Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2085 lines
70 KiB

=head1 NAME
perlport - Writing portable Perl
=head1 DESCRIPTION
Perl runs on numerous operating systems. While most of them share
much in common, they also have their own unique features.
This document is meant to help you to find out what constitutes portable
Perl code. That way once you make a decision to write portably,
you know where the lines are drawn, and you can stay within them.
There is a tradeoff between taking full advantage of one particular
type of computer and taking advantage of a full range of them.
Naturally, as you broaden your range and become more diverse, the
common factors drop, and you are left with an increasingly smaller
area of common ground in which you can operate to accomplish a
particular task. Thus, when you begin attacking a problem, it is
important to consider under which part of the tradeoff curve you
want to operate. Specifically, you must decide whether it is
important that the task that you are coding have the full generality
of being portable, or whether to just get the job done right now.
This is the hardest choice to be made. The rest is easy, because
Perl provides many choices, whichever way you want to approach your
problem.
Looking at it another way, writing portable code is usually about
willfully limiting your available choices. Naturally, it takes
discipline and sacrifice to do that. The product of portability
and convenience may be a constant. You have been warned.
Be aware of two important points:
=over 4
=item Not all Perl programs have to be portable
There is no reason you should not use Perl as a language to glue Unix
tools together, or to prototype a Macintosh application, or to manage the
Windows registry. If it makes no sense to aim for portability for one
reason or another in a given program, then don't bother.
=item Nearly all of Perl already I<is> portable
Don't be fooled into thinking that it is hard to create portable Perl
code. It isn't. Perl tries its level-best to bridge the gaps between
what's available on different platforms, and all the means available to
use those features. Thus almost all Perl code runs on any machine
without modification. But there are some significant issues in
writing portable code, and this document is entirely about those issues.
=back
Here's the general rule: When you approach a task commonly done
using a whole range of platforms, think about writing portable
code. That way, you don't sacrifice much by way of the implementation
choices you can avail yourself of, and at the same time you can give
your users lots of platform choices. On the other hand, when you have to
take advantage of some unique feature of a particular platform, as is
often the case with systems programming (whether for Unix, Windows,
S<Mac OS>, VMS, etc.), consider writing platform-specific code.
When the code will run on only two or three operating systems, you
may need to consider only the differences of those particular systems.
The important thing is to decide where the code will run and to be
deliberate in your decision.
The material below is separated into three main sections: main issues of
portability (L<"ISSUES">, platform-specific issues (L<"PLATFORMS">, and
built-in perl functions that behave differently on various ports
(L<"FUNCTION IMPLEMENTATIONS">.
This information should not be considered complete; it includes possibly
transient information about idiosyncrasies of some of the ports, almost
all of which are in a state of constant evolution. Thus, this material
should be considered a perpetual work in progress
(<IMG SRC="yellow_sign.gif" ALT="Under Construction">).
=head1 ISSUES
=head2 Newlines
In most operating systems, lines in files are terminated by newlines.
Just what is used as a newline may vary from OS to OS. Unix
traditionally uses C<\012>, one type of DOSish I/O uses C<\015\012>,
and S<Mac OS> uses C<\015>.
Perl uses C<\n> to represent the "logical" newline, where what is
logical may depend on the platform in use. In MacPerl, C<\n> always
means C<\015>. In DOSish perls, C<\n> usually means C<\012>, but
when accessing a file in "text" mode, STDIO translates it to (or
from) C<\015\012>, depending on whether you're reading or writing.
Unix does the same thing on ttys in canonical mode. C<\015\012>
is commonly referred to as CRLF.
A common cause of unportable programs is the misuse of chop() to trim
newlines:
# XXX UNPORTABLE!
while(<FILE>) {
chop;
@array = split(/:/);
#...
}
You can get away with this on Unix and MacOS (they have a single
character end-of-line), but the same program will break under DOSish
perls because you're only chop()ing half the end-of-line. Instead,
chomp() should be used to trim newlines. The Dunce::Files module can
help audit your code for misuses of chop().
When dealing with binary files (or text files in binary mode) be sure
to explicitly set $/ to the appropriate value for your file format
before using chomp().
Because of the "text" mode translation, DOSish perls have limitations
in using C<seek> and C<tell> on a file accessed in "text" mode.
Stick to C<seek>-ing to locations you got from C<tell> (and no
others), and you are usually free to use C<seek> and C<tell> even
in "text" mode. Using C<seek> or C<tell> or other file operations
may be non-portable. If you use C<binmode> on a file, however, you
can usually C<seek> and C<tell> with arbitrary values in safety.
A common misconception in socket programming is that C<\n> eq C<\012>
everywhere. When using protocols such as common Internet protocols,
C<\012> and C<\015> are called for specifically, and the values of
the logical C<\n> and C<\r> (carriage return) are not reliable.
print SOCKET "Hi there, client!\r\n"; # WRONG
print SOCKET "Hi there, client!\015\012"; # RIGHT
However, using C<\015\012> (or C<\cM\cJ>, or C<\x0D\x0A>) can be tedious
and unsightly, as well as confusing to those maintaining the code. As
such, the Socket module supplies the Right Thing for those who want it.
use Socket qw(:DEFAULT :crlf);
print SOCKET "Hi there, client!$CRLF" # RIGHT
When reading from a socket, remember that the default input record
separator C<$/> is C<\n>, but robust socket code will recognize as
either C<\012> or C<\015\012> as end of line:
while (<SOCKET>) {
# ...
}
Because both CRLF and LF end in LF, the input record separator can
be set to LF and any CR stripped later. Better to write:
use Socket qw(:DEFAULT :crlf);
local($/) = LF; # not needed if $/ is already \012
while (<SOCKET>) {
s/$CR?$LF/\n/; # not sure if socket uses LF or CRLF, OK
# s/\015?\012/\n/; # same thing
}
This example is preferred over the previous one--even for Unix
platforms--because now any C<\015>'s (C<\cM>'s) are stripped out
(and there was much rejoicing).
Similarly, functions that return text data--such as a function that
fetches a web page--should sometimes translate newlines before
returning the data, if they've not yet been translated to the local
newline representation. A single line of code will often suffice:
$data =~ s/\015?\012/\n/g;
return $data;
Some of this may be confusing. Here's a handy reference to the ASCII CR
and LF characters. You can print it out and stick it in your wallet.
LF == \012 == \x0A == \cJ == ASCII 10
CR == \015 == \x0D == \cM == ASCII 13
| Unix | DOS | Mac |
---------------------------
\n | LF | LF | CR |
\r | CR | CR | LF |
\n * | LF | CRLF | CR |
\r * | CR | CR | LF |
---------------------------
* text-mode STDIO
The Unix column assumes that you are not accessing a serial line
(like a tty) in canonical mode. If you are, then CR on input becomes
"\n", and "\n" on output becomes CRLF.
These are just the most common definitions of C<\n> and C<\r> in Perl.
There may well be others.
=head2 Numbers endianness and Width
Different CPUs store integers and floating point numbers in different
orders (called I<endianness>) and widths (32-bit and 64-bit being the
most common today). This affects your programs when they attempt to transfer
numbers in binary format from one CPU architecture to another,
usually either "live" via network connection, or by storing the
numbers to secondary storage such as a disk file or tape.
Conflicting storage orders make utter mess out of the numbers. If a
little-endian host (Intel, VAX) stores 0x12345678 (305419896 in
decimal), a big-endian host (Motorola, Sparc, PA) reads it as
0x78563412 (2018915346 in decimal). Alpha and MIPS can be either:
Digital/Compaq used/uses them in little-endian mode; SGI/Cray uses
them in big-endian mode. To avoid this problem in network (socket)
connections use the C<pack> and C<unpack> formats C<n> and C<N>, the
"network" orders. These are guaranteed to be portable.
You can explore the endianness of your platform by unpacking a
data structure packed in native format such as:
print unpack("h*", pack("s2", 1, 2)), "\n";
# '10002000' on e.g. Intel x86 or Alpha 21064 in little-endian mode
# '00100020' on e.g. Motorola 68040
If you need to distinguish between endian architectures you could use
either of the variables set like so:
$is_big_endian = unpack("h*", pack("s", 1)) =~ /01/;
$is_little_endian = unpack("h*", pack("s", 1)) =~ /^1/;
Differing widths can cause truncation even between platforms of equal
endianness. The platform of shorter width loses the upper parts of the
number. There is no good solution for this problem except to avoid
transferring or storing raw binary numbers.
One can circumnavigate both these problems in two ways. Either
transfer and store numbers always in text format, instead of raw
binary, or else consider using modules like Data::Dumper (included in
the standard distribution as of Perl 5.005) and Storable. Keeping
all data as text significantly simplifies matters.
=head2 Files and Filesystems
Most platforms these days structure files in a hierarchical fashion.
So, it is reasonably safe to assume that all platforms support the
notion of a "path" to uniquely identify a file on the system. How
that path is really written, though, differs considerably.
Although similar, file path specifications differ between Unix,
Windows, S<Mac OS>, OS/2, VMS, VOS, S<RISC OS>, and probably others.
Unix, for example, is one of the few OSes that has the elegant idea
of a single root directory.
DOS, OS/2, VMS, VOS, and Windows can work similarly to Unix with C</>
as path separator, or in their own idiosyncratic ways (such as having
several root directories and various "unrooted" device files such NIL:
and LPT:).
S<Mac OS> uses C<:> as a path separator instead of C</>.
The filesystem may support neither hard links (C<link>) nor
symbolic links (C<symlink>, C<readlink>, C<lstat>).
The filesystem may support neither access timestamp nor change
timestamp (meaning that about the only portable timestamp is the
modification timestamp), or one second granularity of any timestamps
(e.g. the FAT filesystem limits the time granularity to two seconds).
VOS perl can emulate Unix filenames with C</> as path separator. The
native pathname characters greater-than, less-than, number-sign, and
percent-sign are always accepted.
S<RISC OS> perl can emulate Unix filenames with C</> as path
separator, or go native and use C<.> for path separator and C<:> to
signal filesystems and disk names.
If all this is intimidating, have no (well, maybe only a little)
fear. There are modules that can help. The File::Spec modules
provide methods to do the Right Thing on whatever platform happens
to be running the program.
use File::Spec::Functions;
chdir(updir()); # go up one directory
$file = catfile(curdir(), 'temp', 'file.txt');
# on Unix and Win32, './temp/file.txt'
# on Mac OS, ':temp:file.txt'
# on VMS, '[.temp]file.txt'
File::Spec is available in the standard distribution as of version
5.004_05. File::Spec::Functions is only in File::Spec 0.7 and later,
and some versions of perl come with version 0.6. If File::Spec
is not updated to 0.7 or later, you must use the object-oriented
interface from File::Spec (or upgrade File::Spec).
In general, production code should not have file paths hardcoded.
Making them user-supplied or read from a configuration file is
better, keeping in mind that file path syntax varies on different
machines.
This is especially noticeable in scripts like Makefiles and test suites,
which often assume C</> as a path separator for subdirectories.
Also of use is File::Basename from the standard distribution, which
splits a pathname into pieces (base filename, full path to directory,
and file suffix).
Even when on a single platform (if you can call Unix a single platform),
remember not to count on the existence or the contents of particular
system-specific files or directories, like F</etc/passwd>,
F</etc/sendmail.conf>, F</etc/resolv.conf>, or even F</tmp/>. For
example, F</etc/passwd> may exist but not contain the encrypted
passwords, because the system is using some form of enhanced security.
Or it may not contain all the accounts, because the system is using NIS.
If code does need to rely on such a file, include a description of the
file and its format in the code's documentation, then make it easy for
the user to override the default location of the file.
Don't assume a text file will end with a newline. They should,
but people forget.
Do not have two files of the same name with different case, like
F<test.pl> and F<Test.pl>, as many platforms have case-insensitive
filenames. Also, try not to have non-word characters (except for C<.>)
in the names, and keep them to the 8.3 convention, for maximum
portability, onerous a burden though this may appear.
Likewise, when using the AutoSplit module, try to keep your functions to
8.3 naming and case-insensitive conventions; or, at the least,
make it so the resulting files have a unique (case-insensitively)
first 8 characters.
Whitespace in filenames is tolerated on most systems, but not all.
Many systems (DOS, VMS) cannot have more than one C<.> in their filenames.
Don't assume C<< > >> won't be the first character of a filename.
Always use C<< < >> explicitly to open a file for reading,
unless you want the user to be able to specify a pipe open.
open(FILE, "< $existing_file") or die $!;
If filenames might use strange characters, it is safest to open it
with C<sysopen> instead of C<open>. C<open> is magic and can
translate characters like C<< > >>, C<< < >>, and C<|>, which may
be the wrong thing to do. (Sometimes, though, it's the right thing.)
=head2 System Interaction
Not all platforms provide a command line. These are usually platforms
that rely primarily on a Graphical User Interface (GUI) for user
interaction. A program requiring a command line interface might
not work everywhere. This is probably for the user of the program
to deal with, so don't stay up late worrying about it.
Some platforms can't delete or rename files held open by the system.
Remember to C<close> files when you are done with them. Don't
C<unlink> or C<rename> an open file. Don't C<tie> or C<open> a
file already tied or opened; C<untie> or C<close> it first.
Don't open the same file more than once at a time for writing, as some
operating systems put mandatory locks on such files.
Don't count on a specific environment variable existing in C<%ENV>.
Don't count on C<%ENV> entries being case-sensitive, or even
case-preserving. Don't try to clear %ENV by saying C<%ENV = ();>, or,
if you really have to, make it conditional on C<$^O ne 'VMS'> since in
VMS the C<%ENV> table is much more than a per-process key-value string
table.
Don't count on signals or C<%SIG> for anything.
Don't count on filename globbing. Use C<opendir>, C<readdir>, and
C<closedir> instead.
Don't count on per-program environment variables, or per-program current
directories.
Don't count on specific values of C<$!>.
=head2 Interprocess Communication (IPC)
In general, don't directly access the system in code meant to be
portable. That means, no C<system>, C<exec>, C<fork>, C<pipe>,
C<``>, C<qx//>, C<open> with a C<|>, nor any of the other things
that makes being a perl hacker worth being.
Commands that launch external processes are generally supported on
most platforms (though many of them do not support any type of
forking). The problem with using them arises from what you invoke
them on. External tools are often named differently on different
platforms, may not be available in the same location, might accept
different arguments, can behave differently, and often present their
results in a platform-dependent way. Thus, you should seldom depend
on them to produce consistent results. (Then again, if you're calling
I<netstat -a>, you probably don't expect it to run on both Unix and CP/M.)
One especially common bit of Perl code is opening a pipe to B<sendmail>:
open(MAIL, '|/usr/lib/sendmail -t')
or die "cannot fork sendmail: $!";
This is fine for systems programming when sendmail is known to be
available. But it is not fine for many non-Unix systems, and even
some Unix systems that may not have sendmail installed. If a portable
solution is needed, see the various distributions on CPAN that deal
with it. Mail::Mailer and Mail::Send in the MailTools distribution are
commonly used, and provide several mailing methods, including mail,
sendmail, and direct SMTP (via Net::SMTP) if a mail transfer agent is
not available. Mail::Sendmail is a standalone module that provides
simple, platform-independent mailing.
The Unix System V IPC (C<msg*(), sem*(), shm*()>) is not available
even on all Unix platforms.
The rule of thumb for portable code is: Do it all in portable Perl, or
use a module (that may internally implement it with platform-specific
code, but expose a common interface).
=head2 External Subroutines (XS)
XS code can usually be made to work with any platform, but dependent
libraries, header files, etc., might not be readily available or
portable, or the XS code itself might be platform-specific, just as Perl
code might be. If the libraries and headers are portable, then it is
normally reasonable to make sure the XS code is portable, too.
A different type of portability issue arises when writing XS code:
availability of a C compiler on the end-user's system. C brings
with it its own portability issues, and writing XS code will expose
you to some of those. Writing purely in Perl is an easier way to
achieve portability.
=head2 Standard Modules
In general, the standard modules work across platforms. Notable
exceptions are the CPAN module (which currently makes connections to external
programs that may not be available), platform-specific modules (like
ExtUtils::MM_VMS), and DBM modules.
There is no one DBM module available on all platforms.
SDBM_File and the others are generally available on all Unix and DOSish
ports, but not in MacPerl, where only NBDM_File and DB_File are
available.
The good news is that at least some DBM module should be available, and
AnyDBM_File will use whichever module it can find. Of course, then
the code needs to be fairly strict, dropping to the greatest common
factor (e.g., not exceeding 1K for each record), so that it will
work with any DBM module. See L<AnyDBM_File> for more details.
=head2 Time and Date
The system's notion of time of day and calendar date is controlled in
widely different ways. Don't assume the timezone is stored in C<$ENV{TZ}>,
and even if it is, don't assume that you can control the timezone through
that variable.
Don't assume that the epoch starts at 00:00:00, January 1, 1970,
because that is OS- and implementation-specific. It is better to store a date
in an unambiguous representation. The ISO-8601 standard defines
"YYYY-MM-DD" as the date format. A text representation (like "1987-12-18")
can be easily converted into an OS-specific value using a module like
Date::Parse. An array of values, such as those returned by
C<localtime>, can be converted to an OS-specific representation using
Time::Local.
When calculating specific times, such as for tests in time or date modules,
it may be appropriate to calculate an offset for the epoch.
require Time::Local;
$offset = Time::Local::timegm(0, 0, 0, 1, 0, 70);
The value for C<$offset> in Unix will be C<0>, but in Mac OS will be
some large number. C<$offset> can then be added to a Unix time value
to get what should be the proper value on any system.
=head2 Character sets and character encoding
Assume little about character sets. Assume nothing about
numerical values (C<ord>, C<chr>) of characters. Do not
assume that the alphabetic characters are encoded contiguously (in
the numeric sense). Do not assume anything about the ordering of the
characters. The lowercase letters may come before or after the
uppercase letters; the lowercase and uppercase may be interlaced so
that both `a' and `A' come before `b'; the accented and other
international characters may be interlaced so that E<auml> comes
before `b'.
=head2 Internationalisation
If you may assume POSIX (a rather large assumption), you may read
more about the POSIX locale system from L<perllocale>. The locale
system at least attempts to make things a little bit more portable,
or at least more convenient and native-friendly for non-English
users. The system affects character sets and encoding, and date
and time formatting--amongst other things.
=head2 System Resources
If your code is destined for systems with severely constrained (or
missing!) virtual memory systems then you want to be I<especially> mindful
of avoiding wasteful constructs such as:
# NOTE: this is no longer "bad" in perl5.005
for (0..10000000) {} # bad
for (my $x = 0; $x <= 10000000; ++$x) {} # good
@lines = <VERY_LARGE_FILE>; # bad
while (<FILE>) {$file .= $_} # sometimes bad
$file = join('', <FILE>); # better
The last two constructs may appear unintuitive to most people. The
first repeatedly grows a string, whereas the second allocates a
large chunk of memory in one go. On some systems, the second is
more efficient that the first.
=head2 Security
Most multi-user platforms provide basic levels of security, usually
implemented at the filesystem level. Some, however, do
not--unfortunately. Thus the notion of user id, or "home" directory,
or even the state of being logged-in, may be unrecognizable on many
platforms. If you write programs that are security-conscious, it
is usually best to know what type of system you will be running
under so that you can write code explicitly for that platform (or
class of platforms).
=head2 Style
For those times when it is necessary to have platform-specific code,
consider keeping the platform-specific code in one place, making porting
to other platforms easier. Use the Config module and the special
variable C<$^O> to differentiate platforms, as described in
L<"PLATFORMS">.
Be careful in the tests you supply with your module or programs.
Module code may be fully portable, but its tests might not be. This
often happens when tests spawn off other processes or call external
programs to aid in the testing, or when (as noted above) the tests
assume certain things about the filesystem and paths. Be careful
not to depend on a specific output style for errors, such as when
checking C<$!> after an system call. Some platforms expect a certain
output format, and perl on those platforms may have been adjusted
accordingly. Most specifically, don't anchor a regex when testing
an error value.
=head1 CPAN Testers
Modules uploaded to CPAN are tested by a variety of volunteers on
different platforms. These CPAN testers are notified by mail of each
new upload, and reply to the list with PASS, FAIL, NA (not applicable to
this platform), or UNKNOWN (unknown), along with any relevant notations.
The purpose of the testing is twofold: one, to help developers fix any
problems in their code that crop up because of lack of testing on other
platforms; two, to provide users with information about whether
a given module works on a given platform.
=over 4
=item Mailing list: [email protected]
=item Testing results: http://testers.cpan.org/
=back
=head1 PLATFORMS
As of version 5.002, Perl is built with a C<$^O> variable that
indicates the operating system it was built on. This was implemented
to help speed up code that would otherwise have to C<use Config>
and use the value of C<$Config{osname}>. Of course, to get more
detailed information about the system, looking into C<%Config> is
certainly recommended.
C<%Config> cannot always be trusted, however, because it was built
at compile time. If perl was built in one place, then transferred
elsewhere, some values may be wrong. The values may even have been
edited after the fact.
=head2 Unix
Perl works on a bewildering variety of Unix and Unix-like platforms (see
e.g. most of the files in the F<hints/> directory in the source code kit).
On most of these systems, the value of C<$^O> (hence C<$Config{'osname'}>,
too) is determined either by lowercasing and stripping punctuation from the
first field of the string returned by typing C<uname -a> (or a similar command)
at the shell prompt or by testing the file system for the presence of
uniquely named files such as a kernel or header file. Here, for example,
are a few of the more popular Unix flavors:
uname $^O $Config{'archname'}
--------------------------------------------
AIX aix aix
BSD/OS bsdos i386-bsdos
dgux dgux AViiON-dgux
DYNIX/ptx dynixptx i386-dynixptx
FreeBSD freebsd freebsd-i386
Linux linux arm-linux
Linux linux i386-linux
Linux linux i586-linux
Linux linux ppc-linux
HP-UX hpux PA-RISC1.1
IRIX irix irix
Mac OS X rhapsody rhapsody
MachTen PPC machten powerpc-machten
NeXT 3 next next-fat
NeXT 4 next OPENSTEP-Mach
openbsd openbsd i386-openbsd
OSF1 dec_osf alpha-dec_osf
reliantunix-n svr4 RM400-svr4
SCO_SV sco_sv i386-sco_sv
SINIX-N svr4 RM400-svr4
sn4609 unicos CRAY_C90-unicos
sn6521 unicosmk t3e-unicosmk
sn9617 unicos CRAY_J90-unicos
SunOS solaris sun4-solaris
SunOS solaris i86pc-solaris
SunOS4 sunos sun4-sunos
Because the value of C<$Config{archname}> may depend on the
hardware architecture, it can vary more than the value of C<$^O>.
=head2 DOS and Derivatives
Perl has long been ported to Intel-style microcomputers running under
systems like PC-DOS, MS-DOS, OS/2, and most Windows platforms you can
bring yourself to mention (except for Windows CE, if you count that).
Users familiar with I<COMMAND.COM> or I<CMD.EXE> style shells should
be aware that each of these file specifications may have subtle
differences:
$filespec0 = "c:/foo/bar/file.txt";
$filespec1 = "c:\\foo\\bar\\file.txt";
$filespec2 = 'c:\foo\bar\file.txt';
$filespec3 = 'c:\\foo\\bar\\file.txt';
System calls accept either C</> or C<\> as the path separator.
However, many command-line utilities of DOS vintage treat C</> as
the option prefix, so may get confused by filenames containing C</>.
Aside from calling any external programs, C</> will work just fine,
and probably better, as it is more consistent with popular usage,
and avoids the problem of remembering what to backwhack and what
not to.
The DOS FAT filesystem can accommodate only "8.3" style filenames. Under
the "case-insensitive, but case-preserving" HPFS (OS/2) and NTFS (NT)
filesystems you may have to be careful about case returned with functions
like C<readdir> or used with functions like C<open> or C<opendir>.
DOS also treats several filenames as special, such as AUX, PRN,
NUL, CON, COM1, LPT1, LPT2, etc. Unfortunately, sometimes these
filenames won't even work if you include an explicit directory
prefix. It is best to avoid such filenames, if you want your code
to be portable to DOS and its derivatives. It's hard to know what
these all are, unfortunately.
Users of these operating systems may also wish to make use of
scripts such as I<pl2bat.bat> or I<pl2cmd> to
put wrappers around your scripts.
Newline (C<\n>) is translated as C<\015\012> by STDIO when reading from
and writing to files (see L<"Newlines">). C<binmode(FILEHANDLE)>
will keep C<\n> translated as C<\012> for that filehandle. Since it is a
no-op on other systems, C<binmode> should be used for cross-platform code
that deals with binary data. That's assuming you realize in advance
that your data is in binary. General-purpose programs should
often assume nothing about their data.
The C<$^O> variable and the C<$Config{archname}> values for various
DOSish perls are as follows:
OS $^O $Config{'archname'}
--------------------------------------------
MS-DOS dos
PC-DOS dos
OS/2 os2
Windows 95 MSWin32 MSWin32-x86
Windows 98 MSWin32 MSWin32-x86
Windows NT MSWin32 MSWin32-x86
Windows NT MSWin32 MSWin32-ALPHA
Windows NT MSWin32 MSWin32-ppc
Cygwin cygwin
The various MSWin32 Perl's can distinguish the OS they are running on
via the value of the fifth element of the list returned from
Win32::GetOSVersion(). For example:
if ($^O eq 'MSWin32') {
my @os_version_info = Win32::GetOSVersion();
print +('3.1','95','NT')[$os_version_info[4]],"\n";
}
Also see:
=over 4
=item *
The djgpp environment for DOS, http://www.delorie.com/djgpp/
and L<perldos>.
=item *
The EMX environment for DOS, OS/2, etc. [email protected],
http://www.leo.org/pub/comp/os/os2/leo/gnu/emx+gcc/index.html or
ftp://hobbes.nmsu.edu/pub/os2/dev/emx. Also L<perlos2>.
=item *
Build instructions for Win32 in L<perlwin32>, or under the Cygnus environment
in L<perlcygwin>.
=item *
The C<Win32::*> modules in L<Win32>.
=item *
The ActiveState Pages, http://www.activestate.com/
=item *
The Cygwin environment for Win32; F<README.cygwin> (installed
as L<perlcygwin>), http://www.cygwin.com/
=item *
The U/WIN environment for Win32,
http://www.research.att.com/sw/tools/uwin/
=item *
Build instructions for OS/2, L<perlos2>
=back
=head2 S<Mac OS>
Any module requiring XS compilation is right out for most people, because
MacPerl is built using non-free (and non-cheap!) compilers. Some XS
modules that can work with MacPerl are built and distributed in binary
form on CPAN.
Directories are specified as:
volume:folder:file for absolute pathnames
volume:folder: for absolute pathnames
:folder:file for relative pathnames
:folder: for relative pathnames
:file for relative pathnames
file for relative pathnames
Files are stored in the directory in alphabetical order. Filenames are
limited to 31 characters, and may include any character except for
null and C<:>, which is reserved as the path separator.
Instead of C<flock>, see C<FSpSetFLock> and C<FSpRstFLock> in the
Mac::Files module, or C<chmod(0444, ...)> and C<chmod(0666, ...)>.
In the MacPerl application, you can't run a program from the command line;
programs that expect C<@ARGV> to be populated can be edited with something
like the following, which brings up a dialog box asking for the command
line arguments.
if (!@ARGV) {
@ARGV = split /\s+/, MacPerl::Ask('Arguments?');
}
A MacPerl script saved as a "droplet" will populate C<@ARGV> with the full
pathnames of the files dropped onto the script.
Mac users can run programs under a type of command line interface
under MPW (Macintosh Programmer's Workshop, a free development
environment from Apple). MacPerl was first introduced as an MPW
tool, and MPW can be used like a shell:
perl myscript.plx some arguments
ToolServer is another app from Apple that provides access to MPW tools
from MPW and the MacPerl app, which allows MacPerl programs to use
C<system>, backticks, and piped C<open>.
"S<Mac OS>" is the proper name for the operating system, but the value
in C<$^O> is "MacOS". To determine architecture, version, or whether
the application or MPW tool version is running, check:
$is_app = $MacPerl::Version =~ /App/;
$is_tool = $MacPerl::Version =~ /MPW/;
($version) = $MacPerl::Version =~ /^(\S+)/;
$is_ppc = $MacPerl::Architecture eq 'MacPPC';
$is_68k = $MacPerl::Architecture eq 'Mac68K';
S<Mac OS X> and S<Mac OS X Server>, based on NeXT's OpenStep OS, will
(in theory) be able to run MacPerl natively, under the "Classic"
environment. The new "Cocoa" environment (formerly called the "Yellow Box")
may run a slightly modified version of MacPerl, using the Carbon interfaces.
S<Mac OS X Server> and its Open Source version, Darwin, both run Unix
perl natively (with a few patches). Full support for these
is slated for perl 5.6.
Also see:
=over 4
=item *
The MacPerl Pages, http://www.macperl.com/ .
=item *
The MacPerl mailing lists, http://www.macperl.org/ .
=item *
MacPerl Module Porters, http://pudge.net/mmp/ .
=back
=head2 VMS
Perl on VMS is discussed in L<perlvms> in the perl distribution.
Perl on VMS can accept either VMS- or Unix-style file
specifications as in either of the following:
$ perl -ne "print if /perl_setup/i" SYS$LOGIN:LOGIN.COM
$ perl -ne "print if /perl_setup/i" /sys$login/login.com
but not a mixture of both as in:
$ perl -ne "print if /perl_setup/i" sys$login:/login.com
Can't open sys$login:/login.com: file specification syntax error
Interacting with Perl from the Digital Command Language (DCL) shell
often requires a different set of quotation marks than Unix shells do.
For example:
$ perl -e "print ""Hello, world.\n"""
Hello, world.
There are several ways to wrap your perl scripts in DCL F<.COM> files, if
you are so inclined. For example:
$ write sys$output "Hello from DCL!"
$ if p1 .eqs. ""
$ then perl -x 'f$environment("PROCEDURE")
$ else perl -x - 'p1 'p2 'p3 'p4 'p5 'p6 'p7 'p8
$ deck/dollars="__END__"
#!/usr/bin/perl
print "Hello from Perl!\n";
__END__
$ endif
Do take care with C<$ ASSIGN/nolog/user SYS$COMMAND: SYS$INPUT> if your
perl-in-DCL script expects to do things like C<< $read = <STDIN>; >>.
Filenames are in the format "name.extension;version". The maximum
length for filenames is 39 characters, and the maximum length for
extensions is also 39 characters. Version is a number from 1 to
32767. Valid characters are C</[A-Z0-9$_-]/>.
VMS's RMS filesystem is case-insensitive and does not preserve case.
C<readdir> returns lowercased filenames, but specifying a file for
opening remains case-insensitive. Files without extensions have a
trailing period on them, so doing a C<readdir> with a file named F<A.;5>
will return F<a.> (though that file could be opened with
C<open(FH, 'A')>).
RMS had an eight level limit on directory depths from any rooted logical
(allowing 16 levels overall) prior to VMS 7.2. Hence
C<PERL_ROOT:[LIB.2.3.4.5.6.7.8]> is a valid directory specification but
C<PERL_ROOT:[LIB.2.3.4.5.6.7.8.9]> is not. F<Makefile.PL> authors might
have to take this into account, but at least they can refer to the former
as C</PERL_ROOT/lib/2/3/4/5/6/7/8/>.
The VMS::Filespec module, which gets installed as part of the build
process on VMS, is a pure Perl module that can easily be installed on
non-VMS platforms and can be helpful for conversions to and from RMS
native formats.
What C<\n> represents depends on the type of file opened. It could
be C<\015>, C<\012>, C<\015\012>, or nothing. The VMS::Stdio module
provides access to the special fopen() requirements of files with unusual
attributes on VMS.
TCP/IP stacks are optional on VMS, so socket routines might not be
implemented. UDP sockets may not be supported.
The value of C<$^O> on OpenVMS is "VMS". To determine the architecture
that you are running on without resorting to loading all of C<%Config>
you can examine the content of the C<@INC> array like so:
if (grep(/VMS_AXP/, @INC)) {
print "I'm on Alpha!\n";
} elsif (grep(/VMS_VAX/, @INC)) {
print "I'm on VAX!\n";
} else {
print "I'm not so sure about where $^O is...\n";
}
On VMS, perl determines the UTC offset from the C<SYS$TIMEZONE_DIFFERENTIAL>
logical name. Although the VMS epoch began at 17-NOV-1858 00:00:00.00,
calls to C<localtime> are adjusted to count offsets from
01-JAN-1970 00:00:00.00, just like Unix.
Also see:
=over 4
=item *
F<README.vms> (installed as L<README_vms>), L<perlvms>
=item *
vmsperl list, [email protected]
(Put the words C<subscribe vmsperl> in message body.)
=item *
vmsperl on the web, http://www.sidhe.org/vmsperl/index.html
=back
=head2 VOS
Perl on VOS is discussed in F<README.vos> in the perl distribution
(installed as L<perlvos>). Perl on VOS can accept either VOS- or
Unix-style file specifications as in either of the following:
$ perl -ne "print if /perl_setup/i" >system>notices
$ perl -ne "print if /perl_setup/i" /system/notices
or even a mixture of both as in:
$ perl -ne "print if /perl_setup/i" >system/notices
Even though VOS allows the slash character to appear in object
names, because the VOS port of Perl interprets it as a pathname
delimiting character, VOS files, directories, or links whose names
contain a slash character cannot be processed. Such files must be
renamed before they can be processed by Perl. Note that VOS limits
file names to 32 or fewer characters.
See F<README.vos> for restrictions that apply when Perl is built
with the alpha version of VOS POSIX.1 support.
Perl on VOS is built without any extensions and does not support
dynamic loading.
The value of C<$^O> on VOS is "VOS". To determine the architecture that
you are running on without resorting to loading all of C<%Config> you
can examine the content of the @INC array like so:
if ($^O =~ /VOS/) {
print "I'm on a Stratus box!\n";
} else {
print "I'm not on a Stratus box!\n";
die;
}
if (grep(/860/, @INC)) {
print "This box is a Stratus XA/R!\n";
} elsif (grep(/7100/, @INC)) {
print "This box is a Stratus HP 7100 or 8xxx!\n";
} elsif (grep(/8000/, @INC)) {
print "This box is a Stratus HP 8xxx!\n";
} else {
print "This box is a Stratus 68K!\n";
}
Also see:
=over 4
=item *
F<README.vos>
=item *
The VOS mailing list.
There is no specific mailing list for Perl on VOS. You can post
comments to the comp.sys.stratus newsgroup, or subscribe to the general
Stratus mailing list. Send a letter with "Subscribe Info-Stratus" in
the message body to [email protected].
=item *
VOS Perl on the web at http://ftp.stratus.com/pub/vos/vos.html
=back
=head2 EBCDIC Platforms
Recent versions of Perl have been ported to platforms such as OS/400 on
AS/400 minicomputers as well as OS/390, VM/ESA, and BS2000 for S/390
Mainframes. Such computers use EBCDIC character sets internally (usually
Character Code Set ID 0037 for OS/400 and either 1047 or POSIX-BC for S/390
systems). On the mainframe perl currently works under the "Unix system
services for OS/390" (formerly known as OpenEdition), VM/ESA OpenEdition, or
the BS200 POSIX-BC system (BS2000 is supported in perl 5.6 and greater).
See L<perlos390> for details.
As of R2.5 of USS for OS/390 and Version 2.3 of VM/ESA these Unix
sub-systems do not support the C<#!> shebang trick for script invocation.
Hence, on OS/390 and VM/ESA perl scripts can be executed with a header
similar to the following simple script:
: # use perl
eval 'exec /usr/local/bin/perl -S $0 ${1+"$@"}'
if 0;
#!/usr/local/bin/perl # just a comment really
print "Hello from perl!\n";
OS/390 will support the C<#!> shebang trick in release 2.8 and beyond.
Calls to C<system> and backticks can use POSIX shell syntax on all
S/390 systems.
On the AS/400, if PERL5 is in your library list, you may need
to wrap your perl scripts in a CL procedure to invoke them like so:
BEGIN
CALL PGM(PERL5/PERL) PARM('/QOpenSys/hello.pl')
ENDPGM
This will invoke the perl script F<hello.pl> in the root of the
QOpenSys file system. On the AS/400 calls to C<system> or backticks
must use CL syntax.
On these platforms, bear in mind that the EBCDIC character set may have
an effect on what happens with some perl functions (such as C<chr>,
C<pack>, C<print>, C<printf>, C<ord>, C<sort>, C<sprintf>, C<unpack>), as
well as bit-fiddling with ASCII constants using operators like C<^>, C<&>
and C<|>, not to mention dealing with socket interfaces to ASCII computers
(see L<"Newlines">).
Fortunately, most web servers for the mainframe will correctly
translate the C<\n> in the following statement to its ASCII equivalent
(C<\r> is the same under both Unix and OS/390 & VM/ESA):
print "Content-type: text/html\r\n\r\n";
The values of C<$^O> on some of these platforms includes:
uname $^O $Config{'archname'}
--------------------------------------------
OS/390 os390 os390
OS400 os400 os400
POSIX-BC posix-bc BS2000-posix-bc
VM/ESA vmesa vmesa
Some simple tricks for determining if you are running on an EBCDIC
platform could include any of the following (perhaps all):
if ("\t" eq "\05") { print "EBCDIC may be spoken here!\n"; }
if (ord('A') == 193) { print "EBCDIC may be spoken here!\n"; }
if (chr(169) eq 'z') { print "EBCDIC may be spoken here!\n"; }
One thing you may not want to rely on is the EBCDIC encoding
of punctuation characters since these may differ from code page to code
page (and once your module or script is rumoured to work with EBCDIC,
folks will want it to work with all EBCDIC character sets).
Also see:
=over 4
=item *
*
L<perlos390>, F<README.os390>, F<perlbs2000>, F<README.vmesa>,
L<perlebcdic>.
=item *
The [email protected] list is for discussion of porting issues as well as
general usage issues for all EBCDIC Perls. Send a message body of
"subscribe perl-mvs" to [email protected].
=item *
AS/400 Perl information at
http://as400.rochester.ibm.com/
as well as on CPAN in the F<ports/> directory.
=back
=head2 Acorn RISC OS
Because Acorns use ASCII with newlines (C<\n>) in text files as C<\012> like
Unix, and because Unix filename emulation is turned on by default,
most simple scripts will probably work "out of the box". The native
filesystem is modular, and individual filesystems are free to be
case-sensitive or insensitive, and are usually case-preserving. Some
native filesystems have name length limits, which file and directory
names are silently truncated to fit. Scripts should be aware that the
standard filesystem currently has a name length limit of B<10>
characters, with up to 77 items in a directory, but other filesystems
may not impose such limitations.
Native filenames are of the form
Filesystem#Special_Field::DiskName.$.Directory.Directory.File
where
Special_Field is not usually present, but may contain . and $ .
Filesystem =~ m|[A-Za-z0-9_]|
DsicName =~ m|[A-Za-z0-9_/]|
$ represents the root directory
. is the path separator
@ is the current directory (per filesystem but machine global)
^ is the parent directory
Directory and File =~ m|[^\0- "\.\$\%\&:\@\\^\|\177]+|
The default filename translation is roughly C<tr|/.|./|;>
Note that C<"ADFS::HardDisk.$.File" ne 'ADFS::HardDisk.$.File'> and that
the second stage of C<$> interpolation in regular expressions will fall
foul of the C<$.> if scripts are not careful.
Logical paths specified by system variables containing comma-separated
search lists are also allowed; hence C<System:Modules> is a valid
filename, and the filesystem will prefix C<Modules> with each section of
C<System$Path> until a name is made that points to an object on disk.
Writing to a new file C<System:Modules> would be allowed only if
C<System$Path> contains a single item list. The filesystem will also
expand system variables in filenames if enclosed in angle brackets, so
C<< <System$Dir>.Modules >> would look for the file
S<C<$ENV{'System$Dir'} . 'Modules'>>. The obvious implication of this is
that B<fully qualified filenames can start with C<< <> >>> and should
be protected when C<open> is used for input.
Because C<.> was in use as a directory separator and filenames could not
be assumed to be unique after 10 characters, Acorn implemented the C
compiler to strip the trailing C<.c> C<.h> C<.s> and C<.o> suffix from
filenames specified in source code and store the respective files in
subdirectories named after the suffix. Hence files are translated:
foo.h h.foo
C:foo.h C:h.foo (logical path variable)
sys/os.h sys.h.os (C compiler groks Unix-speak)
10charname.c c.10charname
10charname.o o.10charname
11charname_.c c.11charname (assuming filesystem truncates at 10)
The Unix emulation library's translation of filenames to native assumes
that this sort of translation is required, and it allows a user-defined list
of known suffixes that it will transpose in this fashion. This may
seem transparent, but consider that with these rules C<foo/bar/baz.h>
and C<foo/bar/h/baz> both map to C<foo.bar.h.baz>, and that C<readdir> and
C<glob> cannot and do not attempt to emulate the reverse mapping. Other
C<.>'s in filenames are translated to C</>.
As implied above, the environment accessed through C<%ENV> is global, and
the convention is that program specific environment variables are of the
form C<Program$Name>. Each filesystem maintains a current directory,
and the current filesystem's current directory is the B<global> current
directory. Consequently, sociable programs don't change the current
directory but rely on full pathnames, and programs (and Makefiles) cannot
assume that they can spawn a child process which can change the current
directory without affecting its parent (and everyone else for that
matter).
Because native operating system filehandles are global and are currently
allocated down from 255, with 0 being a reserved value, the Unix emulation
library emulates Unix filehandles. Consequently, you can't rely on
passing C<STDIN>, C<STDOUT>, or C<STDERR> to your children.
The desire of users to express filenames of the form
C<< <Foo$Dir>.Bar >> on the command line unquoted causes problems,
too: C<``> command output capture has to perform a guessing game. It
assumes that a string C<< <[^<>]+\$[^<>]> >> is a
reference to an environment variable, whereas anything else involving
C<< < >> or C<< > >> is redirection, and generally manages to be 99%
right. Of course, the problem remains that scripts cannot rely on any
Unix tools being available, or that any tools found have Unix-like command
line arguments.
Extensions and XS are, in theory, buildable by anyone using free
tools. In practice, many don't, as users of the Acorn platform are
used to binary distributions. MakeMaker does run, but no available
make currently copes with MakeMaker's makefiles; even if and when
this should be fixed, the lack of a Unix-like shell will cause
problems with makefile rules, especially lines of the form C<cd
sdbm && make all>, and anything using quoting.
"S<RISC OS>" is the proper name for the operating system, but the value
in C<$^O> is "riscos" (because we don't like shouting).
=head2 Other perls
Perl has been ported to many platforms that do not fit into any of
the categories listed above. Some, such as AmigaOS, Atari MiNT,
BeOS, HP MPE/iX, QNX, Plan 9, and VOS, have been well-integrated
into the standard Perl source code kit. You may need to see the
F<ports/> directory on CPAN for information, and possibly binaries,
for the likes of: aos, Atari ST, lynxos, riscos, Novell Netware,
Tandem Guardian, I<etc.> (Yes, we know that some of these OSes may
fall under the Unix category, but we are not a standards body.)
Some approximate operating system names and their C<$^O> values
in the "OTHER" category include:
OS $^O $Config{'archname'}
------------------------------------------
Amiga DOS amigaos m68k-amigos
MPE/iX mpeix PA-RISC1.1
See also:
=over 4
=item *
Amiga, F<README.amiga> (installed as L<perlamiga>).
=item *
Atari, F<README.mint> and Guido Flohr's web page
http://stud.uni-sb.de/~gufl0000/
=item *
Be OS, F<README.beos>
=item *
HP 300 MPE/iX, F<README.mpeix> and Mark Bixby's web page
http://www.bixby.org/mark/perlix.html
=item *
A free perl5-based PERL.NLM for Novell Netware is available in
precompiled binary and source code form from http://www.novell.com/
as well as from CPAN.
=item *
Plan 9, F<README.plan9>
=back
=head1 FUNCTION IMPLEMENTATIONS
Listed below are functions that are either completely unimplemented
or else have been implemented differently on various platforms.
Following each description will be, in parentheses, a list of
platforms that the description applies to.
The list may well be incomplete, or even wrong in some places. When
in doubt, consult the platform-specific README files in the Perl
source distribution, and any other documentation resources accompanying
a given port.
Be aware, moreover, that even among Unix-ish systems there are variations.
For many functions, you can also query C<%Config>, exported by
default from the Config module. For example, to check whether the
platform has the C<lstat> call, check C<$Config{d_lstat}>. See
L<Config> for a full description of available variables.
=head2 Alphabetical Listing of Perl Functions
=over 8
=item -X FILEHANDLE
=item -X EXPR
=item -X
C<-r>, C<-w>, and C<-x> have a limited meaning only; directories
and applications are executable, and there are no uid/gid
considerations. C<-o> is not supported. (S<Mac OS>)
C<-r>, C<-w>, C<-x>, and C<-o> tell whether the file is accessible,
which may not reflect UIC-based file protections. (VMS)
C<-s> returns the size of the data fork, not the total size of data fork
plus resource fork. (S<Mac OS>).
C<-s> by name on an open file will return the space reserved on disk,
rather than the current extent. C<-s> on an open filehandle returns the
current size. (S<RISC OS>)
C<-R>, C<-W>, C<-X>, C<-O> are indistinguishable from C<-r>, C<-w>,
C<-x>, C<-o>. (S<Mac OS>, Win32, VMS, S<RISC OS>)
C<-b>, C<-c>, C<-k>, C<-g>, C<-p>, C<-u>, C<-A> are not implemented.
(S<Mac OS>)
C<-g>, C<-k>, C<-l>, C<-p>, C<-u>, C<-A> are not particularly meaningful.
(Win32, VMS, S<RISC OS>)
C<-d> is true if passed a device spec without an explicit directory.
(VMS)
C<-T> and C<-B> are implemented, but might misclassify Mac text files
with foreign characters; this is the case will all platforms, but may
affect S<Mac OS> often. (S<Mac OS>)
C<-x> (or C<-X>) determine if a file ends in one of the executable
suffixes. C<-S> is meaningless. (Win32)
C<-x> (or C<-X>) determine if a file has an executable file type.
(S<RISC OS>)
=item alarm SECONDS
=item alarm
Not implemented. (Win32)
=item binmode FILEHANDLE
Meaningless. (S<Mac OS>, S<RISC OS>)
Reopens file and restores pointer; if function fails, underlying
filehandle may be closed, or pointer may be in a different position.
(VMS)
The value returned by C<tell> may be affected after the call, and
the filehandle may be flushed. (Win32)
=item chmod LIST
Only limited meaning. Disabling/enabling write permission is mapped to
locking/unlocking the file. (S<Mac OS>)
Only good for changing "owner" read-write access, "group", and "other"
bits are meaningless. (Win32)
Only good for changing "owner" and "other" read-write access. (S<RISC OS>)
Access permissions are mapped onto VOS access-control list changes. (VOS)
=item chown LIST
Not implemented. (S<Mac OS>, Win32, Plan9, S<RISC OS>, VOS)
Does nothing, but won't fail. (Win32)
=item chroot FILENAME
=item chroot
Not implemented. (S<Mac OS>, Win32, VMS, Plan9, S<RISC OS>, VOS, VM/ESA)
=item crypt PLAINTEXT,SALT
May not be available if library or source was not provided when building
perl. (Win32)
Not implemented. (VOS)
=item dbmclose HASH
Not implemented. (VMS, Plan9, VOS)
=item dbmopen HASH,DBNAME,MODE
Not implemented. (VMS, Plan9, VOS)
=item dump LABEL
Not useful. (S<Mac OS>, S<RISC OS>)
Not implemented. (Win32)
Invokes VMS debugger. (VMS)
=item exec LIST
Not implemented. (S<Mac OS>)
Implemented via Spawn. (VM/ESA)
Does not automatically flush output handles on some platforms.
(SunOS, Solaris, HP-UX)
=item fcntl FILEHANDLE,FUNCTION,SCALAR
Not implemented. (Win32, VMS)
=item flock FILEHANDLE,OPERATION
Not implemented (S<Mac OS>, VMS, S<RISC OS>, VOS).
Available only on Windows NT (not on Windows 95). (Win32)
=item fork
Not implemented. (S<Mac OS>, AmigaOS, S<RISC OS>, VOS, VM/ESA)
Emulated using multiple interpreters. See L<perlfork>. (Win32)
Does not automatically flush output handles on some platforms.
(SunOS, Solaris, HP-UX)
=item getlogin
Not implemented. (S<Mac OS>, S<RISC OS>)
=item getpgrp PID
Not implemented. (S<Mac OS>, Win32, VMS, S<RISC OS>, VOS)
=item getppid
Not implemented. (S<Mac OS>, Win32, VMS, S<RISC OS>)
=item getpriority WHICH,WHO
Not implemented. (S<Mac OS>, Win32, VMS, S<RISC OS>, VOS, VM/ESA)
=item getpwnam NAME
Not implemented. (S<Mac OS>, Win32)
Not useful. (S<RISC OS>)
=item getgrnam NAME
Not implemented. (S<Mac OS>, Win32, VMS, S<RISC OS>)
=item getnetbyname NAME
Not implemented. (S<Mac OS>, Win32, Plan9)
=item getpwuid UID
Not implemented. (S<Mac OS>, Win32)
Not useful. (S<RISC OS>)
=item getgrgid GID
Not implemented. (S<Mac OS>, Win32, VMS, S<RISC OS>)
=item getnetbyaddr ADDR,ADDRTYPE
Not implemented. (S<Mac OS>, Win32, Plan9)
=item getprotobynumber NUMBER
Not implemented. (S<Mac OS>)
=item getservbyport PORT,PROTO
Not implemented. (S<Mac OS>)
=item getpwent
Not implemented. (S<Mac OS>, Win32, VM/ESA)
=item getgrent
Not implemented. (S<Mac OS>, Win32, VMS, VM/ESA)
=item gethostent
Not implemented. (S<Mac OS>, Win32)
=item getnetent
Not implemented. (S<Mac OS>, Win32, Plan9)
=item getprotoent
Not implemented. (S<Mac OS>, Win32, Plan9)
=item getservent
Not implemented. (Win32, Plan9)
=item setpwent
Not implemented. (S<Mac OS>, Win32, S<RISC OS>)
=item setgrent
Not implemented. (S<Mac OS>, Win32, VMS, S<RISC OS>)
=item sethostent STAYOPEN
Not implemented. (S<Mac OS>, Win32, Plan9, S<RISC OS>)
=item setnetent STAYOPEN
Not implemented. (S<Mac OS>, Win32, Plan9, S<RISC OS>)
=item setprotoent STAYOPEN
Not implemented. (S<Mac OS>, Win32, Plan9, S<RISC OS>)
=item setservent STAYOPEN
Not implemented. (Plan9, Win32, S<RISC OS>)
=item endpwent
Not implemented. (S<Mac OS>, MPE/iX, VM/ESA, Win32)
=item endgrent
Not implemented. (S<Mac OS>, MPE/iX, S<RISC OS>, VM/ESA, VMS, Win32)
=item endhostent
Not implemented. (S<Mac OS>, Win32)
=item endnetent
Not implemented. (S<Mac OS>, Win32, Plan9)
=item endprotoent
Not implemented. (S<Mac OS>, Win32, Plan9)
=item endservent
Not implemented. (Plan9, Win32)
=item getsockopt SOCKET,LEVEL,OPTNAME
Not implemented. (S<Mac OS>, Plan9)
=item glob EXPR
=item glob
Globbing built-in, but only C<*> and C<?> metacharacters are supported.
(S<Mac OS>)
This operator is implemented via the File::Glob extension on most
platforms. See L<File::Glob> for portability information.
=item ioctl FILEHANDLE,FUNCTION,SCALAR
Not implemented. (VMS)
Available only for socket handles, and it does what the ioctlsocket() call
in the Winsock API does. (Win32)
Available only for socket handles. (S<RISC OS>)
=item kill SIGNAL, LIST
Not implemented, hence not useful for taint checking. (S<Mac OS>,
S<RISC OS>)
C<kill()> doesn't have the semantics of C<raise()>, i.e. it doesn't send
a signal to the identified process like it does on Unix platforms.
Instead C<kill($sig, $pid)> terminates the process identified by $pid,
and makes it exit immediately with exit status $sig. As in Unix, if
$sig is 0 and the specified process exists, it returns true without
actually terminating it. (Win32)
=item link OLDFILE,NEWFILE
Not implemented. (S<Mac OS>, MPE/iX, VMS, S<RISC OS>)
Link count not updated because hard links are not quite that hard
(They are sort of half-way between hard and soft links). (AmigaOS)
Hard links are implemented on Win32 (Windows NT and Windows 2000)
under NTFS only.
=item lstat FILEHANDLE
=item lstat EXPR
=item lstat
Not implemented. (VMS, S<RISC OS>)
Return values (especially for device and inode) may be bogus. (Win32)
=item msgctl ID,CMD,ARG
=item msgget KEY,FLAGS
=item msgsnd ID,MSG,FLAGS
=item msgrcv ID,VAR,SIZE,TYPE,FLAGS
Not implemented. (S<Mac OS>, Win32, VMS, Plan9, S<RISC OS>, VOS)
=item open FILEHANDLE,EXPR
=item open FILEHANDLE
The C<|> variants are supported only if ToolServer is installed.
(S<Mac OS>)
open to C<|-> and C<-|> are unsupported. (S<Mac OS>, Win32, S<RISC OS>)
Opening a process does not automatically flush output handles on some
platforms. (SunOS, Solaris, HP-UX)
=item pipe READHANDLE,WRITEHANDLE
Not implemented. (S<Mac OS>)
Very limited functionality. (MiNT)
=item readlink EXPR
=item readlink
Not implemented. (Win32, VMS, S<RISC OS>)
=item select RBITS,WBITS,EBITS,TIMEOUT
Only implemented on sockets. (Win32)
Only reliable on sockets. (S<RISC OS>)
Note that the C<socket FILEHANDLE> form is generally portable.
=item semctl ID,SEMNUM,CMD,ARG
=item semget KEY,NSEMS,FLAGS
=item semop KEY,OPSTRING
Not implemented. (S<Mac OS>, Win32, VMS, S<RISC OS>, VOS)
=item setgrent
Not implemented. (MPE/iX, Win32)
=item setpgrp PID,PGRP
Not implemented. (S<Mac OS>, Win32, VMS, S<RISC OS>, VOS)
=item setpriority WHICH,WHO,PRIORITY
Not implemented. (S<Mac OS>, Win32, VMS, S<RISC OS>, VOS)
=item setpwent
Not implemented. (MPE/iX, Win32)
=item setsockopt SOCKET,LEVEL,OPTNAME,OPTVAL
Not implemented. (S<Mac OS>, Plan9)
=item shmctl ID,CMD,ARG
=item shmget KEY,SIZE,FLAGS
=item shmread ID,VAR,POS,SIZE
=item shmwrite ID,STRING,POS,SIZE
Not implemented. (S<Mac OS>, Win32, VMS, S<RISC OS>, VOS)
=item socketpair SOCKET1,SOCKET2,DOMAIN,TYPE,PROTOCOL
Not implemented. (S<Mac OS>, Win32, VMS, S<RISC OS>, VOS, VM/ESA)
=item stat FILEHANDLE
=item stat EXPR
=item stat
Platforms that do not have rdev, blksize, or blocks will return these
as '', so numeric comparison or manipulation of these fields may cause
'not numeric' warnings.
mtime and atime are the same thing, and ctime is creation time instead of
inode change time. (S<Mac OS>)
device and inode are not meaningful. (Win32)
device and inode are not necessarily reliable. (VMS)
mtime, atime and ctime all return the last modification time. Device and
inode are not necessarily reliable. (S<RISC OS>)
dev, rdev, blksize, and blocks are not available. inode is not
meaningful and will differ between stat calls on the same file. (os2)
=item symlink OLDFILE,NEWFILE
Not implemented. (Win32, VMS, S<RISC OS>)
=item syscall LIST
Not implemented. (S<Mac OS>, Win32, VMS, S<RISC OS>, VOS, VM/ESA)
=item sysopen FILEHANDLE,FILENAME,MODE,PERMS
The traditional "0", "1", and "2" MODEs are implemented with different
numeric values on some systems. The flags exported by C<Fcntl>
(O_RDONLY, O_WRONLY, O_RDWR) should work everywhere though. (S<Mac
OS>, OS/390, VM/ESA)
=item system LIST
Only implemented if ToolServer is installed. (S<Mac OS>)
As an optimization, may not call the command shell specified in
C<$ENV{PERL5SHELL}>. C<system(1, @args)> spawns an external
process and immediately returns its process designator, without
waiting for it to terminate. Return value may be used subsequently
in C<wait> or C<waitpid>. Failure to spawn() a subprocess is indicated
by setting $? to "255 << 8". C<$?> is set in a way compatible with
Unix (i.e. the exitstatus of the subprocess is obtained by "$? >> 8",
as described in the documentation). (Win32)
There is no shell to process metacharacters, and the native standard is
to pass a command line terminated by "\n" "\r" or "\0" to the spawned
program. Redirection such as C<< > foo >> is performed (if at all) by
the run time library of the spawned program. C<system> I<list> will call
the Unix emulation library's C<exec> emulation, which attempts to provide
emulation of the stdin, stdout, stderr in force in the parent, providing
the child program uses a compatible version of the emulation library.
I<scalar> will call the native command line direct and no such emulation
of a child Unix program will exists. Mileage B<will> vary. (S<RISC OS>)
Far from being POSIX compliant. Because there may be no underlying
/bin/sh tries to work around the problem by forking and execing the
first token in its argument string. Handles basic redirection
("<" or ">") on its own behalf. (MiNT)
Does not automatically flush output handles on some platforms.
(SunOS, Solaris, HP-UX)
=item times
Only the first entry returned is nonzero. (S<Mac OS>)
"cumulative" times will be bogus. On anything other than Windows NT
or Windows 2000, "system" time will be bogus, and "user" time is
actually the time returned by the clock() function in the C runtime
library. (Win32)
Not useful. (S<RISC OS>)
=item truncate FILEHANDLE,LENGTH
=item truncate EXPR,LENGTH
Not implemented. (VMS)
Truncation to zero-length only. (VOS)
If a FILEHANDLE is supplied, it must be writable and opened in append
mode (i.e., use C<open(FH, '>>filename')>
or C<sysopen(FH,...,O_APPEND|O_RDWR)>. If a filename is supplied, it
should not be held open elsewhere. (Win32)
=item umask EXPR
=item umask
Returns undef where unavailable, as of version 5.005.
C<umask> works but the correct permissions are set only when the file
is finally closed. (AmigaOS)
=item utime LIST
Only the modification time is updated. (S<Mac OS>, VMS, S<RISC OS>)
May not behave as expected. Behavior depends on the C runtime
library's implementation of utime(), and the filesystem being
used. The FAT filesystem typically does not support an "access
time" field, and it may limit timestamps to a granularity of
two seconds. (Win32)
=item wait
=item waitpid PID,FLAGS
Not implemented. (S<Mac OS>, VOS)
Can only be applied to process handles returned for processes spawned
using C<system(1, ...)> or pseudo processes created with C<fork()>. (Win32)
Not useful. (S<RISC OS>)
=back
=head1 CHANGES
=over 4
=item v1.48, 02 February 2001
Various updates from perl5-porters over the past year, supported
platforms update from Jarkko Hietaniemi.
=item v1.47, 22 March 2000
Various cleanups from Tom Christiansen, including migration of
long platform listings from L<perl>.
=item v1.46, 12 February 2000
Updates for VOS and MPE/iX. (Peter Prymmer) Other small changes.
=item v1.45, 20 December 1999
Small changes from 5.005_63 distribution, more changes to EBCDIC info.
=item v1.44, 19 July 1999
A bunch of updates from Peter Prymmer for C<$^O> values,
endianness, File::Spec, VMS, BS2000, OS/400.
=item v1.43, 24 May 1999
Added a lot of cleaning up from Tom Christiansen.
=item v1.42, 22 May 1999
Added notes about tests, sprintf/printf, and epoch offsets.
=item v1.41, 19 May 1999
Lots more little changes to formatting and content.
Added a bunch of C<$^O> and related values
for various platforms; fixed mail and web addresses, and added
and changed miscellaneous notes. (Peter Prymmer)
=item v1.40, 11 April 1999
Miscellaneous changes.
=item v1.39, 11 February 1999
Changes from Jarkko and EMX URL fixes Michael Schwern. Additional
note about newlines added.
=item v1.38, 31 December 1998
More changes from Jarkko.
=item v1.37, 19 December 1998
More minor changes. Merge two separate version 1.35 documents.
=item v1.36, 9 September 1998
Updated for Stratus VOS. Also known as version 1.35.
=item v1.35, 13 August 1998
Integrate more minor changes, plus addition of new sections under
L<"ISSUES">: L<"Numbers endianness and Width">,
L<"Character sets and character encoding">,
L<"Internationalisation">.
=item v1.33, 06 August 1998
Integrate more minor changes.
=item v1.32, 05 August 1998
Integrate more minor changes.
=item v1.30, 03 August 1998
Major update for RISC OS, other minor changes.
=item v1.23, 10 July 1998
First public release with perl5.005.
=back
=head1 Supported Platforms
As of early 2001 (the Perl release 5.6.1), the following platforms are
able to build Perl from the standard source code distribution
available at http://www.perl.com/CPAN/src/index.html
AIX
AmigaOS
Darwin (Rhapsody)
DG/UX
DOS DJGPP 1)
DYNIX/ptx
EPOC
FreeBSD
HP-UX
IRIX
Linux
MachTen
MacOS Classic 2)
NonStop-UX
ReliantUNIX (SINIX)
OpenBSD
OpenVMS (VMS)
OS/2
OS X
QNX
Solaris
Tru64 UNIX (DEC OSF/1, Digital UNIX)
UNICOS
UNICOS/mk
VOS
Win32/NT/2K 3)
1) in DOS mode either the DOS or OS/2 ports can be used
2) Mac OS Classic (pre-X) is almost 5.6.1-ready; building from
the source does work with 5.6.1, but additional MacOS specific
source code is needed for a complete build. Contact the mailing
list [email protected] for more information.
3) compilers: Borland, Cygwin, Mingw32 EGCS/GCC, VC++
The following platforms worked for the previous release (5.6.0),
but we did not manage to test these in time for the 5.6.1 release.
There is a very good chance that these will work fine with 5.6.1.
DomainOS
Hurd
LynxOS
MinGW
MPE/iX
NetBSD
PowerMAX
SCO SV
SunOS
SVR4
Unixware
Windows 3.1
Windows 95
Windows 98
Windows Me
The following platform worked for the 5.005_03 major release but not
5.6.0. Standardization on UTF-8 as the internal string representation
in 5.6.0 and 5.6.1 has introduced incompatibilities in this EBCDIC
platform. While Perl 5.6.1 will build on this platform some
regression tests may fail and the C<use utf8;> pragma typically
introduces text handling errors. UTF-8 support for this platform may
be enabled in a future release:
OS/390 1)
1) previously known as MVS, about to become z/OS.
Strongly related to the OS/390 platform by also being EBCDIC-based
mainframe platforms are the following platforms:
POSIX-BC (BS2000)
VM/ESA
These are also expected to work, albeit with no UTF-8 support, under 5.6.1
for the same reasons as OS/390. Contact the mailing list [email protected]
for more details.
The following platforms have been known to build Perl from source in
the past (5.005_03 and earlier), but we haven't been able to verify
their status for the current release, either because the
hardware/software platforms are rare or because we don't have an
active champion on these platforms--or both. They used to work,
though, so go ahead and try compiling them, and let [email protected]
of any trouble.
3b1
A/UX
BeOS
BSD/OS
ConvexOS
CX/UX
DC/OSx
DDE SMES
DOS EMX
Dynix
EP/IX
ESIX
FPS
GENIX
Greenhills
ISC
MachTen 68k
MiNT
MPC
NEWS-OS
NextSTEP
OpenSTEP
Opus
Plan 9
PowerUX
RISC/os
SCO ODT/OSR
Stellar
SVR2
TI1500
TitanOS
Ultrix
Unisys Dynix
Unixware
UTS
Support for the following platform is planned for a future Perl release:
Netware
The following platforms have their own source code distributions and
binaries available via http://www.perl.com/CPAN/ports/index.html:
Perl release
Netware 5.003_07
OS/400 5.005_02
Tandem Guardian 5.004
The following platforms have only binaries available via
http://www.perl.com/CPAN/ports/index.html :
Perl release
Acorn RISCOS 5.005_02
AOS 5.002
LynxOS 5.004_02
Although we do suggest that you always build your own Perl from
the source code, both for maximal configurability and for security,
in case you are in a hurry you can check
http://www.perl.com/CPAN/ports/index.html for binary distributions.
=head1 SEE ALSO
L<perlaix>, L<perlamiga>, L<perlcygwin>, L<perldos>, L<perlepoc>,
L<perlebcdic>, L<perlhpux>, L<perlos2>, L<perlos390>, L<perlbs2000>,
L<perlwin32>, L<perlvms>, L<perlvos>, and L<Win32>.
=head1 AUTHORS / CONTRIBUTORS
Abigail <[email protected]>,
Charles Bailey <[email protected]>,
Graham Barr <[email protected]>,
Tom Christiansen <[email protected]>,
Nicholas Clark <[email protected]>,
Thomas Dorner <[email protected]>,
Andy Dougherty <[email protected]>,
Dominic Dunlop <[email protected]>,
Neale Ferguson <[email protected]>,
David J. Fiander <[email protected]>,
Paul Green <[email protected]>,
M.J.T. Guy <[email protected]>,
Jarkko Hietaniemi <[email protected]>,
Luther Huffman <[email protected]>,
Nick Ing-Simmons <[email protected]>,
Andreas J. KE<ouml>nig <[email protected]>,
Markus Laker <[email protected]>,
Andrew M. Langmead <[email protected]>,
Larry Moore <[email protected]>,
Paul Moore <[email protected]>,
Chris Nandor <[email protected]>,
Matthias Neeracher <[email protected]>,
Gary Ng <[email protected]>,
Tom Phoenix <[email protected]>,
AndrE<eacute> Pirard <[email protected]>,
Peter Prymmer <[email protected]>,
Hugo van der Sanden <[email protected]>,
Gurusamy Sarathy <[email protected]>,
Paul J. Schinder <[email protected]>,
Michael G Schwern <[email protected]>,
Dan Sugalski <[email protected]>,
Nathan Torkington <[email protected]>.
This document is maintained by Chris Nandor
<[email protected]>.
=head1 VERSION
Version 1.47, last modified 22 March 2000