalculateBufferSize( BufferDataSize, AddressSize, StackSize );
//
// Check for overflow (stack size comes from trusted source - no need to check
// for overflow).
//
if (bufferSize>=BufferDataSize && bufferSize>=AddressSize) {
memBlock = AFD_ALLOCATE_POOL(
NonPagedPool,
bufferSize,
AFD_DATA_BUFFER_POOL_TAG
);
if ( memBlock != NULL) {
status = PsChargeProcessPoolQuota (
(PEPROCESS)((ULONG_PTR)Process & (~AFDB_RAISE_ON_FAILURE)),
NonPagedPool,
sz = BufferDataSize
+AfdBufferOverhead
+AddressSize
-AfdStandardAddressLength
+BufferDataSize<PAGE_SIZE
? min (AfdAlignmentOverhead, PAGE_SIZE-BufferDataSize)
: 0);
if (NT_SUCCESS (status)) {
PAFD_BUFFER afdBuffer;
//
// Initialize the AFD buffer structure and return it.
//
afdBuffer = AfdInitializeBuffer( memBlock,
BufferDataSize,
AddressSize,
StackSize);
ASSERT ((PCHAR)afdBuffer+sizeof (AFD_BUFFER)<=(PCHAR)memBlock+bufferSize &&
(PCHAR)afdBuffer->Buffer+BufferDataSize<=(PCHAR)memBlock+bufferSize &&
(PCHAR)afdBuffer->Irp+IoSizeOfIrp(StackSize)<=(PCHAR)memBlock+bufferSize &&
(PCHAR)afdBuffer->Mdl+MmSizeOfMdl(afdBuffer->Buffer, BufferDataSize)<=(PCHAR)memBlock+bufferSize &&
(PCHAR)afdBuffer->TdiInfo.RemoteAddress+AddressSize<=(PCHAR)memBlock+bufferSize);
AfdRecordPoolQuotaCharged(sz);
AfdRecordQuotaHistory(
process,
sz,
"BuffAlloc ",
afdBuffer
);
return afdBuffer;
}
else {
AFD_FREE_POOL (memBlock, AFD_DATA_BUFFER_POOL_TAG);
goto ExitQuotaFailure;
}
} // memblock==NULL
} // overflow
}
else {
// TDI does not support addresses > USHORT
ASSERT (FALSE);
}
//
// This is default status code.
// Quota failures jump directly to the
// label below to raise the status returned by
// the quota charging code if requested by the caller..
//
status = STATUS_INSUFFICIENT_RESOURCES;
ExitQuotaFailure:
if ((ULONG_PTR)Process & AFDB_RAISE_ON_FAILURE) {
ExRaiseStatus (status);
}
return NULL;
}
PAFD_BUFFER_TAG
AfdGetBufferTag (
IN ULONG AddressSize,
IN PEPROCESS Process
)
/*++
Routine Description:
Obtains a buffer for tagging TDSU received via chained indication. Uses
the preallocated buffers if possible, or else allocates a new buffer
structure if required.
Arguments:
AddressSize - size of the address field required for the buffer.
Return Value:
PAFD_BUFFER_TAG - a pointer to an AFD_BUFFER_TAG structure, or NULL if one
was not available or could not be allocated.
--*/
{
PAFD_BUFFER_TAG afdBufferTag;
ULONG bufferSize;
NTSTATUS status;
if ( AddressSize <= AfdStandardAddressLength) {
if (AddressSize>0)
AddressSize = AfdStandardAddressLength;
afdBufferTag = ExAllocateFromNPagedLookasideList(
&AfdLookasideLists->BufferTagList );
if ( afdBufferTag != NULL &&
( AddressSize==0 ||
(afdBufferTag->TdiInfo.RemoteAddress =
ExAllocateFromNPagedLookasideList(
&AfdLookasideLists->RemoteAddrList ))!=NULL ) ) {
afdBufferTag->AllocatedAddressLength = (USHORT)AddressSize;
if (!afdBufferTag->Lookaside) {
status = PsChargeProcessPoolQuota (
(PEPROCESS)((ULONG_PTR)Process & (~AFDB_RAISE_ON_FAILURE)),
NonPagedPool,
sizeof (AFD_BUFFER_TAG)+AddressSize);
if (!NT_SUCCESS (status)) {
if ((afdBufferTag->TdiInfo.RemoteAddress!=NULL) &&
(afdBufferTag->TdiInfo.RemoteAddress != (PVOID)(afdBufferTag+1))) {
ExFreeToNPagedLookasideList( &AfdLookasideLists->RemoteAddrList,
afdBufferTag->TdiInfo.RemoteAddress );
}
AFD_FREE_POOL (afdBufferTag, AFD_DATA_BUFFER_POOL_TAG);
goto ExitQuotaFailure;
}
AfdRecordQuotaHistory(
process,
(LONG)(sizeof (AFD_BUFFER_TAG)+AddressSize),
"BuffAlloc ",
afdBufferTag
);
AfdRecordPoolQuotaCharged(sizeof (AFD_BUFFER_TAG)+AddressSize);
}
#if DBG
RtlGetCallersAddress(
&afdBufferTag->Caller,
&afdBufferTag->CallersCaller
);
#endif
return afdBufferTag;
} // afdBufferTag==NULL || RemoteAddress==NULL
}
else if (AddressSize<=0xFFFF) {
bufferSize = sizeof (AFD_BUFFER_TAG) + AddressSize;
afdBufferTag = AFD_ALLOCATE_POOL(
NonPagedPool,
bufferSize,
AFD_DATA_BUFFER_POOL_TAG
);
if (afdBufferTag!=NULL) {
status = PsChargeProcessPoolQuota (
(PEPROCESS)((ULONG_PTR)Process & (~AFDB_RAISE_ON_FAILURE)),
NonPagedPool,
bufferSize);
if (NT_SUCCESS (status)) {
//
// Initialize the AFD buffer structure and return it.
//
AfdInitializeBufferTag (afdBufferTag, AddressSize);
AfdRecordQuotaHistory(
process,
(LONG)bufferSize,
"BuffAlloc ",
afdBufferTag
);
AfdRecordPoolQuotaCharged(bufferSize);
#if DBG
RtlGetCallersAddress(
&afdBufferTag->Caller,
&afdBufferTag->CallersCaller
);
#endif
return afdBufferTag;
}
else {
AFD_FREE_POOL (afdBufferTag, AFD_DATA_BUFFER_POOL_TAG);
goto ExitQuotaFailure;
}
}
}
else {
// TDI does not support addresses > USHORT
ASSERT (FALSE);
}
//
// This is default status code.
// Quota failures jump directly to the
// label below to raise the status returned by
// the quota charging code if requested by the caller..
//
status = STATUS_INSUFFICIENT_RESOURCES;
ExitQuotaFailure:
if ((ULONG_PTR)Process & AFDB_RAISE_ON_FAILURE) {
ExRaiseStatus (status);
}
return NULL;
}
VOID
AfdReturnBuffer (
IN PAFD_BUFFER_HEADER AfdBufferHeader,
IN PEPROCESS Process
)
/*++
Routine Description:
Returns an AFD buffer to the appropriate global list, or frees
it if necessary.
Arguments:
AfdBufferHeader - points to the AFD_BUFFER_HEADER structure to return or free.
Return Value:
None.
--*/
{
if (AfdBufferHeader->BufferLength!=AfdBufferTagSize) {
PNPAGED_LOOKASIDE_LIST lookasideList;
PAFD_BUFFER AfdBuffer = CONTAINING_RECORD (AfdBufferHeader, AFD_BUFFER, Header);
ASSERT (IS_VALID_AFD_BUFFER (AfdBuffer));
//
// Most of the AFD buffer must be zeroed when returning the buffer.
//
ASSERT( !AfdBuffer->ExpeditedData );
ASSERT( AfdBuffer->Mdl->ByteCount == AfdBuffer->BufferLength );
ASSERT( AfdBuffer->Mdl->Next == NULL );
//
// If appropriate, return the buffer to one of the AFD buffer
// lookaside lists.
//
#ifdef _AFD_VARIABLE_STACK_
if (AfdBuffer->Irp->StackCount==AfdTdiStackSize &&
AfdBuffer->AllocatedAddressLength == AfdStandardAddressLength &&
AfdBuffer->BufferLength <= AfdLargeBufferSize) {
#else // _AFD_VARIABLE_STACK_
ASSERT (AfdBuffer->Irp->StackCount==AfdTdiStackSize);
if (AfdBuffer->AllocatedAddressLength == AfdStandardAddressLength &&
AfdBuffer->BufferLength <= AfdLargeBufferSize) {
#endif // _AFD_VARIABLE_STACK_
if (AfdBuffer->BufferLength==AfdSmallBufferSize) {
lookasideList = &AfdLookasideLists->SmallBufferList;
} else if (AfdBuffer->BufferLength == AfdMediumBufferSize) {
lookasideList = &AfdLookasideLists->MediumBufferList;
} else {
ASSERT (AfdBuffer->BufferLength==AfdLargeBufferSize);
lookasideList = &AfdLookasideLists->LargeBufferList;
}
if (!AfdBuffer->Lookaside) {
PsReturnPoolQuota (Process, NonPagedPool, lookasideList->L.Size);
AfdRecordQuotaHistory(
Process,
-(LONG)lookasideList->L.Size,
"BuffDealloc ",
AfdBuffer
);
AfdRecordPoolQuotaReturned(
lookasideList->L.Size
);
AfdBuffer->Lookaside = TRUE;
}
ExFreeToNPagedLookasideList( lookasideList, AfdBuffer );
return;
}
// The buffer was not from a lookaside list allocation, so just free
// the pool we used for it.
//
#ifdef _AFD_VARIABLE_STACK_
ASSERT (AfdBuffer->Irp->StackCount>=AfdTdiStackSize &&
AfdBuffer->Irp->StackCount<=AfdMaxStackSize);
#endif // _AFD_VARIABLE_STACK_
ASSERT (AfdBuffer->Lookaside==FALSE);
{
LONG sz;
PsReturnPoolQuota (Process,
NonPagedPool,
sz=AfdBuffer->BufferLength
+AfdBufferOverhead
+AfdBuffer->AllocatedAddressLength
-AfdStandardAddressLength
+AfdBuffer->BufferLength<PAGE_SIZE
? min (AfdAlignmentOverhead, PAGE_SIZE-AfdBuffer->BufferLength)
: 0);
AfdRecordQuotaHistory(
Process,
-(LONG)sz,
"BuffDealloc ",
AfdBuffer
);
AfdRecordPoolQuotaReturned(
sz
);
}
#if DBG
AfdFreeBufferReal (AfdBuffer);
#else
AfdFreeBuffer (AfdBuffer);
#endif
return;
}
else {
PAFD_BUFFER_TAG AfdBufferTag = CONTAINING_RECORD (AfdBufferHeader, AFD_BUFFER_TAG, Header);
ASSERT( !AfdBufferTag->ExpeditedData );
if (AfdBufferTag->NdisPacket) {
AfdBufferTag->NdisPacket = FALSE;
TdiReturnChainedReceives (&AfdBufferTag->Context, 1);
}
if (AfdBufferTag->TdiInfo.RemoteAddress != (PVOID)(AfdBufferTag+1)) {
if (AfdBufferTag->TdiInfo.RemoteAddress!=NULL) {
ASSERT (AfdBufferTag->AllocatedAddressLength==AfdStandardAddressLength);
ExFreeToNPagedLookasideList( &AfdLookasideLists->RemoteAddrList,
AfdBufferTag->TdiInfo.RemoteAddress );
AfdBufferTag->TdiInfo.RemoteAddress = NULL;
}
else {
ASSERT (AfdBufferTag->AllocatedAddressLength==0);
}
if (!AfdBufferTag->Lookaside) {
LONG sz;
PsReturnPoolQuota (
Process,
NonPagedPool,
sz=sizeof (AFD_BUFFER_TAG)
+ AfdBufferTag->AllocatedAddressLength);
AfdRecordQuotaHistory(
Process,
-(LONG)sz,
"BuffDealloc ",
AfdBufferTag
);
AfdRecordPoolQuotaReturned(
sz
);
AfdBufferTag->Lookaside = TRUE;
}
ExFreeToNPagedLookasideList( &AfdLookasideLists->BufferTagList, AfdBufferTag );
}
else {
LONG sz;
ASSERT (AfdBufferTag->AllocatedAddressLength>AfdStandardAddressLength);
ASSERT (AfdBufferTag->Lookaside == FALSE);
PsReturnPoolQuota (
Process,
NonPagedPool,
sz = sizeof (AFD_BUFFER_TAG)
+ AfdBufferTag->AllocatedAddressLength);
AfdRecordQuotaHistory(
Process,
-(LONG)sz,
"BuffDealloc ",
AfdBufferTag
);
AfdRecordPoolQuotaReturned(
sz
);
AFD_FREE_POOL(
AfdBufferTag,
AFD_DATA_BUFFER_POOL_TAG
);
}
}
} // AfdReturnBuffer
PAFD_BUFFER
AfdInitializeBuffer (
IN PVOID MemoryBlock,
IN ULONG BufferDataSize,
IN ULONG AddressSize,
IN CCHAR StackSize
)
/*++
Routine Description:
Initializes an AFD buffer. Sets up fields in the actual AFD_BUFFER
structure and initializes the IRP and MDL associated with the
buffer. This routine assumes that the caller has properly allocated
sufficient space for all this.
Arguments:
AfdBuffer - points to the AFD_BUFFER structure to initialize.
BufferDataSize - the size of the data buffer that goes along with the
buffer structure.
AddressSize - the size of data allocated for the address buffer.
ListHead - the global list this buffer belongs to, or NULL if it
doesn't belong on any list. This routine does NOT place the
buffer structure on the list.
Return Value:
None.
--*/
{
USHORT irpSize;
SIZE_T mdlSize;
SIZE_T hdrSize;
PAFD_BUFFER hdr;
PMDL mdl;
PIRP irp;
PVOID buf;
PVOID addr;
UCHAR placement;
SIZE_T alignment;
#ifdef AFD_CHECK_ALIGNMENT
PLONG alignmentCounters = (PLONG)&AfdAlignmentTable[AfdAlignmentTableSize];
#endif
irpSize = IoSizeOfIrp( StackSize );
mdlSize = (ULONG)MmSizeOfMdl( NULL, BufferDataSize );
hdrSize = sizeof (AFD_BUFFER);
//
// Compute the index into (mis)alignment table to determine
// what placement of the buffer block elements (e.g. hdr, IRP, MDL,
// and data buffer itself) we need to choose to compensate and
// align data buffer on AfdBufferAlignment boundary.
//
ASSERT ((PtrToUlong(MemoryBlock)%AFD_MINIMUM_BUFFER_ALIGNMENT)==0);
#ifdef _AFD_VARIABLE_STACK_
if (PAGE_ALIGN (MemoryBlock)==MemoryBlock || StackSize!=AfdTdiStackSize) {
ASSERT (StackSize>=AfdTdiStackSize && StackSize<=AfdMaxStackSize);
#else // _AFD_VARIABLE_STACK
if (PAGE_ALIGN (MemoryBlock)==MemoryBlock) {
#endif // _AFD_VARIABLE_STACK
//
// For page-aligned blocks (which are >= page size),
// we always place the buffer first.
// Same thing for big IRP stacks - allocate more memory to
// compensate for alignment.
//
placement = AFD_PLACEMENT_BUFFER;
}
else {
placement = AfdAlignmentTable[
(PtrToUlong(MemoryBlock)&(AfdBufferAlignment-1))/AFD_MINIMUM_BUFFER_ALIGNMENT];
}
#ifdef AFD_CHECK_ALIGNMENT
InterlockedIncrement (&alignmentCounters[
(PtrToUlong(MemoryBlock)&(AfdBufferAlignment-1))/AFD_MINIMUM_BUFFER_ALIGNMENT]);
#endif
switch (placement) {
case AFD_PLACEMENT_BUFFER:
//
// Perfect case: the memory is aready aligned as we need it.
//
buf = ALIGN_UP_A_POINTER(MemoryBlock, AfdBufferAlignment);
alignment = (PUCHAR)buf-(PUCHAR)MemoryBlock;
#ifdef _AFD_VARIABLE_STACK_
ASSERT (alignment<=AfdAlignmentOverhead || (StackSize!=AfdTdiStackSize));
#else // _AFD_VARIABLE_STACK_
ASSERT (alignment<=AfdAlignmentOverhead);
#endif // _AFD_VARIABLE_STACK_
hdr = ALIGN_UP_TO_TYPE_POINTER((PCHAR)buf+BufferDataSize, AFD_BUFFER);
irp = ALIGN_UP_TO_TYPE_POINTER((PCHAR)hdr+hdrSize, IRP);
mdl = ALIGN_UP_TO_TYPE_POINTER((PCHAR)irp+irpSize, MDL);
addr = (PCHAR)mdl+mdlSize;
break;
//
// Other cases, we use hdr, mdl, and IRP to try to compensate
// and have the data buffer aligned at the AfdBufferAlignment
// boundary.
//
case AFD_PLACEMENT_HDR:
hdr = ALIGN_UP_TO_TYPE_POINTER(MemoryBlock, AFD_BUFFER);
alignment = (PUCHAR)hdr-(PUCHAR)MemoryBlock;
ASSERT (alignment<=AfdAlignmentOverhead);
buf = ALIGN_UP_A_POINTER((PCHAR)hdr+hdrSize, AfdBufferAlignment);
irp = ALIGN_UP_TO_TYPE_POINTER((PCHAR)buf+BufferDataSize, IRP);
mdl = ALIGN_UP_TO_TYPE_POINTER((PCHAR)irp+irpSize, MDL);
addr = (PCHAR)mdl+mdlSize;
break;
case AFD_PLACEMENT_MDL:
mdl = ALIGN_UP_TO_TYPE_POINTER(MemoryBlock, MDL);
alignment = (PUCHAR)mdl-(PUCHAR)MemoryBlock;
ASSERT (alignment<=AfdAlignmentOverhead);
buf = ALIGN_UP_A_POINTER((PCHAR)mdl+mdlSize, AfdBufferAlignment);
hdr = ALIGN_UP_TO_TYPE_POINTER((PCHAR)buf+BufferDataSize, AFD_BUFFER);
irp = ALIGN_UP_TO_TYPE_POINTER((PCHAR)hdr+hdrSize, IRP);
addr = (PCHAR)irp+irpSize;
break;
case AFD_PLACEMENT_IRP:
irp = ALIGN_UP_TO_TYPE_POINTER(MemoryBlock, IRP);
alignment = (PUCHAR)irp-(PUCHAR)MemoryBlock;
ASSERT (alignment<=AfdAlignmentOverhead);
buf = ALIGN_UP_A_POINTER((PCHAR)irp+irpSize, AfdBufferAlignment);
hdr = ALIGN_UP_TO_TYPE_POINTER((PCHAR)buf+BufferDataSize, AFD_BUFFER);
mdl = ALIGN_UP_TO_TYPE_POINTER((PCHAR)hdr+hdrSize, MDL);
addr = (PCHAR)mdl+mdlSize;
break;
case AFD_PLACEMENT_HDR_IRP:
hdr = ALIGN_UP_TO_TYPE_POINTER(MemoryBlock, AFD_BUFFER);
alignment = (PUCHAR)hdr-(PUCHAR)MemoryBlock;
ASSERT (alignment<=AfdAlignmentOverhead);
irp = ALIGN_UP_TO_TYPE_POINTER((PCHAR)hdr+hdrSize, IRP);
buf = ALIGN_UP_A_POINTER((PCHAR)irp+irpSize, AfdBufferAlignment);
mdl = ALIGN_UP_TO_TYPE_POINTER((PCHAR)buf+BufferDataSize, MDL);
addr = (PCHAR)mdl+mdlSize;
break;
case AFD_PLACEMENT_HDR_MDL:
hdr = ALIGN_UP_TO_TYPE_POINTER(MemoryBlock, AFD_BUFFER);
alignment = (PUCHAR)hdr-(PUCHAR)MemoryBlock;
ASSERT (alignment<=AfdAlignmentOverhead);
mdl = ALIGN_UP_TO_TYPE_POINTER((PCHAR)hdr+hdrSize, MDL);
buf = ALIGN_UP_A_POINTER((PCHAR)mdl+mdlSize, AfdBufferAlignment);
irp = ALIGN_UP_TO_TYPE_POINTER((PCHAR)buf+BufferDataSize, IRP);
addr = (PCHAR)irp+irpSize;
break;
case AFD_PLACEMENT_IRP_MDL:
irp = ALIGN_UP_TO_TYPE_POINTER(MemoryBlock, IRP);
alignment = (PUCHAR)irp-(PUCHAR)MemoryBlock;
ASSERT (alignment<=AfdAlignmentOverhead);
mdl = ALIGN_UP_TO_TYPE_POINTER((PCHAR)irp+irpSize, MDL);
buf = ALIGN_UP_A_POINTER((PCHAR)mdl+mdlSize, AfdBufferAlignment);
hdr = ALIGN_UP_TO_TYPE_POINTER((PCHAR)buf+BufferDataSize, AFD_BUFFER);
addr = (PCHAR)hdr+hdrSize;
break;
case AFD_PLACEMENT_HDR_IRP_MDL:
hdr = ALIGN_UP_TO_TYPE_POINTER(MemoryBlock, AFD_BUFFER);
alignment = (PUCHAR)hdr-(PUCHAR)MemoryBlock;
ASSERT (alignment<=AfdAlignmentOverhead);
irp = ALIGN_UP_TO_TYPE_POINTER((PCHAR)hdr+hdrSize, IRP);
mdl = ALIGN_UP_TO_TYPE_POINTER((PCHAR)irp+irpSize, MDL);
buf = ALIGN_UP_A_POINTER((PCHAR)mdl+mdlSize, AfdBufferAlignment);
addr = (PCHAR)buf+BufferDataSize;
break;
default:
ASSERT (!"Unknown placement!");
__assume (0);
}
//
// Initialize the AfdBuffer - most fields need to be 0.
//
RtlZeroMemory( hdr, sizeof(*hdr) );
//
// Setup buffer
//
hdr->Buffer = buf;
hdr->BufferLength = BufferDataSize;
//
// We just need to store first two bits of placement
// so we know which part comes first to free it properly.
//
hdr->Placement = placement & 3;
//
// If we have to align the memory block to meet the requirement
// store this information right below the first piece.
//
if (alignment!=0) {
C_ASSERT (AFD_MINIMUM_BUFFER_ALIGNMENT>=sizeof (SIZE_T));
C_ASSERT ((AFD_MINIMUM_BUFFER_ALIGNMENT & (sizeof(SIZE_T)-1))==0);
ASSERT (alignment>=sizeof (SIZE_T));
hdr->AlignmentAdjusted = TRUE;
*(((PSIZE_T)(((PUCHAR)MemoryBlock)+alignment))-1) = alignment;
}
//
// Initialize the IRP pointer.
//
hdr->Irp = irp;
IoInitializeIrp( hdr->Irp, irpSize, StackSize );
hdr->Irp->MdlAddress = mdl;
//
// Set up the MDL pointer.
//
hdr->Mdl = mdl;
MmInitializeMdl( hdr->Mdl, buf, BufferDataSize );
MmBuildMdlForNonPagedPool( hdr->Mdl );
//
// Set up the address buffer pointer.
//
if (AddressSize>0) {
hdr->TdiInfo.RemoteAddress = ALIGN_UP_TO_TYPE_POINTER(addr, TRANSPORT_ADDRESS);;
hdr->AllocatedAddressLength = (USHORT)AddressSize;
}
#if DBG
hdr->BufferListEntry.Flink = UIntToPtr( 0xE0E1E2E3 );
hdr->BufferListEntry.Blink = UIntToPtr( 0xE4E5E6E7 );
#endif
return hdr;
} // AfdInitializeBuffer
VOID
AfdInitializeBufferTag (
IN PAFD_BUFFER_TAG AfdBufferTag,
IN CLONG AddressSize
)
/*++
Routine Description:
Initializes an AFD buffer. Sets up fields in the actual AFD_BUFFER
structure and initializes the IRP and MDL associated with the
buffer. This routine assumes that the caller has properly allocated
sufficient space for all this.
Arguments:
AfdBuffer - points to the AFD_BUFFER structure to initialize.
BufferDataSize - the size of the data buffer that goes along with the
buffer structure.
AddressSize - the size of data allocated for the address buffer.
ListHead - the global list this buffer belongs to, or NULL if it
doesn't belong on any list. This routine does NOT place the
buffer structure on the list.
Return Value:
None.
--*/
{
AfdBufferTag->Mdl = NULL;
AfdBufferTag->BufferLength = AfdBufferTagSize;
AfdBufferTag->TdiInfo.RemoteAddress = AddressSize ? AfdBufferTag+1 : NULL;
AfdBufferTag->AllocatedAddressLength = (USHORT)AddressSize;
AfdBufferTag->Flags = 0;
#if DBG
AfdBufferTag->BufferListEntry.Flink = UIntToPtr( 0xE0E1E2E3 );
AfdBufferTag->BufferListEntry.Blink = UIntToPtr( 0xE4E5E6E7 );
AfdBufferTag->Caller = NULL;
AfdBufferTag->CallersCaller = NULL;
#endif
}
VOID
AfdInitializeBufferManager (
VOID
)
{
SIZE_T irpSize = ALIGN_UP_A(IoSizeOfIrp (AfdTdiStackSize), AFD_MINIMUM_BUFFER_ALIGNMENT);
SIZE_T hdrSize = ALIGN_UP_A(sizeof (AFD_BUFFER), AFD_MINIMUM_BUFFER_ALIGNMENT);
SIZE_T mdlSize = ALIGN_UP_A(MmSizeOfMdl (NULL, PAGE_SIZE),AFD_MINIMUM_BUFFER_ALIGNMENT);
UCHAR placement;
ULONG i;
ULONG currentOverhead;
//
// Initialize the alignment table.
// This table is used to determine what kind of element
// placement to use in AFD_BUFFER depending on the alignment
// of the memory block returned by the executive pool manager.
// The goal is to align the data buffer on the cache line
// boundary. However, since executive only guarantees alignment of
// it's blocks at the CPU alignment requirements, we need to
// adjust and potentially waste up to CACHE_LIST_SIZE-CPU_ALIGNMENT_SIZE.
// With some machines having cache line alignment at 128 such memory
// waste is prohibitive (small buffers with default size of 128 will double
// in size).
// The table below allows us to rearrange pieces in AFD_BUFFER structure,
// namely, the header, IRP, MDL, and data buffer, so that pieces with
// lower alignment requirement can be used to consume the space needed
// to adjust the memory block to the cache line boundary.
//
// AfdAlignmentTable has an entry for each possible case of memory block
// misaligned against cache line size. For example, in typical X86 system
// case executive pool manager always returns blocks aligned on 8 byte bounday,
// while cache lines are typically 64 bytes long, so memory manager can
// theoretically return blocks misaligned against cache by:
// 8, 16, 24, 32, 40, 48, 56.
// For each of these cases we will try to adjust the alignment by using
// any possible combination of header, IRP, and MDL. There will be some
// cases that cannot be adjusted exactly, and we will have to pad.
//
//
// First initialize the table assuming the data buffer is placed first.
//
RtlFillMemory (AfdAlignmentTable, AfdAlignmentTableSize, AFD_PLACEMENT_BUFFER);
#ifdef AFD_CHECK_ALIGNMENT
RtlZeroMemory (&AfdAlignmentTable[AfdAlignmentTableSize],
AfdAlignmentTableSize*sizeof(LONG));
#endif
//
// Now identify the entries that can be padded with some combination of
// header, IRP, and MDL:
// extract the bits that can be used for padding
// reverse to get corresponding memory block alignments
// divide by the step of the alignment table
// make sure we won't go past table size (last entry => 0 entry).
//
#define AfdInitAlignmentTableRow(_size,_plcmnt) \
AfdAlignmentTable[ \
((AfdBufferAlignment-(_size&(AfdBufferAlignment-1))) \
/AFD_MINIMUM_BUFFER_ALIGNMENT) \
&(AfdAlignmentTableSize-1)] = _plcmnt
//
// We let placements beginning with header override others,
// since it is more natural and easier to debug (header has references
// to other pieces).
//
AfdInitAlignmentTableRow(mdlSize,AFD_PLACEMENT_MDL);
AfdInitAlignmentTableRow(irpSize,AFD_PLACEMENT_IRP);
AfdInitAlignmentTableRow((irpSize+mdlSize),AFD_PLACEMENT_IRP_MDL);
AfdInitAlignmentTableRow((hdrSize+mdlSize),AFD_PLACEMENT_HDR_MDL);
AfdInitAlignmentTableRow((hdrSize+irpSize),AFD_PLACEMENT_HDR_IRP);
AfdInitAlignmentTableRow((hdrSize+irpSize+mdlSize),AFD_PLACEMENT_HDR_IRP_MDL);
AfdInitAlignmentTableRow(hdrSize,AFD_PLACEMENT_HDR);
//
// Now scan the table from top to bottom and fill entries that do not have
// exact match using the above combinations. Use the closest entry above and
// in the process compute how much do we need to pad in addition to padding
// achieved via placement.
//
AfdAlignmentOverhead = 0;
currentOverhead = 0;
//
// By default use the placement of aligned block.
//
placement = AfdAlignmentTable[0];
for (i=AfdAlignmentTableSize-1; i>0; i--) {
if (AfdAlignmentTable[i]==AFD_PLACEMENT_BUFFER) {
AfdAlignmentTable[i] = placement;
currentOverhead += AFD_MINIMUM_BUFFER_ALIGNMENT;
}
else {
placement = AfdAlignmentTable[i];
if (AfdAlignmentOverhead<currentOverhead) {
AfdAlignmentOverhead = currentOverhead;
}
currentOverhead = 0;
}
}
if (AfdAlignmentOverhead<currentOverhead) {
AfdAlignmentOverhead = currentOverhead;
}
KdPrintEx(( DPFLTR_WSOCKTRANSPORT_ID, DPFLTR_INFO_LEVEL,
"AfdInitializeBufferManager: Alignment requirements: MM-%d, cache-%d, overhead-%d\n",
AFD_MINIMUM_BUFFER_ALIGNMENT,
AfdBufferAlignment,
AfdAlignmentOverhead));
{
CLONG oldBufferLengthForOnePage = AfdBufferLengthForOnePage;
AfdBufferOverhead = AfdCalculateBufferSize(
PAGE_SIZE,
AfdStandardAddressLength,
AfdTdiStackSize) - PAGE_SIZE;
AfdBufferLengthForOnePage = ALIGN_DOWN_A(
PAGE_SIZE-AfdBufferOverhead,
AFD_MINIMUM_BUFFER_ALIGNMENT);
if (AfdLargeBufferSize==oldBufferLengthForOnePage) {
AfdLargeBufferSize = AfdBufferLengthForOnePage;
}
}
}