Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

947 lines
28 KiB

#include "pch.cpp"
#pragma hdrstop
///////////////////////////////////////////////////////////////////////////////
// Vertex Lighting function implementations
///////////////////////////////////////////////////////////////////////////////
//---------------------------------------------------------------------
void
RRLV_Directional(
RRLIGHTING& LData,
D3DLIGHT7 *pLight,
RRLIGHTI *pLightI,
D3DLIGHTINGELEMENT *in,
DWORD dwFlags,
DWORD dwFVFIn)
{
// ATTENTION: Need to heed the specular flag set per light here!!
BOOL bDoSpecular = dwFlags & RRPV_DOSPECULAR;
BOOL bDoLocalViewer = dwFlags & RRPV_LOCALVIEWER;
BOOL bDoColVertexAmbient = dwFlags & RRPV_COLORVERTEXAMB;
BOOL bDoColVertexDiffuse = dwFlags & RRPV_COLORVERTEXDIFF;
BOOL bDoColVertexSpecular = dwFlags & RRPV_COLORVERTEXSPEC;
//
// Add the material's ambient component
//
if (!bDoColVertexAmbient)
{
LData.diffuse.r += pLightI->Ma_La.r;
LData.diffuse.g += pLightI->Ma_La.g;
LData.diffuse.b += pLightI->Ma_La.b;
}
else
{
//
// Note:
// In case ColorVertexAmbient is enabled, note that it uses
// VertexSpecular instead of VertexDiffuse
//
LData.diffuse.r += pLightI->La.r * LData.pAmbientSrc->r;
LData.diffuse.g += pLightI->La.g * LData.pAmbientSrc->g;
LData.diffuse.b += pLightI->La.b * LData.pAmbientSrc->b;
}
//
// If no normals are present, bail out since we cannot perform the
// normal-dependent computations
//
if( (dwFVFIn & D3DFVF_NORMAL) == 0 )
{
return;
}
D3DVALUE dot = DotProduct( pLightI->direction_in_eye, in->dvNormal );
if (FLOAT_GTZ(dot))
{
if (!bDoColVertexDiffuse)
{
LData.diffuse.r += pLightI->Md_Ld.r * dot;
LData.diffuse.g += pLightI->Md_Ld.g * dot;
LData.diffuse.b += pLightI->Md_Ld.b * dot;
}
else
{
LData.diffuse.r += pLightI->Ld.r * LData.pDiffuseSrc->r * dot;
LData.diffuse.g += pLightI->Ld.g * LData.pDiffuseSrc->g * dot;
LData.diffuse.b += pLightI->Ld.b * LData.pDiffuseSrc->b * dot;
}
if (bDoSpecular)
{
D3DVECTOR h; // halfway vector
D3DVECTOR eye; // incident vector ie vector from eye
if (bDoLocalViewer)
{
// calc vector from vertex to the eye
SubtractVector( LData.eye_in_eye, in->dvPosition, eye );
// normalize
Normalize( eye );
}
else
{
eye.x = D3DVALUE( 0.0 );
eye.y = D3DVALUE( 0.0 );
eye.z = D3DVALUE(-1.0 );
}
// calc halfway vector
AddVector( pLightI->direction_in_eye, eye, h );
// normalize
Normalize( h );
dot = DotProduct( h, in->dvNormal );
if (FLOAT_GTZ(dot))
{
if (FLOAT_CMP_POS(dot, >=, LData.specThreshold))
{
D3DVALUE coeff = pow( dot, LData.material.power );
if (!bDoColVertexSpecular)
{
LData.specular.r += pLightI->Ms_Ls.r * coeff;
LData.specular.g += pLightI->Ms_Ls.g * coeff;
LData.specular.b += pLightI->Ms_Ls.b * coeff;
}
else
{
LData.specular.r += (pLightI->Ls.r *
LData.pSpecularSrc->r * coeff);
LData.specular.g += (pLightI->Ls.g *
LData.pSpecularSrc->g * coeff);
LData.specular.b += (pLightI->Ls.b *
LData.pSpecularSrc->b * coeff);
}
}
}
}
}
return;
}
void
RRLV_PointAndSpot(
RRLIGHTING &LData,
D3DLIGHT7 *pLight,
RRLIGHTI *pLightI,
D3DLIGHTINGELEMENT *in,
DWORD dwFlags,
DWORD dwFVFIn)
{
// ATTENTION: Need to heed the specular flag set per light here!!
BOOL bDoSpecular = dwFlags & RRPV_DOSPECULAR;
BOOL bDoLocalViewer = dwFlags & RRPV_LOCALVIEWER;
BOOL bDoColVertexAmbient = dwFlags & RRPV_COLORVERTEXAMB;
BOOL bDoColVertexDiffuse = dwFlags & RRPV_COLORVERTEXDIFF;
BOOL bDoColVertexSpecular = dwFlags & RRPV_COLORVERTEXSPEC;
D3DVECTOR d; // Direction to light
D3DVALUE att;
D3DVALUE dist;
D3DVALUE dot;
SubtractVector( pLightI->position_in_eye, in->dvPosition, d );
// early out if out of range or exactly on the vertex
D3DVALUE distSquared = SquareMagnitude( d );
if (FLOAT_CMP_POS(distSquared, >=, pLightI->range_squared) ||
FLOAT_EQZ(distSquared))
{
return;
}
//
// Compute the attenuation
//
dist = SQRTF( distSquared );
att = pLight->dvAttenuation0 + pLight->dvAttenuation1 * dist +
pLight->dvAttenuation2 * distSquared;
if (FLOAT_EQZ(att))
att = FLT_MAX;
else
att = (D3DVALUE)1.0/att;
dist = D3DVAL(1)/dist;
//
// If the light is a spotlight compute the spot-light factor
//
if (pLight->dltType == D3DLIGHT_SPOT)
{
// Calc dot product of direction to light with light direction to
// be compared anganst the cone angles to see if we are in the
// light.
// Note that cone_dot is still scaled by dist
D3DVALUE cone_dot = DotProduct(d, pLightI->direction_in_eye) * dist;
if (FLOAT_CMP_POS(cone_dot, <=, pLightI->cos_phi_by_2))
{
return;
}
// modify att if in the region between phi and theta
if (FLOAT_CMP_POS(cone_dot, <, pLightI->cos_theta_by_2))
{
D3DVALUE val = (cone_dot - pLightI->cos_phi_by_2) *
pLightI->inv_theta_minus_phi;
if (!FLOAT_EQZ( pLight->dvFalloff - 1.0 ))
{
val = POWF( val, pLight->dvFalloff );
}
att *= val;
}
}
//
// Add the material's ambient component
//
if (!bDoColVertexAmbient)
{
LData.diffuse.r += att*pLightI->Ma_La.r;
LData.diffuse.g += att*pLightI->Ma_La.g;
LData.diffuse.b += att*pLightI->Ma_La.b;
}
else
{
//
// Note:
// In case ColorVertexAmbient is enabled, note that it uses
// VertexSpecular instead of VertexDiffuse
//
LData.diffuse.r += att*pLightI->La.r * LData.pAmbientSrc->r;
LData.diffuse.g += att*pLightI->La.g * LData.pAmbientSrc->g;
LData.diffuse.b += att*pLightI->La.b * LData.pAmbientSrc->b;
}
// Calc dot product of light dir with normal. Note that since we
// didn't normalize the direction the result is scaled by the distance.
if( (dwFVFIn & D3DFVF_NORMAL) == 0)
{
// If no normals are present, bail out since we cannot perform the
// normal-dependent computations
return;
}
else
{
dot = DotProduct( d, in->dvNormal );
}
if (FLOAT_GTZ( dot ))
{
dot *= dist*att;
if (!bDoColVertexDiffuse)
{
LData.diffuse.r += pLightI->Md_Ld.r * dot;
LData.diffuse.g += pLightI->Md_Ld.g * dot;
LData.diffuse.b += pLightI->Md_Ld.b * dot;
}
else
{
LData.diffuse.r += pLightI->Ld.r * LData.pDiffuseSrc->r * dot;
LData.diffuse.g += pLightI->Ld.g * LData.pDiffuseSrc->g * dot;
LData.diffuse.b += pLightI->Ld.b * LData.pDiffuseSrc->b * dot;
}
if (bDoSpecular)
{
D3DVECTOR h; // halfway vector
D3DVECTOR eye; // incident vector ie vector from eye
// normalize light direction
d.x *= dist;
d.y *= dist;
d.z *= dist;
if (bDoLocalViewer)
{
// calc vector from vertex to the eye
SubtractVector( LData.eye_in_eye, in->dvPosition, eye );
// normalize
Normalize( eye );
}
else
{
eye.x = D3DVALUE( 0.0 );
eye.y = D3DVALUE( 0.0 );
eye.z = D3DVALUE(-1.0 );
}
// calc halfway vector
AddVector( d, eye, h );
Normalize( h );
dot = DotProduct( h, in->dvNormal );
if (FLOAT_CMP_POS(dot, >=, LData.specThreshold))
{
D3DVALUE coeff = pow( dot, LData.material.power ) * att;
if (!bDoColVertexSpecular)
{
LData.specular.r += pLightI->Ms_Ls.r * coeff;
LData.specular.g += pLightI->Ms_Ls.g * coeff;
LData.specular.b += pLightI->Ms_Ls.b * coeff;
}
else
{
LData.specular.r += (pLightI->Ls.r *
LData.pSpecularSrc->r * coeff);
LData.specular.g += (pLightI->Ls.g *
LData.pSpecularSrc->g * coeff);
LData.specular.b += (pLightI->Ls.b *
LData.pSpecularSrc->b * coeff);
}
}
}
}
return;
}
///////////////////////////////////////////////////////////////////////////////
// RRLight
///////////////////////////////////////////////////////////////////////////////
RRLight::RRLight()
{
m_dwFlags = RRLIGHT_NEEDSPROCESSING;
m_Next = NULL;
ZeroMemory(&m_Light, sizeof(m_Light));
ZeroMemory(&m_LightI, sizeof(m_LightI));
// Initialize the light to some default values
m_Light.dltType = D3DLIGHT_DIRECTIONAL;
m_Light.dcvDiffuse.r = 1;
m_Light.dcvDiffuse.g = 1;
m_Light.dcvDiffuse.b = 1;
m_Light.dcvDiffuse.a = 0;
m_Light.dvDirection.x = 0;
m_Light.dvDirection.y = 0;
m_Light.dvDirection.z = 1;
// m_Light.dcvSpecular = {0,0,0,0};
// m_Light.dcvAmbient = {0,0,0,0};
// m_Light.dvPosition = {0,0,0};
// m_Light.dvRange = 0;
// m_Light.dvFalloff = 0;
// m_Light.dvAttenuation0 = 0;
// m_Light.dvAttenuation1 = 0;
// m_Light.dvAttenuation2 = 0;
// m_Light.dvTheta = 0;
// m_Light.dvPhi = 0;
return;
}
HRESULT
RRLight::SetLight(LPD3DLIGHT7 pLight)
{
// Validate the parameters passed
switch (pLight->dltType)
{
case D3DLIGHT_POINT:
case D3DLIGHT_SPOT:
case D3DLIGHT_DIRECTIONAL:
break;
default:
// No other light types are allowed
DPFRR(0, "Invalid light type passed");
return DDERR_INVALIDPARAMS;
}
if (pLight)
m_Light = *pLight;
// Mark it for processing later
m_dwFlags |= RRLIGHT_NEEDSPROCESSING;
return DD_OK;
}
HRESULT
RRLight::GetLight(LPD3DLIGHT7 pLight)
{
if (pLight == NULL) return DDERR_GENERIC;
*pLight = m_Light;
return D3D_OK;
}
void
RRLight::ProcessLight(D3DMATERIAL7 *mat, RRLIGHTVERTEX_FUNC_TABLE *pTbl)
{
//
// If it is already processed, return
//
if (!NeedsProcessing()) return;
//
// Save the ambient light (0-1)
//
m_LightI.La.r = m_Light.dcvAmbient.r;
m_LightI.La.g = m_Light.dcvAmbient.g;
m_LightI.La.b = m_Light.dcvAmbient.b;
//
// Save the diffuse light (0-1)
//
m_LightI.Ld.r = m_Light.dcvDiffuse.r;
m_LightI.Ld.g = m_Light.dcvDiffuse.g;
m_LightI.Ld.b = m_Light.dcvDiffuse.b;
//
// Save the specular light (0-1)
//
m_LightI.Ls.r = m_Light.dcvSpecular.r;
m_LightI.Ls.g = m_Light.dcvSpecular.g;
m_LightI.Ls.b = m_Light.dcvSpecular.b;
//
// Material Ambient times Light Ambient
//
m_LightI.Ma_La.r = m_LightI.La.r * mat->ambient.r * D3DVALUE(255.0);
m_LightI.Ma_La.g = m_LightI.La.g * mat->ambient.g * D3DVALUE(255.0);
m_LightI.Ma_La.b = m_LightI.La.b * mat->ambient.b * D3DVALUE(255.0);
//
// Material Diffuse times Light Diffuse
//
m_LightI.Md_Ld.r = m_LightI.Ld.r * mat->diffuse.r * D3DVALUE(255.0);
m_LightI.Md_Ld.g = m_LightI.Ld.g * mat->diffuse.g * D3DVALUE(255.0);
m_LightI.Md_Ld.b = m_LightI.Ld.b * mat->diffuse.b * D3DVALUE(255.0);
//
// Material Specular times Light Specular
//
m_LightI.Ms_Ls.r = m_LightI.Ls.r * mat->specular.r * D3DVALUE(255.0);
m_LightI.Ms_Ls.g = m_LightI.Ls.g * mat->specular.g * D3DVALUE(255.0);
m_LightI.Ms_Ls.b = m_LightI.Ls.b * mat->specular.b * D3DVALUE(255.0);
//
// Assign the actual lighting function pointer, in addition to
// performing some precomputation of light-type specific data
//
m_pfnLightVertex = NULL;
switch (m_Light.dltType)
{
case D3DLIGHT_DIRECTIONAL:
m_pfnLightVertex = pTbl->pfnDirectional;
break;
case D3DLIGHT_POINT:
m_LightI.range_squared = m_Light.dvRange * m_Light.dvRange;
m_LightI.inv_theta_minus_phi = 1.0f;
m_pfnLightVertex = pTbl->pfnPoint;
break;
case D3DLIGHT_SPOT:
m_LightI.range_squared = m_Light.dvRange * m_Light.dvRange;
m_LightI.cos_theta_by_2 = (float)cos(m_Light.dvTheta / 2.0);
m_LightI.cos_phi_by_2 = (float)cos(m_Light.dvPhi / 2.0);
m_LightI.inv_theta_minus_phi = m_LightI.cos_theta_by_2 -
m_LightI.cos_phi_by_2;
if (m_LightI.inv_theta_minus_phi != 0.0)
{
m_LightI.inv_theta_minus_phi = 1.0f/m_LightI.inv_theta_minus_phi;
}
else
{
m_LightI.inv_theta_minus_phi = 1.0f;
}
m_pfnLightVertex = pTbl->pfnSpot;
break;
default:
DPFRR( 0, "Cannot process light of unknown type" );
break;
}
// Mark it as been processed
m_dwFlags &= ~RRLIGHT_NEEDSPROCESSING;
return;
}
void
RRLight::Enable(RRLight **ppRoot)
{
// Assert that it is not already enabled
if (IsEnabled()) return;
// Assert that Root Ptr is not Null
if (ppRoot == NULL) return;
RRLight *pTmp = *ppRoot;
*ppRoot = this;
m_Next = pTmp;
m_dwFlags |= RRLIGHT_ENABLED;
return;
}
void
RRLight::Disable(RRLight **ppRoot)
{
// Assert that the light is enabled
if (!IsEnabled()) return;
// Assert that Root Ptr is not Null
if (ppRoot == NULL) return;
RRLight *pLightPrev = *ppRoot;
// If this is the first light in the active list
if (pLightPrev == this)
{
*ppRoot = m_Next;
m_dwFlags &= ~RRLIGHT_ENABLED;
return;
}
while (pLightPrev->m_Next != this)
{
// Though this light was marked as enabled, it is not on
// the active list. Assert this.
if (pLightPrev->m_Next == NULL)
{
m_dwFlags &= ~RRLIGHT_ENABLED;
return;
}
// Else get the next pointer
pLightPrev = pLightPrev->m_Next;
}
pLightPrev->m_Next = m_Next;
m_dwFlags &= ~RRLIGHT_ENABLED;
return;
}
void
RRLight::XformLight( RRMATRIX *mView )
{
// If the light is not a directional light,
// tranform its position to camera space
if (m_Light.dltType != D3DLIGHT_DIRECTIONAL)
{
XformBy4x3(&m_Light.dvPosition, mView, &m_LightI.position_in_eye);
}
if (m_Light.dltType != D3DLIGHT_POINT)
{
// Transform light direction to the eye space
Xform3VecBy3x3( &m_Light.dvDirection, mView,
&m_LightI.direction_in_eye );
// Normalize it
Normalize( m_LightI.direction_in_eye );
// Reverse it such that the direction is to the light
ReverseVector( m_LightI.direction_in_eye, m_LightI.direction_in_eye );
}
return;
}
//---------------------------------------------------------------------
// ScaleRGBColorTo255: Scales colors from 0-1 range to 0-255 range
//---------------------------------------------------------------------
void
ScaleRGBColorTo255( const D3DCOLORVALUE& src, RRCOLOR& dest )
{
dest.r = D3DVALUE(255.0) * src.r;
dest.g = D3DVALUE(255.0) * src.g;
dest.b = D3DVALUE(255.0) * src.b;
}
//---------------------------------------------------------------------
// RRProcessVertices::UpdateLightingData
// Updates lighting data used by ProcessVertices
//---------------------------------------------------------------------
HRESULT
RRProcessVertices::UpdateLightingData()
{
HRESULT hr = D3D_OK;
RRLIGHTING& LData = m_lighting;
RRLight *pLight = m_lighting.pActiveLights;
D3DVECTOR t;
D3DMATERIAL7 *mat = &m_Material;
//
// Eye in eye space
//
LData.eye_in_eye.x = (D3DVALUE)0;
LData.eye_in_eye.y = (D3DVALUE)0;
LData.eye_in_eye.z = (D3DVALUE)0;
// ATTENTION: Colorvertex may have changed the values of the
// material alphas
if (m_dwDirtyFlags & RRPV_DIRTY_MATERIAL)
{
//
// Save the material to be used to light vertices
//
LData.material = *mat;
ScaleRGBColorTo255( mat->ambient, LData.matAmb );
ScaleRGBColorTo255( mat->diffuse, LData.matDiff );
ScaleRGBColorTo255( mat->specular, LData.matSpec );
ScaleRGBColorTo255( mat->emissive, LData.matEmis );
//
// Compute the Material Diffuse Alpha
//
LData.materialDiffAlpha = mat->diffuse.a * D3DVALUE(255);
if (mat->diffuse.a < 0)
LData.materialDiffAlpha = 0;
else if (LData.materialDiffAlpha > 255)
LData.materialDiffAlpha = 255 << 24;
else LData.materialDiffAlpha <<= 24;
//
// Compute the Material Specular Alpha
//
LData.materialSpecAlpha = mat->specular.a * D3DVALUE(255);
if (mat->specular.a < 0)
LData.materialSpecAlpha = 0;
else if (LData.materialSpecAlpha > 255)
LData.materialSpecAlpha = 255 << 24;
else LData.materialSpecAlpha <<= 24;
//
// Precompute the ambient and emissive components that are
// not dependent on any contribution by the lights themselves
//
LData.ambEmiss.r = LData.ambient_red * LData.matAmb.r +
LData.matEmis.r;
LData.ambEmiss.g = LData.ambient_green * LData.matAmb.g +
LData.matEmis.g;
LData.ambEmiss.b = LData.ambient_blue * LData.matAmb.b +
LData.matEmis.b;
//
// If the dot product is less than this
// value, specular factor is zero
//
if (mat->power > D3DVAL(0.001))
{
LData.specThreshold = D3DVAL(pow(0.001, 1.0/mat->power));
}
}
while (pLight)
{
if ((m_dwDirtyFlags & RRPV_DIRTY_MATERIAL) ||
pLight->NeedsProcessing())
{
// If the material is dirty, light needs processing, regardless
if (m_dwDirtyFlags & RRPV_DIRTY_MATERIAL)
{
pLight->m_dwFlags |= RRLIGHT_NEEDSPROCESSING;
}
// If the light has been set, or some material paramenters
// changed, re-process the light.
pLight->ProcessLight( &m_Material, &m_LightVertexTable );
// Transform the light to Eye space
// Lights are defined in world space, so simply apply the
// Viewing transform
pLight->XformLight( &m_xfmView );
}
else if (m_dwDirtyFlags & RRPV_DIRTY_NEEDXFMLIGHT)
{
pLight->XformLight( &m_xfmView );
}
pLight = pLight->m_Next;
}
// Clear Lighting dirty flags
m_dwDirtyFlags &= ~RRPV_DIRTY_LIGHTING;
return hr;
}
//---------------------------------------------------------------------
// RRProcessVertices::UpdateFogData
// Updates Fog data used by ProcessVertices
//---------------------------------------------------------------------
HRESULT
RRProcessVertices::UpdateFogData()
{
HRESULT hr = D3D_OK;
if (m_lighting.fog_end == m_lighting.fog_start)
m_lighting.fog_factor = D3DVAL(0.0);
else
m_lighting.fog_factor = D3DVAL(255) / (m_lighting.fog_end -
m_lighting.fog_start);
// Clear Fog dirty flags
m_dwDirtyFlags &= ~RRPV_DIRTY_FOG;
return hr;
}
//---------------------------------------------------------------------
// RRProcessVertices::LightVertex
// Actual lighting computation takes place here
//---------------------------------------------------------------------
void
RRProcessVertices::LightVertex(D3DLIGHTINGELEMENT *pLE)
{
RRLIGHTING &LData = m_lighting;
RRLight *pLight;
//
// Initialize Diffuse color with the Ambient and Emissive component
// independent of the light (Ma*La + Me)
//
if (m_dwTLState & (RRPV_COLORVERTEXEMIS | RRPV_COLORVERTEXAMB))
{
// If the material values need to be replaced, compute
LData.diffuse.r = LData.ambient_red * LData.pAmbientSrc->r +
LData.pEmissiveSrc->r;
LData.diffuse.g = LData.ambient_green * LData.pAmbientSrc->g +
LData.pEmissiveSrc->g;
LData.diffuse.b = LData.ambient_blue * LData.pAmbientSrc->b +
LData.pEmissiveSrc->b;
}
else
{
// If none of the material values needs to be replaced
LData.diffuse = LData.ambEmiss;
}
//
// Initialize the Specular to Zero
//
LData.specular.r = D3DVAL(0);
LData.specular.g = D3DVAL(0);
LData.specular.b = D3DVAL(0);
//
// In a loop accumulate color from the activated lights
//
pLight = LData.pActiveLights;
while (pLight)
{
if (pLight->m_pfnLightVertex)
(*pLight->m_pfnLightVertex)(m_lighting,
&pLight->m_Light,
&pLight->m_LightI,
pLE,
m_dwTLState,
m_dwFVFIn);
pLight = pLight->m_Next;
}
//
// Compute the diffuse color of the vertex
//
int r = FTOI(LData.diffuse.r);
int g = FTOI(LData.diffuse.g);
int b = FTOI(LData.diffuse.b);
DWORD a = *LData.pDiffuseAlphaSrc;
//
// Clamp the r, g, b, components
//
if (r < 0) r = 0; else if (r > 255) r = 255;
if (g < 0) g = 0; else if (g > 255) g = 255;
if (b < 0) b = 0; else if (b > 255) b = 255;
LData.outDiffuse = a + (r<<16) + (g<<8) + b;
//
// Obtain the specular Alpha
//
a = *(LData.pSpecularAlphaSrc);
//
// Compute the RGB part of the specular color
//
if (m_dwTLState & RRPV_DOSPECULAR)
{
r = FTOI(LData.specular.r);
g = FTOI(LData.specular.g);
b = FTOI(LData.specular.b);
//
// Clamp the r, g, b, components
//
if (r < 0) r = 0; else if (r > 255) r = 255;
if (g < 0) g = 0; else if (g > 255) g = 255;
if (b < 0) b = 0; else if (b > 255) b = 255;
}
//
// If SPECULAR is not enabled but the specular color
// had been provided in the input vertex, simply copy.
//
else if ( m_qwFVFOut & D3DFVF_SPECULAR )
{
r = FTOI(LData.vertexSpecular.r);
g = FTOI(LData.vertexSpecular.g);
b = FTOI(LData.vertexSpecular.b);
a = LData.vertexSpecAlpha;
}
//
// If SpecularColor is not enabled
//
else
{
r = g = b = 0;
}
LData.outSpecular = a + (r<<16) + (g<<8) + b;
return;
}
//---------------------------------------------------------------------
// RRProcessVertices::FogVertex
// Vertex Fog computation
// Input:
// v - input vertex in the model space
// le - vertex, transformed to the camera space
// Output:
// Alpha component of pv->lighting.outSpecular is set
//---------------------------------------------------------------------
#define RRPV_SET_ALPHA(color, a) ((char*)&color)[3] = (unsigned char)a;
void
RRProcessVertices::FogVertex(D3DVECTOR &v,
D3DLIGHTINGELEMENT *pLE,
int numVertexBlends,
float *pBlendFactors,
BOOL bVertexInEyeSpace)
{
D3DVALUE dist = 0.0f;
//
// Calculate the distance
//
if (bVertexInEyeSpace)
{
// Vertex is already transformed to the camera space
if (m_dwTLState & RRPV_RANGEFOG)
{
dist = SQRTF(pLE->dvPosition.x*pLE->dvPosition.x +
pLE->dvPosition.y*pLE->dvPosition.y +
pLE->dvPosition.z*pLE->dvPosition.z);
}
else
{
dist = pLE->dvPosition.z;
}
}
else if (m_dwTLState & RRPV_RANGEFOG)
{
D3DVALUE x = 0, y = 0, z = 0;
float cumulBlend = 0.0f;
for( int j=0; j<=numVertexBlends; j++)
{
float blend;
if( numVertexBlends == 0 )
{
blend = 1.0f;
}
else if( j == numVertexBlends )
{
blend = 1.0f - cumulBlend;
}
else
{
blend = pBlendFactors[j];
}
cumulBlend += pBlendFactors[j];
x += (v.x*m_xfmToEye[j]._11 +
v.y*m_xfmToEye[j]._21 +
v.z*m_xfmToEye[j]._31 +
m_xfmToEye[j]._41) * blend;
y += (v.x*m_xfmToEye[j]._12 +
v.y*m_xfmToEye[j]._22 +
v.z*m_xfmToEye[j]._32 +
m_xfmToEye[j]._42) * blend;
z += (v.x*m_xfmToEye[j]._13 +
v.y*m_xfmToEye[j]._23 +
v.z*m_xfmToEye[j]._33 +
m_xfmToEye[j]._43) * blend;
}
dist = SQRTF(x*x + y*y + z*z);
}
else
{
float cumulBlend = 0.0f;
for( int j=0; j<=numVertexBlends; j++)
{
float blend;
if( numVertexBlends == 0 )
{
blend = 1.0f;
}
else if( j == numVertexBlends )
{
blend = 1.0f - cumulBlend;
}
else
{
blend = pBlendFactors[j];
}
cumulBlend += pBlendFactors[j];
dist += (v.x*m_xfmToEye[j]._13 +
v.y*m_xfmToEye[j]._23 +
v.z*m_xfmToEye[j]._33 +
m_xfmToEye[j]._43) * blend;
}
}
if (m_lighting.fog_mode == D3DFOG_LINEAR)
{
if (dist < m_lighting.fog_start)
{
RRPV_SET_ALPHA(m_lighting.outSpecular, 255);
}
else if (dist >= m_lighting.fog_end)
{
RRPV_SET_ALPHA(m_lighting.outSpecular, 0);
}
else
{
D3DVALUE v = (m_lighting.fog_end - dist) * m_lighting.fog_factor;
int f = FTOI(v);
RRPV_SET_ALPHA(m_lighting.outSpecular, f);
}
}
else
{
D3DVALUE tmp = dist * m_lighting.fog_density;
if (m_lighting.fog_mode == D3DFOG_EXP2)
{
tmp *= tmp;
}
tmp = (D3DVALUE)exp(-tmp) * 255.0f;
int f = FTOI(tmp);
RRPV_SET_ALPHA( m_lighting.outSpecular, f )
}
return;
}