Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

670 lines
16 KiB

//
// Copyright (c) 2000 Microsoft Corporation
//
// Module Name
//
// heapwalk.c
//
// Abstract
//
// Contains functions that create/modify/update the datastructure
// HEAP_ENTRY_LIST. HEAP_ENTRY_LIST maintains miminum amount of data
// for a HEAP Object.
//
// Author
//
// Narayana Batchu (nbatchu) [May 11, 2001]
//
#include <windows.h>
#include <stdlib.h>
#include <stdio.h>
#include <tchar.h>
#include "heapwalk.h"
//
// Initialize
//
// Initializes and allocates memory for the private member
// variables of the HEAP_ENTRY_LIST datastructure.
//
// Arguments
//
// pList Pointer to HEAP_ENTRY_LIST whose member variables
// to be initialized.
//
// Return Value
//
VOID Initialize(LPHEAP_ENTRY_LIST pList)
{
if (!pList) return;
pList->HeapEntryCount = 0;
pList->ListSorted = TRUE;
pList->PresentCapacity = INITIAL_CAPACITY;
pList->pHeapEntries = (LPHEAP_ENTRY_INFO)HeapAlloc(
GetProcessHeap(),
HEAP_ZERO_MEMORY,
sizeof(HEAP_ENTRY_INFO) * pList->PresentCapacity
);
if (!pList->pHeapEntries)
pList->PresentCapacity = 0;
}
//
// DestroyList
//
// Cleans up the datastructure HEAP_ENTRY_LIST and frees up the
// memory associated with the pHeapEntries member.
//
// Arguments
//
// pList Pointer to HEAP_ENTRY_LIST whose member variables
// to be cleaned up.
//
// Return Value
//
VOID DestroyList(LPHEAP_ENTRY_LIST pList)
{
if (!pList) return;
pList->HeapEntryCount = 0;
pList->ListSorted = TRUE;
pList->PresentCapacity = 0;
if (NULL != pList->pHeapEntries) {
HeapFree(GetProcessHeap(), 0, pList->pHeapEntries);
pList->pHeapEntries = NULL;
}
}
//
// GetMaxBlockSize
//
// This function searches through the HEAP_ENTRY_LIST to find out
// the maximum block size whose status is defined by 'State'.
//
// Arguments
//
// pList Pointer to HEAP_ENTRY_LIST.
//
// State Specifies the status to search for the maximum size.
// State of any block can be 0 (FREE) and 1 (BUSY).
// There are other valid status values also,
// but we dont maintain those entries.
//
// Return Value
//
// DWORD Returns the maximum size of the block with status 'State'.
//
ULONG GetMaxBlockSize(LPHEAP_ENTRY_LIST pList, BLOCK_STATE State)
{
ULONG MaxBlockSize = 0;
UINT Index;
if (!pList) goto ERROR1;
if (FALSE == pList->ListSorted)
{
SortHeapEntries(pList);
}
for (Index=0; Index < pList->HeapEntryCount; Index++)
{
if (State == pList->pHeapEntries[Index].BlockState)
{
MaxBlockSize = pList->pHeapEntries[Index].BlockSize;
break;
}
}
ERROR1:
return MaxBlockSize;
}
//
// GetMaxFreeBlockSize
//
// This function searches through the HEAP_ENTRY_LIST to find out
// the maximum free block size.
//
// Arguments
//
// pList Pointer to HEAP_ENTRY_LIST.
//
// Return Value
//
// DWORD Returns the maximum size of the available block
//
ULONG GetMaxFreeBlockSize(LPHEAP_ENTRY_LIST pList)
{
return GetMaxBlockSize(pList, HEAP_BLOCK_FREE);
}
//
// GetMaxAllocBlockSize
//
// This function searches through the HEAP_ENTRY_LIST to find out
// the maximum allocated block size.
//
// Arguments
//
// pList Pointer to HEAP_ENTRY_LIST.
//
// Return Value
//
// DWORD Returns the maximum size of the allocated block.
//
ULONG GetMaxAllocBlockSize(LPHEAP_ENTRY_LIST pList)
{
return GetMaxBlockSize(pList, HEAP_BLOCK_BUSY);
}
//
// GetTopNfreeEntries
//
// This function scans through the entry list to find the top
// n free entries in the list.
//
// Arguments
//
// pList Pointer to HEAP_ENTRY_LIST.
//
// pArray Array of HEAP_ENTRY_INFO structures. This holds the
// top n free block sizes available for the process.
//
// Entries Specifies the top number of entries to be read from
// the list.
//
// Return Value
//
// BOOL Returns TRUE if successful.
//
BOOL GetTopNfreeEntries(
LPHEAP_ENTRY_LIST pList,
LPHEAP_ENTRY_INFO pArray,
UINT EntriesToRead)
{
return GetTopNentries(
HEAP_BLOCK_FREE,
pList,
pArray,
EntriesToRead
);
}
//
// GetTopNallocEntries
//
// This function scans through the entry list to find the top
// n allocated entries in the list.
//
// Arguments
//
// pList Pointer to HEAP_ENTRY_LIST.
//
// pArray Array of HEAP_ENTRY_INFO structures. This holds the
// top n allocated block sizes available for the process.
//
// Entries Specifies the top number of entries to be read from
// the list.
//
// Return Value
//
// BOOL Returns TRUE if successful.
//
BOOL GetTopNallocEntries(
LPHEAP_ENTRY_LIST pList,
LPHEAP_ENTRY_INFO pArray,
UINT EntriesToRead
)
{
return GetTopNentries(
HEAP_BLOCK_BUSY,
pList,
pArray,
EntriesToRead
);
}
//
// GetTopNallocEntries
//
// This function scans through the entry list to find the top
// n entries in the list, whose staus matches 'State'.
//
// Arguments
//
// pList Pointer to HEAP_ENTRY_LIST.
//
// pArray Array of HEAP_ENTRY_INFO structures. This holds the
// top n block sizes available for the process, whose status
// matches 'State'.
//
// Entries Specifies the top number of entries to be read from
// the list.
//
// Return Value
//
// BOOL Returns TRUE if successful.
//
BOOL GetTopNentries(
BLOCK_STATE State,
LPHEAP_ENTRY_LIST pList,
LPHEAP_ENTRY_INFO pArray,
UINT EntriesToRead
)
{
BOOL fSuccess = FALSE;
UINT EntriesRead = 0;
UINT Index;
if (!pArray || !pList) goto ERROR2;
if (FALSE == pList->ListSorted)
{
SortHeapEntries(pList);
}
for (Index=0; Index < pList->HeapEntryCount; Index++)
{
if (EntriesRead == EntriesToRead)
break;
if (State == pList->pHeapEntries[Index].BlockState)
{
pArray[EntriesRead].BlockSize =
pList->pHeapEntries[Index].BlockSize;
pArray[EntriesRead].BlockCount =
pList->pHeapEntries[Index].BlockCount;
pArray[EntriesRead].BlockState =
pList->pHeapEntries[Index].BlockState;
EntriesRead++;
}
}
if (EntriesRead == EntriesToRead)
fSuccess = TRUE;
ERROR2:
return fSuccess;
}
//
// IncreaseCapacity
//
// Increases the array capacity by double. This function is called
// when tried to insert at the end of the array which is full.
//
// Arguments
//
// pList Pointer to HEAP_ENTRY_LIST.
//
// Return Value
//
// BOOL Returns TRUE if successful in increasing the capacity.
//
BOOL IncreaseCapacity(LPHEAP_ENTRY_LIST pList)
{
BOOL fSuccess = FALSE;
UINT NewCapacity = 0;
PVOID pvTemp = NULL;
if (NULL == pList) {
goto Exit;
}
if (0 == pList->PresentCapacity) {
NewCapacity = INITIAL_CAPACITY;
pvTemp = HeapAlloc(GetProcessHeap(),
HEAP_ZERO_MEMORY,
NewCapacity * sizeof(HEAP_ENTRY_INFO));
}
else {
NewCapacity = pList->PresentCapacity * 2;
pvTemp = HeapReAlloc(GetProcessHeap(),
HEAP_GENERATE_EXCEPTIONS | HEAP_ZERO_MEMORY,
pList->pHeapEntries,
NewCapacity * sizeof(HEAP_ENTRY_INFO));
}
if (NULL != pvTemp) {
pList->pHeapEntries = pvTemp;
pList->PresentCapacity = NewCapacity;
fSuccess = TRUE;
}
Exit:
return fSuccess;
/*
BOOL fSuccess = FALSE;
UINT NewCapacity;
if (!pList) goto ERROR3;
NewCapacity = pList->PresentCapacity * 2;
if (0 == NewCapacity)
NewCapacity = INITIAL_CAPACITY;
__try
{
pList->pHeapEntries = (LPHEAP_ENTRY_INFO)HeapReAlloc(
GetProcessHeap(),
HEAP_GENERATE_EXCEPTIONS | HEAP_ZERO_MEMORY,
pList->pHeapEntries,
NewCapacity * sizeof(HEAP_ENTRY_INFO)
);
pList->PresentCapacity = NewCapacity;
fSuccess = TRUE;
}
__except(GetExceptionCode() == STATUS_NO_MEMORY ||
GetExceptionCode() == STATUS_ACCESS_VIOLATION)
{
//
// Ignoring the exceptions raised by HeapReAlloc().
//
}
ERROR3:
return fSuccess;
*/
}
//
// FindMatch
//
// Finds an entry in the HEAP_ENTRY_LIST that matches the size and
// status of pHeapEntry.
//
// Arguments
//
// pList Pointer to HEAP_ENTRY_LIST.
//
// pHeapEntry Pointer to HEAP_ENTRY_INFO to be serached for in 'pList'.
//
// Return Value
//
// DWORD Index of the heap entry that matched the input heap entry
// 'pHeapEntry'
//
//
UINT FindMatch(LPHEAP_ENTRY_LIST pList, LPHEAP_ENTRY_INFO pHeapEntry)
{
UINT MatchedEntry = NO_MATCH;
UINT Index;
if (!pList || !pHeapEntry) goto ERROR4;
for (Index = 0; Index < pList->HeapEntryCount; Index++)
{
if (pList->pHeapEntries[Index].BlockSize == pHeapEntry->BlockSize &&
pList->pHeapEntries[Index].BlockState == pHeapEntry->BlockState)
{
MatchedEntry = Index;
break;
}
}
ERROR4:
return MatchedEntry;
}
//
// InsertHeapEntry
//
// Inserts a new heap entry to the list. It updates the block count if
// a match is found else a new entry is made at the end of the HEAP_
// ENTRY_INFO array.
//
// Arguments
//
// pList Pointer to HEAP_ENTRY_LIST.
//
// pHeapEntry Pointer to HEAP_ENTRY_INFO that is to be added to 'pList'.
//
// Return Value
//
// DWORD Returns the index at which it is added to the array. If
// for any reason, it is not added to the list, then it
// returns NO_MATCH value.
//
UINT InsertHeapEntry(LPHEAP_ENTRY_LIST pList, LPHEAP_ENTRY_INFO pHeapEntry)
{
UINT MatchedEntry = NO_MATCH;
if (!pList || !pHeapEntry) goto ERROR5;
MatchedEntry = FindMatch(pList, pHeapEntry);
if (NO_MATCH != MatchedEntry)
pList->pHeapEntries[MatchedEntry].BlockCount++;
else
{
UINT Index = pList->HeapEntryCount;
if (Index == pList->PresentCapacity && !IncreaseCapacity(pList))
goto ERROR5;
pList->pHeapEntries[Index].BlockSize = pHeapEntry->BlockSize;
pList->pHeapEntries[Index].BlockState = pHeapEntry->BlockState;
pList->pHeapEntries[Index].BlockCount = 1;
MatchedEntry = Index;
pList->HeapEntryCount++;
pList->ListSorted = FALSE;
}
ERROR5:
return MatchedEntry;
}
VOID
SetHeapEntry(
LPHEAP_ENTRY_INFO HeapEntryInfo,
USHORT Status,
ULONG Size
)
{
if (NULL == HeapEntryInfo) {
return;
}
HeapEntryInfo->BlockState = Status;
HeapEntryInfo->BlockSize = Size;
HeapEntryInfo->BlockCount = 1;
}
//
// DeleteHeapEntry
//
// Deletes a new heap entry to the list. It decrements the block count
// if a match is found.
//
// Its possible that the block size is zero and still the heap entry
// exits. In such cases we dont decrement the block count (which would
// make it negative) and return a NO_MATCH.
//
// Arguments
//
// pList Pointer to HEAP_ENTRY_LIST
//
// pHeapEntry Pointer to HEAP_ENTRY_INFO that is to be removed from 'pList'.
//
// Return Value
//
// DWORD Returns the index at which it is removed from the array. If for
// any reason (Count==0), it is not removed to the list, then it
// returns NO_MATCH value.
//
UINT DeleteHeapEntry(LPHEAP_ENTRY_LIST pList, LPHEAP_ENTRY_INFO pHeapEntry)
{
UINT MatchedEntry = NO_MATCH;
if (!pList || !pHeapEntry) goto ERROR6;
MatchedEntry = FindMatch(pList, pHeapEntry);
if (NO_MATCH != MatchedEntry &&
0 != pList->pHeapEntries[MatchedEntry].BlockCount)
{
pList->pHeapEntries[MatchedEntry].BlockCount--;
}
else
MatchedEntry = NO_MATCH;
ERROR6:
return MatchedEntry;
}
//
// SortByBlockSize
//
// Compare function required by qsort (uses quick sort to sort
// the elements in the array).
//
// More info about the arguments and the return values could be
// found in MSDN.
//
int __cdecl SortByBlockSize(const void * arg1, const void *arg2)
{
int iCompare;
LPHEAP_ENTRY_INFO hpEntry1 = (LPHEAP_ENTRY_INFO)arg1;
LPHEAP_ENTRY_INFO hpEntry2 = (LPHEAP_ENTRY_INFO)arg2;
iCompare = (hpEntry2->BlockSize - hpEntry1->BlockSize);
return iCompare;
}
//
// DisplayHeapFragStatistics
//
// Sorts and displays the fragmentation statistics. It displays
// two tables one for free blocks and another for allocated blocks.
//
// Arguments
//
// File Pointer to C FILE structure, to which the heap frag-
// mentation statistics have to be dumped.
//
// pList Pointer to HEAP_ENTRY_LIST, to be sorted and
// dumped to 'File'.
//
// Return Value
//
VOID DisplayHeapFragStatistics(
FILE * File,
PVOID HeapAddress,
LPHEAP_ENTRY_LIST pList
)
{
if (!pList) return;
fprintf(
File,
"\n*- - - - - - - - - - Heap %p Fragmentation Statistics - - - - - - - - - -\n\n",
HeapAddress
);
SortHeapEntries(pList);
PrintList(File, pList, HEAP_BLOCK_BUSY);
PrintList(File, pList, HEAP_BLOCK_FREE);
}
//
// SortHeapEntries
//
// Sorts the heap entries based on their sizes. The top most entry
// would be having the maximun block size.
//
// Also, removes those heap entries from the array whose block count
// has dropped to zero, making available more space.
//
// Arguments
//
// pList Pointer to HEAP_ENTRY_LIST, whose entries to be sorted by
// their sizes.
//
// Return Value
//
VOID SortHeapEntries(LPHEAP_ENTRY_LIST pList)
{
UINT Index;
if (!pList) return;
if (FALSE == pList->ListSorted)
{
qsort(
pList->pHeapEntries,
pList->HeapEntryCount,
sizeof(HEAP_ENTRY_INFO),
&SortByBlockSize
);
for (Index = pList->HeapEntryCount-1; Index > 0; Index--)
{
if (0 != pList->pHeapEntries[Index].BlockCount)
break;
}
pList->HeapEntryCount = Index + 1;
pList->ListSorted = TRUE;
}
}
//
// PrintList
//
// Utility function that prints out the heap entries to the stdout/
// file, whose status is equal to "State".
//
// Arguments
//
// File Pointer to C FILE structure, to which the heap frag-
// mentation statistics have to be dumped.
//
// pList Pointer to HEAP_ENTRY_LIST, to be sorted and
// dumped to 'File'.
//
// State State of the blocks to be displayed.
//
// Return Value
//
VOID PrintList(FILE * File, LPHEAP_ENTRY_LIST pList, BLOCK_STATE State)
{
UINT Index;
if (!pList) return;
if (HEAP_BLOCK_FREE == State)
fprintf(File, "\nTable of Free Blocks\n\n");
else if (HEAP_BLOCK_BUSY == State)
fprintf(File, "\nTable of Allocated Blocks\n\n");
fprintf(File, " SIZE | COUNT\n");
fprintf(File, " ------------------------\n");
for (Index = 0; Index < pList->HeapEntryCount; Index++)
{
if (State == pList->pHeapEntries[Index].BlockState)
{
fprintf(
File,
" 0x%08x | 0x%08x\n",
pList->pHeapEntries[Index].BlockSize,
pList->pHeapEntries[Index].BlockCount
);
}
}
fprintf(File, "\n");
}