Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1565 lines
46 KiB

/*++
Copyright (c) 1997 Microsoft Corporation
Module Name:
gart.c
Abstract:
Routines for querying and setting the Intel 440xx GART aperture
Author:
John Vert (jvert) 10/30/1997
Modified by:
Chi-Ming Cheng 06/24/1998 Acer Labs, Inc.
Wang-Kai Tsai 08/28/2000 Acer Labs, Inc. - ACPI power up GART reinitialization
Revision History:
--*/
#include "ALiM1541.h"
//
// Local function prototypes
//
NTSTATUS
AgpALiSetRate(
IN PVOID AgpContext,
IN ULONG AgpRate
);
NTSTATUS
AgpALiCreateGart(
IN PAGPALi_EXTENSION AgpContext,
IN ULONG MinimumPages
);
PGART_PTE
AgpALiFindRangeInGart(
IN PGART_PTE StartPte,
IN PGART_PTE EndPte,
IN ULONG Length,
IN BOOLEAN SearchBackward,
IN ULONG SearchState
);
NTSTATUS
AgpQueryAperture(
IN PAGPALi_EXTENSION AgpContext,
OUT PHYSICAL_ADDRESS *CurrentBase,
OUT ULONG *CurrentSizeInPages,
OUT OPTIONAL PIO_RESOURCE_LIST *ApertureRequirements
)
/*++
Routine Description:
Queries the current size of the GART aperture. Optionally returns
the possible GART settings.
Arguments:
AgpContext - Supplies the AGP context.
CurrentBase - Returns the current physical address of the GART.
CurrentSizeInPages - Returns the current GART size.
ApertureRequirements - if present, returns the possible GART settings
Return Value:
NTSTATUS
--*/
{
ULONG ApBase;
APCTRL ApCtrl;
PIO_RESOURCE_LIST Requirements;
ULONG i;
ULONG Length;
//
// Get the current APBASE and APSIZE settings
//
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ApBase, APBASE_OFFSET);
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ApCtrl, APCTRL_OFFSET);
ASSERT(ApBase != 0);
CurrentBase->QuadPart = ApBase & 0xFFFFFFF0; //PCI_ADDRESS_MEMORY_ADDRESS_MASK;
//
// Convert APSIZE into the actual size of the aperture
//
switch (ApCtrl.ApSize) {
case AP_SIZE_4MB:
*CurrentSizeInPages = (4 * 1024*1024) / PAGE_SIZE;
break;
case AP_SIZE_8MB:
*CurrentSizeInPages = 8 * (1024*1024 / PAGE_SIZE);
break;
case AP_SIZE_16MB:
*CurrentSizeInPages = 16 * (1024*1024 / PAGE_SIZE);
break;
case AP_SIZE_32MB:
*CurrentSizeInPages = 32 * (1024*1024 / PAGE_SIZE);
break;
case AP_SIZE_64MB:
*CurrentSizeInPages = 64 * (1024*1024 / PAGE_SIZE);
break;
case AP_SIZE_128MB:
*CurrentSizeInPages = 128 * (1024*1024 / PAGE_SIZE);
break;
case AP_SIZE_256MB:
*CurrentSizeInPages = 256 * (1024*1024 / PAGE_SIZE);
break;
default:
AGPLOG(AGP_CRITICAL,
("AGPALi - AgpQueryAperture - Unexpected value %x for ApSize!\n",
ApCtrl.ApSize));
ASSERT(FALSE);
AgpContext->ApertureStart.QuadPart = 0;
AgpContext->ApertureLength = 0;
return(STATUS_UNSUCCESSFUL);
}
//
// Remember the current aperture settings
//
AgpContext->ApertureStart.QuadPart = CurrentBase->QuadPart;
AgpContext->ApertureLength = *CurrentSizeInPages * PAGE_SIZE;
if (ApertureRequirements != NULL) {
//
// 1541 supports 7 different aperture sizes, all must be
// naturally aligned. Start with the largest aperture and
// work downwards so that we get the biggest possible aperture.
//
Requirements = ExAllocatePoolWithTag(PagedPool,
sizeof(IO_RESOURCE_LIST) + (AP_SIZE_COUNT-1)*sizeof(IO_RESOURCE_DESCRIPTOR),
'RpgA');
if (Requirements == NULL) {
return(STATUS_INSUFFICIENT_RESOURCES);
}
Requirements->Version = Requirements->Revision = 1;
Requirements->Count = AP_SIZE_COUNT;
Length = AP_MAX_SIZE;
for (i=0; i<AP_SIZE_COUNT; i++) {
Requirements->Descriptors[i].Option = IO_RESOURCE_ALTERNATIVE;
Requirements->Descriptors[i].Type = CmResourceTypeMemory;
Requirements->Descriptors[i].ShareDisposition = CmResourceShareDeviceExclusive;
Requirements->Descriptors[i].Flags = CM_RESOURCE_MEMORY_READ_WRITE | CM_RESOURCE_MEMORY_PREFETCHABLE;
Requirements->Descriptors[i].u.Memory.Length = Length;
Requirements->Descriptors[i].u.Memory.Alignment = Length;
Requirements->Descriptors[i].u.Memory.MinimumAddress.QuadPart = 0;
Requirements->Descriptors[i].u.Memory.MaximumAddress.QuadPart = (ULONG)-1;
Length = Length/2;
}
*ApertureRequirements = Requirements;
}
return(STATUS_SUCCESS);
}
NTSTATUS
AgpSetAperture(
IN PAGPALi_EXTENSION AgpContext,
IN PHYSICAL_ADDRESS NewBase,
IN ULONG NewSizeInPages
)
/*++
Routine Description:
Sets the GART aperture to the supplied settings
Arguments:
AgpContext - Supplies the AGP context
NewBase - Supplies the new physical memory base for the GART.
NewSizeInPages - Supplies the new size for the GART
Return Value:
NTSTATUS
--*/
{
ULONG ApBase;
ULONG ApSize;
APCTRL ApCtrl;
GTLBCTRL GTLBCtrl;
ULONG GTLBDisable;
PHYSICAL_ADDRESS GartPhysical;
GartPhysical = AgpContext->GartPhysical;
//
// Reprogram Special Target settings when the chip
// is powered off, but ignore rate changes as those were already
// applied during MasterInit
//
if (AgpContext->SpecialTarget & ~AGP_FLAG_SPECIAL_RESERVE) {
AgpSpecialTarget(AgpContext,
AgpContext->SpecialTarget &
~AGP_FLAG_SPECIAL_RESERVE);
}
//
// Set GART base
//
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ApCtrl, APCTRL_OFFSET);
ApCtrl.ATTBase = GartPhysical.LowPart / PAGE_SIZE;
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ApCtrl, APCTRL_OFFSET);
//
// If the new settings match the current settings, leave everything
// alone.
//
if ((NewBase.QuadPart == AgpContext->ApertureStart.QuadPart) &&
(NewSizeInPages == AgpContext->ApertureLength / PAGE_SIZE)) {
//
// Enable GART table
//
if ((AgpContext->ChipsetType != ALi1647) && (AgpContext->ChipsetType != ALi1651) &&
(AgpContext->ChipsetType != ALi1644) && (AgpContext->ChipsetType != ALi1646) &&
(AgpContext->ChipsetType != ALi1671) && (AgpContext->ChipsetType != ALi1672))
{
if (AgpContext->Gart) {
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &GTLBCtrl, GTLBCTRL_OFFSET);
GTLBCtrl.GTLB_ENJ = 0;
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &GTLBCtrl, GTLBCTRL_OFFSET);
}
}
AgpWorkaround(AgpContext);
return(STATUS_SUCCESS);
}
//
// Figure out the new APSIZE setting, make sure it is valid.
//
switch (NewSizeInPages) {
case 4 * 1024 * 1024 / PAGE_SIZE:
ApSize = AP_SIZE_4MB;
break;
case 8 * 1024 * 1024 / PAGE_SIZE:
ApSize = AP_SIZE_8MB;
break;
case 16 * 1024 * 1024 / PAGE_SIZE:
ApSize = AP_SIZE_16MB;
break;
case 32 * 1024 * 1024 / PAGE_SIZE:
ApSize = AP_SIZE_32MB;
break;
case 64 * 1024 * 1024 / PAGE_SIZE:
ApSize = AP_SIZE_64MB;
break;
case 128 * 1024 * 1024 / PAGE_SIZE:
ApSize = AP_SIZE_128MB;
break;
case 256 * 1024 * 1024 / PAGE_SIZE:
ApSize = AP_SIZE_256MB;
break;
default:
AGPLOG(AGP_CRITICAL,
("AgpSetAperture - invalid GART size of %lx pages specified, aperture at %I64X.\n",
NewSizeInPages,
NewBase.QuadPart));
ASSERT(FALSE);
return(STATUS_INVALID_PARAMETER);
}
//
// Make sure the supplied size is aligned on the appropriate boundary.
//
ASSERT(NewBase.HighPart == 0);
ASSERT((NewBase.QuadPart & ((NewSizeInPages * PAGE_SIZE) - 1)) == 0);
if ((NewBase.QuadPart & ((NewSizeInPages * PAGE_SIZE) - 1)) != 0 ) {
AGPLOG(AGP_CRITICAL,
("AgpSetAperture - invalid base %I64X specified for GART aperture of %lx pages\n",
NewBase.QuadPart,
NewSizeInPages));
return(STATUS_INVALID_PARAMETER);
}
//
// Need to reset the hardware to match the supplied settings
//
// If the GTLB is enabled, disable it, write the new settings, then reenable the GTLB
//
GTLBDisable = 1;
if ((AgpContext->ChipsetType != ALi1647) && (AgpContext->ChipsetType != ALi1651) &&
(AgpContext->ChipsetType != ALi1644) && (AgpContext->ChipsetType != ALi1646) &&
(AgpContext->ChipsetType != ALi1671) && (AgpContext->ChipsetType != ALi1672))
{
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &GTLBCtrl, GTLBCTRL_OFFSET);
GTLBDisable = GTLBCtrl.GTLB_ENJ;
if (!GTLBDisable)
{
GTLBCtrl.GTLB_ENJ = 1;
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &GTLBCtrl, GTLBCTRL_OFFSET);
}
}
//
// update APBASE
//
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ApBase, APBASE_OFFSET);
ApBase = (ApBase & 0x0000000F) | NewBase.LowPart;
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ApBase, APBASE_OFFSET);
//
// update APSIZE
//
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ApCtrl, APCTRL_OFFSET);
ApCtrl.ApSize = ApSize;
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ApCtrl, APCTRL_OFFSET);
//
// Only 1541 chipset supports NLVM_BASE and NLVM_TOP
//
if (AgpContext->ChipsetType == ALi1541) {
//
// update NLVM_BASE and NLVM_TOP
//
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &GTLBCtrl, GTLBCTRL_OFFSET);
GTLBCtrl.NLVM_Base = NewBase.LowPart >> 20;
GTLBCtrl.NLVM_Top = (NewBase.LowPart + NewSizeInPages * PAGE_SIZE - 0x100000) >> 20;
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &GTLBCtrl, GTLBCTRL_OFFSET);
}
#if DBG
//
// Read back what we wrote, make sure it worked
//
{
APCTRL DbgSize;
ULONG DbgBase;
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &DbgSize, APCTRL_OFFSET);
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &DbgBase, APBASE_OFFSET);
ASSERT(DbgSize.ApSize == ApSize);
ASSERT(DbgBase == ApBase);
}
#endif
//
// Now enable the GTLB if it was enabled before
//
if ((AgpContext->ChipsetType != ALi1647) && (AgpContext->ChipsetType != ALi1651) &&
(AgpContext->ChipsetType != ALi1644) && (AgpContext->ChipsetType != ALi1646) &&
(AgpContext->ChipsetType != ALi1671) && (AgpContext->ChipsetType != ALi1672))
{
if (!GTLBDisable)
{
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &GTLBCtrl, GTLBCTRL_OFFSET);
GTLBCtrl.GTLB_ENJ = 0;
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &GTLBCtrl, GTLBCTRL_OFFSET);
}
}
//
// Update our extension to reflect the new GART setting
//
AgpContext->ApertureStart = NewBase;
AgpContext->ApertureLength = NewSizeInPages * PAGE_SIZE;
return(STATUS_SUCCESS);
}
VOID
AgpDisableAperture(
IN PAGPALi_EXTENSION AgpContext
)
/*++
Routine Description:
Disables the GART aperture so that this resource is available
for other devices
Arguments:
AgpContext - Supplies the AGP context
Return Value:
None - this routine must always succeed.
--*/
{
GTLBCTRL GTLBCtrl;
ULONG GTLBDisable;
//
// Disable the aperture
//
if ((AgpContext->ChipsetType != ALi1647) && (AgpContext->ChipsetType != ALi1651) &&
(AgpContext->ChipsetType != ALi1644) && (AgpContext->ChipsetType != ALi1646) &&
(AgpContext->ChipsetType != ALi1671) && (AgpContext->ChipsetType != ALi1672))
{
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &GTLBCtrl, GTLBCTRL_OFFSET);
GTLBDisable = GTLBCtrl.GTLB_ENJ;
if (!GTLBDisable)
{
GTLBCtrl.GTLB_ENJ = 1;
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &GTLBCtrl, GTLBCTRL_OFFSET);
}
}
//
// Nuke the Gart! (It's meaningless now...)
//
if (AgpContext->Gart != NULL) {
MmFreeContiguousMemory(AgpContext->Gart);
AgpContext->Gart = NULL;
AgpContext->GartLength = 0;
}
}
NTSTATUS
AgpReserveMemory(
IN PAGPALi_EXTENSION AgpContext,
IN OUT AGP_RANGE *Range
)
/*++
Routine Description:
Reserves a range of memory in the GART.
Arguments:
AgpContext - Supplies the AGP Context
Range - Supplies the AGP_RANGE structure. AGPLIB
will have filled in NumberOfPages and Type. This
routine will fill in MemoryBase and Context.
Return Value:
NTSTATUS
--*/
{
ULONG Index;
ULONG NewState;
NTSTATUS Status;
PGART_PTE FoundRange;
BOOLEAN Backwards;
ASSERT((Range->Type == MmNonCached) || (Range->Type == MmWriteCombined));
ASSERT(Range->NumberOfPages <= (AgpContext->ApertureLength / PAGE_SIZE));
//
// If we have not allocated our GART yet, now is the time to do so
//
if (AgpContext->Gart == NULL) {
ASSERT(AgpContext->GartLength == 0);
Status = AgpALiCreateGart(AgpContext,Range->NumberOfPages);
if (!NT_SUCCESS(Status)) {
AGPLOG(AGP_CRITICAL,
("AgpALiCreateGart failed %08lx to create GART of size %lx\n",
Status,
AgpContext->ApertureLength));
return(Status);
}
}
ASSERT(AgpContext->GartLength != 0);
//
// Now that we have a GART, try and find enough contiguous entries to satisfy
// the request. Requests for uncached memory will scan from high addresses to
// low addresses. Requests for write-combined memory will scan from low addresses
// to high addresses. We will use a first-fit algorithm to try and keep the allocations
// packed and contiguous.
//
Backwards = (Range->Type == MmNonCached) ? TRUE : FALSE;
FoundRange = AgpALiFindRangeInGart(&AgpContext->Gart[0],
&AgpContext->Gart[(AgpContext->GartLength / sizeof(GART_PTE)) - 1],
Range->NumberOfPages,
Backwards,
GART_ENTRY_FREE);
if (FoundRange == NULL) {
//
// A big enough chunk was not found.
//
AGPLOG(AGP_CRITICAL,
("AgpReserveMemory - Could not find %d contiguous free pages of type %d in GART at %08lx\n",
Range->NumberOfPages,
Range->Type,
AgpContext->Gart));
//
// This is where we could try and grow the GART
//
return(STATUS_INSUFFICIENT_RESOURCES);
}
AGPLOG(AGP_NOISE,
("AgpReserveMemory - reserved %d pages at GART PTE %08lx\n",
Range->NumberOfPages,
FoundRange));
//
// Set these pages to reserved
//
if (Range->Type == MmNonCached) {
NewState = GART_ENTRY_RESERVED_UC;
} else {
NewState = GART_ENTRY_RESERVED_WC;
}
for (Index = 0;Index < Range->NumberOfPages; Index++) {
ASSERT(FoundRange[Index].Soft.State == GART_ENTRY_FREE);
FoundRange[Index].AsUlong = 0;
FoundRange[Index].Soft.State = NewState;
}
Range->MemoryBase.QuadPart = AgpContext->ApertureStart.QuadPart + (FoundRange - &AgpContext->Gart[0]) * PAGE_SIZE;
Range->Context = FoundRange;
ASSERT(Range->MemoryBase.HighPart == 0);
AGPLOG(AGP_NOISE,
("AgpReserveMemory - reserved memory handle %lx at PA %08lx\n",
FoundRange,
Range->MemoryBase.LowPart));
return(STATUS_SUCCESS);
}
NTSTATUS
AgpReleaseMemory(
IN PAGPALi_EXTENSION AgpContext,
IN PAGP_RANGE Range
)
/*++
Routine Description:
Releases memory previously reserved with AgpReserveMemory
Arguments:
AgpContext - Supplies the AGP context
AgpRange - Supplies the range to be released.
Return Value:
NTSTATUS
--*/
{
PGART_PTE Pte;
ULONG Start;
GTLBTAGCLR ClearTag;
//
// Go through and free all the PTEs. None of these should still
// be valid at this point.
//
for (Pte = Range->Context;
Pte < (PGART_PTE)Range->Context + Range->NumberOfPages;
Pte++) {
if (Range->Type == MmNonCached) {
ASSERT(Pte->Soft.State == GART_ENTRY_RESERVED_UC);
} else {
ASSERT(Pte->Soft.State == GART_ENTRY_RESERVED_WC);
}
Pte->Soft.State = GART_ENTRY_FREE;
}
//
// Clear All Tag
//
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ClearTag, GTLBTAGCLR_OFFSET);
ClearTag.GTLBTagClear = 1;
ClearTag.ClearAllTag = 1;
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ClearTag, GTLBTAGCLR_OFFSET);
Range->MemoryBase.QuadPart = 0;
return(STATUS_SUCCESS);
}
NTSTATUS
AgpALiCreateGart(
IN PAGPALi_EXTENSION AgpContext,
IN ULONG MinimumPages
)
/*++
Routine Description:
Allocates and initializes an empty GART. The current implementation
attempts to allocate the entire GART on the first reserve.
Arguments:
AgpContext - Supplies the AGP context
MinimumPages - Supplies the minimum size (in pages) of the GART to be
created.
Return Value:
NTSTATUS
--*/
{
PGART_PTE Gart;
ULONG GartLength;
PHYSICAL_ADDRESS LowestAcceptable;
PHYSICAL_ADDRESS BoundaryMultiple;
PHYSICAL_ADDRESS HighestAcceptable;
PHYSICAL_ADDRESS GartPhysical;
ULONG i;
CACHECTRL FlushCache;
APCTRL ApCtrl;
GTLBCTRL GTLBCtrl;
//
// Try and get a chunk of contiguous memory big enough to map the
// entire aperture.
//
HighestAcceptable.QuadPart = 0xFFFFFFFF;
LowestAcceptable.QuadPart = 0;
BoundaryMultiple.QuadPart = 0;
GartLength = BYTES_TO_PAGES(AgpContext->ApertureLength) * sizeof(GART_PTE);
Gart = MmAllocateContiguousMemorySpecifyCache(GartLength,
LowestAcceptable,
HighestAcceptable,
BoundaryMultiple,
MmNonCached);
if (Gart == NULL) {
AGPLOG(AGP_CRITICAL,
("AgpALiCreateGart - MmAllocateContiguousMemory %lx failed\n",
GartLength));
return(STATUS_INSUFFICIENT_RESOURCES);
}
//
// We successfully allocated a contiguous chunk of memory.
// It should be page aligned already.
//
ASSERT(((ULONG_PTR)Gart & (PAGE_SIZE-1)) == 0);
//
// Get the physical address.
//
GartPhysical = MmGetPhysicalAddress(Gart);
AGPLOG(AGP_NOISE,
("AgpALiCreateGart - GART of length %lx created at VA %08lx, PA %08lx\n",
GartLength,
Gart,
GartPhysical.LowPart));
ASSERT(GartPhysical.HighPart == 0);
ASSERT((GartPhysical.LowPart & (PAGE_SIZE-1)) == 0);
//
// Initialize all the PTEs to free
//
for (i=0; i<GartLength/sizeof(GART_PTE); i++) {
Gart[i].AsUlong = 0;
}
//
// Only 1541 chipset has L1_2_CACHE_FLUSH_CTRL
//
if (AgpContext->ChipsetType == ALi1541) {
//
// Flush GART table region
//
FlushCache.Flush_Enable = 1;
for (i=0; i < GartLength/PAGE_SIZE; i++)
{
FlushCache.Address = (GartPhysical.LowPart / PAGE_SIZE) + i;
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &FlushCache, L1_2_CACHE_FLUSH_CTRL);
}
}
//
// Set GART base
//
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ApCtrl, APCTRL_OFFSET);
ApCtrl.ATTBase = GartPhysical.LowPart / PAGE_SIZE;
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ApCtrl, APCTRL_OFFSET);
//
// Enable GART table
//
if ((AgpContext->ChipsetType != ALi1647) && (AgpContext->ChipsetType != ALi1651) &&
(AgpContext->ChipsetType != ALi1644) && (AgpContext->ChipsetType != ALi1646) &&
(AgpContext->ChipsetType != ALi1671) && (AgpContext->ChipsetType != ALi1672))
{
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &GTLBCtrl, GTLBCTRL_OFFSET);
GTLBCtrl.GTLB_ENJ = 0;
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &GTLBCtrl, GTLBCTRL_OFFSET);
}
//
// Update our extension to reflect the current state.
//
AgpContext->Gart = Gart;
AgpContext->GartLength = GartLength;
AgpContext->GartPhysical = GartPhysical;
return(STATUS_SUCCESS);
}
NTSTATUS
Agp1541FlushPages(
IN PAGPALi_EXTENSION AgpContext,
IN PMDL Mdl
)
/*++
Routine Description:
Flush entries in the GART.
Arguments:
AgpContext - Supplies the AGP context
Mdl - Supplies the MDL describing the physical pages to be flushed
Return Value:
VOID
--*/
{
ULONG PageCount;
CACHECTRL FlushCache;
ULONG Index;
PULONG Page;
ASSERT(Mdl->Next == NULL);
PageCount = BYTES_TO_PAGES(Mdl->ByteCount);
Page = (PULONG)(Mdl + 1);
//
// Flush GART table entry
//
FlushCache.Flush_Enable = 1;
for (Index = 0; Index < PageCount; Index++) {
FlushCache.Address = Page[Index];
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &FlushCache, L1_2_CACHE_FLUSH_CTRL);
}
return STATUS_SUCCESS;
}
NTSTATUS
AgpMapMemory(
IN PAGPALi_EXTENSION AgpContext,
IN PAGP_RANGE Range,
IN PMDL Mdl,
IN ULONG OffsetInPages,
OUT PHYSICAL_ADDRESS *MemoryBase
)
/*++
Routine Description:
Maps physical memory into the GART somewhere in the specified range.
Arguments:
AgpContext - Supplies the AGP context
Range - Supplies the AGP range that the memory should be mapped into
Mdl - Supplies the MDL describing the physical pages to be mapped
OffsetInPages - Supplies the offset into the reserved range where the
mapping should begin.
MemoryBase - Returns the physical memory in the aperture where the pages
were mapped.
Return Value:
NTSTATUS
--*/
{
ULONG PageCount;
PGART_PTE Pte;
PGART_PTE StartPte;
ULONG Index;
ULONG TargetState;
PULONG Page;
BOOLEAN Backwards;
GART_PTE NewPte;
GTLBTAGCLR ClearTag;
ASSERT(Mdl->Next == NULL);
StartPte = Range->Context;
PageCount = BYTES_TO_PAGES(Mdl->ByteCount);
ASSERT(PageCount <= Range->NumberOfPages);
ASSERT(OffsetInPages <= Range->NumberOfPages);
ASSERT(PageCount + OffsetInPages <= Range->NumberOfPages);
ASSERT(PageCount > 0);
TargetState = (Range->Type == MmNonCached) ? GART_ENTRY_RESERVED_UC : GART_ENTRY_RESERVED_WC;
Pte = StartPte + OffsetInPages;
//
// We have a suitable range, now fill it in with the supplied MDL.
//
ASSERT(Pte >= StartPte);
ASSERT(Pte + PageCount <= StartPte + Range->NumberOfPages);
NewPte.AsUlong = 0;
NewPte.Soft.State = (Range->Type == MmNonCached) ? GART_ENTRY_VALID_UC :
GART_ENTRY_VALID_WC;
Page = (PULONG)(Mdl + 1);
// Fill the physical memory address into GART
for (Index = 0; Index < PageCount; Index++) {
AGPLOG(AGP_NOISE,
("AgpMapMemory: Pte=%p, Page=%x\n", &Pte[Index], *Page));
NewPte.Hard.Page = *Page++;
Pte[Index].AsUlong = NewPte.AsUlong;
}
//
// Clear All Tag
//
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ClearTag, GTLBTAGCLR_OFFSET);
ClearTag.GTLBTagClear = 1;
ClearTag.ClearAllTag = 1;
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ClearTag, GTLBTAGCLR_OFFSET);
MemoryBase->QuadPart = Range->MemoryBase.QuadPart + (Pte - StartPte) * PAGE_SIZE;
return(STATUS_SUCCESS);
}
NTSTATUS
AgpUnMapMemory(
IN PAGPALi_EXTENSION AgpContext,
IN PAGP_RANGE AgpRange,
IN ULONG NumberOfPages,
IN ULONG PageOffset
)
/*++
Routine Description:
Unmaps previously mapped memory in the GART.
Arguments:
AgpContext - Supplies the AGP context
AgpRange - Supplies the AGP range that the memory should be mapped into
NumberOfPages - Supplies the number of pages in the range to be freed.
PageOffset - Supplies the offset into the range where the freeing should begin.
Return Value:
NTSTATUS
--*/
{
ULONG i;
PGART_PTE Pte;
PGART_PTE StartPte;
GTLBTAGCLR ClearTag;
ULONG NewState;
ASSERT(PageOffset + NumberOfPages <= AgpRange->NumberOfPages);
StartPte = AgpRange->Context;
Pte = &StartPte[PageOffset];
if (AgpRange->Type == MmNonCached) {
NewState = GART_ENTRY_RESERVED_UC;
} else {
NewState = GART_ENTRY_RESERVED_WC;
}
//
// Clear the GART entry.
//
for (i=0; i<NumberOfPages; i++) {
if (Pte[i].Hard.Valid) {
Pte[i].Soft.State = NewState;
} else {
//
// This page is not mapped, just skip it.
//
AGPLOG(AGP_NOISE,
("AgpUnMapMemory - PTE %08lx (%08lx) at offset %d not mapped\n",
&Pte[i],
Pte[i].AsUlong,
i));
}
}
//
// Clear All Tag
//
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ClearTag, GTLBTAGCLR_OFFSET);
ClearTag.GTLBTagClear = 1;
ClearTag.ClearAllTag = 1;
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ClearTag, GTLBTAGCLR_OFFSET);
return(STATUS_SUCCESS);
}
PGART_PTE
AgpALiFindRangeInGart(
IN PGART_PTE StartPte,
IN PGART_PTE EndPte,
IN ULONG Length,
IN BOOLEAN SearchBackward,
IN ULONG SearchState
)
/*++
Routine Description:
Finds a contiguous range in the GART. This routine can
search either from the beginning of the GART forwards or
the end of the GART backwards.
Arguments:
StartIndex - Supplies the first GART pte to search
EndPte - Supplies the last GART to search (inclusive)
Length - Supplies the number of contiguous free entries
to search for.
SearchBackward - TRUE indicates that the search should begin
at EndPte and search backwards. FALSE indicates that the
search should begin at StartPte and search forwards
SearchState - Supplies the PTE state to look for.
Return Value:
Pointer to the first PTE in the GART if a suitable range
is found.
NULL if no suitable range exists.
--*/
{
PGART_PTE Current;
PGART_PTE Last;
LONG Delta;
ULONG Found;
PGART_PTE Candidate;
ASSERT(EndPte >= StartPte);
ASSERT(Length <= (ULONG)(EndPte - StartPte + 1));
ASSERT(Length != 0);
if (SearchBackward) {
Current = EndPte;
Last = StartPte-1;
Delta = -1;
} else {
Current = StartPte;
Last = EndPte+1;
Delta = 1;
}
Found = 0;
while (Current != Last) {
if (Current->Soft.State == SearchState) {
if (++Found == Length) {
//
// A suitable range was found, return it
//
if (SearchBackward) {
return(Current);
} else {
return(Current - Length + 1);
}
}
} else {
Found = 0;
}
Current += Delta;
}
//
// A suitable range was not found.
//
return(NULL);
}
VOID
AgpFindFreeRun(
IN PVOID AgpContext,
IN PAGP_RANGE AgpRange,
IN ULONG NumberOfPages,
IN ULONG OffsetInPages,
OUT ULONG *FreePages,
OUT ULONG *FreeOffset
)
/*++
Routine Description:
Finds the first contiguous run of free pages in the specified
part of the reserved range.
Arguments:
AgpContext - Supplies the AGP context
AgpRange - Supplies the AGP range
NumberOfPages - Supplies the size of the region to be searched for free pages
OffsetInPages - Supplies the start of the region to be searched for free pages
FreePages - Returns the length of the first contiguous run of free pages
FreeOffset - Returns the start of the first contiguous run of free pages
Return Value:
None. FreePages == 0 if there are no free pages in the specified range.
--*/
{
PGART_PTE Pte;
ULONG i;
Pte = (PGART_PTE)(AgpRange->Context) + OffsetInPages;
//
// Find the first free PTE
//
for (i=0; i<NumberOfPages; i++) {
if (Pte[i].Hard.Valid == 0) {
//
// Found a free PTE, count the contiguous ones.
//
*FreeOffset = i + OffsetInPages;
*FreePages = 0;
while ((i<NumberOfPages) && (Pte[i].Hard.Valid == 0)) {
*FreePages += 1;
++i;
}
return;
}
}
//
// No free PTEs in the specified range
//
*FreePages = 0;
return;
}
VOID
AgpGetMappedPages(
IN PVOID AgpContext,
IN PAGP_RANGE AgpRange,
IN ULONG NumberOfPages,
IN ULONG OffsetInPages,
OUT PMDL Mdl
)
/*++
Routine Description:
Returns the list of physical pages mapped into the specified
range in the GART.
Arguments:
AgpContext - Supplies the AGP context
AgpRange - Supplies the AGP range
NumberOfPages - Supplies the number of pages to be returned
OffsetInPages - Supplies the start of the region
Mdl - Returns the list of physical pages mapped in the specified range.
Return Value:
None
--*/
{
PGART_PTE Pte;
ULONG i;
PULONG Pages;
ASSERT(NumberOfPages * PAGE_SIZE == Mdl->ByteCount);
Pages = (PULONG)(Mdl + 1);
Pte = (PGART_PTE)(AgpRange->Context) + OffsetInPages;
for (i=0; i<NumberOfPages; i++) {
ASSERT(Pte[i].Hard.Valid == 1);
Pages[i] = Pte[i].Hard.Page;
}
return;
}
VOID
AgpWorkaround(
IN PVOID AgpExtension
)
{
PAGPALi_EXTENSION Extension = AgpExtension;
ULONG ulTemp, ulTemp1, ulLockRW, i, j, k, ulQD;
ULONG ulType, ulSize, ulTmp0, ulTmp1, ulChipVersion;
BOOLEAN blPrefetchFound, blSupportAGP, blnVidia=FALSE, blMatrox=FALSE, blAtiRage128=FALSE;
UCHAR ID, Address, Data;
NTSTATUS Status;
ReadConfigUchar(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ulTemp, CHIP_REVISION_OFFSET);
ulChipVersion = ulTemp & 0xFF;
ulTemp = (ULONG)-1;
ReadConfigUlongSafe(AGP_VGA_BUS_ID, AGP_VGA_SLOT_ID, &ulTemp, 0);
//
// Come back after you splurge for an AGP card!!!
//
if (ulTemp == (ULONG)-1) {
return;
}
if ((ulTemp & 0xFFFF) == 0x10DE) // nVidia chip detected
blnVidia=TRUE;
else if ((ulTemp & 0xFFFF) == 0x102B)
blMatrox=TRUE;
else if ((ulTemp & 0xFFFF) == 0x1002)
{
if ((ulTemp == 0x52451002) || (ulTemp == 0x52461002) || (ulTemp == 0x524B1002) || (ulTemp == 0x524C1002) ||
(ulTemp == 0x53451002) || (ulTemp == 0x53461002) || (ulTemp == 0x53471002) || (ulTemp == 0x534B1002) ||
(ulTemp == 0x534C1002) || (ulTemp == 0x534D1002))
blAtiRage128=TRUE;
}
switch (Extension->ChipsetType)
{
case ALi1541:
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ulTemp, AGP_STATUS_OFFSET); // adjust queue depth to avoid ambiguous
if (((ulTemp & 0xFF000000) >= 0x1C000000) && ((ulTemp & 0xFF000000) <= 0x20000000))
{
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ulLockRW, M1541_Lock_WR);
ulTemp1 = ulLockRW | 0x40;
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ulTemp1, M1541_Lock_WR);
ulTemp = (ulTemp & 0x00FFFFFF) | 0x1B000000;
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ulTemp, AGP_STATUS_OFFSET);
ulLockRW = ulLockRW & 0xFFFFFFBF;
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ulLockRW, M1541_Lock_WR);
}
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ulTemp, 0x40); // 0x43 bit 7 -> 1
ulTemp = ulTemp | 0x80000000;
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ulTemp, 0x40);
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_P2P_SLOT_ID, &ulTemp, 0x88); // P2P 0x88 bit 7,5,3 -> 1
ulTemp = ulTemp | 0x000000A8;
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_P2P_SLOT_ID, &ulTemp, 0x88);
// fix frame buffer here
i=0;
blPrefetchFound=FALSE;
while ((i<6) && (!blPrefetchFound)) // Jump out loop when first prefetch found
{ // Two or more prefetch case should be considered in the future
ReadConfigUlong(AGP_VGA_BUS_ID, AGP_VGA_SLOT_ID, &ulTemp1, 0x10+i*0x4); // read VGA base address
if ((ulTemp1 & 0x0000000F) == 0x8) blPrefetchFound=TRUE;
i++;
}
if (blPrefetchFound) // AGP VGA prefetchable address is found. Modify M1541 write buffer
{
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_P2P_SLOT_ID, &ulTemp, 0x84);
if ((ulTemp & 0x00010000) == 0x00010000) // Write buffer is enabled
{
ulTemp = (ulTemp & 0xFFFF0000) | ((ulTemp1 & 0xFFF00000) >> 16) | 0x4;
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_P2P_SLOT_ID, &ulTemp, 0x84);
}
}
else // AGP VGA prefetchable address is not found. Disable M1541 write buffer
{
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_P2P_SLOT_ID, &ulTemp, 0x84);
ulTemp = ulTemp & 0xFFFE0000;
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_P2P_SLOT_ID, &ulTemp, 0x84);
}
if (blnVidia) // Set aperture size to 4M as a temporatory solution
{
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ulTemp, APCTRL_OFFSET);
ulTemp = (ulTemp & 0xFFFFFFF0) | AP_SIZE_4MB;
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ulTemp, APCTRL_OFFSET);
}
break;
case ALi1621:
// Check AGP VGA is a pipeline(SBA disabled) device. If yes, adjust queue depth to 0x2(3 queues)
ReadConfigUlong(AGP_VGA_BUS_ID, AGP_VGA_SLOT_ID, &ulTemp1, PCI_STATUS_REG);
ulQD = 0;
blSupportAGP = FALSE;
if ((ulTemp1 & 0x00100000) != 0)
{
ReadConfigUlong(AGP_VGA_BUS_ID, AGP_VGA_SLOT_ID, &ulTemp1, CAP_PTR);
ulTemp = ulTemp1 & 0xFF;
while (!blSupportAGP)
{
if ((ulTemp < 0x40) || (ulTemp > 0xF4)) break;
ReadConfigUlong(AGP_VGA_BUS_ID, AGP_VGA_SLOT_ID, &ulTemp1, ulTemp);
if ((ulTemp1 & 0xFF) == AGP_ID)
blSupportAGP = TRUE;
else
ulTemp = (ulTemp1 & 0xFF00) >> 8;
}
if (blSupportAGP)
{
ReadConfigUlong(AGP_VGA_BUS_ID, AGP_VGA_SLOT_ID, &ulTemp1, ulTemp+4); // Read AGP status register
if ((ulTemp1 & 0x00000200) == 0x0) ulQD = 0x2; // AGP VGA supports pipeline only
}
}
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ulTemp, AGP_STATUS_OFFSET); // adjust queue depth to avoid ambiguous
if ((((ulTemp & 0xFF000000) >= 0x1C000000) && ((ulTemp & 0xFF000000) <= 0x20000000)) || (ulQD != 0))
{
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ulLockRW, M1621_Lock_WR);
ulTemp1 = ulLockRW | 0x1000;
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ulTemp1, M1621_Lock_WR);
if (ulQD != 0)
ulTemp = (ulTemp & 0x00FFFFFF) | (ulQD << 24);
else
ulTemp = (ulTemp & 0x00FFFFFF) | 0x1B000000;
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ulTemp, AGP_STATUS_OFFSET);
ulLockRW = ulLockRW & 0xFFFFEFFF;
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ulLockRW, M1621_Lock_WR);
}
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ulTemp, 0x80);
ulTemp = ulTemp & 0xFFFFF3FF; // set offset 0x81 bit 2~3 to 0
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ulTemp, 0x80);
if (blnVidia)
{
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ulTemp, 0x50);
ulTemp = ulTemp | 0x40; // set M1621 index 0x50 bit 6 to 1
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ulTemp, 0x50);
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ulTemp, 0x60);
ulTemp = ulTemp | 0x40; // set M1621 index 0x60 bit 6 to 1
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ulTemp, 0x60);
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ulTemp, 0x7C);
ulTemp = ulTemp & 0xCFFFFFFF; // set M1621 index 0x7F bit 4~5 to 0
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ulTemp, 0x7C);
}
if (blMatrox)
{
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ulTemp, 0x50);
ulTemp = ulTemp | 0xFF000000; // set M1621 index 0x53 to 0xFF
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ulTemp, 0x50);
}
break;
case ALi1631:
case ALi1632:
break;
case ALi1641:
if (blMatrox)
{
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ulTemp, 0x50);
ulTemp = ulTemp | 0xFF000000; // set M1621 index 0x53 to 0xFF
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ulTemp, 0x50);
}
break;
case ALi1644:
case ALi1646:
case ALi1647:
case ALi1651:
if (blAtiRage128 && (ulChipVersion < 0xB0))
{
ReadConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ulTemp, APCTRL_OFFSET);
ulTemp = (ulTemp & 0xFFFFFFF0) | AP_SIZE_4MB;
WriteConfigUlong(AGP_ALi_GART_BUS_ID, AGP_ALi_GART_SLOT_ID, &ulTemp, APCTRL_OFFSET);
}
if ( ulChipVersion < 0xB2)
{
for (k=0; k<32; k++) {
ReadConfigUlongSafe(0, k, &ulTmp0, 0x08);
ulTmp0 = ulTmp0 & 0xFFFF0000;
if ( ulTmp0 == 0x04000000 )
{
ReadConfigUlong(0, k, &ulTmp0, 0x0C);
ulTmp1 = ulTmp0 & 0xFFFF00FF;
ulTmp1 = ulTmp1 | 0x0A00;
WriteConfigUlong(0, k, &ulTmp1, 0x0C);
ReadConfigUlong(0, k, &ulTmp0, 0x0);
if ((ulTmp0 & 0xFFFF) == 0x109E)
{
ReadConfigUlong(0, k, &ulTmp0, 0x40);
ulTmp1 = ulTmp0 & 0xFFFFFFFD;
ulTmp1 = ulTmp1 | 0x02;
WriteConfigUlong(0, k, &ulTmp1, 0x40);
}
}
}
}
break;
case ALi1671:
break;
case ALi1672:
break;
default:
break;
}
}
NTSTATUS
AgpSpecialTarget(
IN PAGPALi_EXTENSION AgpContext,
IN ULONGLONG DeviceFlags
)
/*++
Routine Description:
This routine makes "special" tweaks to the AGP chipset
Arguments:
AgpContext - Supplies the AGP context
DeviceFlags - Flags indicating what tweaks to perform
Return Value:
STATUS_SUCCESS, or error
--*/
{
NTSTATUS Status;
//
// Should we change the AGP rate?
//
if (DeviceFlags & AGP_FLAG_SPECIAL_RESERVE) {
Status = AgpALiSetRate(AgpContext,
(ULONG)((DeviceFlags & AGP_FLAG_SPECIAL_RESERVE)
>> AGP_FLAG_SET_RATE_SHIFT));
if (!NT_SUCCESS(Status)) {
return Status;
}
}
//
// Add more tweaks here...
//
AgpContext->SpecialTarget |= DeviceFlags;
return STATUS_SUCCESS;
}
NTSTATUS
AgpALiSetRate(
IN PAGPALi_EXTENSION AgpContext,
IN ULONG AgpRate
)
/*++
Routine Description:
This routine sets the AGP rate
Arguments:
AgpContext - Supplies the AGP context
AgpRate - Rate to set
note: this routine assumes that AGP has already been enabled, and that
whatever rate we've been asked to set is supported by master
Return Value:
STATUS_SUCCESS, or error status
--*/
{
NTSTATUS Status;
ULONG TargetEnable;
ULONG MasterEnable;
PCI_AGP_CAPABILITY TargetCap;
PCI_AGP_CAPABILITY MasterCap;
BOOLEAN ReverseInit;
//
// Read capabilities
//
Status = AgpLibGetPciDeviceCapability(0, 0, &TargetCap);
if (!NT_SUCCESS(Status)) {
AGPLOG(AGP_WARNING, ("AGPALiSetRate: AgpLibGetPciDeviceCapability "
"failed %08lx\n", Status));
return Status;
}
Status = AgpLibGetMasterCapability(AgpContext, &MasterCap);
if (!NT_SUCCESS(Status)) {
AGPLOG(AGP_WARNING, ("AGPALiSetRate: AgpLibGetMasterCapability "
"failed %08lx\n", Status));
return Status;
}
//
// Verify the requested rate is supported by both master and target
//
if (!(AgpRate & TargetCap.AGPStatus.Rate & MasterCap.AGPStatus.Rate)) {
return STATUS_INVALID_PARAMETER;
}
//
// Disable AGP while the pull the rug out from underneath
//
TargetEnable = TargetCap.AGPCommand.AGPEnable;
TargetCap.AGPCommand.AGPEnable = 0;
Status = AgpLibSetPciDeviceCapability(0, 0, &TargetCap);
if (!NT_SUCCESS(Status)) {
AGPLOG(AGP_WARNING,
("AGPALiSetRate: AgpLibSetPciDeviceCapability %08lx for "
"Target failed %08lx\n",
&TargetCap,
Status));
return Status;
}
MasterEnable = MasterCap.AGPCommand.AGPEnable;
MasterCap.AGPCommand.AGPEnable = 0;
Status = AgpLibSetMasterCapability(AgpContext, &MasterCap);
if (!NT_SUCCESS(Status)) {
AGPLOG(AGP_WARNING,
("AGPALiSetRate: AgpLibSetMasterCapability %08lx failed "
"%08lx\n",
&MasterCap,
Status));
return Status;
}
//
// Fire up AGP with new rate
//
ReverseInit =
(AgpContext->SpecialTarget & AGP_FLAG_REVERSE_INITIALIZATION) ==
AGP_FLAG_REVERSE_INITIALIZATION;
if (ReverseInit) {
MasterCap.AGPCommand.Rate = AgpRate;
MasterCap.AGPCommand.AGPEnable = MasterEnable;
Status = AgpLibSetMasterCapability(AgpContext, &MasterCap);
if (!NT_SUCCESS(Status)) {
AGPLOG(AGP_WARNING,
("AGPALiSetRate: AgpLibSetMasterCapability %08lx failed "
"%08lx\n",
&MasterCap,
Status));
}
}
TargetCap.AGPCommand.Rate = AgpRate;
TargetCap.AGPCommand.AGPEnable = TargetEnable;
Status = AgpLibSetPciDeviceCapability(0, 0, &TargetCap);
if (!NT_SUCCESS(Status)) {
AGPLOG(AGP_WARNING,
("AGPALiSetRate: AgpLibSetPciDeviceCapability %08lx for "
"Target failed %08lx\n",
&TargetCap,
Status));
return Status;
}
if (!ReverseInit) {
MasterCap.AGPCommand.Rate = AgpRate;
MasterCap.AGPCommand.AGPEnable = MasterEnable;
Status = AgpLibSetMasterCapability(AgpContext, &MasterCap);
if (!NT_SUCCESS(Status)) {
AGPLOG(AGP_WARNING,
("AGPALiSetRate: AgpLibSetMasterCapability %08lx failed "
"%08lx\n",
&MasterCap,
Status));
}
}
return Status;
}