You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
196 lines
7.7 KiB
196 lines
7.7 KiB
//-----------------------------------------------------------------------------
|
|
//
|
|
// This file contains texture addressing functions.
|
|
//
|
|
// Copyright (C) Microsoft Corporation, 1997.
|
|
//
|
|
// WARNING WARNING WARNING
|
|
// This cpp file generated from mcp file.
|
|
// EDIT THE MCP FILE.
|
|
// I warned you.
|
|
// WARNING WARNING WARNING
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
|
|
include(`m4hdr.mh')dnl
|
|
#include "pch.cpp"
|
|
#pragma hdrstop
|
|
#include "ctxa_mh.h"
|
|
#include "ctexfilt.h"
|
|
|
|
include(`ctexaddr.mh')dnl
|
|
|
|
d_RepStr(`d_RepStr(`d_RepStr(`d_RepStr(`d_TexAddr(0, AA, BB, CC, DD)',
|
|
`AA', `TexAddrWrapMirror', `TexAddrAll')',
|
|
`BB', `NoPersp', `Persp')',
|
|
`CC', ifelse(DD, NoLOD, `Point, Bilinear', `Point, Bilinear, MaybeBilinear'))',
|
|
`DD', `NoLOD', `LOD')
|
|
|
|
// All singing all dancing mip mapping address calculation and filtering.
|
|
void C_TexAddr_Filt_All_Mip(PD3DI_RASTCTX pCtx, PD3DI_RASTPRIM pP,
|
|
PD3DI_RASTSPAN pS, INT32 iTex)
|
|
{
|
|
PD3DI_SPANTEX pTex = pCtx->pTexture[iTex];
|
|
INT16 iLOD0 = (INT16)(min(max(pS->iLOD >> 11, 0), pTex->cLOD));
|
|
// use same LOD for both levels, if magnifying
|
|
// ATTENTION the best way to make the magnify go faster is probably to
|
|
// have the bead chooser pick a specialized optimized magnify bead
|
|
// (which we have anyway) and put it in a pfnTex1AddrMagnify bead pointer.
|
|
// Then, we could call it at the top of MipMap based on the sign of the LOD.
|
|
INT16 iLOD1 = (INT16)(min(iLOD0+(pS->iLOD > 0), pTex->cLOD));
|
|
INT16 iShiftU0 = pTex->iShiftU - iLOD0;
|
|
INT16 iShiftU1 = pTex->iShiftU - iLOD1;
|
|
INT16 iShiftV0 = pTex->iShiftV - iLOD0;
|
|
INT16 iShiftV1 = pTex->iShiftV - iLOD1;
|
|
INT32 iU00, iV00, iU10, iV10;
|
|
INT32 iUFrac0, iVFrac0, iUFrac1, iVFrac1;
|
|
|
|
// select filter based on whether we are minifying or magnifying
|
|
D3DTEXTUREMINFILTER uFilter;
|
|
if (pS->iLOD < 0)
|
|
{
|
|
// depends on the first two entries (POINT and LINEAR)
|
|
// being the same for min and mag
|
|
uFilter = (D3DTEXTUREMINFILTER)pTex->uMagFilter;
|
|
}
|
|
else
|
|
{
|
|
uFilter = pTex->uMinFilter;
|
|
}
|
|
if (uFilter == D3DTFG_LINEAR)
|
|
{
|
|
INT32 iHalf = 1<<(TEX_FINAL_SHIFT - iShiftU0 - 1);
|
|
INT32 iUAlign = pCtx->SI.TexUV[iTex].iU - iHalf;
|
|
iHalf = 1<<(TEX_FINAL_SHIFT - iShiftV0 - 1);
|
|
INT32 iVAlign = pCtx->SI.TexUV[iTex].iV - iHalf;
|
|
iU00 = iUAlign >> (TEX_FINAL_SHIFT - iShiftU0);
|
|
iV00 = iVAlign >> (TEX_FINAL_SHIFT - iShiftV0);
|
|
iUFrac0 = (iUAlign<<iShiftU0) & TEX_FINAL_FRAC_MASK;
|
|
iVFrac0 = (iVAlign<<iShiftV0) & TEX_FINAL_FRAC_MASK;
|
|
|
|
iHalf = 1<<(TEX_FINAL_SHIFT - iShiftU1 - 1);
|
|
iUAlign = pCtx->SI.TexUV[iTex].iU - iHalf;
|
|
iHalf = 1<<(TEX_FINAL_SHIFT - iShiftV1 - 1);
|
|
iVAlign = pCtx->SI.TexUV[iTex].iV - iHalf;
|
|
iU10 = iUAlign >> (TEX_FINAL_SHIFT - iShiftU1);
|
|
iV10 = iVAlign >> (TEX_FINAL_SHIFT - iShiftV1);
|
|
iUFrac1 = (iUAlign<<iShiftU1) & TEX_FINAL_FRAC_MASK;
|
|
iVFrac1 = (iVAlign<<iShiftV1) & TEX_FINAL_FRAC_MASK;
|
|
}
|
|
else
|
|
{
|
|
// point sampling mip maps
|
|
iU00 = (pCtx->SI.TexUV[iTex].iU) >> (TEX_FINAL_SHIFT - iShiftU0);
|
|
iV00 = (pCtx->SI.TexUV[iTex].iV) >> (TEX_FINAL_SHIFT - iShiftV0);
|
|
iU10 = (pCtx->SI.TexUV[iTex].iU) >> (TEX_FINAL_SHIFT - iShiftU1);
|
|
iV10 = (pCtx->SI.TexUV[iTex].iV) >> (TEX_FINAL_SHIFT - iShiftV1);
|
|
}
|
|
|
|
// these need to be computed before texture address wrapping, if bilinear is used
|
|
INT32 iU01 = iU00 + 1;
|
|
INT32 iV01 = iV00 + 1;
|
|
INT32 iU11 = iU10 + 1;
|
|
INT32 iV11 = iV10 + 1;
|
|
|
|
UINT16 uMaskU0 = pTex->uMaskU >> iLOD0;
|
|
UINT16 uMaskV0 = pTex->uMaskV >> iLOD0;
|
|
UINT16 uMaskU1 = pTex->uMaskU >> iLOD1;
|
|
UINT16 uMaskV1 = pTex->uMaskV >> iLOD1;
|
|
|
|
INT16 iFlip, iClamp1, iClamp2, iClampMinT, iClampMaxT;
|
|
INT16 iOoWAdj = (INT16)(pS->iOoW>>23); // 1.31 >> 23 = 1.8
|
|
INT16 iUoWAdj = (INT16)(pS->UVoW[iTex].iUoW >> (TEX_SHIFT - 8)); // adjust to match iOoWAdj
|
|
INT16 iVoWAdj = (INT16)(pS->UVoW[iTex].iVoW >> (TEX_SHIFT - 8));
|
|
d_TexAddrAll(U, iU00, uMaskU0, iUoWAdj, iOoWAdj, iLOD0)
|
|
d_TexAddrAll(V, iV00, uMaskV0, iVoWAdj, iOoWAdj, iLOD0)
|
|
d_TexAddrAll(U, iU10, uMaskU1, iUoWAdj, iOoWAdj, iLOD1)
|
|
d_TexAddrAll(V, iV10, uMaskV1, iVoWAdj, iOoWAdj, iLOD1)
|
|
|
|
UINT32 uTex0, uTex1; // to put results of bilinear or point filters
|
|
if (uFilter == D3DTFG_LINEAR)
|
|
{
|
|
// bilinear on mip levels
|
|
// previously computed iOoWAdj, iUoWAdj, iVoWAdj are still valid
|
|
d_TexAddrAll(U, iU01, uMaskU0, iUoWAdj, iOoWAdj, iLOD0)
|
|
d_TexAddrAll(V, iV01, uMaskV0, iVoWAdj, iOoWAdj, iLOD0)
|
|
d_TexAddrAll(U, iU11, uMaskU1, iUoWAdj, iOoWAdj, iLOD1)
|
|
d_TexAddrAll(V, iV11, uMaskV1, iVoWAdj, iOoWAdj, iLOD1)
|
|
UINT32 uTex00 = pCtx->pfnTexRead[iTex](iU00, iV00, pTex->iShiftPitch[iLOD0],
|
|
pTex->pBits[iLOD0], pTex);
|
|
UINT32 uTex10 = pCtx->pfnTexRead[iTex](iU01, iV00, pTex->iShiftPitch[iLOD0],
|
|
pTex->pBits[iLOD0], pTex);
|
|
UINT32 uTex01 = pCtx->pfnTexRead[iTex](iU00, iV01, pTex->iShiftPitch[iLOD0],
|
|
pTex->pBits[iLOD0], pTex);
|
|
UINT32 uTex11 = pCtx->pfnTexRead[iTex](iU01, iV01, pTex->iShiftPitch[iLOD0],
|
|
pTex->pBits[iLOD0], pTex);
|
|
TexFiltBilinear((D3DCOLOR*)&uTex0, iUFrac0, iVFrac0, uTex00, uTex10, uTex01, uTex11);
|
|
uTex00 = pCtx->pfnTexRead[iTex](iU10, iV10, pTex->iShiftPitch[iLOD1],
|
|
pTex->pBits[iLOD1], pTex);
|
|
uTex10 = pCtx->pfnTexRead[iTex](iU11, iV10, pTex->iShiftPitch[iLOD1],
|
|
pTex->pBits[iLOD1], pTex);
|
|
uTex01 = pCtx->pfnTexRead[iTex](iU10, iV11, pTex->iShiftPitch[iLOD1],
|
|
pTex->pBits[iLOD1], pTex);
|
|
uTex11 = pCtx->pfnTexRead[iTex](iU11, iV11, pTex->iShiftPitch[iLOD1],
|
|
pTex->pBits[iLOD1], pTex);
|
|
TexFiltBilinear((D3DCOLOR*)&uTex1, iUFrac1, iVFrac1, uTex00, uTex10, uTex01, uTex11);
|
|
}
|
|
else
|
|
{
|
|
// point sample on mip levels
|
|
uTex0 = pCtx->pfnTexRead[iTex](iU00, iV00, pTex->iShiftPitch[iLOD0],
|
|
pTex->pBits[iLOD0], pTex);
|
|
uTex1 = pCtx->pfnTexRead[iTex](iU10, iV10, pTex->iShiftPitch[iLOD1],
|
|
pTex->pBits[iLOD1], pTex);
|
|
}
|
|
INT32 r0, r1;
|
|
INT32 g0, g1;
|
|
INT32 b0, b1;
|
|
INT32 a0, a1;
|
|
|
|
r0 = RGBA_GETRED(uTex0);
|
|
r1 = RGBA_GETRED(uTex1);
|
|
|
|
g0 = RGBA_GETGREEN(uTex0);
|
|
g1 = RGBA_GETGREEN(uTex1);
|
|
|
|
b0 = RGBA_GETBLUE(uTex0);
|
|
b1 = RGBA_GETBLUE(uTex1);
|
|
|
|
a0 = RGBA_GETALPHA(uTex0);
|
|
a1 = RGBA_GETALPHA(uTex1);
|
|
|
|
INT32 t = pS->iLOD & 0x7ff;
|
|
INT32 mt = 0x7ff - t;
|
|
r0 = (mt*r0 + t*r1)>>11;
|
|
g0 = (mt*g0 + t*g1)>>11;
|
|
b0 = (mt*b0 + t*b1)>>11;
|
|
a0 = (mt*a0 + t*a1)>>11;
|
|
// HACK to see LOD
|
|
// scale it so 0 is mid range red
|
|
// r0 = (((pS->iLOD & 0xf800) >> 8) + 0x80 ) & 0xff; // map in red
|
|
// g0 = (pS->iLOD >> 3) & 0xff; // between maps in green (doesn't show lowest 3 bits)
|
|
// b0 = 0;
|
|
pCtx->SI.TexCol[iTex] = RGBA_MAKE(r0, g0, b0, a0);
|
|
|
|
pS->UVoW[iTex].iUoW += pP->DUVoWDX[iTex].iDUoWDX;
|
|
pS->UVoW[iTex].iVoW += pP->DUVoWDX[iTex].iDVoWDX;
|
|
pS->iLOD += pS->iDLOD;
|
|
pCtx->SI.iOoW = pS->iOoW; // save the old OoW for next stage, if needed
|
|
pS->iOoW += pP->iDOoWDX;
|
|
|
|
d_WDivide()
|
|
pCtx->SI.TexUV[iTex].iU = d_WTimesUVoW(pS->iW,pS->UVoW[iTex].iUoW);
|
|
pCtx->SI.TexUV[iTex].iV = d_WTimesUVoW(pS->iW,pS->UVoW[iTex].iVoW);
|
|
|
|
}
|
|
|
|
void C_TexAddr_Wrapper(PD3DI_RASTCTX pCtx, PD3DI_RASTPRIM pP,
|
|
PD3DI_RASTSPAN pS)
|
|
{
|
|
for (INT32 i = 0; i < (INT32)pCtx->cActTex; i++)
|
|
{
|
|
pCtx->pfnTexAddr[i](pCtx, pP, pS, i);
|
|
}
|
|
pCtx->pfnTexAddrEnd(pCtx, pP, pS);
|
|
}
|
|
|