Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1284 lines
38 KiB

/*++
Copyright (c) 1990 Microsoft Corporation
Module Name:
vdmdbg.c
Abstract:
This module contains the debugging support needed to debug
16-bit VDM applications
Author:
Bob Day (bobday) 16-Sep-1992 Wrote it
Revision History:
Neil Sandlin (neilsa) 1-Mar-1997 Enhanced it
--*/
#include <precomp.h>
#pragma hdrstop
WORD LastEventFlags;
DWORD gdwShareWOW; // just to make include of sharewow.h happy
//----------------------------------------------------------------------------
// VDMGetThreadSelectorEntry()
//
// Public interface to the InternalGetThreadSelectorEntry, needed because
// that routine requires the process handle.
//
//----------------------------------------------------------------------------
BOOL
WINAPI
VDMGetThreadSelectorEntry(
HANDLE hProcess,
HANDLE hUnused,
WORD wSelector,
LPVDMLDT_ENTRY lpSelectorEntry
) {
BOOL fResult;
UNREFERENCED_PARAMETER(hUnused);
fResult = InternalGetThreadSelectorEntry(
hProcess,
wSelector,
lpSelectorEntry );
return( fResult );
}
//----------------------------------------------------------------------------
// VDMGetPointer()
//
// Public interface to the InternalGetPointer, needed because that
// routine requires the process handle.
//
//----------------------------------------------------------------------------
ULONG
WINAPI
VDMGetPointer(
HANDLE hProcess,
HANDLE hUnused,
WORD wSelector,
DWORD dwOffset,
BOOL fProtMode
) {
ULONG ulResult;
UNREFERENCED_PARAMETER(hUnused);
ulResult = InternalGetPointer(
hProcess,
wSelector,
dwOffset,
fProtMode );
return( ulResult );
}
//
// Obselete functions
//
BOOL
WINAPI
VDMGetThreadContext(
LPDEBUG_EVENT lpDebugEvent,
LPVDMCONTEXT lpVDMContext)
{
HANDLE hProcess;
BOOL bReturn;
hProcess = OpenProcess( PROCESS_VM_READ, FALSE, lpDebugEvent->dwProcessId );
bReturn = VDMGetContext(hProcess, NULL, lpVDMContext);
CloseHandle( hProcess );
return bReturn;
}
BOOL WINAPI VDMSetThreadContext(
LPDEBUG_EVENT lpDebugEvent,
LPVDMCONTEXT lpVDMContext)
{
HANDLE hProcess;
BOOL bReturn;
hProcess = OpenProcess( PROCESS_VM_READ, FALSE, lpDebugEvent->dwProcessId );
bReturn = VDMSetContext(hProcess, NULL, lpVDMContext);
CloseHandle( hProcess );
return bReturn;
}
//----------------------------------------------------------------------------
// VDMGetContext()
//
// Interface to get the simulated context. The same functionality as
// GetThreadContext except that it happens on the simulated 16-bit context,
// rather than the 32-bit context.
//
//----------------------------------------------------------------------------
BOOL
WINAPI
VDMGetContext(
HANDLE hProcess,
HANDLE hThread,
LPVDMCONTEXT lpVDMContext
) {
VDMCONTEXT vcContext;
BOOL b;
DWORD lpNumberOfBytesRead;
int i;
BOOL bUseVDMContext = TRUE;
#ifdef _X86_
if (hThread) {
vcContext.ContextFlags = lpVDMContext->ContextFlags;
if (!GetThreadContext(hThread, (CONTEXT*)&vcContext)) {
return FALSE;
}
if ((vcContext.EFlags & V86FLAGS_V86) || (vcContext.SegCs != 0x1b)) {
bUseVDMContext = FALSE;
}
}
#endif
if (bUseVDMContext) {
b = ReadProcessMemory(hProcess,
lpVdmContext,
&vcContext,
sizeof(vcContext),
&lpNumberOfBytesRead
);
if ( !b || lpNumberOfBytesRead != sizeof(vcContext) ) {
return( FALSE );
}
}
#ifdef _X86_
if ((lpVDMContext->ContextFlags & VDMCONTEXT_CONTROL) == VDMCONTEXT_CONTROL) {
//
// Set registers ebp, eip, cs, eflag, esp and ss.
//
lpVDMContext->Ebp = vcContext.Ebp;
lpVDMContext->Eip = vcContext.Eip;
lpVDMContext->SegCs = vcContext.SegCs;
lpVDMContext->EFlags = vcContext.EFlags;
lpVDMContext->SegSs = vcContext.SegSs;
lpVDMContext->Esp = vcContext.Esp;
}
//
// Set segment register contents if specified.
//
if ((lpVDMContext->ContextFlags & VDMCONTEXT_SEGMENTS) == VDMCONTEXT_SEGMENTS) {
//
// Set segment registers gs, fs, es, ds.
//
// These values are junk most of the time, but useful
// for debugging under certain conditions. Therefore,
// we report whatever was in the frame.
//
lpVDMContext->SegGs = vcContext.SegGs;
lpVDMContext->SegFs = vcContext.SegFs;
lpVDMContext->SegEs = vcContext.SegEs;
lpVDMContext->SegDs = vcContext.SegDs;
}
//
// Set integer register contents if specified.
//
if ((lpVDMContext->ContextFlags & VDMCONTEXT_INTEGER) == VDMCONTEXT_INTEGER) {
//
// Set integer registers edi, esi, ebx, edx, ecx, eax
//
lpVDMContext->Edi = vcContext.Edi;
lpVDMContext->Esi = vcContext.Esi;
lpVDMContext->Ebx = vcContext.Ebx;
lpVDMContext->Ecx = vcContext.Ecx;
lpVDMContext->Edx = vcContext.Edx;
lpVDMContext->Eax = vcContext.Eax;
}
//
// Fetch floating register contents if requested, and type of target
// is user. (system frames have no fp state, so ignore request)
//
if ( (lpVDMContext->ContextFlags & VDMCONTEXT_FLOATING_POINT) ==
VDMCONTEXT_FLOATING_POINT ) {
lpVDMContext->FloatSave.ControlWord = vcContext.FloatSave.ControlWord;
lpVDMContext->FloatSave.StatusWord = vcContext.FloatSave.StatusWord;
lpVDMContext->FloatSave.TagWord = vcContext.FloatSave.TagWord;
lpVDMContext->FloatSave.ErrorOffset = vcContext.FloatSave.ErrorOffset;
lpVDMContext->FloatSave.ErrorSelector = vcContext.FloatSave.ErrorSelector;
lpVDMContext->FloatSave.DataOffset = vcContext.FloatSave.DataOffset;
lpVDMContext->FloatSave.DataSelector = vcContext.FloatSave.DataSelector;
lpVDMContext->FloatSave.Cr0NpxState = vcContext.FloatSave.Cr0NpxState;
for (i = 0; i < SIZE_OF_80387_REGISTERS; i++) {
lpVDMContext->FloatSave.RegisterArea[i] = vcContext.FloatSave.RegisterArea[i];
}
}
//
// Fetch Dr register contents if requested. Values may be trash.
//
if ((lpVDMContext->ContextFlags & VDMCONTEXT_DEBUG_REGISTERS) ==
VDMCONTEXT_DEBUG_REGISTERS) {
lpVDMContext->Dr0 = vcContext.Dr0;
lpVDMContext->Dr1 = vcContext.Dr1;
lpVDMContext->Dr2 = vcContext.Dr2;
lpVDMContext->Dr3 = vcContext.Dr3;
lpVDMContext->Dr6 = vcContext.Dr6;
lpVDMContext->Dr7 = vcContext.Dr7;
}
#else
{
NT_CPU_INFO nt_cpu_info;
BOOL bInNano;
ULONG UMask;
b = ReadProcessMemory(hProcess,
lpNtCpuInfo,
&nt_cpu_info,
sizeof(NT_CPU_INFO),
&lpNumberOfBytesRead
);
if ( !b || lpNumberOfBytesRead != sizeof(NT_CPU_INFO) ) {
return( FALSE );
}
bInNano = ReadDword(hProcess, nt_cpu_info.in_nano_cpu);
UMask = ReadDword(hProcess, nt_cpu_info.universe);
lpVDMContext->Eax = GetRegValue(hProcess, nt_cpu_info.eax, bInNano, UMask);
lpVDMContext->Ecx = GetRegValue(hProcess, nt_cpu_info.ecx, bInNano, UMask);
lpVDMContext->Edx = GetRegValue(hProcess, nt_cpu_info.edx, bInNano, UMask);
lpVDMContext->Ebx = GetRegValue(hProcess, nt_cpu_info.ebx, bInNano, UMask);
lpVDMContext->Ebp = GetRegValue(hProcess, nt_cpu_info.ebp, bInNano, UMask);
lpVDMContext->Esi = GetRegValue(hProcess, nt_cpu_info.esi, bInNano, UMask);
lpVDMContext->Edi = GetRegValue(hProcess, nt_cpu_info.edi, bInNano, UMask);
lpVDMContext->Esp = GetEspValue(hProcess, nt_cpu_info, bInNano);
//
// nt_cpu_info.flags isn't very much use, because several of the
// flags values are not kept in memory, but computed each time.
// The emulator doesn't supply us with the right value, so we
// try to get it from the code in ntvdmd.dll
//
lpVDMContext->EFlags = vcContext.EFlags;
//
// On risc platforms, we don't run in V86 mode, we run in REAL mode.
// So the widespread usage of testing the V86 mode bit in EFLAGS
// would not correctly determine the address mode. Since there is
// no more room in the VDM context structure, the simplest thing
// to do is simply pretend to be in V86 mode when we are in REAL mode.
//
if (ReadDword(hProcess, nt_cpu_info.cr0) & 1) {
lpVDMContext->EFlags |= V86FLAGS_V86;
}
lpVDMContext->Eip = ReadDword(hProcess, nt_cpu_info.eip);
lpVDMContext->SegEs = ReadWord(hProcess, nt_cpu_info.es);
lpVDMContext->SegCs = ReadWord(hProcess, nt_cpu_info.cs);
lpVDMContext->SegSs = ReadWord(hProcess, nt_cpu_info.ss);
lpVDMContext->SegDs = ReadWord(hProcess, nt_cpu_info.ds);
lpVDMContext->SegFs = ReadWord(hProcess, nt_cpu_info.fs);
lpVDMContext->SegGs = ReadWord(hProcess, nt_cpu_info.gs);
}
#endif
return( TRUE );
}
//----------------------------------------------------------------------------
// VDMSetContext()
//
// Interface to set the simulated context. Similar in most respects to
// the SetThreadContext API supported by Win NT. Only differences are
// in the bits which must be "sanitized".
//
//----------------------------------------------------------------------------
BOOL
WINAPI
VDMSetContext(
HANDLE hProcess,
HANDLE hThread,
LPVDMCONTEXT lpVDMContext
) {
VDMINTERNALINFO viInfo;
VDMCONTEXT vcContext;
BOOL b;
DWORD lpNumberOfBytes;
INT i;
BOOL bUseVDMContext = TRUE;
#ifdef _X86_
if (hThread) {
if (!GetThreadContext(hThread, (CONTEXT*)&vcContext)) {
return FALSE;
}
if ((vcContext.EFlags & V86FLAGS_V86) || (vcContext.SegCs != 0x1b)) {
bUseVDMContext = FALSE;
}
}
#endif
if (bUseVDMContext) {
b = ReadProcessMemory(hProcess,
lpVdmContext,
&vcContext,
sizeof(vcContext),
&lpNumberOfBytes
);
if ( !b || lpNumberOfBytes != sizeof(vcContext) ) {
return( FALSE );
}
}
if ((lpVDMContext->ContextFlags & VDMCONTEXT_CONTROL) == VDMCONTEXT_CONTROL) {
//
// Set registers ebp, eip, cs, eflag, esp and ss.
//
vcContext.Ebp = lpVDMContext->Ebp;
vcContext.Eip = lpVDMContext->Eip;
//
// Don't allow them to modify the mode bit.
//
// Only allow these bits to get set: 01100000110111110111
// V86FLAGS_CARRY 0x00001
// V86FLAGS_? 0x00002
// V86FLAGS_PARITY 0x00004
// V86FLAGS_AUXCARRY 0x00010
// V86FLAGS_ZERO 0x00040
// V86FLAGS_SIGN 0x00080
// V86FLAGS_TRACE 0x00100
// V86FLAGS_INTERRUPT 0x00200
// V86FLAGS_DIRECTION 0x00400
// V86FLAGS_OVERFLOW 0x00800
// V86FLAGS_RESUME 0x10000
// V86FLAGS_VM86 0x20000
// V86FLAGS_ALIGNMENT 0x40000
//
// Commonly flags will be 0x10246
//
if ( vcContext.EFlags & V86FLAGS_V86 ) {
vcContext.EFlags = V86FLAGS_V86 | (lpVDMContext->EFlags &
( V86FLAGS_CARRY
| 0x0002
| V86FLAGS_PARITY
| V86FLAGS_AUXCARRY
| V86FLAGS_ZERO
| V86FLAGS_SIGN
| V86FLAGS_TRACE
| V86FLAGS_INTERRUPT
| V86FLAGS_DIRECTION
| V86FLAGS_OVERFLOW
| V86FLAGS_RESUME
| V86FLAGS_ALIGNMENT
| V86FLAGS_IOPL
));
} else {
vcContext.EFlags = ~V86FLAGS_V86 & (lpVDMContext->EFlags &
( V86FLAGS_CARRY
| 0x0002
| V86FLAGS_PARITY
| V86FLAGS_AUXCARRY
| V86FLAGS_ZERO
| V86FLAGS_SIGN
| V86FLAGS_TRACE
| V86FLAGS_INTERRUPT
| V86FLAGS_DIRECTION
| V86FLAGS_OVERFLOW
| V86FLAGS_RESUME
| V86FLAGS_ALIGNMENT
| V86FLAGS_IOPL
));
}
//
// CS might only be allowable as a ring 3 selector.
//
if ( vcContext.EFlags & V86FLAGS_V86 ) {
vcContext.SegCs = lpVDMContext->SegCs;
} else {
#ifdef i386
vcContext.SegCs = lpVDMContext->SegCs | 0x0003;
#else
vcContext.SegCs = lpVDMContext->SegCs;
#endif
}
vcContext.SegSs = lpVDMContext->SegSs;
vcContext.Esp = lpVDMContext->Esp;
}
//
// Set segment register contents if specified.
//
if ((lpVDMContext->ContextFlags & VDMCONTEXT_SEGMENTS) == VDMCONTEXT_SEGMENTS) {
//
// Set segment registers gs, fs, es, ds.
//
vcContext.SegGs = lpVDMContext->SegGs;
vcContext.SegFs = lpVDMContext->SegFs;
vcContext.SegEs = lpVDMContext->SegEs;
vcContext.SegDs = lpVDMContext->SegDs;
}
//
// Set integer register contents if specified.
//
if ((lpVDMContext->ContextFlags & VDMCONTEXT_INTEGER) == VDMCONTEXT_INTEGER) {
//
// Set integer registers edi, esi, ebx, edx, ecx, eax
//
vcContext.Edi = lpVDMContext->Edi;
vcContext.Esi = lpVDMContext->Esi;
vcContext.Ebx = lpVDMContext->Ebx;
vcContext.Ecx = lpVDMContext->Ecx;
vcContext.Edx = lpVDMContext->Edx;
vcContext.Eax = lpVDMContext->Eax;
}
//
// Fetch floating register contents if requested, and type of target
// is user.
//
if ( (lpVDMContext->ContextFlags & VDMCONTEXT_FLOATING_POINT) ==
VDMCONTEXT_FLOATING_POINT ) {
vcContext.FloatSave.ControlWord = lpVDMContext->FloatSave.ControlWord;
vcContext.FloatSave.StatusWord = lpVDMContext->FloatSave.StatusWord;
vcContext.FloatSave.TagWord = lpVDMContext->FloatSave.TagWord;
vcContext.FloatSave.ErrorOffset = lpVDMContext->FloatSave.ErrorOffset;
vcContext.FloatSave.ErrorSelector = lpVDMContext->FloatSave.ErrorSelector;
vcContext.FloatSave.DataOffset = lpVDMContext->FloatSave.DataOffset;
vcContext.FloatSave.DataSelector = lpVDMContext->FloatSave.DataSelector;
vcContext.FloatSave.Cr0NpxState = lpVDMContext->FloatSave.Cr0NpxState;
for (i = 0; i < SIZE_OF_80387_REGISTERS; i++) {
vcContext.FloatSave.RegisterArea[i] = lpVDMContext->FloatSave.RegisterArea[i];
}
}
//
// Fetch Dr register contents if requested. Values may be trash.
//
if ((lpVDMContext->ContextFlags & VDMCONTEXT_DEBUG_REGISTERS) ==
VDMCONTEXT_DEBUG_REGISTERS) {
vcContext.Dr0 = lpVDMContext->Dr0;
vcContext.Dr1 = lpVDMContext->Dr1;
vcContext.Dr2 = lpVDMContext->Dr2;
vcContext.Dr3 = lpVDMContext->Dr3;
vcContext.Dr6 = lpVDMContext->Dr6;
vcContext.Dr7 = lpVDMContext->Dr7;
}
#ifdef _X86_
if (!bUseVDMContext) {
if (!SetThreadContext(hThread, (CONTEXT*)&vcContext)) {
return FALSE;
}
}
#endif
b = WriteProcessMemory(
hProcess,
lpVdmContext,
&vcContext,
sizeof(vcContext),
&lpNumberOfBytes
);
if ( !b || lpNumberOfBytes != sizeof(vcContext) ) {
return( FALSE );
}
return( TRUE );
}
//----------------------------------------------------------------------------
// VDMBreakThread()
//
// Interface to interrupt a thread while it is running without any break-
// points. An ideal debugger would have this feature. Since it is hard
// to implement, we will be doing it later.
//
//----------------------------------------------------------------------------
BOOL
WINAPI
VDMBreakThread(
HANDLE hProcess,
HANDLE hThread
) {
return( FALSE );
}
//----------------------------------------------------------------------------
// VDMProcessException()
//
// This function acts as a filter of debug events. Most debug events
// should be ignored by the debugger (because they don't have the context
// record pointer or the internal info structure setup. Those events
// cause this function to return FALSE, which tells the debugger to just
// blindly continue the exception. When the function does return TRUE,
// the debugger should look at the exception code to determine what to
// do (and all the the structures have been set up properly to deal with
// calls to the other APIs).
//
//----------------------------------------------------------------------------
BOOL
WINAPI
VDMProcessException(
LPDEBUG_EVENT lpDebugEvent
) {
LPDWORD lpdw;
int mode;
BOOL fResult = TRUE;
lpdw = &(lpDebugEvent->u.Exception.ExceptionRecord.ExceptionInformation[0]);
mode = LOWORD(lpdw[0]);
LastEventFlags = HIWORD(lpdw[0]);
switch( mode ) {
case DBG_SEGLOAD:
case DBG_SEGMOVE:
case DBG_SEGFREE:
case DBG_MODLOAD:
case DBG_MODFREE:
ProcessSegmentNotification(lpDebugEvent);
fResult = FALSE;
break;
case DBG_BREAK:
ProcessBPNotification(lpDebugEvent);
break;
}
ProcessInitNotification(lpDebugEvent);
return( fResult );
}
//----------------------------------------------------------------------------
// VDMGetSelectorModule()
//
// Interface to determine the module and segment associated with a given
// selector. This is useful during debugging to associate symbols with
// code and data segments. The symbol lookup should be done by the
// debugger, given the module and segment number.
//
// This code was adapted from the Win 3.1 ToolHelp DLL
//
//----------------------------------------------------------------------------
BOOL
WINAPI
VDMGetSelectorModule(
HANDLE hProcess,
HANDLE hUnused,
WORD wSelector,
PUINT lpSegmentNumber,
LPSTR lpModuleName,
UINT nNameSize,
LPSTR lpModulePath,
UINT nPathSize
) {
BOOL b;
DWORD lpNumberOfBytes;
BOOL fResult;
DWORD lphMaster;
DWORD lphMasterLen;
DWORD lphMasterStart;
DWORD lpOwner;
DWORD lpThisModuleResTab;
DWORD lpThisModuleName;
DWORD lpPath;
DWORD lpThisModulecSeg;
DWORD lpThisModuleSegTab;
DWORD lpThisSegHandle;
WORD wMaster;
WORD wMasterLen;
DWORD dwMasterStart;
DWORD dwArenaOffset;
WORD wArenaSlot;
DWORD lpArena;
WORD wModHandle;
WORD wResTab;
UCHAR cLength;
WORD wPathOffset;
UCHAR cPath;
WORD cSeg;
WORD iSeg;
WORD wSegTab;
WORD wHandle;
// CHAR chName[MAX_MODULE_NAME_LENGTH];
// CHAR chPath[MAX_MODULE_PATH_LENGTH];
UNREFERENCED_PARAMETER(hUnused);
if ( lpModuleName != NULL ) *lpModuleName = '\0';
if ( lpModulePath != NULL ) *lpModulePath = '\0';
if ( lpSegmentNumber != NULL ) *lpSegmentNumber = 0;
fResult = FALSE;
#if 0
if ( wKernelSeg == 0 ) {
return( FALSE );
}
// Read out the master heap selector
lphMaster = InternalGetPointer(
hProcess,
wKernelSeg,
dwOffsetTHHOOK + TOOL_HMASTER, // To hGlobalHeap
TRUE );
if ( lphMaster == (DWORD)NULL ) goto punt;
b = ReadProcessMemory(
hProcess,
(LPVOID)lphMaster,
&wMaster,
sizeof(wMaster),
&lpNumberOfBytes
);
if ( !b || lpNumberOfBytes != sizeof(wMaster) ) goto punt;
wMaster |= 1; // Convert to selector
// Read out the master heap selector length
lphMasterLen = InternalGetPointer(
hProcess,
wKernelSeg,
dwOffsetTHHOOK + TOOL_HMASTLEN, // To SelTableLen
TRUE );
if ( lphMasterLen == (DWORD)NULL ) goto punt;
b = ReadProcessMemory(
hProcess,
(LPVOID)lphMasterLen,
&wMasterLen,
sizeof(wMasterLen),
&lpNumberOfBytes
);
if ( !b || lpNumberOfBytes != sizeof(wMasterLen) ) goto punt;
// Read out the master heap selector start
lphMasterStart = InternalGetPointer(
hProcess,
wKernelSeg,
dwOffsetTHHOOK + TOOL_HMASTSTART, // To SelTableStart
TRUE );
if ( lphMasterStart == (DWORD)NULL ) goto punt;
b = ReadProcessMemory(
hProcess,
(LPVOID)lphMasterStart,
&dwMasterStart,
sizeof(dwMasterStart),
&lpNumberOfBytes
);
if ( !b || lpNumberOfBytes != sizeof(dwMasterStart) ) goto punt;
// Now make sure the selector provided is in the right range
if ( fKernel386 ) {
// 386 kernel?
wArenaSlot = (WORD)(wSelector & 0xFFF8); // Mask low 3 bits
wArenaSlot = wArenaSlot >> 1; // Sel/8*4
if ( (WORD)wArenaSlot > wMasterLen ) goto punt; // Out of range
wArenaSlot += (WORD)dwMasterStart;
// Ok, Now read out the area header offset
dwArenaOffset = (DWORD)0; // Default to 0
lpArena = InternalGetPointer(
hProcess,
wMaster,
wArenaSlot,
TRUE );
if ( lpArena == (DWORD)NULL ) goto punt;
// 386 Kernel?
b = ReadProcessMemory(
hProcess,
(LPVOID)lpArena,
&dwArenaOffset,
sizeof(dwArenaOffset),
&lpNumberOfBytes
);
if ( !b || lpNumberOfBytes != sizeof(dwArenaOffset) ) goto punt;
// Read out the owner member
lpOwner = InternalGetPointer(
hProcess,
wMaster,
dwArenaOffset+GA_OWNER386,
TRUE );
if ( lpOwner == (DWORD)NULL ) goto punt;
} else {
lpOwner = InternalGetPointer(
hProcess,
wSelector,
0,
TRUE );
if ( lpOwner == (DWORD)NULL ) goto punt;
lpOwner -= GA_SIZE;
lpOwner += GA_OWNER;
}
b = ReadProcessMemory(
hProcess,
(LPVOID)lpOwner,
&wModHandle,
sizeof(wModHandle),
&lpNumberOfBytes
);
if ( !b || lpNumberOfBytes != sizeof(wModHandle) ) goto punt;
// Now read out the owners module name
// Name is the first name in the resident names table
lpThisModuleResTab = InternalGetPointer(
hProcess,
wModHandle,
NE_RESTAB,
TRUE );
if ( lpThisModuleResTab == (DWORD)NULL ) goto punt;
b = ReadProcessMemory(
hProcess,
(LPVOID)lpThisModuleResTab,
&wResTab,
sizeof(wResTab),
&lpNumberOfBytes
);
if ( !b || lpNumberOfBytes != sizeof(wResTab) ) goto punt;
// Get the 1st byte of the resident names table (1st byte of module name)
lpThisModuleName = InternalGetPointer(
hProcess,
wModHandle,
wResTab,
TRUE );
if ( lpThisModuleName == (DWORD)NULL ) goto punt;
// PASCAL string (1st byte is length), read the byte.
b = ReadProcessMemory(
hProcess,
(LPVOID)lpThisModuleName,
&cLength,
sizeof(cLength),
&lpNumberOfBytes
);
if ( !b || lpNumberOfBytes != sizeof(cLength) ) goto punt;
if ( cLength > MAX_MODULE_NAME_LENGTH ) goto punt;
// Now go read the text of the name
lpThisModuleName += 1;
b = ReadProcessMemory(
hProcess,
(LPVOID)lpThisModuleName,
&chName,
cLength,
&lpNumberOfBytes
);
if ( !b || lpNumberOfBytes != (DWORD)cLength ) goto punt;
chName[cLength] = '\0'; // Nul terminate it
// Grab out the path name too!
lpPath = InternalGetPointer(
hProcess,
wModHandle,
NE_PATHOFFSET,
TRUE );
if ( lpPath == (DWORD)NULL ) goto punt;
b = ReadProcessMemory(
hProcess,
(LPVOID)lpPath,
&wPathOffset,
sizeof(wPathOffset),
&lpNumberOfBytes
);
if ( !b || lpNumberOfBytes != sizeof(wPathOffset) ) goto punt;
// Get the 1st byte of the path name
lpThisModuleName = InternalGetPointer(
hProcess,
wModHandle,
wPathOffset,
TRUE );
if ( lpThisModuleName == (DWORD)NULL ) goto punt;
// PASCAL string (1st byte is length), read the byte.
b = ReadProcessMemory(
hProcess,
(LPVOID)lpThisModuleName,
&cPath,
sizeof(cPath),
&lpNumberOfBytes
);
if ( !b || lpNumberOfBytes != sizeof(cPath) ) goto punt;
if ( cPath > MAX_MODULE_NAME_LENGTH ) goto punt;
lpThisModuleName += 8; // 1st 8 characters are ignored
cPath -= 8;
// Now go read the text of the name
b = ReadProcessMemory(
hProcess,
(LPVOID)lpThisModuleName,
&chPath,
cPath,
&lpNumberOfBytes
);
if ( !b || lpNumberOfBytes != (DWORD)cPath ) goto punt;
chPath[cPath] = '\0'; // Nul terminate it
// Ok, we found the module we need, now grab the right selector for the
// segment number passed in.
lpThisModulecSeg = InternalGetPointer(
hProcess,
wModHandle,
NE_CSEG,
TRUE );
if ( lpThisModulecSeg == (DWORD)NULL ) goto punt;
b = ReadProcessMemory(
hProcess,
(LPVOID)lpThisModulecSeg,
&cSeg,
sizeof(cSeg),
&lpNumberOfBytes
);
if ( !b || lpNumberOfBytes != sizeof(cSeg) ) goto punt;
// Read the segment table pointer for this module
lpThisModuleSegTab = InternalGetPointer(
hProcess,
wModHandle,
NE_SEGTAB,
TRUE );
if ( lpThisModuleSegTab == (DWORD)NULL ) goto punt;
b = ReadProcessMemory(
hProcess,
(LPVOID)lpThisModuleSegTab,
&wSegTab,
sizeof(wSegTab),
&lpNumberOfBytes
);
if ( !b || lpNumberOfBytes != sizeof(wSegTab) ) goto punt;
// Loop through all of the segments for this module trying to find
// one with the right handle.
iSeg = 0;
wSelector &= 0xFFF8;
while ( iSeg < cSeg ) {
lpThisSegHandle = InternalGetPointer(
hProcess,
wModHandle,
wSegTab+iSeg*NEW_SEG1_SIZE+NS_HANDLE,
TRUE );
if ( lpThisSegHandle == (DWORD)NULL ) goto punt;
b = ReadProcessMemory(
hProcess,
(LPVOID)lpThisSegHandle,
&wHandle,
sizeof(wHandle),
&lpNumberOfBytes
);
if ( !b || lpNumberOfBytes != sizeof(wHandle) ) goto punt;
wHandle &= 0xFFF8;
if ( wHandle == (WORD)wSelector ) {
break;
}
iSeg++;
}
if ( iSeg >= cSeg ) goto punt; // Wasn't found at all!
if ( lpModuleName && strlen(chName)+1 > nNameSize ) goto punt;
if ( lpModulePath && strlen(chPath)+1 > nPathSize ) goto punt;
if ( lpModuleName != NULL ) strcpy( lpModuleName, chName );
if ( lpModulePath != NULL ) strcpy( lpModulePath, chPath );
if ( lpSegmentNumber != NULL ) *lpSegmentNumber = iSeg;
fResult = TRUE;
punt:
#endif
return( fResult );
}
//----------------------------------------------------------------------------
// VDMGetModuleSelector()
//
// Interface to determine the selector for a given module's segment.
// This is useful during debugging to associate code and data segments
// with symbols. The symbol lookup should be done by the debugger, to
// determine the module and segment number, which are then passed to us
// and we determine the current selector for that module's segment.
//
// Again, this code was adapted from the Win 3.1 ToolHelp DLL
//
//----------------------------------------------------------------------------
BOOL
WINAPI
VDMGetModuleSelector(
HANDLE hProcess,
HANDLE hUnused,
UINT uSegmentNumber,
LPSTR lpModuleName,
LPWORD lpSelector
) {
BOOL b;
DWORD lpNumberOfBytes;
BOOL fResult;
WORD wModHandle;
DWORD lpModuleHead;
DWORD lpThisModuleName;
DWORD lpThisModuleNext;
DWORD lpThisModuleResTab;
DWORD lpThisModulecSeg;
DWORD lpThisModuleSegTab;
DWORD lpThisSegHandle;
WORD wResTab;
UCHAR cLength;
WORD cSeg;
WORD wSegTab;
WORD wHandle;
// CHAR chName[MAX_MODULE_NAME_LENGTH];
UNREFERENCED_PARAMETER(hUnused);
*lpSelector = 0;
fResult = FALSE;
#if 0
if ( wKernelSeg == 0 ) {
return( FALSE );
}
lpModuleHead = InternalGetPointer(
hProcess,
wKernelSeg,
dwOffsetTHHOOK + TOOL_HMODFIRST,
TRUE );
if ( lpModuleHead == (DWORD)NULL ) goto punt;
// lpModuleHead is a pointer into kernels data segment. It points to the
// head of the module list (a chain of near pointers).
b = ReadProcessMemory(
hProcess,
(LPVOID)lpModuleHead,
&wModHandle,
sizeof(wModHandle),
&lpNumberOfBytes
);
if ( !b || lpNumberOfBytes != sizeof(wModHandle) ) goto punt;
while( wModHandle != (WORD)0 ) {
wModHandle |= 1;
// Name is the first name in the resident names table
lpThisModuleResTab = InternalGetPointer(
hProcess,
wModHandle,
NE_RESTAB,
TRUE );
if ( lpThisModuleResTab == (DWORD)NULL ) goto punt;
b = ReadProcessMemory(
hProcess,
(LPVOID)lpThisModuleResTab,
&wResTab,
sizeof(wResTab),
&lpNumberOfBytes
);
if ( !b || lpNumberOfBytes != sizeof(wResTab) ) goto punt;
// Get the 1st byte of the resident names table (1st byte of module name)
lpThisModuleName = InternalGetPointer(
hProcess,
wModHandle,
wResTab,
TRUE );
if ( lpThisModuleName == (DWORD)NULL ) goto punt;
// PASCAL string (1st byte is length), read the byte.
b = ReadProcessMemory(
hProcess,
(LPVOID)lpThisModuleName,
&cLength,
sizeof(cLength),
&lpNumberOfBytes
);
if ( !b || lpNumberOfBytes != sizeof(cLength) ) goto punt;
if ( cLength > MAX_MODULE_NAME_LENGTH ) goto punt;
lpThisModuleName += 1;
// Now go read the text of the name
b = ReadProcessMemory(
hProcess,
(LPVOID)lpThisModuleName,
&chName,
cLength,
&lpNumberOfBytes
);
if ( !b || lpNumberOfBytes != (DWORD)cLength ) goto punt;
chName[cLength] = '\0'; // Nul terminate it
if ( _stricmp(chName, lpModuleName) == 0 ) {
// Found the name which matches!
break;
}
// Move to the next module in the list.
lpThisModuleNext = InternalGetPointer(
hProcess,
wModHandle,
NE_CBENTTAB,
TRUE );
if ( lpThisModuleNext == (DWORD)NULL ) goto punt;
b = ReadProcessMemory(
hProcess,
(LPVOID)lpThisModuleNext,
&wModHandle,
sizeof(wModHandle),
&lpNumberOfBytes
);
if ( !b || lpNumberOfBytes != sizeof(wModHandle) ) goto punt;
}
if ( wModHandle == (WORD)0 ) {
goto punt;
}
// Ok, we found the module we need, now grab the right selector for the
// segment number passed in.
lpThisModulecSeg = InternalGetPointer(
hProcess,
wModHandle,
NE_CSEG,
TRUE );
if ( lpThisModulecSeg == (DWORD)NULL ) goto punt;
b = ReadProcessMemory(
hProcess,
(LPVOID)lpThisModulecSeg,
&cSeg,
sizeof(cSeg),
&lpNumberOfBytes
);
if ( !b || lpNumberOfBytes != sizeof(cSeg) ) goto punt;
if ( uSegmentNumber > (DWORD)cSeg ) goto punt;
// Read the segment table pointer for this module
lpThisModuleSegTab = InternalGetPointer(
hProcess,
wModHandle,
NE_SEGTAB,
TRUE );
if ( lpThisModuleSegTab == (DWORD)NULL ) goto punt;
b = ReadProcessMemory(
hProcess,
(LPVOID)lpThisModuleSegTab,
&wSegTab,
sizeof(wSegTab),
&lpNumberOfBytes
);
if ( !b || lpNumberOfBytes != sizeof(wSegTab) ) goto punt;
lpThisSegHandle = InternalGetPointer(
hProcess,
wModHandle,
wSegTab+(WORD)uSegmentNumber*NEW_SEG1_SIZE+NS_HANDLE,
TRUE );
if ( lpThisSegHandle == (DWORD)NULL ) goto punt;
b = ReadProcessMemory(
hProcess,
(LPVOID)lpThisSegHandle,
&wHandle,
sizeof(wHandle),
&lpNumberOfBytes
);
if ( !b || lpNumberOfBytes != sizeof(wHandle) ) goto punt;
*lpSelector = (WORD)(wHandle | 1);
fResult = TRUE;
punt:
#endif
return( fResult );
}
DWORD
WINAPI
VDMGetDbgFlags(
HANDLE hProcess
)
{
ULONG NtvdmState;
ULONG VdmDbgFlags;
BOOL b;
DWORD lpNumberOfBytes;
//
// Merge in the two places where our flags are kept
//
b = ReadProcessMemory(hProcess, lpNtvdmState, &NtvdmState,
sizeof(NtvdmState), &lpNumberOfBytes);
if ( !b || lpNumberOfBytes != sizeof(NtvdmState) ) {
return 0;
}
b = ReadProcessMemory(hProcess, lpVdmDbgFlags, &VdmDbgFlags,
sizeof(VdmDbgFlags), &lpNumberOfBytes);
if ( !b || lpNumberOfBytes != sizeof(VdmDbgFlags) ) {
return 0;
}
return ((NtvdmState & (VDMDBG_BREAK_EXCEPTIONS | VDMDBG_BREAK_DEBUGGER)) |
(VdmDbgFlags & ~(VDMDBG_BREAK_EXCEPTIONS | VDMDBG_BREAK_DEBUGGER)));
}
BOOL
WINAPI
VDMSetDbgFlags(
HANDLE hProcess,
DWORD VdmDbgFlags
)
{
ULONG NtvdmState;
BOOL b;
DWORD lpNumberOfBytes;
//
// The flags are spread out in two places, so split off the appropriate
// bits and write them separately.
//
b = ReadProcessMemory(hProcess, lpNtvdmState, &NtvdmState,
sizeof(NtvdmState), &lpNumberOfBytes);
if ( !b || lpNumberOfBytes != sizeof(NtvdmState) ) {
return FALSE;
}
NtvdmState &= ~(VDMDBG_BREAK_EXCEPTIONS | VDMDBG_BREAK_DEBUGGER);
NtvdmState |= VdmDbgFlags & (VDMDBG_BREAK_EXCEPTIONS | VDMDBG_BREAK_DEBUGGER);
b = WriteProcessMemory(hProcess, lpNtvdmState, &NtvdmState,
sizeof(NtvdmState), &lpNumberOfBytes);
if ( !b || lpNumberOfBytes != sizeof(NtvdmState) ) {
return FALSE;
}
VdmDbgFlags &= ~(VDMDBG_BREAK_EXCEPTIONS | VDMDBG_BREAK_DEBUGGER);
b = WriteProcessMemory(hProcess, lpVdmDbgFlags, &VdmDbgFlags,
sizeof(VdmDbgFlags), &lpNumberOfBytes);
if ( !b || lpNumberOfBytes != sizeof(VdmDbgFlags) ) {
return FALSE;
}
return TRUE;
}