You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
254 lines
7.4 KiB
254 lines
7.4 KiB
package bigfloat;
|
|
require "bigint.pl";
|
|
#
|
|
# This library is no longer being maintained, and is included for backward
|
|
# compatibility with Perl 4 programs which may require it.
|
|
#
|
|
# In particular, this should not be used as an example of modern Perl
|
|
# programming techniques.
|
|
#
|
|
# Suggested alternative: Math::BigFloat
|
|
#
|
|
# Arbitrary length float math package
|
|
#
|
|
# by Mark Biggar
|
|
#
|
|
# number format
|
|
# canonical strings have the form /[+-]\d+E[+-]\d+/
|
|
# Input values can have embedded whitespace
|
|
# Error returns
|
|
# 'NaN' An input parameter was "Not a Number" or
|
|
# divide by zero or sqrt of negative number
|
|
# Division is computed to
|
|
# max($div_scale,length(dividend)+length(divisor))
|
|
# digits by default.
|
|
# Also used for default sqrt scale
|
|
|
|
$div_scale = 40;
|
|
|
|
# Rounding modes one of 'even', 'odd', '+inf', '-inf', 'zero' or 'trunc'.
|
|
|
|
$rnd_mode = 'even';
|
|
|
|
# bigfloat routines
|
|
#
|
|
# fadd(NSTR, NSTR) return NSTR addition
|
|
# fsub(NSTR, NSTR) return NSTR subtraction
|
|
# fmul(NSTR, NSTR) return NSTR multiplication
|
|
# fdiv(NSTR, NSTR[,SCALE]) returns NSTR division to SCALE places
|
|
# fneg(NSTR) return NSTR negation
|
|
# fabs(NSTR) return NSTR absolute value
|
|
# fcmp(NSTR,NSTR) return CODE compare undef,<0,=0,>0
|
|
# fround(NSTR, SCALE) return NSTR round to SCALE digits
|
|
# ffround(NSTR, SCALE) return NSTR round at SCALEth place
|
|
# fnorm(NSTR) return (NSTR) normalize
|
|
# fsqrt(NSTR[, SCALE]) return NSTR sqrt to SCALE places
|
|
|
|
# Convert a number to canonical string form.
|
|
# Takes something that looks like a number and converts it to
|
|
# the form /^[+-]\d+E[+-]\d+$/.
|
|
sub main'fnorm { #(string) return fnum_str
|
|
local($_) = @_;
|
|
s/\s+//g; # strip white space
|
|
if (/^([+-]?)(\d*)(\.(\d*))?([Ee]([+-]?\d+))?$/
|
|
&& ($2 ne '' || defined($4))) {
|
|
my $x = defined($4) ? $4 : '';
|
|
&norm(($1 ? "$1$2$x" : "+$2$x"), (($x ne '') ? $6-length($x) : $6));
|
|
} else {
|
|
'NaN';
|
|
}
|
|
}
|
|
|
|
# normalize number -- for internal use
|
|
sub norm { #(mantissa, exponent) return fnum_str
|
|
local($_, $exp) = @_;
|
|
if ($_ eq 'NaN') {
|
|
'NaN';
|
|
} else {
|
|
s/^([+-])0+/$1/; # strip leading zeros
|
|
if (length($_) == 1) {
|
|
'+0E+0';
|
|
} else {
|
|
$exp += length($1) if (s/(0+)$//); # strip trailing zeros
|
|
sprintf("%sE%+ld", $_, $exp);
|
|
}
|
|
}
|
|
}
|
|
|
|
# negation
|
|
sub main'fneg { #(fnum_str) return fnum_str
|
|
local($_) = &'fnorm($_[$[]);
|
|
vec($_,0,8) ^= ord('+') ^ ord('-') unless $_ eq '+0E+0'; # flip sign
|
|
if ( ord("\t") == 9 ) { # ascii
|
|
s/^H/N/;
|
|
}
|
|
else { # ebcdic character set
|
|
s/\373/N/;
|
|
}
|
|
$_;
|
|
}
|
|
|
|
# absolute value
|
|
sub main'fabs { #(fnum_str) return fnum_str
|
|
local($_) = &'fnorm($_[$[]);
|
|
s/^-/+/; # mash sign
|
|
$_;
|
|
}
|
|
|
|
# multiplication
|
|
sub main'fmul { #(fnum_str, fnum_str) return fnum_str
|
|
local($x,$y) = (&'fnorm($_[$[]),&'fnorm($_[$[+1]));
|
|
if ($x eq 'NaN' || $y eq 'NaN') {
|
|
'NaN';
|
|
} else {
|
|
local($xm,$xe) = split('E',$x);
|
|
local($ym,$ye) = split('E',$y);
|
|
&norm(&'bmul($xm,$ym),$xe+$ye);
|
|
}
|
|
}
|
|
|
|
# addition
|
|
sub main'fadd { #(fnum_str, fnum_str) return fnum_str
|
|
local($x,$y) = (&'fnorm($_[$[]),&'fnorm($_[$[+1]));
|
|
if ($x eq 'NaN' || $y eq 'NaN') {
|
|
'NaN';
|
|
} else {
|
|
local($xm,$xe) = split('E',$x);
|
|
local($ym,$ye) = split('E',$y);
|
|
($xm,$xe,$ym,$ye) = ($ym,$ye,$xm,$xe) if ($xe < $ye);
|
|
&norm(&'badd($ym,$xm.('0' x ($xe-$ye))),$ye);
|
|
}
|
|
}
|
|
|
|
# subtraction
|
|
sub main'fsub { #(fnum_str, fnum_str) return fnum_str
|
|
&'fadd($_[$[],&'fneg($_[$[+1]));
|
|
}
|
|
|
|
# division
|
|
# args are dividend, divisor, scale (optional)
|
|
# result has at most max(scale, length(dividend), length(divisor)) digits
|
|
sub main'fdiv #(fnum_str, fnum_str[,scale]) return fnum_str
|
|
{
|
|
local($x,$y,$scale) = (&'fnorm($_[$[]),&'fnorm($_[$[+1]),$_[$[+2]);
|
|
if ($x eq 'NaN' || $y eq 'NaN' || $y eq '+0E+0') {
|
|
'NaN';
|
|
} else {
|
|
local($xm,$xe) = split('E',$x);
|
|
local($ym,$ye) = split('E',$y);
|
|
$scale = $div_scale if (!$scale);
|
|
$scale = length($xm)-1 if (length($xm)-1 > $scale);
|
|
$scale = length($ym)-1 if (length($ym)-1 > $scale);
|
|
$scale = $scale + length($ym) - length($xm);
|
|
&norm(&round(&'bdiv($xm.('0' x $scale),$ym),&'babs($ym)),
|
|
$xe-$ye-$scale);
|
|
}
|
|
}
|
|
|
|
# round int $q based on fraction $r/$base using $rnd_mode
|
|
sub round { #(int_str, int_str, int_str) return int_str
|
|
local($q,$r,$base) = @_;
|
|
if ($q eq 'NaN' || $r eq 'NaN') {
|
|
'NaN';
|
|
} elsif ($rnd_mode eq 'trunc') {
|
|
$q; # just truncate
|
|
} else {
|
|
local($cmp) = &'bcmp(&'bmul($r,'+2'),$base);
|
|
if ( $cmp < 0 ||
|
|
($cmp == 0 &&
|
|
( $rnd_mode eq 'zero' ||
|
|
($rnd_mode eq '-inf' && (substr($q,$[,1) eq '+')) ||
|
|
($rnd_mode eq '+inf' && (substr($q,$[,1) eq '-')) ||
|
|
($rnd_mode eq 'even' && $q =~ /[24680]$/) ||
|
|
($rnd_mode eq 'odd' && $q =~ /[13579]$/) )) ) {
|
|
$q; # round down
|
|
} else {
|
|
&'badd($q, ((substr($q,$[,1) eq '-') ? '-1' : '+1'));
|
|
# round up
|
|
}
|
|
}
|
|
}
|
|
|
|
# round the mantissa of $x to $scale digits
|
|
sub main'fround { #(fnum_str, scale) return fnum_str
|
|
local($x,$scale) = (&'fnorm($_[$[]),$_[$[+1]);
|
|
if ($x eq 'NaN' || $scale <= 0) {
|
|
$x;
|
|
} else {
|
|
local($xm,$xe) = split('E',$x);
|
|
if (length($xm)-1 <= $scale) {
|
|
$x;
|
|
} else {
|
|
&norm(&round(substr($xm,$[,$scale+1),
|
|
"+0".substr($xm,$[+$scale+1,1),"+10"),
|
|
$xe+length($xm)-$scale-1);
|
|
}
|
|
}
|
|
}
|
|
|
|
# round $x at the 10 to the $scale digit place
|
|
sub main'ffround { #(fnum_str, scale) return fnum_str
|
|
local($x,$scale) = (&'fnorm($_[$[]),$_[$[+1]);
|
|
if ($x eq 'NaN') {
|
|
'NaN';
|
|
} else {
|
|
local($xm,$xe) = split('E',$x);
|
|
if ($xe >= $scale) {
|
|
$x;
|
|
} else {
|
|
$xe = length($xm)+$xe-$scale;
|
|
if ($xe < 1) {
|
|
'+0E+0';
|
|
} elsif ($xe == 1) {
|
|
# The first substr preserves the sign, which means that
|
|
# we'll pass a non-normalized "-0" to &round when rounding
|
|
# -0.006 (for example), purely so that &round won't lose
|
|
# the sign.
|
|
&norm(&round(substr($xm,$[,1).'0',
|
|
"+0".substr($xm,$[+1,1),"+10"), $scale);
|
|
} else {
|
|
&norm(&round(substr($xm,$[,$xe),
|
|
"+0".substr($xm,$[+$xe,1),"+10"), $scale);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
# compare 2 values returns one of undef, <0, =0, >0
|
|
# returns undef if either or both input value are not numbers
|
|
sub main'fcmp #(fnum_str, fnum_str) return cond_code
|
|
{
|
|
local($x, $y) = (&'fnorm($_[$[]),&'fnorm($_[$[+1]));
|
|
if ($x eq "NaN" || $y eq "NaN") {
|
|
undef;
|
|
} else {
|
|
ord($y) <=> ord($x)
|
|
||
|
|
( local($xm,$xe,$ym,$ye) = split('E', $x."E$y"),
|
|
(($xe <=> $ye) * (substr($x,$[,1).'1')
|
|
|| &bigint'cmp($xm,$ym))
|
|
);
|
|
}
|
|
}
|
|
|
|
# square root by Newtons method.
|
|
sub main'fsqrt { #(fnum_str[, scale]) return fnum_str
|
|
local($x, $scale) = (&'fnorm($_[$[]), $_[$[+1]);
|
|
if ($x eq 'NaN' || $x =~ /^-/) {
|
|
'NaN';
|
|
} elsif ($x eq '+0E+0') {
|
|
'+0E+0';
|
|
} else {
|
|
local($xm, $xe) = split('E',$x);
|
|
$scale = $div_scale if (!$scale);
|
|
$scale = length($xm)-1 if ($scale < length($xm)-1);
|
|
local($gs, $guess) = (1, sprintf("1E%+d", (length($xm)+$xe-1)/2));
|
|
while ($gs < 2*$scale) {
|
|
$guess = &'fmul(&'fadd($guess,&'fdiv($x,$guess,$gs*2)),".5");
|
|
$gs *= 2;
|
|
}
|
|
&'fround($guess, $scale);
|
|
}
|
|
}
|
|
|
|
1;
|