You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
320 lines
9.1 KiB
320 lines
9.1 KiB
package bigint;
|
|
#
|
|
# This library is no longer being maintained, and is included for backward
|
|
# compatibility with Perl 4 programs which may require it.
|
|
#
|
|
# In particular, this should not be used as an example of modern Perl
|
|
# programming techniques.
|
|
#
|
|
# Suggested alternative: Math::BigInt
|
|
#
|
|
# arbitrary size integer math package
|
|
#
|
|
# by Mark Biggar
|
|
#
|
|
# Canonical Big integer value are strings of the form
|
|
# /^[+-]\d+$/ with leading zeros suppressed
|
|
# Input values to these routines may be strings of the form
|
|
# /^\s*[+-]?[\d\s]+$/.
|
|
# Examples:
|
|
# '+0' canonical zero value
|
|
# ' -123 123 123' canonical value '-123123123'
|
|
# '1 23 456 7890' canonical value '+1234567890'
|
|
# Output values always always in canonical form
|
|
#
|
|
# Actual math is done in an internal format consisting of an array
|
|
# whose first element is the sign (/^[+-]$/) and whose remaining
|
|
# elements are base 100000 digits with the least significant digit first.
|
|
# The string 'NaN' is used to represent the result when input arguments
|
|
# are not numbers, as well as the result of dividing by zero
|
|
#
|
|
# routines provided are:
|
|
#
|
|
# bneg(BINT) return BINT negation
|
|
# babs(BINT) return BINT absolute value
|
|
# bcmp(BINT,BINT) return CODE compare numbers (undef,<0,=0,>0)
|
|
# badd(BINT,BINT) return BINT addition
|
|
# bsub(BINT,BINT) return BINT subtraction
|
|
# bmul(BINT,BINT) return BINT multiplication
|
|
# bdiv(BINT,BINT) return (BINT,BINT) division (quo,rem) just quo if scalar
|
|
# bmod(BINT,BINT) return BINT modulus
|
|
# bgcd(BINT,BINT) return BINT greatest common divisor
|
|
# bnorm(BINT) return BINT normalization
|
|
#
|
|
|
|
# overcome a floating point problem on certain osnames (posix-bc, os390)
|
|
BEGIN {
|
|
my $x = 100000.0;
|
|
my $use_mult = int($x*1e-5)*1e5 == $x ? 1 : 0;
|
|
}
|
|
|
|
$zero = 0;
|
|
|
|
|
|
# normalize string form of number. Strip leading zeros. Strip any
|
|
# white space and add a sign, if missing.
|
|
# Strings that are not numbers result the value 'NaN'.
|
|
|
|
sub main'bnorm { #(num_str) return num_str
|
|
local($_) = @_;
|
|
s/\s+//g; # strip white space
|
|
if (s/^([+-]?)0*(\d+)$/$1$2/) { # test if number
|
|
substr($_,$[,0) = '+' unless $1; # Add missing sign
|
|
s/^-0/+0/;
|
|
$_;
|
|
} else {
|
|
'NaN';
|
|
}
|
|
}
|
|
|
|
# Convert a number from string format to internal base 100000 format.
|
|
# Assumes normalized value as input.
|
|
sub internal { #(num_str) return int_num_array
|
|
local($d) = @_;
|
|
($is,$il) = (substr($d,$[,1),length($d)-2);
|
|
substr($d,$[,1) = '';
|
|
($is, reverse(unpack("a" . ($il%5+1) . ("a5" x ($il/5)), $d)));
|
|
}
|
|
|
|
# Convert a number from internal base 100000 format to string format.
|
|
# This routine scribbles all over input array.
|
|
sub external { #(int_num_array) return num_str
|
|
$es = shift;
|
|
grep($_ > 9999 || ($_ = substr('0000'.$_,-5)), @_); # zero pad
|
|
&'bnorm(join('', $es, reverse(@_))); # reverse concat and normalize
|
|
}
|
|
|
|
# Negate input value.
|
|
sub main'bneg { #(num_str) return num_str
|
|
local($_) = &'bnorm(@_);
|
|
vec($_,0,8) ^= ord('+') ^ ord('-') unless $_ eq '+0';
|
|
s/^./N/ unless /^[-+]/; # works both in ASCII and EBCDIC
|
|
$_;
|
|
}
|
|
|
|
# Returns the absolute value of the input.
|
|
sub main'babs { #(num_str) return num_str
|
|
&abs(&'bnorm(@_));
|
|
}
|
|
|
|
sub abs { # post-normalized abs for internal use
|
|
local($_) = @_;
|
|
s/^-/+/;
|
|
$_;
|
|
}
|
|
|
|
# Compares 2 values. Returns one of undef, <0, =0, >0. (suitable for sort)
|
|
sub main'bcmp { #(num_str, num_str) return cond_code
|
|
local($x,$y) = (&'bnorm($_[$[]),&'bnorm($_[$[+1]));
|
|
if ($x eq 'NaN') {
|
|
undef;
|
|
} elsif ($y eq 'NaN') {
|
|
undef;
|
|
} else {
|
|
&cmp($x,$y);
|
|
}
|
|
}
|
|
|
|
sub cmp { # post-normalized compare for internal use
|
|
local($cx, $cy) = @_;
|
|
return 0 if ($cx eq $cy);
|
|
|
|
local($sx, $sy) = (substr($cx, 0, 1), substr($cy, 0, 1));
|
|
local($ld);
|
|
|
|
if ($sx eq '+') {
|
|
return 1 if ($sy eq '-' || $cy eq '+0');
|
|
$ld = length($cx) - length($cy);
|
|
return $ld if ($ld);
|
|
return $cx cmp $cy;
|
|
} else { # $sx eq '-'
|
|
return -1 if ($sy eq '+');
|
|
$ld = length($cy) - length($cx);
|
|
return $ld if ($ld);
|
|
return $cy cmp $cx;
|
|
}
|
|
|
|
}
|
|
|
|
sub main'badd { #(num_str, num_str) return num_str
|
|
local(*x, *y); ($x, $y) = (&'bnorm($_[$[]),&'bnorm($_[$[+1]));
|
|
if ($x eq 'NaN') {
|
|
'NaN';
|
|
} elsif ($y eq 'NaN') {
|
|
'NaN';
|
|
} else {
|
|
@x = &internal($x); # convert to internal form
|
|
@y = &internal($y);
|
|
local($sx, $sy) = (shift @x, shift @y); # get signs
|
|
if ($sx eq $sy) {
|
|
&external($sx, &add(*x, *y)); # if same sign add
|
|
} else {
|
|
($x, $y) = (&abs($x),&abs($y)); # make abs
|
|
if (&cmp($y,$x) > 0) {
|
|
&external($sy, &sub(*y, *x));
|
|
} else {
|
|
&external($sx, &sub(*x, *y));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
sub main'bsub { #(num_str, num_str) return num_str
|
|
&'badd($_[$[],&'bneg($_[$[+1]));
|
|
}
|
|
|
|
# GCD -- Euclids algorithm Knuth Vol 2 pg 296
|
|
sub main'bgcd { #(num_str, num_str) return num_str
|
|
local($x,$y) = (&'bnorm($_[$[]),&'bnorm($_[$[+1]));
|
|
if ($x eq 'NaN' || $y eq 'NaN') {
|
|
'NaN';
|
|
} else {
|
|
($x, $y) = ($y,&'bmod($x,$y)) while $y ne '+0';
|
|
$x;
|
|
}
|
|
}
|
|
|
|
# routine to add two base 1e5 numbers
|
|
# stolen from Knuth Vol 2 Algorithm A pg 231
|
|
# there are separate routines to add and sub as per Kunth pg 233
|
|
sub add { #(int_num_array, int_num_array) return int_num_array
|
|
local(*x, *y) = @_;
|
|
$car = 0;
|
|
for $x (@x) {
|
|
last unless @y || $car;
|
|
$x -= 1e5 if $car = (($x += shift(@y) + $car) >= 1e5) ? 1 : 0;
|
|
}
|
|
for $y (@y) {
|
|
last unless $car;
|
|
$y -= 1e5 if $car = (($y += $car) >= 1e5) ? 1 : 0;
|
|
}
|
|
(@x, @y, $car);
|
|
}
|
|
|
|
# subtract base 1e5 numbers -- stolen from Knuth Vol 2 pg 232, $x > $y
|
|
sub sub { #(int_num_array, int_num_array) return int_num_array
|
|
local(*sx, *sy) = @_;
|
|
$bar = 0;
|
|
for $sx (@sx) {
|
|
last unless @y || $bar;
|
|
$sx += 1e5 if $bar = (($sx -= shift(@sy) + $bar) < 0);
|
|
}
|
|
@sx;
|
|
}
|
|
|
|
# multiply two numbers -- stolen from Knuth Vol 2 pg 233
|
|
sub main'bmul { #(num_str, num_str) return num_str
|
|
local(*x, *y); ($x, $y) = (&'bnorm($_[$[]), &'bnorm($_[$[+1]));
|
|
if ($x eq 'NaN') {
|
|
'NaN';
|
|
} elsif ($y eq 'NaN') {
|
|
'NaN';
|
|
} else {
|
|
@x = &internal($x);
|
|
@y = &internal($y);
|
|
local($signr) = (shift @x ne shift @y) ? '-' : '+';
|
|
@prod = ();
|
|
for $x (@x) {
|
|
($car, $cty) = (0, $[);
|
|
for $y (@y) {
|
|
$prod = $x * $y + $prod[$cty] + $car;
|
|
if ($use_mult) {
|
|
$prod[$cty++] =
|
|
$prod - ($car = int($prod * 1e-5)) * 1e5;
|
|
}
|
|
else {
|
|
$prod[$cty++] =
|
|
$prod - ($car = int($prod / 1e5)) * 1e5;
|
|
}
|
|
}
|
|
$prod[$cty] += $car if $car;
|
|
$x = shift @prod;
|
|
}
|
|
&external($signr, @x, @prod);
|
|
}
|
|
}
|
|
|
|
# modulus
|
|
sub main'bmod { #(num_str, num_str) return num_str
|
|
(&'bdiv(@_))[$[+1];
|
|
}
|
|
|
|
sub main'bdiv { #(dividend: num_str, divisor: num_str) return num_str
|
|
local (*x, *y); ($x, $y) = (&'bnorm($_[$[]), &'bnorm($_[$[+1]));
|
|
return wantarray ? ('NaN','NaN') : 'NaN'
|
|
if ($x eq 'NaN' || $y eq 'NaN' || $y eq '+0');
|
|
return wantarray ? ('+0',$x) : '+0' if (&cmp(&abs($x),&abs($y)) < 0);
|
|
@x = &internal($x); @y = &internal($y);
|
|
$srem = $y[$[];
|
|
$sr = (shift @x ne shift @y) ? '-' : '+';
|
|
$car = $bar = $prd = 0;
|
|
if (($dd = int(1e5/($y[$#y]+1))) != 1) {
|
|
for $x (@x) {
|
|
$x = $x * $dd + $car;
|
|
if ($use_mult) {
|
|
$x -= ($car = int($x * 1e-5)) * 1e5;
|
|
}
|
|
else {
|
|
$x -= ($car = int($x / 1e5)) * 1e5;
|
|
}
|
|
}
|
|
push(@x, $car); $car = 0;
|
|
for $y (@y) {
|
|
$y = $y * $dd + $car;
|
|
if ($use_mult) {
|
|
$y -= ($car = int($y * 1e-5)) * 1e5;
|
|
}
|
|
else {
|
|
$y -= ($car = int($y / 1e5)) * 1e5;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
push(@x, 0);
|
|
}
|
|
@q = (); ($v2,$v1) = @y[-2,-1];
|
|
while ($#x > $#y) {
|
|
($u2,$u1,$u0) = @x[-3..-1];
|
|
$q = (($u0 == $v1) ? 99999 : int(($u0*1e5+$u1)/$v1));
|
|
--$q while ($v2*$q > ($u0*1e5+$u1-$q*$v1)*1e5+$u2);
|
|
if ($q) {
|
|
($car, $bar) = (0,0);
|
|
for ($y = $[, $x = $#x-$#y+$[-1; $y <= $#y; ++$y,++$x) {
|
|
$prd = $q * $y[$y] + $car;
|
|
if ($use_mult) {
|
|
$prd -= ($car = int($prd * 1e-5)) * 1e5;
|
|
}
|
|
else {
|
|
$prd -= ($car = int($prd / 1e5)) * 1e5;
|
|
}
|
|
$x[$x] += 1e5 if ($bar = (($x[$x] -= $prd + $bar) < 0));
|
|
}
|
|
if ($x[$#x] < $car + $bar) {
|
|
$car = 0; --$q;
|
|
for ($y = $[, $x = $#x-$#y+$[-1; $y <= $#y; ++$y,++$x) {
|
|
$x[$x] -= 1e5
|
|
if ($car = (($x[$x] += $y[$y] + $car) > 1e5));
|
|
}
|
|
}
|
|
}
|
|
pop(@x); unshift(@q, $q);
|
|
}
|
|
if (wantarray) {
|
|
@d = ();
|
|
if ($dd != 1) {
|
|
$car = 0;
|
|
for $x (reverse @x) {
|
|
$prd = $car * 1e5 + $x;
|
|
$car = $prd - ($tmp = int($prd / $dd)) * $dd;
|
|
unshift(@d, $tmp);
|
|
}
|
|
}
|
|
else {
|
|
@d = @x;
|
|
}
|
|
(&external($sr, @q), &external($srem, @d, $zero));
|
|
} else {
|
|
&external($sr, @q);
|
|
}
|
|
}
|
|
1;
|