Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2743 lines
87 KiB

/******************************Module*Header**********************************\
*
* *******************
* * GDI SAMPLE CODE *
* *******************
*
* Module Name: heap.c
*
* Content:
*
* This module contains the routines for a 2-d heap. It is used primarily
* for allocating space for device-format-bitmaps in off-screen memory.
*
* Off-screen bitmaps are a big deal on NT because:
*
* 1) It reduces the working set. Any bitmap stored in off-screen
* memory is a bitmap that isn't taking up space in main memory.
*
* 2) There is a speed win by using the accelerator hardware for
* drawing, in place of NT's GDI code. NT's GDI is written entirely
* in 'C++' and perhaps isn't as fast as it could be.
*
* 3) It leads naturally to nifty tricks that can take advantage of
* the hardware, such as MaskBlt support and cheap double buffering
* for OpenGL.
*
* The heap algorithm employed herein attempts to solve an unsolvable
* problem: the problem of keeping arbitrary sized bitmaps as packed as
* possible in a 2-d space, when the bitmaps can come and go at random.
*
* This problem is due entirely to the nature of the hardware for which this
* driver is written: the hardware treats everything as 2-d quantities. If
* the hardware bitmap pitch could be changed so that the bitmaps could be
* packed linearly in memory, the problem would be infinitely easier (it is
* much easier to track the memory, and the accelerator can be used to re-pack
* the heap to avoid segmentation).
*
* If your hardware can treat bitmaps as one dimensional quantities (as can
* the XGA and ATI), by all means please implement a new off-screen heap.
*
* When the heap gets full, old allocations will automatically be punted
* from off-screen and copied to DIBs, which we'll let GDI draw on.
*
* Note that this heap manages reverse-L shape off-screen memory
* configurations (where the scan pitch is longer than the visible screen,
* such as happens at 800x600 when the scan length must be a multiple of
* 1024).
*
* NOTE: All heap operations must be done under some sort of synchronization,
* whether it's controlled by GDI or explicitly by the driver. All
* the routines in this module assume that they have exclusive access
* to the heap data structures; multiple threads partying in here at
* the same time would be a Bad Thing. (By default, GDI does NOT
* synchronize drawing on device-created bitmaps.)
*
* Copyright (c) 1994-1999 3Dlabs Inc. Ltd. All rights reserved.
* Copyright (c) 1995-2003 Microsoft Corporation. All rights reserved.
\*****************************************************************************/
#include "precomp.h"
#include "glint.h"
#if WNT_DDRAW
#include "linalloc.h"
#endif
#define OH_ALLOC_SIZE 4000 // Do all memory allocations in 4k chunks
#define OH_QUANTUM 4 // The minimum dimension of an allocation
#define CXCY_SENTINEL 0x7fffffff // The sentinel at the end of the available
// list has this very large 'cxcy' value
// This macro results in the available list being maintained with a
// cx-major, cy-minor sort:
#define CXCY(cx, cy) (((cx) << 16) | (cy))
const ULONG HEAP_X_ALIGNMENT_P3[5] = {
4, // GLINTDEPTH8
4, // GLINTDEPTH16
32, // GLINTDEPTH32 = 32 pixels
0, // ---
4, // GLINTDEPTH24
};
/******************************Public*Routine******************************\
* void UploadDFBToDIB
\**************************************************************************/
void UploadDFBToDIB(PDEV *ppdev, SURFOBJ *pso, DSURF *pdsurf)
{
OH *poh = pdsurf->poh;
RECTL rclDst;
POINTL ptlSrc;
LONG xOff;
LONG pixOffset;
LONG pixDelta;
ULONG xyOffsetDst;
BOOL bOff;
GLINT_DECL;
rclDst.left = 0;
rclDst.top = 0;
rclDst.right = pdsurf->sizl.cx;
rclDst.bottom = pdsurf->sizl.cy;
ptlSrc.x = 0;
ptlSrc.y = 0;
GET_PPDEV_DST_OFFSETS(ppdev, pixOffset, pixDelta, xyOffsetDst, xOff, bOff);
SET_PPDEV_DST_OFFSETS(ppdev, poh->pixOffset, poh->lPixDelta,
MAKEDWORD_XY(poh->x, poh->y),
poh->bDXManaged ? 0 : poh->x, pdsurf->bOffScreen);
VALIDATE_DD_CONTEXT;
ppdev->pgfnUpload(ppdev, 1, &rclDst, pso, &ptlSrc, &rclDst);
SET_PPDEV_DST_OFFSETS(ppdev, pixOffset, pixDelta, xyOffsetDst, xOff, bOff);
}
/******************************Public*Routine******************************\
* void DownloadDIBToDFB
\**************************************************************************/
void DownloadDIBToDFB(PDEV *ppdev, SURFOBJ *pso, DSURF *pdsurf)
{
OH *poh = pdsurf->poh;
RECTL rclDst;
POINTL ptlSrc;
LONG xOffset;
LONG pixOffset;
LONG pixDelta;
ULONG xyOffsetDst;
BOOL bOff;
GLINT_DECL;
// call low level download routine to download the DIB data to the
// new off-screen DFB. Save and restore the ppdev offsets in case
// we were called from the middle of some blt routine which has
// already set them up.
//
rclDst.left = 0;
rclDst.top = 0;
rclDst.right = pdsurf->sizl.cx;
rclDst.bottom = pdsurf->sizl.cy;
ptlSrc.x = 0;
ptlSrc.y = 0;
GET_PPDEV_DST_OFFSETS(ppdev, pixOffset, pixDelta,
xyOffsetDst, xOffset, bOff);
SET_PPDEV_DST_OFFSETS(ppdev, poh->pixOffset, poh->lPixDelta,
MAKEDWORD_XY(poh->x, poh->y),
poh->bDXManaged ? 0 : poh->x, pdsurf->bOffScreen);
DISPDBG((DBGLVL,"Converting a DIB back to a DFB. calling image download"));
VALIDATE_DD_CONTEXT;
ppdev->pgfnXferImage(ppdev, &rclDst, 1, __GLINT_LOGICOP_COPY,
__GLINT_LOGICOP_COPY, pso, &ptlSrc, &rclDst, NULL);
SET_PPDEV_DST_OFFSETS(ppdev, pixOffset, pixDelta,
xyOffsetDst, xOffset, bOff);
}
/******************************Private*Routine******************************\
* OH* GlintVidMemAlloc
*
* Use the DX heap manager to allocate linear memory from off-screen
*
\**************************************************************************/
OH *GlintVidMemAlloc(PDEV *ppdev, OH *pohThis, LONG cxThis, LONG cyThis)
{
FLATPTR fp = 0;
#if WNT_DDRAW
P3_MEMREQUEST mmrq;
LinearAllocatorInfo *pvmHeap = NULL;
LONG iHeap;
LONG lDelta;
ULONG Mask32bit;
GLINT_DECL;
ASSERTDD((ppdev->flStatus & STAT_LINEAR_HEAP),
"GlintVidMemAlloc: ERROR - "
"linear allocator called when linear heap not enabled!");
DISPDBG((DBGLVL, "GlintVidMemAlloc: want cxy(%xh,%xh), cHeaps(%d)",
cxThis, cyThis, ppdev->heap.cLinearHeaps));
if(ppdev->heap.cLinearHeaps)
{
// align to dword boundaries
Mask32bit = (1 << (2 - ppdev->cPelSize)) - 1;
lDelta = cxThis + Mask32bit;
lDelta &= ~Mask32bit;
lDelta <<= ppdev->cPelSize;
memset(&mmrq, 0, sizeof mmrq);
mmrq.dwSize = sizeof mmrq;
mmrq.dwBytes = lDelta * cyThis;
mmrq.dwAlign = 16; // 16 Byte alignment will work for everything
mmrq.dwFlags = MEM3DL_FIRST_FIT | MEM3DL_FRONT;
retry:
for (iHeap = 0, fp = 0;
iHeap < (LONG)ppdev->heap.cLinearHeaps && fp == 0;
++iHeap)
{
pvmHeap = &ppdev->heap.pvmLinearHeap[iHeap];
// we don't allocate from the AGP heap at present
if(pvmHeap)
{
if(_DX_LIN_AllocateLinearMemory(pvmHeap, &mmrq) == GLDD_SUCCESS)
{
fp = mmrq.pMem;
}
else
{
DISPDBG((DBGLVL, "GlintVidMemAlloc: allocation failed"));
}
}
}
if(fp == 0)
{
OH *poh;
LONG cxcyThis = cxThis * cyThis;
LONG cxcy;
do
{
poh = ppdev->heap.ohDiscardable.pohPrev;
if (poh == &ppdev->heap.ohDiscardable)
{
DISPDBG((DBGLVL, "GlintVidMemAlloc: FAILED :"
"No discardable bitmaps remaining in "
"offscreen and still not enough room"));
return(NULL);
}
ASSERTDD(poh != &ppdev->heap.ohDiscardable,
"Ran out of discardable entries");
ASSERTDD(poh->ohState == OH_DISCARDABLE,
"Non-discardable node in discardable list");
poh = pohMoveOffscreenDfbToDib(ppdev, poh);
if (poh == NULL)
{
DISPDBG((DBGLVL, "GlintVidMemAlloc: "
"failed to kick DFB into system memory"));
return(NULL);
}
cxcy = poh->cx * poh->cy;
cxcyThis -= cxcy;
}
while (cxcyThis > 0);
goto retry;
}
}
if(fp)
{
ULONG pixOffset, x, y, xAligned;
DISPDBG((DBGLVL, "GlintVidMemAlloc: got some memory"
" - fp(%08xh) lDelta(%xh)", (ULONG)fp, lDelta));
pixOffset = (DWORD)(fp >> ppdev->cPelSize);
y = pixOffset / ppdev->cxMemory;
x = pixOffset % ppdev->cxMemory;
DISPDBG((DBGLVL, "GlintVidMemAlloc: rectangular values are: "
"pixOffset %08xh = xy(%xh,%xh)", pixOffset, x, y));
xAligned = x & ~((1 << (2 - ppdev->cPelSize)) - 1);
pixOffset = y * ppdev->cxMemory + xAligned;
y = 0;
x -= xAligned;
pohThis->x = x;
pohThis->y = y;
pohThis->cx = cxThis;
pohThis->cy = cyThis;
pohThis->lPixDelta = lDelta >> ppdev->cPelSize;
pohThis->pixOffset = pixOffset;
pohThis->cxReserved = 0;
pohThis->cyReserved = 0;
pohThis->cxcy = CXCY(cxThis, cyThis);
pohThis->pdsurf = NULL;
pohThis->pvScan0 = ppdev->pjScreen + fp;
pohThis->bDXManaged = TRUE;
pohThis->pvmHeap = pvmHeap;
pohThis->fpMem = fp;
DISPDBG((DBGLVL, "GlintVidMemAlloc: linear values are: "
"pixOffset(%08xh), xy(%xh,%xh), cxy(%xh,%xh) Delta(%xh)",
pohThis->pixOffset = pixOffset, pohThis->x, pohThis->y,
pohThis->cx, pohThis->cy, pohThis->lPixDelta));
}
else
{
// didn't get any memory - point at the free list
// sentinel to register our disappointment
DISPDBG((DBGLVL, "GlintVidMemAlloc: "
"failed to get any offscreen memory"));
for(pohThis = &ppdev->heap.ohFree;
pohThis->cxcy != CXCY_SENTINEL;
pohThis = pohThis->pohNext)
{
NULL;
}
}
#endif // WNT_DDRAW
return(fp ? pohThis : NULL);
}
/******************************Public*Routine******************************\
* OH* pohNewNode
*
* Allocates a basic memory unit in which we'll pack our data structures.
*
* Since we'll have a lot of OH nodes, most of which we will be
* occasionally traversing, we do our own memory allocation scheme to
* keep them densely packed in memory.
*
* It would be the worst possible thing for the working set to simply
* call EngAllocMem(sizeof(OH)) every time we needed a new node. There
* would be no locality; OH nodes would get scattered throughout memory,
* and as we traversed the available list for one of our allocations,
* it would be far more likely that we would hit a hard page fault.
\**************************************************************************/
OH* pohNewNode(
PDEV* ppdev)
{
LONG i;
LONG cOhs;
OHALLOC* poha;
OH* poh;
if (ppdev->heap.pohFreeList == NULL)
{
DISPDBG((DBGLVL, "pohNewNode(): allocating new poha block"));
// We zero-init to initialize all the OH flags, and to help in
// debugging (we can afford to do this since we'll be doing this
// very infrequently):
poha = ENGALLOCMEM(FL_ZERO_MEMORY, OH_ALLOC_SIZE, ALLOC_TAG_GDI(D));
if (poha == NULL)
{
DISPDBG((DBGLVL, "pohNewNode: failed to alloc node array, "
"returning NULL"));
return(NULL);
}
// Insert this OHALLOC at the begining of the OHALLOC chain:
poha->pohaNext = ppdev->heap.pohaChain;
ppdev->heap.pohaChain = poha;
// This has a '+ 1' because OHALLOC includes an extra OH in its
// structure declaration:
cOhs = (OH_ALLOC_SIZE - sizeof(OHALLOC)) / sizeof(OH) + 1;
// The big OHALLOC allocation is simply a container for a bunch of
// OH data structures in an array. The new OH data structures are
// linked together and added to the OH free list:
poh = &poha->aoh[0];
for (i = cOhs - 1; i != 0; i--)
{
poh->pohNext = poh + 1;
poh = poh + 1;
}
poh->pohNext = NULL;
ppdev->heap.pohFreeList = &poha->aoh[0];
}
poh = ppdev->heap.pohFreeList;
ppdev->heap.pohFreeList = poh->pohNext;
DISPDBG((DBGLVL, "pohNewNode(): returning poh %ph", poh));
return(poh);
}
/******************************Private*Routine******************************\
* OH* GetFreeNode
*
* returns a node from the free list. If nothing free, returns the sentinel
*
\**************************************************************************/
OH *GetFreeNode(PDEV *ppdev, LONG cxThis, LONG cyThis)
{
ULONG cxcyThis = CXCY(cxThis, cyThis);
OH *pohThis;
if((ppdev->flStatus & STAT_LINEAR_HEAP))
{
// We don't used the free list - DX does all the heap management
// just create a node structure and try to alloc from the DX heap.
pohThis = pohNewNode(ppdev);
if(pohThis)
{
// pohNewNode unlinks the node from the free list - link it
// back in as the caller to GetFreeNode will expect it there
pohThis->pohNext = ppdev->heap.ohFree.pohNext;
pohThis->pohPrev = ppdev->heap.ohFree.pohNext->pohPrev;
pohThis->pohNext->pohPrev = pohThis;
pohThis->pohPrev->pohNext = pohThis;
pohThis = GlintVidMemAlloc(ppdev, pohThis, cxThis, cyThis);
}
}
else
{
pohThis = ppdev->heap.ohFree.pohNext;
// The free list shows holds all the unused (rectangular) regions
// on the heap. These are ordered by size. Search through the
// list to find the best fit
while (pohThis->cxcy < cxcyThis)
{
ASSERTDD(pohThis->ohState == OH_FREE,
"Non-free node in free list(1)");
pohThis = pohThis->pohNext;
}
while (pohThis->cy < cyThis)
{
ASSERTDD(pohThis->ohState == OH_FREE,
"Non-free node in free list(2)");
pohThis = pohThis->pohNext;
}
}
return(pohThis);
}
/******************************Public*Routine******************************\
* VOID vOhFreeNode
*
* Frees our basic data structure allocation unit by adding it to a free
* list.
*
\**************************************************************************/
VOID vOhFreeNode(
PDEV* ppdev,
OH* poh)
{
if (poh == NULL)
{
return;
}
DISPDBG((DBGLVL, "vOhFreeNode(): freeing poh %ph", poh));
poh->pohNext = ppdev->heap.pohFreeList;
ppdev->heap.pohFreeList = poh;
poh->ohState = OH_FREE; //azn was -1
}
/******************************Public*Routine******************************\
* VOID vCalculateMaximumNonPermanent
*
* Traverses the list of in-use and available rectangles to find the one
* with the maximal area.
*
\**************************************************************************/
VOID vCalculateMaximumNonPermanent(
PDEV* ppdev)
{
OH* poh;
OH* pohSentinel;
LONG lArea;
LONG lMaxArea;
LONG cxMax;
LONG cyMax;
LONG cxBounds;
LONG cyBounds;
LONG i;
lMaxArea = 0;
cxMax = 0;
cyMax = 0;
cxBounds = 0;
cyBounds = 0;
// First time through, loop through the list of free available
// rectangles:
pohSentinel = &ppdev->heap.ohFree;
for (i = 2; i != 0; i--)
{
for (poh = pohSentinel->pohNext; poh != pohSentinel; poh = poh->pohNext)
{
ASSERTDD(poh->ohState != OH_PERMANENT,
"Permanent node in free or discardable list");
if (poh->cx > cxBounds)
{
cxBounds = poh->cx;
}
if (poh->cy > cyBounds)
{
cyBounds = poh->cy;
}
// We don't have worry about this multiply overflowing
// because we are dealing in physical screen coordinates,
// which will probably never be more than 15 bits:
lArea = poh->cx * poh->cy;
if (lArea > lMaxArea)
{
cxMax = poh->cx;
cyMax = poh->cy;
lMaxArea = lArea;
}
}
// Second time through, loop through the list of discardable
// rectangles:
pohSentinel = &ppdev->heap.ohDiscardable;
}
// All that we are interested in is the dimensions of the rectangle
// that has the largest possible available area (and remember that
// there might not be any possible available area):
ppdev->heap.cxMax = cxMax;
ppdev->heap.cyMax = cyMax;
ppdev->heap.cxBounds = cxBounds;
ppdev->heap.cyBounds = cyBounds;
}
/******************************Public*Routine******************************\
* BOOL bDiscardEverythingInRectangle
*
* Throws out of the heap any discardable bitmaps that intersect with the
* specified rectangle.
*
\**************************************************************************/
BOOL bDiscardEverythingInRectangle(
PDEV* ppdev,
LONG x,
LONG y,
LONG cx,
LONG cy)
{
BOOL bRet;
OH* poh;
OH* pohNext;
bRet = TRUE; // Assume success
poh = ppdev->heap.ohDiscardable.pohNext;
while (poh != &ppdev->heap.ohDiscardable)
{
ASSERTDD(poh->ohState == OH_DISCARDABLE,
"Non-discardable node in discardable list");
pohNext = poh->pohNext;
if ((poh->x < x + cx) &&
(poh->y < y + cy) &&
(poh->x + poh->cx > x) &&
(poh->y + poh->cy > y))
{
// The two rectangles intersect. Give the boot to the
// discardable bitmap:
if (!pohMoveOffscreenDfbToDib(ppdev, poh))
{
bRet = FALSE;
}
}
poh = pohNext;
}
return(bRet);
}
/******************************Public*Routine******************************\
* BOOL bFreeRightAndBottomSpace
*
* Given a free off-screen rectangle, allocates the upper-left part of
* the rectangle to hold the allocation request, and puts the two rectangles
* comprising the unused right and bottom portions on the free list.
*
\**************************************************************************/
BOOL bFreeRightAndBottomSpace(
PDEV* ppdev,
OH* pohThis,
LONG cxThis,
LONG cyThis,
BOOL bQuantum) // Set if inifitely small allocations should be
// allowed
{
ULONG cxcy; // Temporary versions
OH* pohNext;
OH* pohPrev;
LONG cxRem;
LONG cyRem;
OH* pohBelow;
LONG cxBelow;
LONG cyBelow;
OH* pohBeside;
LONG cxBeside;
LONG cyBeside;
LONG cQuantum;
GLINT_DECL;
ASSERTDD(glintInfo != NULL,
"bFreeRightAndBottomSpace: ppdev->glintInfo is NULL");
ASSERTDD(pohThis->bDXManaged == FALSE,
"bFreeRightAndBottomSpace: ERROR - called for linear DFB");
// We're going to use the upper-left corner of our given rectangle,
// and divide the unused remainder into two rectangles which will
// go on the free list.
// Compute the width of the unused rectangle to the right, and the
// height of the unused rectangle below:
cyRem = pohThis->cy - cyThis;
cxRem = pohThis->cx - cxThis;
// Given finite area, we wish to find the two rectangles that are
// most square -- i.e., the arrangement that gives two rectangles
// with the least perimiter:
cyBelow = cyRem;
cxBeside = cxRem;
#if 1
// We may get better performance by keeping screen wide rectangles intact.
if(cyRem < OH_QUANTUM ||
cxRem < OH_QUANTUM ||
pohThis->cx != ppdev->cxScreen)
{
if (cxRem <= cyRem)
{
cxBelow = cxThis + cxRem;
cyBeside = cyThis;
}
else
{
cxBelow = cxThis;
cyBeside = cyThis + cyRem;
}
}
else
{
// we're allocating a block as wide as the screen: force a
// horizontal slice to be taken
cxBelow = cxThis + cxRem;
cyBeside = cyThis;
}
#else
if (cxRem <= cyRem)
{
cxBelow = cxThis + cxRem;
cyBeside = cyThis;
}
else
{
cxBelow = cxThis;
cyBeside = cyThis + cyRem;
}
#endif
// If 'bQuantum' is set, we only make new available rectangles of
// the unused right and bottom portions if they're greater in
// dimension than OH_QUANTUM (it hardly makes sense to do the
// book-work to keep around a 2-pixel wide available space, for
// example):
cQuantum = (bQuantum) ? 1 : OH_QUANTUM;
pohBeside = NULL;
if (cxBeside >= cQuantum)
{
pohBeside = pohNewNode(ppdev);
if (pohBeside == NULL)
return(FALSE);
}
pohBelow = NULL;
if (cyBelow >= cQuantum)
{
pohBelow = pohNewNode(ppdev);
if (pohBelow == NULL)
{
vOhFreeNode(ppdev, pohBeside);
return(FALSE);
}
// Insert this rectangle into the available list (which is
// sorted on ascending cxcy):
cxcy = CXCY(cxBelow, cyBelow);
pohNext = ppdev->heap.ohFree.pohNext;
while (pohNext->cxcy < cxcy)
{
pohNext = pohNext->pohNext;
}
pohPrev = pohNext->pohPrev;
pohPrev->pohNext = pohBelow;
pohNext->pohPrev = pohBelow;
pohBelow->pohPrev = pohPrev;
pohBelow->pohNext = pohNext;
// Now update the adjacency information:
pohBelow->pohLeft = pohThis->pohLeft;
pohBelow->pohUp = pohThis;
pohBelow->pohRight = pohThis->pohRight;
pohBelow->pohDown = pohThis->pohDown;
// Update the rest of the new node information:
pohBelow->cxReserved = 0;
pohBelow->cyReserved = 0;
pohBelow->cxcy = cxcy;
pohBelow->ohState = OH_FREE;
pohBelow->x = pohThis->x;
pohBelow->y = pohThis->y + cyThis;
pohBelow->cx = cxBelow;
pohBelow->cy = cyBelow;
pohBelow->lPixDelta = ppdev->cxMemory;
POH_SET_RECTANGULAR_PIXEL_OFFSET(ppdev, pohBelow);
// Modify the current node to reflect the changes we've made:
pohThis->cy = cyThis;
}
if (cxBeside >= cQuantum)
{
// Insert this rectangle into the available list (which is
// sorted on ascending cxcy):
cxcy = CXCY(cxBeside, cyBeside);
pohNext = ppdev->heap.ohFree.pohNext;
while (pohNext->cxcy < cxcy)
{
pohNext = pohNext->pohNext;
}
pohPrev = pohNext->pohPrev;
pohPrev->pohNext = pohBeside;
pohNext->pohPrev = pohBeside;
pohBeside->pohPrev = pohPrev;
pohBeside->pohNext = pohNext;
// Now update the adjacency information:
pohBeside->pohUp = pohThis->pohUp;
pohBeside->pohLeft = pohThis;
pohBeside->pohDown = pohThis->pohDown;
pohBeside->pohRight = pohThis->pohRight;
// Update the rest of the new node information:
pohBeside->cxReserved = 0;
pohBeside->cyReserved = 0;
pohBeside->cxcy = cxcy;
pohBeside->ohState = OH_FREE;
pohBeside->x = pohThis->x + cxThis;
pohBeside->y = pohThis->y;
pohBeside->cx = cxBeside;
pohBeside->cy = cyBeside;
pohBeside->lPixDelta = ppdev->cxMemory;
POH_SET_RECTANGULAR_PIXEL_OFFSET(ppdev, pohBeside);
// Modify the current node to reflect the changes we've made:
pohThis->cx = cxThis;
}
if (pohBelow != NULL)
{
pohThis->pohDown = pohBelow;
if ((pohBeside != NULL) && (cyBeside == pohThis->cy))
pohBeside->pohDown = pohBelow;
}
if (pohBeside != NULL)
{
pohThis->pohRight = pohBeside;
if ((pohBelow != NULL) && (cxBelow == pohThis->cx))
pohBelow->pohRight = pohBeside;
}
pohThis->cxcy = CXCY(pohThis->cx, pohThis->cy);
return(TRUE);
}
/******************************Public*Routine******************************\
* OH* pohMakeRoomAtLocation
*
* Attempts to allocate a rectangle at a specific position.
*
\**************************************************************************/
OH* pohMakeRoomAtLocation(
PDEV* ppdev,
POINTL* pptl, // Requested position for the rectangle
LONG cxThis, // Width of rectangle to be allocated
LONG cyThis, // Height of rectangle to be allocated
FLONG floh) // Allocation flags
{
OH* poh;
OH* pohTop;
OH* pohLeft;
LONG cxLeft;
LONG cyTop;
OH* pohRight;
ASSERTDD((ppdev->flStatus & STAT_LINEAR_HEAP) == FALSE,
"pohMakeRoomAtLocation: ERROR - called for linear DFB");
if (!(floh & FLOH_ONLY_IF_ROOM))
{
// First off, discard any bitmaps that overlap the requested
// rectangle, assuming we're allowed to:
if (!bDiscardEverythingInRectangle(ppdev,
pptl->x,
pptl->y,
cxThis,
cyThis))
{
return(NULL);
}
}
// Now see if there is a free rectangle that entirely contains the
// requested rectangle.
for (poh = ppdev->heap.ohFree.pohNext;
poh != &ppdev->heap.ohFree;
poh = poh->pohNext)
{
ASSERTDD(poh->ohState == OH_FREE, "Non-free node in free list(3)");
// See if the current free rectangle completely contains the
// requested rectangle:
if ((poh->x <= pptl->x) &&
(poh->y <= pptl->y) &&
(poh->x + poh->cx >= pptl->x + cxThis) &&
(poh->y + poh->cy >= pptl->y + cyThis))
{
// We can't reserve this rectangle, or make it permanent, if it's
// already been reserved:
if ((!poh->cxReserved) ||
((floh & (FLOH_RESERVE | FLOH_MAKE_PERMANENT)) == 0))
{
// The 'poh' rectangle entirely contains the requested
// rectangle. We may have a situation like this, where
// the smaller rectangle is the requested rectangle, and
// the larger rectangle is the available rectangle:
//
// +-------------------+
// | |
// | +---------+ |
// | |Requested| |
// | | | |
// | +---------+ |
// | |
// +-------------------+
//
// We want to make the space to the left and to the top of
// the requested rectangle available to the heap. Our
// free-space routine only knows how to free space to the
// right and bottom of an allocation, though. So we will
// temporarily allocate temporary rectangles to subdivide
// our rectangle like the following:
//
// +-------------------+
// |Top |
// +----+--------------+
// |Left|Free |
// | | |
// | | |
// | | |
// +----+--------------+
//
// Then, in the resulting 'Free' space, we will allocate the
// upper-left corner for our requested rectangle, after which
// we will go back and free the 'Top' and 'Left' temporary
// rectangles.
pohTop = NULL;
pohLeft = NULL;
cxLeft = pptl->x - poh->x;
cyTop = pptl->y - poh->y;
if (cyTop > 0)
{
if (!bFreeRightAndBottomSpace(ppdev, poh, poh->cx, cyTop,
TRUE))
{
return(NULL);
}
pohTop = poh;
poh = pohTop->pohDown;
}
if (cxLeft > 0)
{
if (!bFreeRightAndBottomSpace(ppdev, poh, cxLeft, poh->cy,
TRUE))
{
pohFree(ppdev, pohTop);
return(NULL);
}
pohLeft = poh;
poh = pohLeft->pohRight;
}
ASSERTDD((poh->x == pptl->x) &&
(poh->y == pptl->y) &&
(poh->x + poh->cx >= poh->x + cxThis) &&
(poh->y + poh->cy >= poh->y + cyThis),
"poh must properly fit requested rectangle");
// Finally, we can subdivide to get our requested rectangle:
if (!bFreeRightAndBottomSpace(ppdev, poh, cxThis, cyThis, FALSE))
{
poh = NULL; // Fail this call
}
// Free our temporary rectangles, if there are any:
pohFree(ppdev, pohTop);
pohFree(ppdev, pohLeft);
return(poh);
}
}
}
// There was no free rectangle that completely contains the requested
// rectangle:
return(NULL);
}
/******************************Public*Routine******************************\
* OH* pohMakeRoomAnywhere
*
* Allocates space for an off-screen rectangle. It will attempt to find
* the smallest available free rectangle, and will allocate the block out
* of its upper-left corner. The remaining two rectangles will be placed
* on the available free space list.
*
* If the rectangle would have been large enough to fit into off-screen
* memory, but there is not enough available free space, we will boot
* bitmaps out of off-screen and into DIBs until there is enough room.
*
\**************************************************************************/
OH* pohMakeRoomAnywhere(
PDEV* ppdev,
LONG cxThis, // Width of rectangle to be allocated
LONG cyThis, // Height of rectangle to be allocated
FLONG floh) // May have FLOH_ONLY_IF_ROOM set
{
ULONG cxcyThis; // Width and height search key
OH* pohThis; // Points to found available rectangle we'll use
GLINT_DECL;
ASSERTDD((cxThis > 0) && (cyThis > 0), "Illegal allocation size");
// Increase the width to get the proper alignment (thus ensuring that all
// allocations will be properly aligned):
cxThis = (cxThis + (HEAP_X_ALIGNMENT_P3[ppdev->cPelSize] - 1)) &
~(HEAP_X_ALIGNMENT_P3[ppdev->cPelSize] - 1);
// We can't succeed if the requested rectangle is larger than the
// largest possible available rectangle:
if ((cxThis > ppdev->heap.cxBounds) || (cyThis > ppdev->heap.cyBounds))
{
DISPDBG((WRNLVL, "Can't allocate (%d x %d) from (%d x %d)!",
cxThis, cyThis, ppdev->heap.cxBounds, ppdev->heap.cyBounds));
return(NULL);
}
// Find the first available rectangle the same size
// or larger than the requested one:
cxcyThis = CXCY(cxThis, cyThis);
pohThis = GetFreeNode(ppdev, cxThis, cyThis);
if(pohThis == NULL)
{
DISPDBG((WRNLVL, "pohMakeRoomAnywhere: "
"error, GetFreeNode() returned NULL"));
return(NULL);
}
ASSERTDD(pohThis->ohState == OH_FREE, "Non-free node in free list(9)");
if (pohThis->cxcy == CXCY_SENTINEL)
{
// There was no space large enough...
if (floh & FLOH_ONLY_IF_ROOM)
{
return(NULL);
}
DISPDBG((DBGLVL, "> Making room for %li x %li allocation...",
cxThis, cyThis));
// We couldn't find an available rectangle that was big enough
// to fit our request. So throw things out of the heap until we
// have room, oldest allocations first:
do {
// (Least-recently created)
pohThis = ppdev->heap.ohDiscardable.pohPrev;
if (pohThis == &ppdev->heap.ohDiscardable)
{
return(NULL);
}
ASSERTDD(pohThis != &ppdev->heap.ohDiscardable,
"Ran out of discardable entries -- Max not set correctly");
ASSERTDD(pohThis->ohState == OH_DISCARDABLE,
"Non-discardable node in discardable list");
// We can safely exit here if we have to:
pohThis = pohMoveOffscreenDfbToDib(ppdev, pohThis);
if (pohThis == NULL)
{
return(NULL);
}
} while ((pohThis->cx < cxThis) || (pohThis->cy < cyThis));
}
if ((pohThis->cxReserved) && (floh & (FLOH_RESERVE | FLOH_MAKE_PERMANENT)))
{
// We can't reserve this rectangle, or make it permanent, if it's
// already been reserved. So throw absolutely everything out and
// search the free list.
//
// NOTE: This is extremely painful! A better approach would be to
// keep separate 'cxMax' and 'cyMax' variables kept for free
// rectangles that are not reserved (cxMax and cyMax
// currently include reserved free rectangles).
if (!bDiscardEverythingInRectangle(ppdev, 0, 0,
ppdev->cxMemory, ppdev->cyMemory))
{
return(NULL);
}
pohThis = &ppdev->heap.ohFree;
do {
pohThis = pohThis->pohNext;
if (pohThis == &ppdev->heap.ohFree)
{
return(NULL);
}
} // the free list isn't ordered if the heap is DX managed
while ((ppdev->flStatus & STAT_LINEAR_HEAP) == 0 &&
((pohThis->cxReserved) ||
(pohThis->cx < cxThis) ||
(pohThis->cy < cyThis)));
}
if((ppdev->flStatus & STAT_LINEAR_HEAP) == 0)
{
if (!bFreeRightAndBottomSpace(ppdev, pohThis, cxThis, cyThis, FALSE))
{
return(NULL);
}
}
return(pohThis);
}
/******************************Public*Routine******************************\
* BOOL bOhCommit
*
* If 'bCommit' is TRUE, converts a 'reserved' allocation to 'permanent,'
* moving from off-screen memory any discardable allocations that may have
* been using the space.
*
* If 'bCommit' is FALSE, converts a 'permanent' allocation to 'reserved,'
* allowing the space to be used by discardable allocations.
*
\**************************************************************************/
BOOL bOhCommit(
PDEV* ppdev,
OH* poh,
BOOL bCommit)
{
BOOL bRet;
LONG cx;
LONG cy;
ULONG cxcy;
OH* pohRoot;
OH* pohNext;
OH* pohPrev;
bRet = FALSE; // Assume failure
if (poh == NULL)
{
return(bRet);
}
if ((bCommit) && (poh->cxReserved))
{
if (bDiscardEverythingInRectangle(ppdev, poh->x, poh->y,
poh->cxReserved, poh->cyReserved))
{
DISPDBG((DBGLVL, "Commited %li x %li at (%li, %li)",
poh->cx, poh->cy, poh->x, poh->y));
poh->ohState = OH_PERMANENT;
// Remove this node from the free list:
poh->pohPrev->pohNext = poh->pohNext;
poh->pohNext->pohPrev = poh->pohPrev;
// Now insert the node at the head of the permanent list:
pohRoot = &ppdev->heap.ohPermanent;
poh->pohNext = pohRoot->pohNext;
poh->pohPrev = pohRoot;
pohRoot->pohNext->pohPrev = poh;
pohRoot->pohNext = poh;
bRet = TRUE;
}
}
else if ((!bCommit) && (poh->ohState == OH_PERMANENT))
{
DISPDBG((DBGLVL, "Decommited %li x %li at (%li, %li)",
poh->cx, poh->cy, poh->x, poh->y));
poh->ohState = OH_FREE;
poh->cxReserved = poh->cx;
poh->cyReserved = poh->cy;
// Remove this node from the permanent list:
poh->pohPrev->pohNext = poh->pohNext;
poh->pohNext->pohPrev = poh->pohPrev;
// Now insert the node, in order, into the free list:
cxcy = poh->cxcy;
pohNext = ppdev->heap.ohFree.pohNext;
while (pohNext->cxcy < cxcy)
{
pohNext = pohNext->pohNext;
}
pohPrev = pohNext->pohPrev;
pohPrev->pohNext = poh;
pohNext->pohPrev = poh;
poh->pohPrev = pohPrev;
poh->pohNext = pohNext;
bRet = TRUE;
}
// Recalculate the biggest rectangle available for allocation:
vCalculateMaximumNonPermanent(ppdev);
return(bRet);
}
/******************************Public*Routine******************************\
* OH* pohMoveOffscreenDfbToDib
*
* Converts the DFB from being off-screen to being a DIB.
*
* Note: The caller does NOT have to call 'pohFree' on 'poh' after making
* this call.
*
* Returns: NULL if the function failed (due to a memory allocation).
* Otherwise, it returns a pointer to the coalesced off-screen heap
* node that has been made available for subsequent allocations
* (useful when trying to free enough memory to make a new
* allocation).
\**************************************************************************/
OH* pohMoveOffscreenDfbToDib(
PDEV* ppdev,
OH* poh)
{
DSURF *pdsurf;
HBITMAP hbmDib;
SURFOBJ *pso;
GLINT_DECL;
DISPDBG((DBGLVL, "Throwing out poh %p -- %li x %li at (%li, %li)!",
poh, poh->cx, poh->cy, poh->x, poh->y));
pdsurf = poh->pdsurf;
ASSERTDD((poh->x != 0) || (poh->y != 0 || poh->bDXManaged),
"Can't make the visible screen into a DIB");
ASSERTDD((pdsurf->dt & DT_DIB) == 0,
"Can't make a DIB into even more of a DIB");
hbmDib = EngCreateBitmap(pdsurf->sizl, 0, ppdev->iBitmapFormat,
BMF_TOPDOWN, NULL);
if (hbmDib)
{
if (EngAssociateSurface((HSURF) hbmDib, ppdev->hdevEng, 0))
{
pso = EngLockSurface((HSURF) hbmDib);
if (pso != NULL)
{
UploadDFBToDIB(ppdev, pso, pdsurf);
// delete the screen DIB. Recreate it when
// we change the DIB back to a DFB
vDeleteScreenDIBFromOH(poh);
pdsurf->dt = DT_DIB;
pdsurf->pso = pso;
pdsurf->poh = NULL;
// Don't even bother checking to see if this DIB should
// be put back into off-screen memory until the next
// heap 'free' occurs:
pdsurf->iUniq = ppdev->iHeapUniq;
pdsurf->cBlt = 0;
// Remove this node from the off-screen DFB list, and free
// it. 'pohFree' will never return NULL:
return(pohFree(ppdev, poh));
}
}
// Fail case:
EngDeleteSurface((HSURF) hbmDib);
}
return(NULL);
}
/******************************Public*Routine******************************\
* BOOL bMoveEverythingFromOffscreenToDibs
*
* This function is used when we're about to enter full-screen mode, which
* would wipe all our off-screen bitmaps. GDI can ask us to draw on
* device bitmaps even when we're in full-screen mode, and we do NOT have
* the option of stalling the call until we switch out of full-screen.
* We have no choice but to move all the off-screen DFBs to DIBs.
*
* Returns TRUE if all DSURFs have been successfully moved.
*
\**************************************************************************/
BOOL bMoveAllDfbsFromOffscreenToDibs(
PDEV* ppdev)
{
// Throw out any discardable bitmaps over the entire surface:
return(bDiscardEverythingInRectangle(ppdev, 0, 0,
ppdev->cxMemory, ppdev->cyMemory));
}
/******************************Public*Routine******************************\
* OH* pohAllocate
*
* Allocates a rectangle in off-screen memory.
*
* Types:
*
* FLOH_RESERVE
*
* Reserves an off-screen rectangle. The space may still be used by
* discardable bitmaps until the rectangle is committed via 'bOhCommit'.
*
* FLOH_MAKE_PERMANENT
*
* Allocates an off-screen rectangle that can never be booted
* of the heap. It's the caller's responsibility to manage
* the rectangle, which includes what to do with the memory in
* DrvAssertMode when the display is changed to full-screen
* mode.
*
* Default
*
* Allocates a 'discardable' off-screen rectangle for a DFB that may
* be kicked out of off-screen if the space is needed.
*
* Options:
*
* FLOH_ONLY_IF_ROOM
*
* Allocates an off-screen rectangle only if there is free space
* available -- i.e., no discardable rectangles will be moved out of
* off-screen to make room.
*
* Default
*
* May move discardable rectangles out of off-screen to make room.
*
* Arguments:
*
* pptl
*
* If NULL, the rectangle will be allocated anywhere in un-used offscreen
* memory.
*
* If non-NULL, is a requested position for the rectangle.
*
* NOTE: The heap will quickly fragment if arbitrary positions are
* requested. This position option works best if there is only
* one specific rectangle ever requested, or if the allocations
* are always wider than they are high.
*
\**************************************************************************/
OH* pohAllocate(
PDEV* ppdev,
POINTL* pptl, // Optional requested position of rectangle
LONG cxThis, // Width of rectangle to be allocated
LONG cyThis, // Height of rectangle to be allocated
FLOH floh) // Allocation flags
{
OH* pohThis; // Points to found available rectangle we'll use
OH* pohRoot; // Point to root of list where we'll insert node
ULONG cxcy;
OH* pohNext;
OH* pohPrev;
ASSERTDD((floh & (FLOH_RESERVE | FLOH_MAKE_PERMANENT))
!= (FLOH_RESERVE | FLOH_MAKE_PERMANENT),
"Illegal flags -- can't set both "
"FLOH_RESERVE and FLOH_MAKE_PERMANENT");
DISPDBG((DBGLVL, "pohAllocate: size %d %d", cxThis, cyThis));
if (pptl == NULL)
{
pohThis = pohMakeRoomAnywhere(ppdev, cxThis, cyThis, floh);
if (pohThis == NULL)
{
DISPDBG((DBGLVL, "Can't allocate %li x %li with flags %li",
cxThis, cyThis, floh));
}
}
else
{
pohThis = pohMakeRoomAtLocation(ppdev, pptl, cxThis, cyThis, floh);
if (pohThis == NULL)
{
DISPDBG((DBGLVL, "Can't allocate %li x %li at %li, "
"%li with flags %li",
cxThis, cyThis, pptl->x, pptl->y, floh));
}
}
if (pohThis == NULL)
{
return(NULL);
}
// Calculate the effective start address for this bitmap in off-
// screen memory:
if(pohThis->bDXManaged)
{
// in the linear coordinate system:
// pixOffset == offset of DFB from the start of the FB
// y == scanline offset from pixOffset (always 0)
// x == pixel offset from pixOffset+y*lDelta
// (always the pixel offset from the nearest dword aligned pixel)
pohThis->pvScan0 = ppdev->pjScreen +
( ( pohThis->pixOffset +
pohThis->y * pohThis->lPixDelta +
pohThis->x)
<< ppdev->cPelSize );
}
else
{
// in the rectangular coordinate system, for non-PX/RX chips:
// pixOffset == value of y expressed in pixels from the start of FB
// y == pixOffset / lDelta (lDelta is always cxMemory)
// x == pixel offset to DFB from the beginning of its scanline.
// For PX/RX chips pixOffset is always 0, y is the number of scanlines
// to the DFB from the start of the FB
pohThis->pvScan0 = ppdev->pjScreen +
( ( pohThis->y * pohThis->lPixDelta +
pohThis->x)
<< ppdev->cPelSize );
}
// The caller is responsible for setting this field:
pohThis->pdsurf = NULL;
// Our 'reserve' logic expects the node to have 'free' status:
ASSERTDD(pohThis->ohState == OH_FREE, "Node not free after making room");
ASSERTDD(((floh & (FLOH_RESERVE | FLOH_MAKE_PERMANENT)) == 0) ||
(pohThis->cxReserved == 0),
"Can't reserve a rectangle that's already reserved");
if (floh & FLOH_RESERVE)
{
ASSERTDD((ppdev->flStatus & STAT_LINEAR_HEAP) == FALSE,
"pohAllocate() - can't reserve when the heap is DX managed");
// A non-zero value for 'cxReserved' means it's reserved:
pohThis->cxReserved = pohThis->cx;
pohThis->cyReserved = pohThis->cy;
// Remove this node from its place in the free list:
pohThis->pohPrev->pohNext = pohThis->pohNext;
pohThis->pohNext->pohPrev = pohThis->pohPrev;
// Now insert the node, in order, back into the free list:
cxcy = pohThis->cxcy;
pohNext = ppdev->heap.ohFree.pohNext;
while (pohNext->cxcy < cxcy)
{
pohNext = pohNext->pohNext;
}
pohPrev = pohNext->pohPrev;
pohPrev->pohNext = pohThis;
pohNext->pohPrev = pohThis;
pohThis->pohPrev = pohPrev;
pohThis->pohNext = pohNext;
}
else
{
// Remove this node from the free list:
pohThis->pohPrev->pohNext = pohThis->pohNext;
pohThis->pohNext->pohPrev = pohThis->pohPrev;
if (floh & FLOH_MAKE_PERMANENT)
{
// Change status of node and insert into permanent list:
pohThis->ohState = OH_PERMANENT;
pohRoot = &ppdev->heap.ohPermanent;
// Calculate the new maximum size rectangle available
// for allocation:
vCalculateMaximumNonPermanent(ppdev);
}
else
{
// Change status of node and insert into discardable list:
pohThis->ohState = OH_DISCARDABLE;
pohRoot = &ppdev->heap.ohDiscardable;
}
// Now insert the node at the head of the appropriate list:
pohThis->pohNext = pohRoot->pohNext;
pohThis->pohPrev = pohRoot;
pohRoot->pohNext->pohPrev = pohThis;
pohRoot->pohNext = pohThis;
}
DISPDBG((DBGLVL, " Allocated (%li x %li) at (%li, %li) with flags %li",
cxThis, cyThis, pohThis->x, pohThis->y, floh));
return(pohThis);
}
/******************************Public*Routine******************************\
* OH* pohFree
*
* Frees an off-screen heap allocation. The free space will be combined
* with any adjacent free spaces to avoid segmentation of the 2-d heap.
*
* Note: A key idea here is that the data structure for the upper-left-
* most node must be kept at the same physical CPU memory so that
* adjacency links are kept correctly (when two free spaces are
* merged, the lower or right node can be freed).
*
\**************************************************************************/
OH* pohFree(
PDEV* ppdev,
OH* poh)
{
ULONG cxcy;
OH* pohBeside;
OH* pohNext;
OH* pohPrev;
OHSTATE oldState;
if (poh == NULL)
{
DISPDBG((WRNLVL, "pohFree: passed in NULL poh"));
return(NULL);
}
DISPDBG((DBGLVL, "Freeing poh %p -- %li x %li at (%li, %li)",
poh, poh->cx, poh->cy, poh->x, poh->y));
oldState = poh->ohState;
if (oldState != OH_DISCARDABLE)
{
// We can remove the 'reserved' status unless we are merely
// deleting a discardable rectangle that was temporarily
// placed in a reserve rectangle:
poh->cxReserved = 0;
poh->cyReserved = 0;
}
// Update the uniqueness to show that space has been freed, so that
// we may decide to see if some DIBs can be moved back into off-screen
// memory:
ppdev->iHeapUniq++;
if(poh->bDXManaged)
{
#if WNT_DDRAW
DISPDBG((DBGLVL, "pohFree: calling DX free for item %p on heap %p",
(VOID *)poh->fpMem, poh->pvmHeap));
if(poh->pvmHeap == NULL)
{
DISPDBG((ERRLVL,"pohFree: poh %p -- linear DFB is invalid!", poh));
}
else
{
_DX_LIN_FreeLinearMemory(poh->pvmHeap, (ULONG)(poh->fpMem) );
poh->pvmHeap = NULL;
poh->fpMem = 0;
#if 1 //azntst for MP leak
// Remove this node from whatever list it's in:
poh->pohNext->pohPrev = poh->pohPrev;
poh->pohPrev->pohNext = poh->pohNext;
// Add the node the the list of free nodes
vOhFreeNode(ppdev, poh);
// Set the current state as FREE
poh->ohState = OH_FREE;
return(poh); // with DX managing it, we can return now.
#endif
}
#endif // WNT_DDRAW
goto MergeComplete; //azntst Now a NOP
}
MergeLoop:
// Try merging with the right sibling:
pohBeside = poh->pohRight;
if ((poh->cxReserved != poh->cx) &&
(pohBeside->ohState == OH_FREE) &&
(pohBeside->cy == poh->cy) &&
(pohBeside->pohUp == poh->pohUp) &&
(pohBeside->pohDown == poh->pohDown) &&
(pohBeside->pohRight->pohLeft != pohBeside))
{
// Add the right rectangle to ours:
poh->cx += pohBeside->cx;
poh->pohRight = pohBeside->pohRight;
// Remove 'pohBeside' from the free list and free it:
pohBeside->pohNext->pohPrev = pohBeside->pohPrev;
pohBeside->pohPrev->pohNext = pohBeside->pohNext;
vOhFreeNode(ppdev, pohBeside);
goto MergeLoop;
}
// Try merging with the lower sibling:
pohBeside = poh->pohDown;
if ((poh->cyReserved != poh->cy) &&
(pohBeside->ohState == OH_FREE) &&
(pohBeside->cx == poh->cx) &&
(pohBeside->pohLeft == poh->pohLeft) &&
(pohBeside->pohRight == poh->pohRight) &&
(pohBeside->pohDown->pohUp != pohBeside))
{
poh->cy += pohBeside->cy;
poh->pohDown = pohBeside->pohDown;
pohBeside->pohNext->pohPrev = pohBeside->pohPrev;
pohBeside->pohPrev->pohNext = pohBeside->pohNext;
vOhFreeNode(ppdev, pohBeside);
goto MergeLoop;
}
// Don't do any more merge this rectangle into anything to the
// top or to the left if it's reserved:
if (!poh->cxReserved)
{
// Try merging with the left sibling:
pohBeside = poh->pohLeft;
if ((pohBeside->cxReserved != pohBeside->cx) &&
(pohBeside->ohState == OH_FREE) &&
(pohBeside->cy == poh->cy) &&
(pohBeside->pohUp == poh->pohUp) &&
(pohBeside->pohDown == poh->pohDown) &&
(pohBeside->pohRight == poh) &&
(poh->pohRight->pohLeft != poh))
{
// We add our rectangle to the one to the left:
pohBeside->cx += poh->cx;
pohBeside->pohRight = poh->pohRight;
// Remove 'poh' from whatever list it was in (if we were
// asked to free a 'permanent' node, it will have been in
// the permanent list) and free it:
poh->pohNext->pohPrev = poh->pohPrev;
poh->pohPrev->pohNext = poh->pohNext;
vOhFreeNode(ppdev, poh);
poh = pohBeside;
goto MergeLoop;
}
// Try merging with the upper sibling:
pohBeside = poh->pohUp;
if ((pohBeside->cyReserved != pohBeside->cy) &&
(pohBeside->ohState == OH_FREE) &&
(pohBeside->cx == poh->cx) &&
(pohBeside->pohLeft == poh->pohLeft) &&
(pohBeside->pohRight == poh->pohRight) &&
(pohBeside->pohDown == poh) &&
(poh->pohDown->pohUp != poh))
{
pohBeside->cy += poh->cy;
pohBeside->pohDown = poh->pohDown;
poh->pohNext->pohPrev = poh->pohPrev;
poh->pohPrev->pohNext = poh->pohNext;
vOhFreeNode(ppdev, poh);
poh = pohBeside;
goto MergeLoop;
}
}
MergeComplete:
// Remove this node from whatever list it's in:
poh->pohNext->pohPrev = poh->pohPrev;
poh->pohPrev->pohNext = poh->pohNext;
cxcy = CXCY(poh->cx, poh->cy);
// Insert the node, in order, into the free list:
// NB. DX managed DFBs don't need to go in any order -
// they are organised by DirectX instead
pohNext = ppdev->heap.ohFree.pohNext;
if(!poh->bDXManaged)
{
while (pohNext->cxcy < cxcy)
{
pohNext = pohNext->pohNext;
}
}
pohPrev = pohNext->pohPrev;
pohPrev->pohNext = poh;
pohNext->pohPrev = poh;
poh->pohPrev = pohPrev;
poh->pohNext = pohNext;
poh->cxcy = cxcy;
poh->ohState = OH_FREE;
if (oldState == OH_PERMANENT)
{
// Removing the permanent entry means that we may be able to
// enlarge the maximum possible rectangle we can allow:
vCalculateMaximumNonPermanent(ppdev);
}
// Return the node pointer for the new and improved available rectangle:
return(poh);
}
/******************************Public*Routine******************************\
* BOOL bCreateScreenDIBForOH
*
* Given an OH create a surface for the bitmap which is accessible by GDI.
* So if we can't handle any drawing using GLINT we can get GDI to draw
* driectly to the screen. This is possible because we map the screen in
* fully and linearly. We can use this for the screen and off-screen bitmaps.
*
* Returns: FALSE if we didn't create the surface, TRUE if we did.
*
\**************************************************************************/
BOOL
bCreateScreenDIBForOH(PPDEV ppdev, OH *poh, ULONG hooks)
{
DSURF *pdsurf = poh->pdsurf;
UCHAR *pvBits = poh->pvScan0;
LONG lDelta = poh->lPixDelta << ppdev->cPelSize;
HBITMAP hbmDib;
SURFOBJ *pso;
DISPDBG((DBGLVL, "bCreateScreenDIBForOH: poh at 0x%x, pdsurf at 0x%x, "
"pvBits 0x%x", poh, pdsurf, pvBits));
hbmDib = EngCreateBitmap(pdsurf->sizl,
(ULONG)lDelta,
(ULONG)(ppdev->iBitmapFormat),
(FLONG)(((lDelta > 0) ? BMF_TOPDOWN : 0)),
(PVOID)pvBits);
if (hbmDib)
{
// set HOOK_SYNCHRONIZE so that GDI will call DrvSynchronize before
// drawing on this surface. This means we can call Eng anytime safe
// in the knowledge that DrvSynchronize will sync for us.
//
if (EngAssociateSurface((HSURF)hbmDib, ppdev->hdevEng, hooks))
{
// NB: use the temporary pso so we don't overwrite pdsurf->pso
// if we fail
if (pso = EngLockSurface((HSURF)hbmDib))
{
pdsurf->pso = pso;
DISPDBG((DBGLVL, "created surface 0x%x", pso));
return(TRUE);
}
}
EngDeleteSurface((HSURF)hbmDib);
}
DISPDBG((DBGLVL, "bCreateScreenDIBForOH failed"));
return(FALSE);
}
/******************************Public*Routine******************************\
* BOOL vDeleteScreenDIBFromOH
*
* Given an OH delete any screen DIB surface associated with it. We choose to
* do a lazy creation of GDI accessible bitmaps for DFBs. So there may not be
* any surface to delete.
*
* Returns:
*
\**************************************************************************/
VOID
vDeleteScreenDIBFromOH(OH *poh)
{
DSURF *pdsurf = poh->pdsurf;
SURFOBJ *pso;
HSURF hsurf;
DISPDBG((DBGLVL, "vDeleteScreenDIBFromOH called"));
if (!(pso = pdsurf->pso))
{
DISPDBG((DBGLVL, "no surface to delete"));
return;
}
hsurf = pso->hsurf; // can't dereference pso when unlocked
EngUnlockSurface(pso);
EngDeleteSurface(hsurf); // pdsurf->pso can now be reassigned
// to a memory DIB
DISPDBG((DBGLVL, "surface 0x%x deleted", pso));
}
/******************************Public*Routine******************************\
* BOOL bMoveDibToOffscreenDfbIfRoom
*
* Converts the DIB DFB to an off-screen DFB, if there's room for it in
* off-screen memory.
*
* Returns: FALSE if there wasn't room, TRUE if successfully moved.
*
\**************************************************************************/
BOOL bMoveDibToOffscreenDfbIfRoom(
PDEV* ppdev,
DSURF* pdsurf)
{
OH* poh;
SURFOBJ* pso;
HSURF hsurf;
LONG cy;
ASSERTDD(pdsurf->dt & DT_DIB,
"Can't move a bitmap off-screen when it's already off-screen");
// If we're in full-screen mode, we can't move anything to off-screen
// memory:
if (!ppdev->bEnabled || !(ppdev->flStatus & STAT_DEV_BITMAPS))
{
return(FALSE);
}
// XXX
//
// for the GeoTwin all off-screen bitmaps must start on an even scanline.
// This is so that even coordinates always map to the same chip.
cy = pdsurf->sizl.cy;
if (ppdev->flCaps & CAPS_SPLIT_FRAMEBUFFER)
{
cy = (cy + 1) & ~1;
DISPDBG((DBGLVL, "move: sizl.cy evened up to %d for GeoTwin", cy));
}
poh = pohAllocate(ppdev, NULL, pdsurf->sizl.cx, cy,
FLOH_ONLY_IF_ROOM);
if (poh == NULL)
{
// There wasn't any free room.
return(FALSE);
}
// Update the data structures to reflect the new off-screen node:
pso = pdsurf->pso;
poh->pdsurf = pdsurf;
pdsurf->poh = poh;
// recreate the screen DIB. Do it here so that if we fail we can zap poh and
// leave the bitmap as a memory DIB.
if (!bCreateScreenDIBForOH(ppdev, poh, HOOK_SYNCHRONIZE))
{
DISPDBG((DBGLVL, "bCreateScreenDIBForOH failed"));
goto ReturnFail;
}
pdsurf->dt = DT_SCREEN;
pdsurf->bOffScreen = TRUE;
DownloadDIBToDFB(ppdev, pso, pdsurf);
// Now free the DIB. Get the hsurf from the SURFOBJ before we unlock
// it (it's not legal to dereference psoDib when it's unlocked):
hsurf = pso->hsurf;
EngUnlockSurface(pso);
EngDeleteSurface(hsurf);
return(TRUE);
ReturnFail:
pohFree(ppdev, poh);
DISPDBG((DBGLVL, "bMoveDibToOffscreenDfbIfRoom failed"));
return(FALSE);
}
/******************************Public*Routine******************************\
* HBITMAP DrvCreateDeviceBitmap
*
* Function called by GDI to create a device-format-bitmap (DFB). We will
* always try to allocate the bitmap in off-screen; if we can't, we simply
* fail the call and GDI will create and manage the bitmap itself.
*
* Note: We do not have to zero the bitmap bits. GDI will automatically
* call us via DrvBitBlt to zero the bits (which is a security
* consideration).
*
\**************************************************************************/
HBITMAP DrvCreateDeviceBitmap(
DHPDEV dhpdev,
SIZEL sizl,
ULONG iFormat)
{
PDEV* ppdev = (PDEV*) dhpdev;
OH* poh;
DSURF* pdsurf;
HBITMAP hbmDevice;
FLONG flHooks;
LONG cy = sizl.cy;
LONG cx = sizl.cx;
GLINT_DECL;
// If we're in full-screen mode, we hardly have any off-screen memory
// in which to allocate a DFB. LATER: We could still allocate an
// OH node and put the bitmap on the DIB DFB list for later promotion.
// Also check that off-screen DFBs are configured.
if (!ppdev->bEnabled || !(ppdev->flStatus & STAT_DEV_BITMAPS))
{
return(0);
}
// We only support device bitmaps that are the same colour depth
// as our display.
//
// Actually, those are the only kind GDI will ever call us with,
// but we may as well check. Note that this implies you'll never
// get a crack at 1bpp bitmaps.
if (iFormat != ppdev->iBitmapFormat)
{
DISPDBG((DBGLVL, "DrvCreateDeviceBitmap(): can't create bitmap of "
"format %d size(%d,%d), only bitmaps of format %d "
"supported!", iFormat, cx, cy, ppdev->iBitmapFormat));
return(0);
}
// We don't want anything 8x8 or smaller -- they're typically brush
// patterns which we don't particularly want to stash in off-screen
// memory:
if ((cx <= 8) && (cy <= 8))
{
return(0);
}
// XXX
//
// for the GeoTwin all off-screen bitmaps must start on an even scanline.
// This is so that even coordinates always map to the same chip.
if (ppdev->flCaps & CAPS_SPLIT_FRAMEBUFFER)
{
cy = (cy + 1) & ~1;
DISPDBG((DBGLVL, "create: sizl.cy evened up to %d for GeoTwin", cy));
}
if(ppdev->pohImageDownloadArea)
{
DISPDBG((DBGLVL, "DrvCreateDeviceBitmap: discarding image download "
"scratch area"));
pohFree(ppdev, ppdev->pohImageDownloadArea);
ppdev->pohImageDownloadArea = NULL;
ppdev->cbImageDownloadArea = 0;
}
poh = pohAllocate(ppdev, NULL, cx, cy, 0);
if (poh != NULL)
{
pdsurf = ENGALLOCMEM(FL_ZERO_MEMORY, sizeof(DSURF), ALLOC_TAG_GDI(E));
if (pdsurf != NULL)
{
hbmDevice = EngCreateDeviceBitmap((DHSURF) pdsurf, sizl, iFormat);
if (hbmDevice != NULL)
{
flHooks = ppdev->flHooks;
#if SYNCHRONIZEACCESS_WORKS && (_WIN32_WINNT < 0x500)
{
// Setting the SYNCHRONIZEACCESS flag tells GDI that we
// want all drawing to the bitmaps to be synchronized (GDI
// is multi-threaded and by default does not synchronize
// device bitmap drawing -- it would be a Bad Thing for us
// to have multiple threads using the accelerator at the
// same time):
flHooks |= HOOK_SYNCHRONIZEACCESS;
}
#endif // SYNCHRONIZEACCESS_WORKS && (_WIN32_WINNT < 0x500)
// It's a device-managed surface; make sure we don't set
// HOOK_SYNCHRONIZE, otherwise we may confuse GDI:
flHooks &= ~HOOK_SYNCHRONIZE;
if (EngAssociateSurface((HSURF) hbmDevice, ppdev->hdevEng,
flHooks))
{
pdsurf->dt = DT_SCREEN;
pdsurf->bOffScreen = TRUE;
pdsurf->poh = poh;
pdsurf->sizl = sizl;
pdsurf->ppdev = ppdev;
poh->pdsurf = pdsurf;
// create the GDI accessible screen bitmap
if (bCreateScreenDIBForOH(ppdev, poh, HOOK_SYNCHRONIZE))
{
DISPDBG((DBGLVL, "DFB created at (%d,%d), w %d, h %d",
poh->x, poh->y, poh->cx, poh->cy));
return(hbmDevice);
}
EngDeleteSurface((HSURF) hbmDevice);
// Once association is done, EngDeleteSurface
// callback driver's DrvDeleteDeviceBitmap,
// then pdsurf and poh are freed there, so that
// we don't need to free it here.
}
else
{
EngDeleteSurface((HSURF) hbmDevice);
ENGFREEMEM(pdsurf);
pohFree(ppdev, poh);
}
}
else
{
ENGFREEMEM(pdsurf);
pohFree(ppdev, poh);
}
}
else
{
pohFree(ppdev, poh);
}
}
return(0);
}
/******************************Public*Routine******************************\
* VOID DrvDeleteDeviceBitmap
*
* Deletes a DFB.
*
\**************************************************************************/
VOID DrvDeleteDeviceBitmap(
DHSURF dhsurf)
{
DSURF* pdsurf;
PDEV* ppdev;
SURFOBJ* psoDib;
HSURF hsurfDib;
pdsurf = (DSURF*) dhsurf;
ppdev = pdsurf->ppdev;
if ((pdsurf->dt & DT_DIB) ||
(pdsurf->dt & DT_DIRECTDRAW))
{
psoDib = pdsurf->pso;
// Get the hsurf from the SURFOBJ before we unlock it (it's not
// legal to dereference psoDib when it's unlocked):
hsurfDib = psoDib->hsurf;
EngUnlockSurface(psoDib);
EngDeleteSurface(hsurfDib);
}
else if (pdsurf->dt & DT_SCREEN)
{
vDeleteScreenDIBFromOH(pdsurf->poh);
pohFree(ppdev, pdsurf->poh);
}
ENGFREEMEM(pdsurf);
}
/******************************Public*Routine******************************\
* BOOL bAssertModeOffscreenHeap
*
* This function is called whenever we switch in or out of full-screen
* mode. We have to convert all the off-screen bitmaps to DIBs when
* we switch to full-screen (because we may be asked to draw on them even
* when in full-screen, and the mode switch would probably nuke the video
* memory contents anyway).
*
\**************************************************************************/
BOOL bAssertModeOffscreenHeap(
PDEV* ppdev,
BOOL bEnable)
{
BOOL b;
b = TRUE;
if (!bEnable)
{
b = bMoveAllDfbsFromOffscreenToDibs(ppdev);
}
return(b);
}
/******************************Public*Routine******************************\
* VOID vDisableOffscreenHeap
*
* Frees any resources allocated by the off-screen heap.
*
\**************************************************************************/
VOID vDisableOffscreenHeap(
PDEV* ppdev)
{
OHALLOC* poha;
OHALLOC* pohaNext;
SURFOBJ* psoPunt;
HSURF hsurf;
psoPunt = ppdev->psoPunt;
if (psoPunt != NULL)
{
hsurf = psoPunt->hsurf;
EngUnlockSurface(psoPunt);
EngDeleteSurface(hsurf);
}
psoPunt = ppdev->psoPunt2;
if (psoPunt != NULL)
{
hsurf = psoPunt->hsurf;
EngUnlockSurface(psoPunt);
EngDeleteSurface(hsurf);
}
poha = ppdev->heap.pohaChain;
while (poha != NULL)
{
pohaNext = poha->pohaNext; // Grab the next pointer before it's freed
ENGFREEMEM(poha);
poha = pohaNext;
}
// the linear heap, if enabled, must be disabled now
ppdev->flStatus &= ~STAT_LINEAR_HEAP;
}
/******************************Public*Routine******************************\
* BOOL bEnableOffscreenHeap
*
* Initializes the off-screen heap using all available video memory,
* accounting for the portion taken by the visible screen.
*
* Input: ppdev->cxScreen
* ppdev->cyScreen
* ppdev->cxMemory
* ppdev->cyMemory
*
\**************************************************************************/
BOOL bEnableOffscreenHeap(
PDEV* ppdev)
{
OH* poh;
SIZEL sizl;
HSURF hsurf;
POINTL ptlScreen;
LONG virtualcxMemory;
GLINT_DECL;
virtualcxMemory = ppdev->cxMemory;
DISPDBG((DBGLVL, "Screen: %li x %li Memory: %li x %li, "
"virtualcxMem %li x %li", ppdev->cxScreen,
ppdev->cyScreen, ppdev->cxMemory, ppdev->cyMemory,
virtualcxMemory));
ASSERTDD((ppdev->cxScreen <= virtualcxMemory) &&
(ppdev->cyScreen <= ppdev->cyMemory),
"Memory must not have smaller dimensions than visible screen!");
ppdev->heap.pohaChain = NULL;
ppdev->heap.pohFreeList = NULL;
// Initialize the available list, which will be a circular
// doubly-linked list kept in ascending 'cxcy' order, with a
// 'sentinel' at the end of the list:
poh = pohNewNode(ppdev);
if (poh == NULL)
{
goto ReturnFalse;
}
// The first node describes the entire video memory size:
poh->pohNext = &ppdev->heap.ohFree;
poh->pohPrev = &ppdev->heap.ohFree;
poh->ohState = OH_FREE;
poh->x = 0;
poh->y = 0;
poh->lPixDelta = ppdev->cxMemory;
poh->cx = virtualcxMemory;
poh->cy = ppdev->cyMemory;
poh->cxcy = CXCY(virtualcxMemory, ppdev->cyMemory);
poh->pohLeft = &ppdev->heap.ohFree;
poh->pohUp = &ppdev->heap.ohFree;
poh->pohRight = &ppdev->heap.ohFree;
poh->pohDown = &ppdev->heap.ohFree;
poh->pvScan0 = ppdev->pjScreen;
poh->pixOffset = 0;
// The second node is our free list sentinel:
ppdev->heap.ohFree.pohNext = poh;
ppdev->heap.ohFree.pohPrev = poh;
ppdev->heap.ohFree.cxcy = CXCY_SENTINEL;
ppdev->heap.ohFree.cx = 0x7fffffff;
ppdev->heap.ohFree.cy = 0x7fffffff;
ppdev->heap.ohFree.ohState = OH_FREE;
// Initialize the discardable list, which will be a circular
// doubly-linked list kept in order, with a sentinel at the end.
// This node is also used for the screen-surface, for its offset:
ppdev->heap.ohDiscardable.pohNext = &ppdev->heap.ohDiscardable;
ppdev->heap.ohDiscardable.pohPrev = &ppdev->heap.ohDiscardable;
ppdev->heap.ohDiscardable.ohState = OH_DISCARDABLE;
// Initialize the permanent list, which will be a circular
// doubly-linked list kept in order, with a sentinel at the end.
ppdev->heap.ohPermanent.pohNext = &ppdev->heap.ohPermanent;
ppdev->heap.ohPermanent.pohPrev = &ppdev->heap.ohPermanent;
ppdev->heap.ohPermanent.ohState = OH_PERMANENT;
// For the moment, make the max really big so that the first
// allocation we're about to do will succeed:
ppdev->heap.cxMax = 0x7fffffff;
ppdev->heap.cyMax = 0x7fffffff;
#if (_WIN32_WINNT >= 0x500)
if(ppdev->flStatus & ENABLE_LINEAR_HEAP)
{
// in Windows 2000 we use the DX linear heap for DFBs.
// NB. the DX heaps aren't initialized until after the display
// driver has initialized, therefore
// we use the old rectangular heap for 2D cache allocation.
ppdev->heap.pvmLinearHeap = NULL;
ppdev->heap.cLinearHeaps = 0;
}
#endif //(_WIN32_WINNT >= 0x500)
ptlScreen.x = 0;
ptlScreen.y = 0;
// Finally, reserve the upper-left corner for the screen. We can
// actually throw away 'poh' because we'll never need it again
// (not even for disabling the off-screen heap since everything is
// freed using OHALLOCs):
poh = pohAllocate(ppdev, &ptlScreen, ppdev->cxScreen, ppdev->cyScreen,
FLOH_MAKE_PERMANENT);
ASSERTDD((poh != NULL) && (poh->x == 0) && (poh->y == 0) &&
(poh->cx >= ppdev->cxScreen) && (poh->cy >= ppdev->cyScreen),
"Screen allocation messed up");
// Remember it so that we can associate the screen SURFOBJ with this
// poh:
ppdev->pohScreen = poh;
// Allocate a 'punt' SURFOBJ we'll use when the device-bitmap is in
// off-screen memory, but we want GDI to draw to it directly as an
// engine-managed surface:
sizl.cx = virtualcxMemory;
sizl.cy = ppdev->cyMemory;
// We want to create it with exactly the same capabilities
// as our primary surface. We will override the 'lDelta' and 'pvScan0'
// fields later:
// We do NOT want to hook any of the drawing functions. Once we
// send this surface into the engine, we don't want the driver to
// get called with it again. Otherwise we could get into a situation
// where both the source and dest SURFOBJs for a blt were marked as DIBs.
hsurf = (HSURF) EngCreateBitmap(sizl,
0xbadf00d,
ppdev->iBitmapFormat,
BMF_TOPDOWN,
(VOID*) 0xbadf00d);
if ((hsurf == 0) ||
(!EngAssociateSurface(hsurf, ppdev->hdevEng, 0)) ||
(!(ppdev->psoPunt = EngLockSurface(hsurf))))
{
DISPDBG((DBGLVL, "Failed punt surface creation"));
EngDeleteSurface(hsurf);
goto ReturnFalse;
}
// We need another for doing DrvBitBlt and DrvCopyBits when both
// surfaces are off-screen bitmaps:
hsurf = (HSURF) EngCreateBitmap(sizl,
0xbadf00d,
ppdev->iBitmapFormat,
BMF_TOPDOWN,
(VOID*) 0xbadf00d);
if ((hsurf == 0) ||
(!EngAssociateSurface(hsurf, ppdev->hdevEng, 0)) ||
(!(ppdev->psoPunt2 = EngLockSurface(hsurf))))
{
DISPDBG((DBGLVL, "Failed punt surface creation"));
EngDeleteSurface(hsurf);
goto ReturnFalse;
}
DISPDBG((DBGLVL, "Passed bEnableOffscreenHeap"));
// enable off-screen bitmaps by if configured
if (ppdev->flStatus & ENABLE_DEV_BITMAPS)
{
ppdev->flStatus |= STAT_DEV_BITMAPS;
}
if (poh != NULL)
{
return(TRUE);
}
ReturnFalse:
DISPDBG((DBGLVL, "Failed bEnableOffscreenHeap"));
return(FALSE);
}
/******************************Public*Routine******************************\
* BOOL vDisable2DOffscreenMemory
*
* 3D apps want to use the offscreen memory. Prevent 2D from using it.
\**************************************************************************/
BOOL bDisable2DOffscreenMemory(PDEV* ppdev)
{
GLINT_DECL;
if (ppdev->Disable2DCount++ > 0)
{
return(TRUE);
}
if (ppdev->flStatus & STAT_DEV_BITMAPS)
{
if (!bMoveAllDfbsFromOffscreenToDibs(ppdev))
{
DISPDBG((DBGLVL, "bDisable2DOffscreenMemory failed"));
return FALSE;
}
ppdev->flStatus &= ~STAT_DEV_BITMAPS;
}
return TRUE;
}
/******************************Public*Routine******************************\
* VOID vEnable2DOffscreenMemory
*
* 3D apps no longer need offscreen memory. Use it for 2D instead.
\**************************************************************************/
VOID vEnable2DOffscreenMemory(PDEV *ppdev)
{
GLINT_DECL;
if (--ppdev->Disable2DCount > 0)
{
return;
}
if (ppdev->flStatus & ENABLE_DEV_BITMAPS)
{
ppdev->flStatus |= STAT_DEV_BITMAPS;
}
}
#if !defined(_WIN64) && WNT_DDRAW
/******************************Public*Routine******************************\
* VOID vSurfUsed
*
* Notify the heap manager that this surface is touched and it should be
* moved to the end of DdFreeDriverMemory's priority queue
\**************************************************************************/
VOID vSurfUsed(SURFOBJ *psoSurf)
{
DSURF* pSurf;
OH* pohSurf;
OH* pohHead;
// When psoSurf is the original source surface, it can be NULL
if (! psoSurf)
{
return;
}
// Cast the dhsurf back to the Perm3 GDI surface pointer
pSurf = (DSURF *)psoSurf->dhsurf;
// If the surface is a DIB managed by the driver, it shoulf be ignored
if ((! pSurf) || (pSurf->dt & (DT_DIB | DT_DIRECTDRAW)))
{
return;
}
// Get the heap node pointer for the surface
pohSurf = pSurf->poh;
// Only surface in the discardable chain should be considered
if ((! pSurf->bOffScreen) || (pohSurf->ohState != OH_DISCARDABLE))
{
return;
}
// Get the head of the discardable surface chain
pohHead = &pSurf->ppdev->heap.ohDiscardable;
// It is quite possible that the surface is already at the end of the queue
if (pohSurf->pohNext == pohHead)
{
return;
}
// Remove the surf the priority queue
pohSurf->pohPrev->pohNext = pohSurf->pohNext;
pohSurf->pohNext->pohPrev = pohSurf->pohPrev;
// Link the surf into the priority queue at the end
pohSurf->pohPrev = pohHead->pohPrev;
pohSurf->pohNext = pohHead;
pohSurf->pohPrev->pohNext = pohSurf;
pohHead->pohPrev = pohSurf;
}
/******************************Callback*Routine****************************\
* DWORD DdFreeDriverMemory
*
* This function called by DirectDraw when it's running low on memory in
* our heap. You only need to implement this function if you use the
* DirectDraw 'HeapVidMemAllocAligned' function in your driver, and you
* can boot those allocations out of memory to make room for DirectDraw.
*
* We implement this function in the P3 driver because we have DirectDraw
* entirely manage our off-screen heap, and we use HeapVidMemAllocAligned
* to put GDI device-bitmaps in off-screen memory. DirectDraw applications
* have a higher priority for getting stuff into video memory, though, and
* so this function is used to boot those GDI surfaces out of memory in
* order to make room for DirectDraw.
*
\**************************************************************************/
DWORD CALLBACK
DdFreeDriverMemory(PDD_FREEDRIVERMEMORYDATA lpFreeDriverMemory)
{
PPDEV ppdev;
OH* pohSurf;
DISPDBG((DBGLVL, "DdFreeDriverMemory is called"));
// Set the return value in case no VM is available
lpFreeDriverMemory->ddRVal = DDERR_OUTOFMEMORY;
// Get the head of discardable surface queue
ppdev = (PPDEV)lpFreeDriverMemory->lpDD->dhpdev;
pohSurf = ppdev->heap.ohDiscardable.pohNext;
while (pohSurf != &ppdev->heap.ohDiscardable)
{
if (! pohSurf->bDXManaged)
{
pohSurf = pohSurf->pohNext;
continue;
}
// Try to demote this VM bitmap to SM
if (pohMoveOffscreenDfbToDib(ppdev, pohSurf))
{
lpFreeDriverMemory->ddRVal = DD_OK;
}
break;
}
return (DDHAL_DRIVER_HANDLED);
}
/******************************Callback*Routine****************************\
* DdSetExclusiveMode
*
* This function is called by DirectDraw when we switch from the GDI surface,
* to DirectDraw exclusive mode, e.g. to run a game in fullcreen mode.
* You only need to implement this function when you are using the
* 'HeapVidMemAllocAligned' function and allocate memory for Device Bitmaps
* and DirectDraw surfaces from the same heap.
*
* We use this call to disable GDI DeviceBitMaps when we are running in
* DirectDraw exclusive mode. Otherwise a DD app gets confused if both GDI and
* DirectDraw allocate memory from the same heap.
*
*
\**************************************************************************/
DWORD CALLBACK
DdSetExclusiveMode(PDD_SETEXCLUSIVEMODEDATA lpSetExclusiveMode)
{
DISPDBG((DBGLVL, "DdSetExclusiveMode is called"));
if (lpSetExclusiveMode->dwEnterExcl)
{
// Remove all GDI device bitmaps from video memory here
// and make sure they will not be promoted to videomemory
// until we leave exclusive mode.
bMoveAllDfbsFromOffscreenToDibs(
(PDEV*)lpSetExclusiveMode->lpDD->dhpdev);
}
lpSetExclusiveMode->ddRVal = DD_OK;
return (DDHAL_DRIVER_HANDLED);
}
/******************************Callback*Routine****************************\
* DWORD DdFlipToGDISurface
*
* This function is called by DirectDraw when it flips to the surface on which
* GDI can write to.
\**************************************************************************/
#if DX7_STEREO
#define __VIDEO_STEREOENABLE 0x800
#endif
DWORD CALLBACK
DdFlipToGDISurface(PDD_FLIPTOGDISURFACEDATA lpFlipToGDISurface)
{
PDEV* ppdev = (PDEV *)lpFlipToGDISurface->lpDD->dhpdev;
GLINT_DECL;
DISPDBG((DBGLVL, "DdFlipToGDISurface is called"));
lpFlipToGDISurface->ddRVal = DD_OK;
#if DX7_STEREO
READ_GLINT_CTRL_REG(VideoControl, dwVideoControl);
WRITE_GLINT_CTRL_REG(VideoControl,
(dwVideoControl & (~__VIDEO_STEREOENABLE)));
#endif
//
// Return NOTHANDLED, so that the ddraw runtime takes
// care that we flip back to the primary...
//
return (DDHAL_DRIVER_NOTHANDLED);
}
#endif
/*****************************Public*Routine*******************************\
*
* HBITMAP DrvDeriveSurface
*
* This function derives and creates a GDI surface from the specified
* DirectDraw surface.
*
* Parameters
* pDirectDraw-----Points to a DD_DIRECTDRAW_GLOBAL structure that describes
* the DirectDraw object.
* pSurface--------Points to a DD_SURFACE_LOCAL structure that describes the
* DirectDraw surface around which to wrap a GDI surface.
*
* Return Value
* DrvDeriveSurface returns a handle to the created GDI surface upon success.
* It returns NULL if the call fails or if the driver cannot accelerate GDI
* drawing to the specified DirectDraw surface.
*
* Comments
* DrvDeriveSurface allows the driver to create a GDI surface around a
* DirectDraw video memory or AGP surface object in order to allow accelerated
* GDI drawing to the surface. If the driver does not hook this call, all GDI
* drawing to DirectDraw surfaces is done in software using the DIB engine.
*
* GDI calls DrvDeriveSurface with RGB surfaces only.
*
* The driver should call DrvCreateDeviceBitmap to create a GDI surface of the
* same size and format as that of the DirectDraw surface. Space for the
* actual pixels need not be allocated since it already exists.
*
\**************************************************************************/
HBITMAP
DrvDeriveSurface(DD_DIRECTDRAW_GLOBAL* pDirectDraw,
DD_SURFACE_LOCAL* pSurface)
{
PDEV* ppdev;
DSURF* pdsurf;
HBITMAP hbmDevice;
DD_SURFACE_GLOBAL* pSurfaceGlobal;
SIZEL sizl;
ppdev = (PDEV*)pDirectDraw->dhpdev;
pSurfaceGlobal = pSurface->lpGbl;
// Only accel. primary surface.
if (pSurface->ddsCaps.dwCaps & DDSCAPS_PRIMARYSURFACE)
{
pdsurf = (DSURF*)ENGALLOCMEM(FL_ZERO_MEMORY, sizeof(DSURF), ALLOC_TAG_GDI(E));
if (pdsurf != NULL)
{
sizl.cx = pSurfaceGlobal->wWidth;
sizl.cy = pSurfaceGlobal->wHeight;
hbmDevice = EngCreateDeviceBitmap((DHSURF)pdsurf,
sizl,
ppdev->iBitmapFormat);
if ((hbmDevice != NULL) &&
(EngAssociateSurface((HSURF)hbmDevice, ppdev->hdevEng, ppdev->flHooks)))
{
PVOID pvScan0 = ppdev->pjScreen + pSurfaceGlobal->fpVidMem;
HBITMAP hbmDib = EngCreateBitmap(
sizl,
(ULONG) pSurfaceGlobal->lPitch,
(ULONG)(ppdev->iBitmapFormat),
(FLONG)(((pSurfaceGlobal->lPitch > 0) ? BMF_TOPDOWN : 0)),
(PVOID) pvScan0);
if ((hbmDib != NULL) &&
(EngAssociateSurface((HSURF)hbmDib, ppdev->hdevEng, HOOK_SYNCHRONIZE)))
{
pdsurf->dt = DT_SCREEN | DT_DIRECTDRAW;
pdsurf->bOffScreen = FALSE;
pdsurf->poh = ppdev->pohScreen;
pdsurf->sizl = sizl;
pdsurf->ppdev = ppdev;
if (pdsurf->pso = EngLockSurface((HSURF)hbmDib))
{
return (hbmDevice);
}
}
if (hbmDib)
{
EngDeleteSurface((HSURF)hbmDib);
}
}
if (hbmDevice)
{
EngDeleteSurface((HSURF)hbmDevice);
}
ENGFREEMEM(pdsurf);
}
}
return(0);
} // DrvDeriveSurface()