Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1309 lines
32 KiB

/*++
Copyright (c) 1991 Microsoft Corporation
Module Name:
dpmiint.c
Abstract:
This file contains the interrupt support for DPMI. Most of this is
for supporting the 486 emulator on risc platforms, but some code
is shared with x86.
Author:
Neil Sandlin (neilsa) 1-Jun-1995
Revision History:
Comments:
DPMI stack switching is accomplished by keeping a "locked pm stack"
count, and when the count is zero, a stack switch occurs. This keeps
track of the situation with recursive interrupts where the client
may switch to its own stack. So, a stack switch to our locked stack
occurs on the first level interrupt, and on subsequent nested interrupts,
only the count is maintained. This is identical to how win31 managed
the stack.
If a client specifies that it is a 32-bit dpmi client, this only affects
the "width" of a stack frame. A 16-bit client gets 16-bit frames, and
a 32 bit client gets 32-bit frames. It is still necessary to check
the size of the stack segment to determine if SP or ESP should be used.
--*/
#include "precomp.h"
#pragma hdrstop
#include <softpc.h>
#include <dpmiint.h>
BOOL
SetProtectedModeInterrupt(
USHORT IntNumber,
USHORT Sel,
ULONG Offset,
USHORT Flags
)
/*++
Routine Description:
This function services the SetProtectedmodeInterrupt bop. It retrieves
the handler information from the Dos application stack, and puts it into
the VdmTib, for use by instruction emulation.
--*/
{
DECLARE_LocalVdmContext;
PVDM_INTERRUPTHANDLER Handlers = DpmiInterruptHandlers;
if (IntNumber >= 256) {
return FALSE;
}
if ((IntNumber >= 8 && IntNumber <= 0xf) ||
(IntNumber >= 0x70 && IntNumber <= 0x7f)) {
//
// Hardware Interrupt
//
Flags |= VDM_INT_INT_GATE;
} else {
//
// Software Interrupt
//
Flags |= VDM_INT_TRAP_GATE;
}
if (Sel != PMReflectorSeg) {
//
// The caller is setting the PM interrupt vector to be something other
// than the dpmi default "end-of-the-chain" PM handler. Now we check
// to see if the interrupt needs to be sent up to PM when it is encountered
// in v86 mode.
//
if ((IntNumber == 0x1b) || //^Break?
(IntNumber == 0x1c) || //Timer Tick?
(IntNumber == 0x23) || //Ctrl-C?
(IntNumber == 0x24) || //Critical Error Handler?
(IntNumber == 0x02) || //Math co-processor exception used by math library routines!
((IntNumber >= 0x08) && (IntNumber <= 0xf)) || //Hardware?
((IntNumber >= 0x70) && (IntNumber <= 0x77))) {
// Flag this so that the v86 reflector code will send it to PM
Flags |= VDM_INT_HOOKED;
// Mark it down low so NTIO.SYS can do the right thing
if ( (IntNumber == 0x1c) || (IntNumber == 8) ) {
*(ULONG *)(IntelBase+FIXED_NTVDMSTATE_LINEAR) |= VDM_INTS_HOOKED_IN_PM;
}
}
}
Handlers[IntNumber].Flags = Flags;
Handlers[IntNumber].CsSelector = Sel;
Handlers[IntNumber].Eip = Offset;
DBGTRACE((USHORT)(VDMTR_TYPE_DPMI_SI | IntNumber), Sel, Offset);
#ifdef _X86_
if (IntNumber == 0x21)
{
VDMSET_INT21_HANDLER_DATA ServiceData;
NTSTATUS Status;
ServiceData.Selector = Handlers[IntNumber].CsSelector;
ServiceData.Offset = Handlers[IntNumber].Eip;
ServiceData.Gate32 = Handlers[IntNumber].Flags & VDM_INT_32;
Status = NtVdmControl(VdmSetInt21Handler, &ServiceData);
#if DBG
if (!NT_SUCCESS(Status)) {
OutputDebugString("DPMI32: Error Setting Int21handler\n");
}
#endif
}
#endif //_X86_
return TRUE;
}
VOID
DpmiInitIDT(
VOID
)
/*++
Routine Description:
This function initializes the state of the IDT. It takes as input the
IDT set up by DOSX, updates the IDT's access bytes, and sets the DPMI32
interrupt handlers by calling SetProtectedModeInterrupt.
--*/
{
DECLARE_LocalVdmContext;
USHORT IntNumber;
USHORT Flags = getBX();
Idt = (PVOID)VdmMapFlat(getAX(), 0, getMODE());
for (IntNumber = 0; IntNumber<256; IntNumber++) {
SetProtectedModeInterrupt(IntNumber,
Idt[IntNumber].Selector,
(((ULONG)Idt[IntNumber].OffsetHi)<<16) +
Idt[IntNumber].OffsetLow,
Flags);
}
}
BOOL
SetFaultHandler(
USHORT IntNumber,
USHORT Sel,
ULONG Offset
)
/*++
Routine Description:
This function services the SetFaultHandler bop. It retrieves
the handler information from the Dos application stack, and puts it into
the VdmTib, for use by instruction emulation.
--*/
{
DECLARE_LocalVdmContext;
PVDM_FAULTHANDLER Handlers = DpmiFaultHandlers;
if (IntNumber >= 32) {
return FALSE;
}
Handlers[IntNumber].Flags = VDM_INT_INT_GATE;
Handlers[IntNumber].CsSelector = Sel;
Handlers[IntNumber].Eip = Offset;
Handlers[IntNumber].SsSelector = 0; //BUGBUG These are obselete
Handlers[IntNumber].Esp = 0; //BUGBUG These are obselete
DBGTRACE((USHORT)(VDMTR_TYPE_DPMI_SF | IntNumber),
Handlers[IntNumber].CsSelector,
Handlers[IntNumber].Eip);
return TRUE;
}
VOID
DpmiInitExceptionHandlers(
VOID
)
{
DECLARE_LocalVdmContext;
USHORT OffsetIncr = getAX();
USHORT IntCount = getBX();
USHORT Selector = getCX();
ULONG Offset = (ULONG) getDX();
USHORT IntNumber;
for (IntNumber = 0; IntNumber < 32; IntNumber++) {
SetFaultHandler(IntNumber, Selector, Offset);
Offset += OffsetIncr;
}
}
VOID
DpmiUnhandledExceptionHandler(
VOID
)
/*++
Routine Description:
This function gets control when a PM fault occurs that isn't handled
by an installed handler. The body of this function emulates Win31
DPMI behavior, where a fault that is reflected to the end of the
PM fault handler chain is then reflected to the PM *interrupt*
chain.
Arguments:
client SS:(E)SP points to dpmi fault stack frame
--*/
{
DECLARE_LocalVdmContext;
PVDM_INTERRUPTHANDLER Handlers = DpmiInterruptHandlers;
USHORT SegSs, SegCs;
UCHAR XNumber;
PCHAR VdmStackPointer;
PCHAR VdmCodePointer;
USHORT FaultingCS;
ULONG FaultingEip;
SegSs = getSS();
VdmStackPointer = Sim32GetVDMPointer(SegSs<<16, 1, TRUE);
if (SEGMENT_IS_BIG(SegSs)) {
VdmStackPointer += getESP();
} else {
VdmStackPointer += getSP();
}
SegCs = getCS();
VdmCodePointer = Sim32GetVDMPointer(SegCs<<16, 1, TRUE);
if (SEGMENT_IS_BIG(SegCs)) {
VdmCodePointer += getEIP();
} else {
VdmCodePointer += getIP();
}
XNumber = *(VdmCodePointer);
if ((XNumber > 7) || (XNumber == 6)) {
DpmiFatalExceptionHandler(XNumber, VdmStackPointer);
return;
}
if (Frame32) {
PCHAR VdmNewStackPointer;
ULONG FrameSS, FrameSP, FrameCS, FrameIP, FrameFlags;
//
// Build an iret frame on the faulting stack
//
FrameSS = *(PDWORD16) (VdmStackPointer+28);
FrameSP = *(PDWORD16) (VdmStackPointer+24) - 12;
*(PDWORD16) (VdmStackPointer+24) = FrameSP;
VdmNewStackPointer = Sim32GetVDMPointer((ULONG)(FrameSS << 16), 1, TRUE);
VdmNewStackPointer += FrameSP;
FrameIP = *(PDWORD16) (VdmStackPointer+12);
*(PDWORD16) (VdmStackPointer+12) = Handlers[XNumber].Eip;
*(PDWORD16) (VdmNewStackPointer) = FrameIP;
FrameCS = *(PDWORD16) (VdmStackPointer+16);
*(PDWORD16) (VdmStackPointer+16) = (ULONG) Handlers[XNumber].CsSelector;
*(PDWORD16) (VdmNewStackPointer+4) = FrameCS;
FrameFlags = *(PDWORD16) (VdmStackPointer+20);
*(PDWORD16) (VdmNewStackPointer+4) = FrameFlags;
FrameFlags &= ~(EFLAGS_IF_MASK | EFLAGS_TF_MASK);
*(PDWORD16) (VdmStackPointer+20) = FrameFlags;
//
// Simulate a dpmi fault handler retf
//
setCS((USHORT)*(PDWORD16)(VdmStackPointer+4));
setEIP(*(PDWORD16)(VdmStackPointer));
setESP(getESP() + 8);
} else {
USHORT FrameSS, FrameSP, FrameCS, FrameIP, FrameFlags;
FrameSS = *(PWORD16) (VdmStackPointer+14);
FrameCS = *(PWORD16) (VdmStackPointer+8);
FrameFlags = *(PWORD16) (VdmStackPointer+10);
if (!SEGMENT_IS_BIG(FrameSS) && !SEGMENT_IS_BIG(FrameCS)) {
PCHAR VdmNewStackPointer;
//
// Build an iret frame on the faulting stack
//
FrameSP = *(PWORD16) (VdmStackPointer+12) - 6;
*(PWORD16) (VdmStackPointer+12) = FrameSP;
VdmNewStackPointer = Sim32GetVDMPointer((ULONG)(FrameSS << 16)+FrameSP, 1, TRUE);
FrameIP = *(PWORD16) (VdmStackPointer+6);
*(PWORD16) (VdmStackPointer+6) = (WORD) Handlers[XNumber].Eip;
*(PWORD16) (VdmNewStackPointer) = FrameIP;
*(PWORD16) (VdmStackPointer+8) = Handlers[XNumber].CsSelector;
*(PWORD16) (VdmNewStackPointer+2) = FrameCS;
*(PWORD16) (VdmNewStackPointer+4) = FrameFlags;
FrameFlags &= ~(EFLAGS_IF_MASK | EFLAGS_TF_MASK);
*(PWORD16) (VdmStackPointer+10) = FrameFlags;
//
// Simulate a dpmi fault handler retf
//
setCS(*(PWORD16)(VdmStackPointer+2));
setEIP((DWORD)*(PWORD16)(VdmStackPointer));
setSP(getSP() + 4);
} else {
//
// Build an iret frame on the locked DPMI stack
//
FrameCS = *(PWORD16) (VdmStackPointer+2);
FrameIP = *(PWORD16) (VdmStackPointer);
FrameFlags &= ~EFLAGS_IF_MASK;
setSP(getSP() - 2);
*(PWORD16)(VdmStackPointer-2) = FrameIP;
*(PWORD16)(VdmStackPointer) = FrameCS;
*(PWORD16)(VdmStackPointer+2) = FrameFlags;
setCS(Handlers[XNumber].CsSelector);
setEIP((DWORD)LOWORD(Handlers[XNumber].Eip));
setSTATUS((WORD) FrameFlags & ~EFLAGS_TF_MASK);
}
}
}
VOID
DpmiFatalExceptionHandler(
UCHAR XNumber,
PCHAR VdmStackPointer
)
/*++
Routine Description:
This function gets control when a PM fault 6, 8-1f occurs that isn't
handled by an installed handler. It pops up an error dialog for the
user.
Arguments:
XNumber - exception number (0-1fh)
VdmStackPointer - flat pointer to stack frame
--*/
{
DECLARE_LocalVdmContext;
char szBuffer[255];
USHORT FaultingCS;
ULONG FaultingEip;
if (Frame32) {
FaultingCS = (USHORT)*(PDWORD16)(VdmStackPointer+16);
FaultingEip = *(PDWORD16)(VdmStackPointer+12);
} else {
FaultingCS = *(PWORD16)(VdmStackPointer+8);
FaultingEip = (ULONG)*(PWORD16)(VdmStackPointer+6);
}
wsprintf(szBuffer, "X#=%.02X, CS=%.04X IP=%.08X",
XNumber, FaultingCS, FaultingEip);
RcErrorDialogBox(EG_BAD_FAULT, szBuffer, NULL);
//
// Need to try to ignore it. Since we are on a dpmi exception frame
// we can just simulate a retf.
//
if (Frame32) {
setCS((USHORT)*(PDWORD16)(VdmStackPointer+4));
setEIP(*(PDWORD16)(VdmStackPointer));
setESP(getESP() + 8);
} else {
setCS(*(PWORD16)(VdmStackPointer+2));
setEIP((DWORD)*(PWORD16)(VdmStackPointer));
setSP(getSP() + 4);
}
}
VOID
DpmiInitPmStackInfo(
VOID
)
/*++
Routine Description:
This routine is called via BOP by DOSX to initialize values related
to stack handling.
Arguments:
Client ES = selector of locked PM stack
Return Value:
None
Notes:
The offset of the locked pm stack is hard-coded to 0x1000, per dpmi
and win31.
--*/
{
DECLARE_LocalVdmContext;
LockedPMStackSel = getES();
LockedPMStackCount = 0;
#ifdef _X86_
((PVDM_TIB)NtCurrentTeb()->Vdm)->DpmiInfo.Flags = CurrentAppFlags;
#endif
}
BOOL
DpmiSwIntHandler(
ULONG IntNumber
)
/*++
Routine Description:
This routine is called by the emulator to dispatch a SW interrupt.
Arguments:
IntNumber - interrupt vector number
Return Value:
TRUE if the interrupt was dispatched, FALSE otherwise
--*/
{
DECLARE_LocalVdmContext;
PVDM_INTERRUPTHANDLER Handlers = DpmiInterruptHandlers;
ULONG SaveEFLAGS;
ULONG NewSP;
DBGTRACE(VDMTR_TYPE_DPMI | DPMI_SW_INT, (USHORT)IntNumber, 0);
//
// If we're here via breakpoint, see if it belongs to NTVDM debug code.
//
if ((IntNumber == 3) &&
(*(ULONG *)(IntelBase+FIXED_NTVDMSTATE_LINEAR) & VDM_BREAK_DEBUGGER) &&
DbgBPInt()) {
return TRUE;
}
if (!(getMSW() & MSW_PE)) {
EmulateV86Int((UCHAR)IntNumber);
} else {
PUCHAR VdmStackPointer;
// Protect mode
SaveEFLAGS = getEFLAGS();
//BUGBUG turn off task bits
SaveEFLAGS &= ~EFLAGS_NT_MASK;
setEFLAGS(SaveEFLAGS & ~EFLAGS_TF_MASK);
if (!SEGMENT_IS_PRESENT(Handlers[IntNumber].CsSelector)) {
return FALSE;
}
if (!BuildStackFrame(3, &VdmStackPointer, &NewSP)) {
return FALSE;
}
if (Frame32) {
*(PDWORD16)(VdmStackPointer-4) = SaveEFLAGS;
*(PDWORD16)(VdmStackPointer-8) = getCS();
*(PDWORD16)(VdmStackPointer-12) = getEIP();
setEIP(Handlers[IntNumber].Eip);
setESP(NewSP);
} else {
*(PWORD16)(VdmStackPointer-2) = (WORD) SaveEFLAGS;
*(PWORD16)(VdmStackPointer-4) = (WORD) getCS();
*(PWORD16)(VdmStackPointer-6) = (WORD) getEIP();
setEIP((DWORD)LOWORD(Handlers[IntNumber].Eip));
setSP((WORD)NewSP);
}
setCS(Handlers[IntNumber].CsSelector);
#if DBG
if (Handlers[IntNumber].CsSelector != getCS()) {
char szFormat[] = "NTVDM Dpmi Error! Can't set CS to %.4X\n";
char szMsg[sizeof(szFormat)+30];
wsprintf(szMsg, szFormat, Handlers[IntNumber].CsSelector);
OutputDebugString(szMsg);
}
#endif
}
DBGTRACE(VDMTR_TYPE_DPMI | DPMI_DISPATCH_INT, (USHORT)IntNumber, 0);
return TRUE;
}
BOOL
DpmiHwIntHandler(
ULONG IntNumber
)
/*++
Routine Description:
This routine is called by the emulator to dispatch a HW interrupt.
Arguments:
IntNumber - interrupt vector number
Return Value:
TRUE if the interrupt was dispatched, FALSE otherwise
--*/
{
DECLARE_LocalVdmContext;
PVDM_INTERRUPTHANDLER Handlers = DpmiInterruptHandlers;
ULONG SaveEFLAGS;
ULONG NewSP;
DBGTRACE(VDMTR_TYPE_DPMI | DPMI_HW_INT, (USHORT)IntNumber, 0);
if (!(getMSW() & MSW_PE)) {
EmulateV86Int((UCHAR)IntNumber);
} else {
PUCHAR VdmStackPointer;
SaveEFLAGS = getEFLAGS();
//BUGBUG turn off task bits
SaveEFLAGS &= ~0x4000;
setEFLAGS(SaveEFLAGS & ~(EFLAGS_IF_MASK | EFLAGS_TF_MASK));
BeginUseLockedPMStack();
if (!BuildStackFrame(6, &VdmStackPointer, &NewSP)) {
EndUseLockedPMStack();
return FALSE;
}
if (Frame32) {
*(PDWORD16)(VdmStackPointer-4) = SaveEFLAGS;
*(PDWORD16)(VdmStackPointer-8) = getCS();
*(PDWORD16)(VdmStackPointer-12) = getEIP();
*(PDWORD16)(VdmStackPointer-16) = getEFLAGS();
*(PDWORD16)(VdmStackPointer-20) = (DWORD)HIWORD(DosxIntHandlerIretd);
*(PDWORD16)(VdmStackPointer-24) = (DWORD)LOWORD(DosxIntHandlerIretd);
setEIP(Handlers[IntNumber].Eip);
setESP(NewSP);
} else {
*(PWORD16)(VdmStackPointer-2) = (WORD)SaveEFLAGS;
*(PWORD16)(VdmStackPointer-4) = (WORD)getCS();
*(PWORD16)(VdmStackPointer-6) = (WORD)getIP();
*(PWORD16)(VdmStackPointer-8) = (WORD)getEFLAGS();
*(PWORD16)(VdmStackPointer-10) = HIWORD(DosxIntHandlerIret);
*(PWORD16)(VdmStackPointer-12) = LOWORD(DosxIntHandlerIret);
setEIP((DWORD)LOWORD(Handlers[IntNumber].Eip));
setSP((WORD)NewSP);
}
setCS(Handlers[IntNumber].CsSelector);
}
DBGTRACE(VDMTR_TYPE_DPMI | DPMI_DISPATCH_INT, (USHORT)IntNumber, 0);
return TRUE;
}
VOID
DpmiIntHandlerIret16(
VOID
)
/*++
Routine Description:
This routine is an IRET hook called via a BOP in dosx. It is called
at the end of a 16-bit HW or SW interrupt. The main reason we want
to come in here is to maintain the DPMI stack, and know when to restore
the original values when we pop back out to level zero.
--*/
{
DECLARE_LocalVdmContext;
PUCHAR VdmStackPointer;
ULONG NewSP;
USHORT SegSs;
BOOL bSsBig;
SegSs = getSS();
VdmStackPointer = Sim32GetVDMPointer(SegSs<<16, 1, TRUE);
if (bSsBig = SEGMENT_IS_BIG(SegSs)) {
VdmStackPointer += getESP();
} else {
VdmStackPointer += getSP();
}
//
// Fast iret (without executing final 16-bit iret)
//
#ifdef _X86_
setCS(*(PWORD16)(VdmStackPointer+2));
setEFLAGS((getEFLAGS()&0xffff0000) | *(PWORD16)(VdmStackPointer+4));
//
// if EndUseLockedPMStack fails, then we need to restore EIP and pop
// the stack frame
//
if (!EndUseLockedPMStack()) {
setEIP((DWORD)*(PWORD16)(VdmStackPointer));
//
// Pop iret frame off the stack
//
if (bSsBig) {
setESP(getESP()+6);
} else {
setSP(getSP()+6);
}
}
//
// Slow iret (with executing final 16-bit iret)
//
#else
if (EndUseLockedPMStack()) {
ULONG NewEIP, NewEFLAGS, NewCS;
NewEIP = getEIP();
NewCS = (ULONG) *(PWORD16)(VdmStackPointer+2);
NewEFLAGS = (getEFLAGS()&0xffff0000) | *(PWORD16)(VdmStackPointer+4);
//
// Since EndUseLockedPMStack() has restored all of EIP, and we may be
// returning to a 32-bit code segment, build a 32-bit iret frame
// even if this is a 16-bit client. That way, EIP will be restored
// correctly.
// Pass 6 to BuildStackFrame since 6 words = 3 dwords
//
if (!BuildStackFrame(6, &VdmStackPointer, &NewSP)) {
#if DBG
OutputDebugString("NTVDM: Dpmi encountered a stack fault!\n");
#endif
DpmiFaultHandler(STACK_FAULT, 0);
return;
}
//
// SS has changed, so we need to check LDT again
//
if (SEGMENT_IS_BIG(getSS())) {
setESP(NewSP);
} else {
setSP((WORD)NewSP);
}
*(PDWORD16)(VdmStackPointer-4) = NewEFLAGS;
*(PDWORD16)(VdmStackPointer-8) = NewCS;
*(PDWORD16)(VdmStackPointer-12) = NewEIP;
setCS(HIWORD(DosxIretd));
setEIP((ULONG)LOWORD(DosxIretd));
} else {
// still on locked stack, just do a real iret (16-bit frame)
setCS(HIWORD(DosxIret));
setEIP((ULONG)LOWORD(DosxIret));
}
#endif // _X86_
}
VOID
DpmiIntHandlerIret32(
VOID
)
/*++
Routine Description:
This routine is an IRET hook called via a BOP in dosx. It is called
at the end of a 32-bit HW or SW interrupt. The main reason we want
to come in here is to maintain the DPMI stack, and know when to restore
the original values when we pop back out to level zero.
--*/
{
DECLARE_LocalVdmContext;
PUCHAR VdmStackPointer;
ULONG NewSP;
USHORT SegSs;
BOOL bSsBig;
SegSs = getSS();
VdmStackPointer = Sim32GetVDMPointer(SegSs<<16, 1, TRUE);
if (bSsBig = SEGMENT_IS_BIG(SegSs)) {
VdmStackPointer += getESP();
} else {
VdmStackPointer += getSP();
}
#ifdef _X86_
setCS(*(PDWORD16)(VdmStackPointer+4));
setEFLAGS(*(PDWORD16)(VdmStackPointer+8));
//
// if EndUseLockedPMStack succeeds, then we don't need to restore EIP
//
if (!EndUseLockedPMStack()) {
setEIP(*(PDWORD16)(VdmStackPointer));
//
// Pop iret frame off the stack
//
if (bSsBig) {
setESP(getESP()+12);
} else {
setSP(getSP()+12);
}
}
#else
if (EndUseLockedPMStack()) {
ULONG NewEIP, NewCS, NewEFLAGS;
NewEIP = getEIP();
NewCS = *(PDWORD16)(VdmStackPointer+4);
NewEFLAGS = *(PDWORD16)(VdmStackPointer+8);
if (!BuildStackFrame(3, &VdmStackPointer, &NewSP)) {
#if DBG
OutputDebugString("NTVDM: Dpmi encountered a stack fault!\n");
#endif
DpmiFaultHandler(STACK_FAULT, 0);
return;
}
//
// SS has changed, so we need to check LDT again
//
if (SEGMENT_IS_BIG(getSS())) {
setESP(NewSP);
} else {
setSP((WORD)NewSP);
}
*(PDWORD16)(VdmStackPointer-4) = NewEFLAGS;
*(PDWORD16)(VdmStackPointer-8) = NewCS;
*(PDWORD16)(VdmStackPointer-12) = NewEIP;
}
setCS(HIWORD(DosxIretd));
setEIP((ULONG)LOWORD(DosxIretd));
#endif // _X86_
}
#ifndef _X86_
BOOL
DpmiFaultHandler(
ULONG IntNumber,
ULONG ErrorCode
)
/*++
Routine Description:
This routine is called by the emulator when an exception occurs.
Arguments:
IntNumber - exception number (0-1f)
ErrorCode - exception error code to be placed on the stack
Return Value:
TRUE if the interrupt was dispatched, FALSE otherwise
--*/
{
DECLARE_LocalVdmContext;
PVDM_FAULTHANDLER Handlers = DpmiFaultHandlers;
PUCHAR VdmStackPointer;
ULONG SaveSS, SaveESP, SaveEFLAGS, SaveCS, SaveEIP;
ULONG StackOffset;
ULONG NewSP;
DBGTRACE(VDMTR_TYPE_DPMI | DPMI_FAULT, (USHORT)IntNumber, ErrorCode);
if ((IntNumber == 1) &&
(*(ULONG *)(IntelBase+FIXED_NTVDMSTATE_LINEAR) & VDM_BREAK_DEBUGGER) &&
DbgTraceInt()) {
return TRUE;
}
if (DbgFault(IntNumber)) { // try the debugger
//
// exception handled via user input
//
return TRUE;
}
if (!(getMSW() & MSW_PE)) {
EmulateV86Int((UCHAR)IntNumber);
return TRUE;
}
SaveSS = getSS();
SaveESP = getESP();
SaveEFLAGS = getEFLAGS();
SaveEIP = getEIP();
SaveCS = getCS();
setEFLAGS(SaveEFLAGS & ~(EFLAGS_IF_MASK | EFLAGS_TF_MASK));
if ((IntNumber == 13) || (IntNumber == 6)) {
if (DpmiEmulateInstruction()) {
return TRUE;
}
}
if (!SEGMENT_IS_PRESENT(Handlers[IntNumber].CsSelector)) {
return FALSE;
}
//
// switch stacks
//
BeginUseLockedPMStack();
//
// Win31 has an undocumented feature of creating a 32byte area on the
// stack. Krnl386 sticks stuff in there, so we emulate the behavior here.
//
setESP(getESP()-0x20);
//
// allocate space on new stack
//
if (!BuildStackFrame(8, &VdmStackPointer, &NewSP)) {
//BUGBUG Check for double fault
EndUseLockedPMStack();
return FALSE;
}
if (Frame32) {
*(PDWORD16)(VdmStackPointer-4) = SaveSS;
*(PDWORD16)(VdmStackPointer-8) = SaveESP;
*(PDWORD16)(VdmStackPointer-12) = SaveEFLAGS;
*(PDWORD16)(VdmStackPointer-16) = SaveCS;
*(PDWORD16)(VdmStackPointer-20) = SaveEIP;
*(PDWORD16)(VdmStackPointer-24) = ErrorCode;
*(PDWORD16)(VdmStackPointer-28) = (ULONG) HIWORD(DosxFaultHandlerIretd);
*(PDWORD16)(VdmStackPointer-32) = (ULONG) LOWORD(DosxFaultHandlerIretd);
setEIP(Handlers[IntNumber].Eip);
setESP(NewSP);
} else {
*(PWORD16)(VdmStackPointer-2) = (WORD) SaveSS;
*(PWORD16)(VdmStackPointer-4) = (WORD) SaveESP;
*(PWORD16)(VdmStackPointer-6) = (WORD) SaveEFLAGS;
*(PWORD16)(VdmStackPointer-8) = (WORD) SaveCS;
*(PWORD16)(VdmStackPointer-10) = (WORD) SaveEIP;
*(PWORD16)(VdmStackPointer-12) = (WORD) ErrorCode;
*(PDWORD16)(VdmStackPointer-16) = DosxFaultHandlerIret;
setEIP(LOWORD(Handlers[IntNumber].Eip));
setSP((WORD)NewSP);
}
setCS(Handlers[IntNumber].CsSelector);
#if DBG
if (Handlers[IntNumber].CsSelector != getCS()) {
char szFormat[] = "NTVDM Dpmi Error! Can't set CS to %.4X\n";
char szMsg[sizeof(szFormat)+30];
wsprintf(szMsg, szFormat, Handlers[IntNumber].CsSelector);
OutputDebugString(szMsg);
}
#endif
DBGTRACE(VDMTR_TYPE_DPMI | DPMI_DISPATCH_FAULT, (USHORT)IntNumber, 0);
return TRUE;
}
#endif // _X86_
VOID
DpmiFaultHandlerIret16(
VOID
)
/*++
Routine Description:
This routine is an IRET hook called via a BOP in dosx. It is called
at the end of the execution of a 16-bit fault handler.
--*/
{
DECLARE_LocalVdmContext;
PUCHAR VdmStackPointer;
USHORT SegSs;
SegSs = getSS();
VdmStackPointer = Sim32GetVDMPointer(SegSs<<16, 1, TRUE);
if (SEGMENT_IS_BIG(SegSs)) {
VdmStackPointer += getESP();
} else {
VdmStackPointer += getSP();
}
EndUseLockedPMStack();
setEIP((DWORD)*(PWORD16)(VdmStackPointer+2));
setCS(*(PWORD16)(VdmStackPointer+4));
setSTATUS(*(PWORD16)(VdmStackPointer+6));
setSP(*(PWORD16)(VdmStackPointer+8));
setSS(*(PWORD16)(VdmStackPointer+10));
}
VOID
DpmiFaultHandlerIret32(
VOID
)
/*++
Routine Description:
This routine is an IRET hook called via a BOP in dosx. It is called
at the end of the execution of a 32-bit fault handler.
--*/
{
DECLARE_LocalVdmContext;
PUCHAR VdmStackPointer;
USHORT SegSs;
SegSs = getSS();
VdmStackPointer = Sim32GetVDMPointer(SegSs<<16, 1, TRUE);
if (SEGMENT_IS_BIG(SegSs)) {
VdmStackPointer += getESP();
} else {
VdmStackPointer += getSP();
}
EndUseLockedPMStack();
setEIP(*(PDWORD16)(VdmStackPointer+4));
setCS((USHORT)*(PDWORD16)(VdmStackPointer+8));
setEFLAGS(*(PDWORD16)(VdmStackPointer+12));
setESP(*(PDWORD16)(VdmStackPointer+16));
setSS((USHORT)*(PWORD16)(VdmStackPointer+20));
}
VOID
DpmiHungAppIretAndExit(
VOID
)
/*++
Routine Description:
This routine is called via BOP during hung app processing. The
Keyboard driver calls this in the context of a hw interrupt in
order to terminate the app. We need to "unwind" the current
interrupt, and transfer control to code which will execute
a DOS exit.
--*/
{
DECLARE_LocalVdmContext;
EndUseLockedPMStack();
setCS(HIWORD(DosxHungAppExit));
setIP(LOWORD(DosxHungAppExit));
}
BOOL
DispatchPMInt(
UCHAR IntNumber
)
/*++
Routine Description:
This routine is called at the end of a PM int chain. It is provided
for compatibility to win31/win95. On win31/win95, VMM and VxD's have
the opportunity to perform some functionality at the point where
the dpmi host is about to switch the machine to v86 mode to continue
the interrupt chain. Sometimes, the function is totally handled by
a hook at this point.
This routine provides a framework for this mechanism to allow the
emulation of this behavior.
Arguments:
IntNumber - the interrupt# that is about to be reflected to v86 mode
Return Value:
TRUE if the interrupt was handled and control can return to the app
FALSE otherwise, continue the reflection to v86 mode.
--*/
{
BOOL bHandled;
switch(IntNumber) {
case 0x2f:
bHandled = PMInt2fHandler();
break;
default:
bHandled = FALSE;
}
if (bHandled) {
SimulateIret(RESTORE_FLAGS);
}
return bHandled;
}
BOOL
CheckEIP(
ULONG Increment
)
/*++
Routine Description:
This routine does a limit check on EIP.
Arguments:
None
Return Value:
TRUE if EIP is ok, FALSE otherwise
--*/
{
//BUGBUG NEED TO RETURN FALSE HERE IF EIP WOULD BE OFF THE END OF SEGMENT
return TRUE;
}
#ifndef _X86_
BOOL
DpmiEmulateInstruction(
VOID
)
/*++
Routine Description:
This routine checks to see if the instruction which caused the
fault really needs to be emulated. For example, the MS C compiler (v7.00)
uses instructions to manipulate the FP flags in CR0. The compiler
expects them to just work as they do on win31, which also emulates them.
Arguments:
None
Return Value:
TRUE if the instruction was emulated, FALSE otherwise
--*/
{
DECLARE_LocalVdmContext;
PUCHAR pCode;
UCHAR Opcode;
ULONG SegCS;
BOOL bReturn = FALSE;
SegCS = getCS();
pCode = Sim32GetVDMPointer(SegCS<<16, 1, TRUE);
if (Ldt[(SegCS & ~0x7)/sizeof(LDT_ENTRY)].HighWord.Bits.Default_Big) {
pCode += getEIP();
} else {
pCode += getIP();
}
Opcode = *pCode++;
switch (Opcode) {
case 0xf:
if (!CheckEIP(1)) {
break;
}
bReturn = DpmiOp0f(pCode);
break;
case 0x8e:
//
// This is WIN31 compatibility. If we are trying to dispatch
// the client, and we get a fault loading the segment registers,
// then zero them out.
// BUGBUG currently only looking for FS, GS
//
if (!CheckEIP(2)) {
break;
}
//
// Look for code in dxutil.asm EnterProtectedMode
//
if ((SegCS == DosxRmCodeSelector) &&
((*pCode == 0xe0) || // mov fs, ax
(*pCode == 0xe8)) // mov gs, ax
) {
setEIP(getEIP()+2);
bReturn = TRUE;
}
break;
}
DBGTRACE(VDMTR_TYPE_DPMI | DPMI_OP_EMULATION, Opcode, (ULONG) bReturn);
return bReturn;
}
#define MI_GET_CRx_OPCODE 0x20
#define MI_SET_CRx_OPCODE 0x22
#define MI_MODMASK 0xC0
#define MI_MODMOVSPEC 0xC0
#define MI_REGMASK 0x38
#define MI_RMMASK 0x7
BOOL
DpmiOp0f(
PUCHAR pCode
)
/*++
Routine Description:
This routine emulates instructions that have 0x0F as the first byte.
Arguments:
None
Return Value:
TRUE if the instruction was emulated, FALSE otherwise
--*/
{
DECLARE_LocalVdmContext;
ULONG Value;
switch (*pCode++) {
case MI_GET_CRx_OPCODE:
if (!CheckEIP(2)) {
break;
}
if ((*pCode & MI_MODMASK) != MI_MODMOVSPEC) {
break;
}
if (*pCode & MI_REGMASK) {
Value = 0; // not CR0
} else {
Value = getCR0();
}
SetRegisterByIndex[*pCode & MI_RMMASK](Value);
setEIP(getEIP()+3);
return TRUE;
case MI_SET_CRx_OPCODE:
if (!CheckEIP(2)) {
break;
}
if ((*pCode & MI_MODMASK) != MI_MODMOVSPEC) {
break;
}
if (*pCode & MI_REGMASK) {
break; // not CR0
}
setCR0(GetRegisterByIndex[*pCode & MI_RMMASK]());
setEIP(getEIP()+3);
return TRUE;
}
return FALSE;
}
#endif