Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1767 lines
54 KiB

/*++
Copyright (c) 1997 Microsoft Corporation
Module Name:
gart.c
Abstract:
This module contains the routines for setting and querying the AGP
aperture, and for Reserving, Releasing, Mapping, and Unmapping.
TODO:
1. Optimize for dual memory controllers (Done on 3/24/99 by elliots)
2. Claim MMIO resources for the chipset
3. Make sure the driver is generic for all RCC based systems (not just SP700).
Author:
John Vert (jvert) 10/30/1997
Revision History:
12/15/97 John Theisen Modified to support Compaq Chipsets
10/09/98 John Theisen Modified to enable Shadowing in the SP700
prior to MMIO writes.
01/15/99 John Theisen Modified to disable the aperture, by
shrinking it to size = 0.
3/24/99 Elliot Shmukler Added support for "favored" memory
ranges for AGP physical memory allocation,
fixed some bugs. These changes optimizine
the driver for dual memory controllers.
3/16/00 Peter Johnston Add support for ServerWorks HE chipset.
--*/
#include "AGPCPQ.H"
//
// Local routine prototypes
//
NTSTATUS
AgpCPQCreateGart(
IN PAGPCPQ_EXTENSION AgpContext,
IN ULONG MinimumPages
);
NTSTATUS
AgpCPQSetRate(
IN PVOID AgpContext,
IN ULONG AgpRate
);
PGART_PTE
AgpCPQFindRangeInGart(
IN PGART_PTE StartPte,
IN PGART_PTE EndPte,
IN ULONG Length,
IN BOOLEAN SearchBackward,
IN ULONG SearchState
);
VOID
AgpCPQMaintainGARTCacheCoherency (
IN PAGPCPQ_EXTENSION AgpContext,
IN PHYSICAL_ADDRESS MemoryBase,
IN ULONG NumberOfEntries,
IN BOOLEAN InvalidateAll
);
PIO_RESOURCE_LIST
AgpCPQGetApSizeRequirements(
ULONG MaxSize,
ULONG Count
);
NTSTATUS
AgpCPQSetApSizeInChipset
(
IN UCHAR NewSetApSize,
IN UCHAR NewSetAgpValid
);
NTSTATUS
AgpCPQSetApBaseInChipset
(
IN PHYSICAL_ADDRESS NewBase
);
//
// IMPLEMENTATION
//
NTSTATUS
AgpQueryAperture(
IN PAGPCPQ_EXTENSION AgpContext,
OUT PHYSICAL_ADDRESS *CurrentBase,
OUT ULONG *CurrentSizeInPages,
OUT OPTIONAL PIO_RESOURCE_LIST *pApertureRequirements
)
/*******************************************************************************
*
* Routine Functional Description:
*
* Returns the current base and size of the GART aperture. Optionally returns
* the possible GART settings.
*
* Arguments:
*
* AgpContext -- Supplies the AGP Context, i.e. the AGP Extension.
*
* CurrentBase -- Returns the current physical address of the aperture.
*
* CurrentSizeInPages -- Returns the current size of the aperture, in pages.
*
* pApertureRequirements -- If present, returns the possible aperture
* settings.
*
* Return Value:
*
* NTSTATUS
*
*******************************************************************************/
{
ULONG BAR0, CodedApSize;
AGPLOG(AGP_NOISE, ("AgpCpq: AgpQueryAperture entered.\n"));
//
// Get the current base physical address of the AGP Aperture.
//
ReadCPQConfig(&BAR0, OFFSET_BAR0, sizeof(BAR0));
CurrentBase->QuadPart = BAR0 & PCI_ADDRESS_MEMORY_ADDRESS_MASK;
//
// Get the (current) size of the aperture. This is done by writing all ones
// to BAR0, and then reading back the value. The Read/Write attributes
// of bits 31:25 in BAR0 will indicate the size.
//
CodedApSize = ALL_ONES;
WriteCPQConfig(&CodedApSize, OFFSET_BAR0, sizeof(ULONG));
ReadCPQConfig(&CodedApSize, OFFSET_BAR0, sizeof(CodedApSize));
WriteCPQConfig(&BAR0, OFFSET_BAR0, sizeof(ULONG));
CodedApSize &= MASK_LOW_TWENTYFIVE;
switch(CodedApSize) {
case BAR0_CODED_AP_SIZE_0MB:
*CurrentSizeInPages = 0;
break;
case BAR0_CODED_AP_SIZE_32MB:
*CurrentSizeInPages = (32 * 1024*1024) / PAGE_SIZE;
break;
case BAR0_CODED_AP_SIZE_64MB:
*CurrentSizeInPages = (64 * 1024*1024) / PAGE_SIZE;
break;
case BAR0_CODED_AP_SIZE_128MB:
*CurrentSizeInPages = (128* 1024*1024) / PAGE_SIZE;
break;
case BAR0_CODED_AP_SIZE_256MB:
*CurrentSizeInPages = (256* 1024*1024) / PAGE_SIZE;
break;
case BAR0_CODED_AP_SIZE_512MB:
*CurrentSizeInPages = (512* 1024*1024) / PAGE_SIZE;
break;
case BAR0_CODED_AP_SIZE_1GB:
*CurrentSizeInPages = (1024*1024*1024) / PAGE_SIZE;
break;
case BAR0_CODED_AP_SIZE_2GB:
*CurrentSizeInPages = (BYTES_2G) / PAGE_SIZE;
break;
default:
AGPLOG(AGP_CRITICAL,
("AGPCPQ - AgpQueryAperture - Unexpected HW aperture size: %x.\n",
*CurrentSizeInPages * PAGE_SIZE));
ASSERT(FALSE);
AgpContext->ApertureStart.QuadPart = 0;
AgpContext->ApertureLength = 0;
return(STATUS_UNSUCCESSFUL);
}
//
// Remember the current aperture settings
//
AgpContext->ApertureStart.QuadPart = CurrentBase->QuadPart;
AgpContext->ApertureLength = *CurrentSizeInPages * PAGE_SIZE;
//
// The pApertureRequirements will be returned in an
// IO_RESOURCE_REQUIREMENTS_LIST structure
// that describes the possible aperture sizes and bases that we support.
// This will depend on which chipset we are running on, i.e. the
// Device-VendorID in the PCI config header.
//
if (pApertureRequirements != NULL) {
switch (AgpContext->DeviceVendorID) {
case AGP_CNB20_LE_IDENTIFIER:
*pApertureRequirements = AgpCPQGetApSizeRequirements(
AP_MAX_SIZE_CNB20_LE, AP_SIZE_COUNT_CNB20_LE);
break;
case AGP_CNB20_HE_IDENTIFIER:
*pApertureRequirements = AgpCPQGetApSizeRequirements(
AP_MAX_SIZE_CNB20_HE, AP_SIZE_COUNT_CNB20_HE);
break;
case AGP_DRACO_IDENTIFIER:
*pApertureRequirements = AgpCPQGetApSizeRequirements(
AP_MAX_SIZE_DRACO, AP_SIZE_COUNT_DRACO);
break;
default:
*pApertureRequirements = NULL;
break;
}
}
return(STATUS_SUCCESS);
}
NTSTATUS
AgpSetAperture(
IN PAGPCPQ_EXTENSION AgpContext,
IN PHYSICAL_ADDRESS NewBase,
IN ULONG NewSizeInPages
)
/*******************************************************************************
*
* Routine Functional Description:
*
* Sets the AGP aperture to the requested settings.
*
* Arguments:
*
* AgpContext -- Supplies the AGP Context, i.e. the AGP Extension.
*
* NewBase -- Supplies the new physical memroy base for the AGP aperture.
*
* NewSizeInPages -- Supplies the new size for the AGP aperture.
*
* Return Value:
*
* NTSTATUS
*
*******************************************************************************/
{
NTSTATUS Status = STATUS_SUCCESS; // Assume successful completion.
UCHAR SetApSize;
ULONG ApBase;
AGP_AP_SIZE_REG AgpApSizeRegister;
BOOLEAN ChangingBase = TRUE;
BOOLEAN ChangingSize = TRUE;
AGPLOG(AGP_NOISE, ("AgpCpq: AgpSetAperture entered.\n"));
//
// If we are resuming from s3, or s4, we need to reprogram
// the gart cache enable and base
//
if (AgpContext->Gart) {
if (AgpContext->IsHPSA) DnbSetShadowBit(0);
AgpContext->MMIO->GartBase.Page =
(AgpContext->GartPointer >> PAGE_SHIFT);
AgpContext->MMIO->FeatureControl.GARTCacheEnable = 1;
//
// If the chipset supports linking then enable linking.
//
if (AgpContext->MMIO->Capabilities.LinkingSupported==1) {
AgpContext->MMIO->FeatureControl.LinkingEnable=1;
}
if (AgpContext->IsHPSA) DnbSetShadowBit(1);
}
//
// Reprogram Special Target settings when the chip
// is powered off, but ignore rate changes as those were already
// applied during MasterInit
//
if (AgpContext->SpecialTarget & ~AGP_FLAG_SPECIAL_RESERVE) {
AgpSpecialTarget(AgpContext,
AgpContext->SpecialTarget &
~AGP_FLAG_SPECIAL_RESERVE);
}
//
// Determine which parameter(s) we are being asked to change.
//
if (NewBase.QuadPart == AgpContext->ApertureStart.QuadPart)
{
ChangingBase = FALSE;
}
if (NewSizeInPages == AgpContext->ApertureLength / PAGE_SIZE)
{
ChangingSize = FALSE;
}
//
// If the new settings match the current settings, leave everything alone.
//
if ( !ChangingBase && !ChangingSize )
{
return(STATUS_SUCCESS);
}
//
// Make sure the supplied Base is aligned on the appropriate boundary for the size.
//
ASSERT(NewBase.HighPart == 0);
ASSERT((NewBase.LowPart + (NewSizeInPages * PAGE_SIZE) - 1) <= ALL_ONES);
ASSERT((NewBase.QuadPart & ((NewSizeInPages * PAGE_SIZE) - 1)) == 0);
if ((NewBase.QuadPart & ((NewSizeInPages * PAGE_SIZE) - 1)) != 0 )
{
AGPLOG(AGP_CRITICAL,
("AgpSetAperture - invalid base: %I64X for aperture of %lx pages\n",
NewBase.QuadPart,
NewSizeInPages));
return(STATUS_INVALID_PARAMETER);
}
//
// Change the size first, since doing so will modify the Read/Write attributes
// of the appropriate bits in the Aperture Base register.
//
if (ChangingSize) {
//
// Draco only supports the default 256MB h/w Aperture Size, and can't change it, so fail.
//
if (AgpContext->DeviceVendorID == AGP_DRACO_IDENTIFIER)
{
ASSERT(NewSizeInPages != (256 * 1024*1024));
AGPLOG(AGP_CRITICAL,
("AgpSetAperture - Chipset incapable of changing Aperture Size.\n"));
return(STATUS_INVALID_PARAMETER);
}
//
// RCC HE and LE chipset both support from 32M to 2G h/w Aperture Size.
//
ASSERT( (AgpContext->DeviceVendorID == AGP_CNB20_LE_IDENTIFIER) ||
(AgpContext->DeviceVendorID == AGP_CNB20_HE_IDENTIFIER) );
//
// Determine the value to use to set the aperture size in the chipset's
// Device Address Space Size register.
//
switch(NewSizeInPages) {
case (32 * 1024*1024) / PAGE_SIZE:
SetApSize = SET_AP_SIZE_32MB;
break;
case (64 * 1024*1024) / PAGE_SIZE:
SetApSize = SET_AP_SIZE_64MB;
break;
case (128 * 1024*1024) / PAGE_SIZE:
SetApSize = SET_AP_SIZE_128MB;
break;
case (256 * 1024*1024) / PAGE_SIZE:
SetApSize = SET_AP_SIZE_256MB;
break;
case (512 * 1024*1024) / PAGE_SIZE:
SetApSize = SET_AP_SIZE_512MB;
break;
case (1024 * 1024*1024) / PAGE_SIZE:
SetApSize = SET_AP_SIZE_1GB;
break;
case (BYTES_2G) / PAGE_SIZE:
SetApSize = SET_AP_SIZE_2GB;
break;
default:
AGPLOG(AGP_CRITICAL,
("AgpSetAperture - Invalid size: %lx pages. Base: %I64X.\n",
NewSizeInPages,
NewBase.QuadPart));
ASSERT(FALSE);
return(STATUS_INVALID_PARAMETER);
}
//
// Set the aperture size and set AgpValid bit. This must be done before setting the Aperture Base.
//
Status = AgpCPQSetApSizeInChipset(SetApSize, 1);
if (!NT_SUCCESS(Status))
{
return(Status);
}
} // End if ChangingSize
if (ChangingBase) {
//
// Set the aperture base.
//
Status = AgpCPQSetApBaseInChipset(NewBase);
if (!NT_SUCCESS(Status))
{
return(Status);
}
} // End if ChangingBase
//
// Update our extension to reflect the new GART setting
//
AgpContext->ApertureStart = NewBase;
AgpContext->ApertureLength = NewSizeInPages * PAGE_SIZE;
return(STATUS_SUCCESS);
}
VOID
AgpDisableAperture(
IN PAGPCPQ_EXTENSION AgpContext
)
/*++
Routine Description:
Disables the GART aperture so that this resource is available
for other devices
Arguments:
AgpContext - Supplies the AGP context
Return Value:
None - this routine must always succeed.
--*/
{
AGPLOG(AGP_NOISE, ("AgpCpq: AgpDisableAperture entered.\n"));
//
// Set the ApSize and AgpValid to 0, which causes BAR0 to be set back
// to zero and to be read only.
//
AgpCPQSetApSizeInChipset(0, 0);
//
// Nuke the Gart! (It's meaningless now...)
//
if (AgpContext->Gart != NULL) {
//
// Two level translation...
//
if (AgpContext->MMIO->Capabilities.TwoLevelAddrTransSupported == 1) {
AgpLibFreeMappedPhysicalMemory(AgpContext->Gart,
AgpContext->GartLength);
//
// Free the directory base allocation
//
if (AgpContext->Dir != NULL) {
MmFreeContiguousMemory(AgpContext->Dir);
AgpContext->Dir = NULL;
}
} else {
MmFreeContiguousMemory(AgpContext->Gart);
}
AgpContext->Gart = NULL;
AgpContext->GartLength = 0;
}
}
NTSTATUS
AgpReserveMemory(
IN PAGPCPQ_EXTENSION AgpContext,
IN OUT AGP_RANGE *Range
)
/*******************************************************************************
*
* Routine Functional Description:
*
* Reserves a range of memory in the GART.
*
* Arguments:
*
* AgpContext -- Supplies the AGP Context, i.e. the AGP Extension.
*
* Range -- Supplies the AGP_RANGE structure. AGPLIB will have filled in
* NumberOfPages and Type. This routine will fill in MemoryBase
* and Context.
*
* Return Value:
*
* NTSTATUS
*
*******************************************************************************/
{
ULONG Index;
ULONG NewState;
NTSTATUS Status;
PGART_PTE FoundRange;
BOOLEAN Backwards;
ASSERT((Range->Type == MmNonCached) || (Range->Type == MmWriteCombined));
ASSERT(Range->NumberOfPages <= (AgpContext->ApertureLength / PAGE_SIZE));
AGPLOG(AGP_NOISE, ("AgpCpq: AgpReserveMemory entered.\n"));
//
// If we have not allocated our GART yet, now is the time to do so
//
if (AgpContext->Gart == NULL) {
ASSERT(AgpContext->GartLength == 0);
Status = AgpCPQCreateGart(AgpContext, Range->NumberOfPages);
if (!NT_SUCCESS(Status)) {
AGPLOG(AGP_CRITICAL,
("AgpCPQCreateGart failed %08lx to create GART of size %lx\n",
Status,
AgpContext->ApertureLength/PAGE_SIZE));
return(Status);
}
}
ASSERT(AgpContext->GartLength != 0);
//
// Now that we have a GART, try and find enough contiguous entries
// to satisfy the request. Requests for uncached memory will scan
// from high addresses to low addresses. Requests for write-combined
// memory will scan from low addresses to high addresses. We will
// use a first-fit algorithm to try and keep the allocations
// packed and contiguous.
//
Backwards = (Range->Type == MmNonCached) ? TRUE : FALSE;
FoundRange = AgpCPQFindRangeInGart(&AgpContext->Gart[0],
&AgpContext->Gart[(AgpContext->GartLength / sizeof(GART_PTE)) - 1],
Range->NumberOfPages, Backwards, GART_ENTRY_FREE);
if (FoundRange == NULL) {
//
// A big enough chunk was not found.
//
AGPLOG(AGP_CRITICAL,
("AgpReserveMemory - Could not find %d contiguous free pages of type %d in GART at %08lx\n",
Range->NumberOfPages,
Range->Type,
AgpContext->Gart));
//
// This is where we could try and grow the GART
//
return(STATUS_INSUFFICIENT_RESOURCES);
}
AGPLOG(AGP_NOISE,
("AgpReserveMemory - reserved %d pages at GART PTE %08lx\n",
Range->NumberOfPages,
FoundRange));
//
// Set these pages to reserved
//
if (Range->Type == MmNonCached) {
NewState = GART_ENTRY_RESERVED_UC;
} else {
NewState = GART_ENTRY_RESERVED_WC;
}
for (Index = 0; Index < Range->NumberOfPages; Index++) {
ASSERT(FoundRange[Index].Soft.State == GART_ENTRY_FREE);
FoundRange[Index].AsUlong = 0;
FoundRange[Index].Soft.State = NewState;
}
//
// Return the values.
//
Range->MemoryBase.QuadPart = AgpContext->ApertureStart.QuadPart +
(FoundRange - &AgpContext->Gart[0]) * PAGE_SIZE;
Range->Context = FoundRange;
ASSERT(Range->MemoryBase.HighPart == 0);
AGPLOG(AGP_NOISE,
("AgpReserveMemory - reserved memory handle %lx at PA %08lx\n",
FoundRange,
Range->MemoryBase.LowPart));
return(STATUS_SUCCESS);
}
NTSTATUS
AgpReleaseMemory(
IN PAGPCPQ_EXTENSION AgpContext,
IN PAGP_RANGE Range
)
/*******************************************************************************
*
* Routine Functional Description:
*
* Releases memory previously reserved with AgpReserveMemory.
*
* Arguments:
*
* AgpContext -- Supplies the AGP Context, i.e. the AGP Extension.
*
* Range -- Supplies the range to be released.
*
* Return Value:
*
* NTSTATUS
*
*******************************************************************************/
{
PGART_PTE Pte, LastPteWritten;
ULONG Start, ReadBack, PolledValue, Retry;
AGPLOG(AGP_NOISE, ("AgpCpq: AgpReleaseMemory entered.\n"));
//
// Go through and free all the PTEs. None of these should still
// be valid at this point, nor should they be mapped.
//
LastPteWritten = NULL;
for (Pte = Range->Context;
Pte < (PGART_PTE)Range->Context + Range->NumberOfPages;
Pte++)
{
ASSERT(Pte->Hard.Page == 0);
if (Range->Type == MmNonCached) {
ASSERT(Pte->Soft.State == GART_ENTRY_RESERVED_UC);
} else {
ASSERT(Pte->Soft.State == GART_ENTRY_RESERVED_WC);
}
Pte->Soft.State = GART_ENTRY_FREE;
LastPteWritten = Pte;
}
//
// Invalidate the GART Cache appropriately.
//
AgpCPQMaintainGARTCacheCoherency(AgpContext,
Range->MemoryBase,
Range->NumberOfPages,
FALSE );
//
// Flush the posted write buffers
//
if (AgpContext->IsHPSA) DnbSetShadowBit(0);
AgpContext->MMIO->PostedWriteBufferControl.Flush = 1;
if (AgpContext->IsHPSA) DnbSetShadowBit(1);
if (LastPteWritten) {
ReadBack = *(volatile ULONG *)&LastPteWritten->AsUlong;
}
for (Retry = 1000; Retry; Retry--) {
PolledValue =
AgpContext->MMIO->PostedWriteBufferControl.Flush;
if (PolledValue == 0) {
break;
}
}
ASSERT(PolledValue == 0); // This bit should get reset by the chipset.
Range->MemoryBase.QuadPart = 0;
return(STATUS_SUCCESS);
}
NTSTATUS
AgpMapMemory(
IN PAGPCPQ_EXTENSION AgpContext,
IN PAGP_RANGE Range,
IN PMDL Mdl,
IN ULONG OffsetInPages,
OUT PHYSICAL_ADDRESS *MemoryBase
)
/*******************************************************************************
*
* Routine Functional Description:
*
* Maps physical memory into the AGP aperture, somewhere in the specified
* range.
*
* Arguments:
*
* AgpContext -- Supplies the AGP Context, i.e. the AGP Extension.
*
* Range -- Supplies the AGP range into which the memory should be mapped.
*
* Mdl -- Supplies the MDL describing the physical pages to be mapped.
*
* OffsetInPages - Supplies the offset into the reserved range where the
* mapping should begin.
*
* MemoryBase -- Returns the 'physical' address in the aperture where the
* pages were mapped.
*
* Return Value:
*
* NTSTATUS
*
*******************************************************************************/
{
ULONG PageCount;
PGART_PTE Pte;
PGART_PTE StartPte;
ULONG Index;
ULONG TargetState;
PULONG Page;
BOOLEAN Backwards;
GART_PTE NewPte;
ULONG PolledValue, Retry;
AGPLOG(AGP_NOISE, ("AgpCpq: AgpMapMemory entered.\n"));
ASSERT(Mdl->Next == NULL);
StartPte = Range->Context;
PageCount = BYTES_TO_PAGES(Mdl->ByteCount);
ASSERT(PageCount <= Range->NumberOfPages);
ASSERT(OffsetInPages <= Range->NumberOfPages);
ASSERT(PageCount + OffsetInPages <= Range->NumberOfPages);
ASSERT(PageCount > 0);
TargetState = (Range->Type == MmNonCached) ? GART_ENTRY_RESERVED_UC :
GART_ENTRY_RESERVED_WC;
Pte = StartPte + OffsetInPages;
//
// We have found a suitable spot to map the pages. Now map them.
//
ASSERT(Pte >= StartPte);
ASSERT(Pte + PageCount <= StartPte + Range->NumberOfPages);
NewPte.AsUlong = 0;
NewPte.Soft.State = (Range->Type == MmNonCached) ? GART_ENTRY_VALID_UC :
GART_ENTRY_VALID_WC;
Page = (PULONG)(Mdl + 1);
for (Index = 0; Index < PageCount; Index++)
{
ASSERT(Pte[Index].Soft.State == TargetState);
NewPte.Hard.Page = *Page++;
Pte[Index].AsUlong = NewPte.AsUlong;
ASSERT(Pte[Index].Hard.Valid == 1);
ASSERT(Pte[Index].Hard.Linked == 0);
}
//
// If Linking is supported, then link the entries by setting the link bit
// in all entries, except the last entry, in the mapped set.
//
if (AgpContext->MMIO->Capabilities.LinkingSupported) {
ASSERT(AgpContext->MMIO->FeatureControl.LinkingEnable);
for (Index = 0; Index < PageCount-1; Index++) {
ASSERT(Pte[Index].Hard.Page != 0);
Pte[Index].Hard.Linked = 1;
}
}
//
// We have filled in all the PTEs. Now flush the write buffers.
//
if (AgpContext->IsHPSA) DnbSetShadowBit(0);
AgpContext->MMIO->PostedWriteBufferControl.Flush = 1;
if (AgpContext->IsHPSA) DnbSetShadowBit(1);
NewPte.AsUlong = *(volatile ULONG *)&Pte[PageCount-1].AsUlong;
for (Retry = 1000; Retry; Retry--) {
PolledValue =
AgpContext->MMIO->PostedWriteBufferControl.Flush;
if (PolledValue == 0) {
break;
}
}
ASSERT(PolledValue == 0); // This bit should get reset by the chipset.
//
// Return where they are mapped
//
MemoryBase->QuadPart = Range->MemoryBase.QuadPart + (Pte - StartPte) * PAGE_SIZE;
return(STATUS_SUCCESS);
}
NTSTATUS
AgpUnMapMemory(
IN PAGPCPQ_EXTENSION AgpContext,
IN PAGP_RANGE AgpRange,
IN ULONG NumberOfPages,
IN ULONG OffsetInPages
)
/*******************************************************************************
*
* Routine Functional Description:
*
* UnMaps all or part of the memory that was previously mapped by AgpMapMemory.
*
* Arguments:
*
* AgpContext -- Supplies the AGP Context, i.e. the AGP Extension.
*
* AgpRange -- Supplies the AGP range out of which memory should be un-mapped.
*
* NumberOfPages -- Supplies the number of pages in the range to be un-mapped.
*
* OffsetInPages -- Supplies the offset into the Reserved Range where the un-mapping
* should begin.
*
* Return Value:
*
* NTSTATUS
*
*******************************************************************************/
{
ULONG Index, TargetState, ReadBack, PolledValue, Retry;
PGART_PTE ReservedBasePte;
PGART_PTE Pte;
PGART_PTE LastChangedPte=NULL;
PHYSICAL_ADDRESS pa;
AGPLOG(AGP_NOISE, ("AgpCpq: AgpUnMapMemory entered.\n"));
ASSERT(OffsetInPages + NumberOfPages <= AgpRange->NumberOfPages);
ReservedBasePte = AgpRange->Context;
Pte = &ReservedBasePte[OffsetInPages];
TargetState = (AgpRange->Type == MmNonCached) ? GART_ENTRY_RESERVED_UC : GART_ENTRY_RESERVED_WC;
//
// UnMap each entry by putting each Mapped Entry back into the 'Reserved State'
//
for (Index=0; Index < NumberOfPages; Index++) {
if (Pte[Index].Hard.Valid) {
ASSERT(Pte[Index].Hard.Page != 0);
Pte[Index].Hard.Page = 0;
Pte[Index].Soft.State = TargetState;
LastChangedPte = &Pte[Index];
} else {
//
// We are being asked to un-map a page that is not mapped.
//
ASSERT(Pte[Index].Hard.Page == 0);
ASSERT(Pte[Index].Soft.State == TargetState);
AGPLOG(AGP_NOISE,
("AgpUnMapMemory - PTE %08lx (%08lx) at offset %d not mapped\n",
&Pte[Index],
Pte[Index].AsUlong,
Index));
}
}
//
// Maintain link bit coherency within this reserved range.
//
if (OffsetInPages != 0) {
ASSERT(OffsetInPages >= 1);
if (ReservedBasePte[OffsetInPages-1].Hard.Linked == 1) {
ASSERT(ReservedBasePte[OffsetInPages-1].Hard.Valid == 1);
ReservedBasePte[OffsetInPages-1].Hard.Linked = 0;
}
}
//
// Invalidate the Cache appropriately.
//
pa.HighPart = 0;
pa.LowPart = AgpRange->MemoryBase.LowPart + OffsetInPages*PAGE_SIZE;
AgpCPQMaintainGARTCacheCoherency(AgpContext, pa, NumberOfPages, FALSE);
//
// Flush the posted write buffers
//
if (LastChangedPte != NULL)
{
if (AgpContext->IsHPSA) DnbSetShadowBit(0);
AgpContext->MMIO->PostedWriteBufferControl.Flush = 1;
if (AgpContext->IsHPSA) DnbSetShadowBit(1);
ReadBack = *((volatile ULONG *)&(LastChangedPte[0].AsUlong));
for (Retry = 2000; Retry; Retry--) {
PolledValue =
AgpContext->MMIO->PostedWriteBufferControl.Flush;
if (PolledValue == 0) {
break;
}
}
ASSERT(PolledValue == 0); // This bit should get reset by the chipset.
}
return(STATUS_SUCCESS);
}
NTSTATUS
AgpCPQCreateGart(
IN PAGPCPQ_EXTENSION AgpContext,
IN ULONG MinimumPages
)
/*******************************************************************************
*
* Routine Functional Description:
*
* Allocates and initializes an empty GART. The current implementation
* attempts to allocate the entire GART on the first reserve.
*
* Arguments:
*
* AgpContext -- Supplies the AGP Context, i.e. the AGP Extension.
*
* MinimumPages -- Supplies the minimum size (in pages) of the GART to be
* created.
*
* Return Value:
*
* NTSTATUS
*
*******************************************************************************/
{
PGART_PTE Gart;
ULONG* Dir;
PHYSICAL_ADDRESS LowestAcceptable;
PHYSICAL_ADDRESS BoundaryMultiple;
PHYSICAL_ADDRESS HighestAcceptable;
PHYSICAL_ADDRESS GartPhysical, DirPhysical, GartPointer, GartPagePhysical;
ULONG Index;
ULONG GartLength = BYTES_TO_PAGES(AgpContext->ApertureLength) * sizeof(GART_PTE);;
AGPLOG(AGP_NOISE, ("AgpCpq: AgpCPQCreateGart entered.\n"));
//
// If the chipset requires two-level address translation, then allocate a not-necessarily-
// contiguous GART, and create a Directory. Otherwise, allocate a contiguous GART.
//
if (AgpContext->MMIO->Capabilities.TwoLevelAddrTransSupported == 1){
//
// The chipset uses 2-level GART address translation.
// Allocate the (not-necessarily-contiguous) GART.
//
Gart = AgpLibAllocateMappedPhysicalMemory(AgpContext, GartLength);
if (Gart == NULL)
{
AGPLOG(AGP_CRITICAL,
("AgpCPQCreateGart - MmAllocateNonCachedMemory, for %lx bytes, failed\n",
PAGE_SIZE));
return(STATUS_INSUFFICIENT_RESOURCES);
}
ASSERT(((ULONG_PTR)Gart & (PAGE_SIZE-1)) == 0);
//
// Now allocate a GART Directory. The directory needs to be
// below the 4GB boundary.
//
HighestAcceptable.QuadPart = 0xffffffff;
LowestAcceptable.QuadPart = 0;
BoundaryMultiple.QuadPart = 0;
Dir = MmAllocateContiguousMemorySpecifyCache(PAGE_SIZE,
LowestAcceptable,
HighestAcceptable,
BoundaryMultiple,
MmNonCached);
if (Dir == NULL)
{
AGPLOG(AGP_CRITICAL,
("AgpCPQCreateGart - MmAllocateContiguousMemory %lx failed\n",
PAGE_SIZE));
return(STATUS_INSUFFICIENT_RESOURCES);
}
ASSERT(((ULONG_PTR)Dir & (PAGE_SIZE-1)) == 0);
DirPhysical = MmGetPhysicalAddress(Dir);
//
// Walk the Directory, and assign to each Directory entry the value
// of the physical address of the corresponding GART page.
//
ASSERT(GartLength/PAGE_SIZE <= PAGE_SIZE/sizeof(ULONG));
for (Index=0; Index<(GartLength/PAGE_SIZE); Index++)
{
ULONG HighPart;
ULONG Temp;
GartPagePhysical = MmGetPhysicalAddress( &(Gart[Index*PAGE_SIZE/sizeof(GART_PTE)]));
//
// Format of a directory entry is
// 31 12 11 10 9 8 7 2 1 0 <- bits
// ------------------------------------------------------
// | [31:12] | [32] | [33] | [34] | [35] | | L | V | <- Data
// ------------------------------------------------------
//
// Where:-
// 31-12 are bits 31 thru 12 of the physical address, ie
// the page number if the page is below 4GB.
// 32, 33, 34 and 35 are the respective bits of the physical
// address if the address is above 4GB.
// L Link.
// V Valid.
//
ASSERT((GartPagePhysical.HighPart & ~0xf) == 0);
HighPart = GartPagePhysical.HighPart & 0xf;
Temp = (HighPart & 1) << 11;// bit 32 -> bit 11
Temp |= (HighPart & 2) << 9 ;// bit 33 -> bit 10
Temp |= (HighPart & 4) << 7 ;// bit 34 -> bit 9
Temp |= (HighPart & 8) << 5 ;// bit 35 -> bit 8
Dir[Index] = GartPagePhysical.LowPart | Temp;
}
} else {
//
// The chipset uses single level address translation.
// Allocate the contiguous GART.
//
//
// Try and get a chunk of contiguous memory big enough to map the
// entire aperture.
//
HighestAcceptable.QuadPart = 0xFFFFFFFF;
LowestAcceptable.QuadPart = 0;
BoundaryMultiple.QuadPart = 0;
Gart = MmAllocateContiguousMemorySpecifyCache(GartLength,
LowestAcceptable,
HighestAcceptable,
BoundaryMultiple,
MmNonCached);
if (Gart == NULL)
{
AGPLOG(AGP_CRITICAL,
("AgpCPQCreateGart - MmAllocateContiguousMemory %lx failed\n",
GartLength));
return(STATUS_INSUFFICIENT_RESOURCES);
}
//
// We successfully allocated a contiguous chunk of memory.
// It should be page aligned already.
//
ASSERT(((ULONG_PTR)Gart & (PAGE_SIZE-1)) == 0);
//
// Get the physical address.
//
GartPhysical = MmGetPhysicalAddress(Gart);
AGPLOG(AGP_NOISE,
("AgpCPQCreateGart - GART of length %lx created at VA %08lx, PA %08lx\n",
GartLength,
Gart,
GartPhysical.LowPart));
ASSERT(GartPhysical.HighPart == 0);
ASSERT((GartPhysical.LowPart & (PAGE_SIZE-1)) == 0);
}
//
// Initialize all the GART PTEs to free
//
for (Index=0; Index<GartLength/sizeof(GART_PTE); Index++)
{
Gart[Index].Soft.State = GART_ENTRY_FREE;
}
//
// Update our extension to reflect the current state.
//
AgpContext->Gart = Gart;
AgpContext->GartLength = GartLength;
if (AgpContext->MMIO->Capabilities.TwoLevelAddrTransSupported == 1) {
AgpContext->Dir = Dir;
GartPointer=DirPhysical;
} else {
AgpContext->Dir = NULL;
GartPointer=GartPhysical;
}
//
// Stash GartPointer for resuming from s3 or s4
//
AgpContext->GartPointer = GartPointer.LowPart;
//
// Tell the chipset where the GART base is.
//
if (AgpContext->IsHPSA) DnbSetShadowBit(0);
AgpContext->MMIO->GartBase.Page = (GartPointer.LowPart >> PAGE_SHIFT);
if (AgpContext->IsHPSA) DnbSetShadowBit(1);
return(STATUS_SUCCESS);
}
PGART_PTE
AgpCPQFindRangeInGart(
IN PGART_PTE StartPte,
IN PGART_PTE EndPte,
IN ULONG Length,
IN BOOLEAN SearchBackward,
IN ULONG SearchState
)
/*++
Routine Description:
Finds a contiguous range in the GART. This routine can
search either from the beginning of the GART forwards or
the end of the GART backwards.
Arguments:
StartIndex - Supplies the first GART pte to search
EndPte - Supplies the last GART to search (inclusive)
Length - Supplies the number of contiguous free entries
to search for.
SearchBackward - TRUE indicates that the search should begin
at EndPte and search backwards. FALSE indicates that the
search should begin at StartPte and search forwards
SearchState - Supplies the PTE state to look for.
Return Value:
Pointer to the first PTE in the GART if a suitable range
is found.
NULL if no suitable range exists.
--*/
{
PGART_PTE Current;
PGART_PTE Last;
LONG Delta;
ULONG Found;
PGART_PTE Candidate;
AGPLOG(AGP_NOISE, ("AgpCpq: AgpCPQFindRangeInGart entered.\n"));
ASSERT(EndPte >= StartPte);
ASSERT(Length <= (ULONG)(EndPte - StartPte + 1));
ASSERT(Length != 0);
if (SearchBackward) {
Current = EndPte;
Last = StartPte-1;
Delta = -1;
} else {
Current = StartPte;
Last = EndPte+1;
Delta = 1;
}
Found = 0;
while (Current != Last) {
if (Current->Soft.State == SearchState) {
if (++Found == Length) {
//
// A suitable range was found, return it
//
if (SearchBackward) {
return(Current);
} else {
return(Current - Length + 1);
}
}
} else {
Found = 0;
}
Current += Delta;
}
//
// A suitable range was not found.
//
return(NULL);
}
VOID
AgpCPQMaintainGARTCacheCoherency(
IN PAGPCPQ_EXTENSION AgpContext,
IN PHYSICAL_ADDRESS MemoryBase,
IN ULONG NumberOfEntries,
IN BOOLEAN InvalidateAll
)
/*******************************************************************************
*
* Routine Functional Description:
*
* Invalidates the entire GART [&DIR] Cache, or individual Entries in the GART
* cache, depending on which would provide better overall performance.
*
* Arguments:
*
* AgpContext -- Supplies the AGP Context, i.e. the AGP Extension.
*
* MemoryBase -- Supplies the 'physical' address, in the AGP aperture,
* corresponding to the first GART Entry to flush
* from the GART Entry Cache.
*
* NumberOfEntries -- Supplies the number of Cached Entries which need to be
* invalidated.
*
* InvalidateAll -- Supplies a flag that, if TRUE, indicates that this routine
* should invalidate the entire GART [&DIR] cache, rather than the individual
* Cached Entries. If FALSE, then this routine decides how best to do it.
*
* Return Value:
*
* None
*
*******************************************************************************/
{
ULONG PolledValue, AperturePage, Index, Retry;
GART_CACHE_ENTRY_CONTROL CacheEntryControlValue;
AGPLOG(AGP_NOISE, ("AgpCpq: AgpCPQMaintainGARTCacheCoherency entered.\n"));
if (InvalidateAll || (NumberOfEntries > MAX_CACHED_ENTRIES_TO_INVALIDATE)) {
//
// Invalidate the entire GART [&DIR] Cache
//
if (AgpContext->IsHPSA) DnbSetShadowBit(0);
AgpContext->MMIO->CacheControl.GartAndDirCacheInvalidate = 1;
if (AgpContext->IsHPSA) DnbSetShadowBit(1);
for (Retry = 2000; Retry; Retry--) {
PolledValue =
AgpContext->MMIO->CacheControl.GartAndDirCacheInvalidate;
if (PolledValue == 0) {
break;
}
}
ASSERT(PolledValue == 0); // This bit should get reset by the chipset.
} else {
//
// Invalidate the individual cached GART enties
//
AperturePage = MemoryBase.LowPart >> PAGE_SHIFT;
for (Index=0; Index<NumberOfEntries; Index++, AperturePage++) {
CacheEntryControlValue.AsBits.GartEntryInvalidate = 1;
CacheEntryControlValue.AsBits.GartEntryOffset = AperturePage;
if (AgpContext->IsHPSA) DnbSetShadowBit(0);
AgpContext->MMIO->CacheEntryControl.AsDword =
CacheEntryControlValue.AsDword;
if (AgpContext->IsHPSA) DnbSetShadowBit(1);
for (Retry = 1000; Retry; Retry--) {
PolledValue =
AgpContext->MMIO->CacheEntryControl.AsBits.GartEntryInvalidate;
if (PolledValue == 0) {
break;
}
}
ASSERT(PolledValue == 0);
}
}
return;
}
PIO_RESOURCE_LIST
AgpCPQGetApSizeRequirements(
ULONG MaxSize,
ULONG Count
)
/*******************************************************************************
*
* Routine Functional Description:
*
* Creates and fills in an IO_RESOURCE_LIST structure, which describes
* the possible aperture sizes supported by the chipset.
*
* Arguments:
*
* MaxSize -- The Maximum possible size, in Bytes, for the aperture
*
* Count -- The number of different aperture sizes. This routine assumes
* that the aperture size is a multiple of two
* times the smallest aperture size. For example, 256MB, 128MB, 64MB
* 32MB. MaxSize would be 256M, and count would be 4.
*
* Return Value:
*
* Pointer to the newly created IO_RESOURCE_LIST.
*
*******************************************************************************/
{
PVOID RequirementsPointer;
PIO_RESOURCE_LIST Requirements;
ULONG Length, Index;
AGPLOG(AGP_NOISE, ("AgpCpq: AgpCPQGetApSizeRequirements entered.\n"));
RequirementsPointer = ExAllocatePoolWithTag(PagedPool, sizeof(IO_RESOURCE_LIST) +
(Count-1)*sizeof(IO_RESOURCE_DESCRIPTOR), 'RpgA');
if (RequirementsPointer == NULL) {
AGPLOG(AGP_NOISE,
("AgpAgpCPQGetApSizeRequirements - Failed to Allocate memory for a Resource Descriptor.\n"));
return(NULL);
} else {
Requirements = (PIO_RESOURCE_LIST)RequirementsPointer;
}
//
// Compaq supports several different aperture sizes, all must be
// naturally aligned. Start with the largest aperture and
// work downwards so that we get the biggest possible aperture.
//
Requirements->Version = Requirements->Revision = 1;
Requirements->Count = Count;
Length = MaxSize;
for (Index=0; Index < Count; Index++)
{
Requirements->Descriptors[Index].Option = IO_RESOURCE_ALTERNATIVE;
Requirements->Descriptors[Index].Type = CmResourceTypeMemory;
Requirements->Descriptors[Index].ShareDisposition = CmResourceShareDeviceExclusive;
Requirements->Descriptors[Index].Flags = CM_RESOURCE_MEMORY_READ_WRITE | CM_RESOURCE_MEMORY_PREFETCHABLE;
Requirements->Descriptors[Index].u.Memory.Length = Length;
Requirements->Descriptors[Index].u.Memory.Alignment = Length;
Requirements->Descriptors[Index].u.Memory.MinimumAddress.QuadPart = 0;
Requirements->Descriptors[Index].u.Memory.MaximumAddress.QuadPart = (ULONG)-1;
Length = Length/2;
}
return(Requirements);
}
NTSTATUS
AgpCPQSetApSizeInChipset
(
IN UCHAR NewSetApSize,
IN UCHAR NewSetAgpValid
)
/*******************************************************************************
*
* Routine Functional Description:
*
* Modifes the Device Address Space (Aperture) Size register in the chipset's
* PCI-PCI bridge.
*
* Arguments:
*
* NewSetApSize -- The value to set in bits 3:1 of the DAS_SIZE register.
* NewSetAgpValid -- Value to set in bit 0 of the DAS_SIZE register.
*
* Return Value:
*
* NT Status value.
*
*******************************************************************************/
{
NTSTATUS Status = STATUS_SUCCESS;
UCHAR ApSizeRegisterOffset;
BUS_SLOT_ID CpqP2PBusSlotID;
AGP_AP_SIZE_REG ApSizeRegister;
AGPLOG(AGP_NOISE, ("AgpCpq: AgpCPQSetApSizeInChipset entered.\n"));
ApSizeRegisterOffset = OFFSET_AP_SIZE;
CpqP2PBusSlotID.BusId = AGP_CPQ_BUS_ID;
CpqP2PBusSlotID.SlotId = AGP_CPQ_PCIPCI_SLOT_ID;
ApSizeRegister.AsBits.ApSize = NewSetApSize;
ApSizeRegister.AsBits.AgpValid = NewSetAgpValid;
Status = ApGetSetBusData(&CpqP2PBusSlotID, FALSE, &ApSizeRegister.AsByte,
ApSizeRegisterOffset, sizeof(UCHAR));
return(Status);
}
NTSTATUS
AgpCPQSetApBaseInChipset
(
IN PHYSICAL_ADDRESS NewBase
)
{
ULONG ApBase;
AGPLOG(AGP_NOISE, ("AgpCpq: AgpCPQSetApBaseInChipset entered.\n"));
//
// Write the value of the aperture base in BAR0.
//
ApBase = NewBase.LowPart & PCI_ADDRESS_MEMORY_ADDRESS_MASK;
WriteCPQConfig(&ApBase, OFFSET_BAR0, sizeof(ApBase));
#if DBG
//
// Read back what we wrote, make sure it worked
//
{
ULONG DbgBase;
ReadCPQConfig(&DbgBase, OFFSET_BAR0, sizeof(ApBase));
ASSERT((DbgBase & PCI_ADDRESS_MEMORY_ADDRESS_MASK) == ApBase);
}
#endif
return(STATUS_SUCCESS);
}
VOID
AgpFindFreeRun(
IN PVOID AgpContext,
IN PAGP_RANGE AgpRange,
IN ULONG NumberOfPages,
IN ULONG OffsetInPages,
OUT ULONG *FreePages,
OUT ULONG *FreeOffset
)
/*++
Routine Description:
Finds the first contiguous run of free pages in the specified
part of the reserved range.
Arguments:
AgpContext - Supplies the AGP context
AgpRange - Supplies the AGP range
NumberOfPages - Supplies the size of the region to be searched for free pages
OffsetInPages - Supplies the start of the region to be searched for free pages
FreePages - Returns the length of the first contiguous run of free pages
FreeOffset - Returns the start of the first contiguous run of free pages
Return Value:
None. FreePages == 0 if there are no free pages in the specified range.
--*/
{
PGART_PTE Pte;
ULONG i;
AGPLOG(AGP_NOISE, ("AgpCpq: AgpFindFreeRun entered.\n"));
Pte = (PGART_PTE)(AgpRange->Context) + OffsetInPages;
//
// Find the first free PTE
//
for (i=0; i<NumberOfPages; i++) {
if (Pte[i].Hard.Valid == 0) {
//
// Found a free PTE, count the contiguous ones.
//
*FreeOffset = i + OffsetInPages;
*FreePages = 0;
while ((i<NumberOfPages) && (Pte[i].Hard.Valid == 0)) {
*FreePages += 1;
++i;
}
return;
}
}
//
// No free PTEs in the specified range
//
*FreePages = 0;
return;
}
VOID
AgpGetMappedPages(
IN PVOID AgpContext,
IN PAGP_RANGE AgpRange,
IN ULONG NumberOfPages,
IN ULONG OffsetInPages,
OUT PMDL Mdl
)
/*++
Routine Description:
Returns the list of physical pages mapped into the specified
range in the GART.
Arguments:
AgpContext - Supplies the AGP context
AgpRange - Supplies the AGP range
NumberOfPages - Supplies the number of pages to be returned
OffsetInPages - Supplies the start of the region
Mdl - Returns the list of physical pages mapped in the specified range.
Return Value:
None
--*/
{
PGART_PTE Pte;
ULONG i;
PULONG Pages;
AGPLOG(AGP_NOISE, ("AgpCpq: AgpGetMappedPages entered.\n"));
ASSERT(NumberOfPages * PAGE_SIZE == Mdl->ByteCount);
Pages = (PULONG)(Mdl + 1);
Pte = (PGART_PTE)(AgpRange->Context) + OffsetInPages;
for (i=0; i<NumberOfPages; i++) {
ASSERT(Pte[i].Hard.Valid == 1);
Pages[i] = Pte[i].Hard.Page;
}
return;
}
NTSTATUS
AgpSpecialTarget(
IN PAGPCPQ_EXTENSION AgpContext,
IN ULONGLONG DeviceFlags
)
/*++
Routine Description:
This routine makes "special" tweaks to the AGP chipset
Arguments:
AgpContext - Supplies the AGP context
DeviceFlags - Flags indicating what tweaks to perform
Return Value:
STATUS_SUCCESS, or error
--*/
{
NTSTATUS Status;
//
// Should we change the AGP rate?
//
if (DeviceFlags & AGP_FLAG_SPECIAL_RESERVE) {
Status = AgpCPQSetRate(AgpContext,
(ULONG)((DeviceFlags & AGP_FLAG_SPECIAL_RESERVE)
>> AGP_FLAG_SET_RATE_SHIFT));
if (!NT_SUCCESS(Status)) {
return Status;
}
}
//
// Add more tweaks here...
//
AgpContext->SpecialTarget |=DeviceFlags;
return STATUS_SUCCESS;
}
NTSTATUS
AgpCPQSetRate(
IN PAGPCPQ_EXTENSION AgpContext,
IN ULONG AgpRate
)
/*++
Routine Description:
This routine sets the AGP rate
Arguments:
AgpContext - Supplies the AGP context
AgpRate - Rate to set
note: this routine assumes that AGP has already been enabled, and that
whatever rate we've been asked to set is supported by master
Return Value:
STATUS_SUCCESS, or error status
--*/
{
NTSTATUS Status;
ULONG TargetEnable;
ULONG MasterEnable;
PCI_AGP_CAPABILITY TargetCap;
PCI_AGP_CAPABILITY MasterCap;
BOOLEAN ReverseInit;
//
// Read capabilities
//
Status = AgpLibGetPciDeviceCapability(0, 0, &TargetCap);
if (!NT_SUCCESS(Status)) {
AGPLOG(AGP_WARNING, ("AgpCpqSetRate: AgpLibGetPciDeviceCapability "
"failed %08lx\n", Status));
return Status;
}
Status = AgpLibGetMasterCapability(AgpContext, &MasterCap);
if (!NT_SUCCESS(Status)) {
AGPLOG(AGP_WARNING, ("AgpCpqSetRate: AgpLibGetMasterCapability "
"failed %08lx\n", Status));
return Status;
}
//
// Verify the requested rate is supported by both master and target
//
if (!(AgpRate & TargetCap.AGPStatus.Rate & MasterCap.AGPStatus.Rate)) {
return STATUS_INVALID_PARAMETER;
}
//
// Disable AGP while the pull the rug out from underneath
//
TargetEnable = TargetCap.AGPCommand.AGPEnable;
TargetCap.AGPCommand.AGPEnable = 0;
Status = AgpLibSetPciDeviceCapability(0, 0, &TargetCap);
if (!NT_SUCCESS(Status)) {
AGPLOG(AGP_WARNING,
("AgpCpqSetRate: AgpLibSetPciDeviceCapability %08lx for "
"Target failed %08lx\n",
&TargetCap,
Status));
return Status;
}
MasterEnable = MasterCap.AGPCommand.AGPEnable;
MasterCap.AGPCommand.AGPEnable = 0;
Status = AgpLibSetMasterCapability(AgpContext, &MasterCap);
if (!NT_SUCCESS(Status)) {
AGPLOG(AGP_WARNING,
("AgpCpqSetRate: AgpLibSetMasterCapability %08lx failed "
"%08lx\n",
&MasterCap,
Status));
return Status;
}
//
// Fire up AGP with new rate
//
ReverseInit =
(AgpContext->SpecialTarget & AGP_FLAG_REVERSE_INITIALIZATION) ==
AGP_FLAG_REVERSE_INITIALIZATION;
if (ReverseInit) {
MasterCap.AGPCommand.Rate = AgpRate;
MasterCap.AGPCommand.AGPEnable = MasterEnable;
Status = AgpLibSetMasterCapability(AgpContext, &MasterCap);
if (!NT_SUCCESS(Status)) {
AGPLOG(AGP_WARNING,
("AgpCpqSetRate: AgpLibSetMasterCapability %08lx failed "
"%08lx\n",
&MasterCap,
Status));
}
}
TargetCap.AGPCommand.Rate = AgpRate;
TargetCap.AGPCommand.AGPEnable = TargetEnable;
Status = AgpLibSetPciDeviceCapability(0, 0, &TargetCap);
if (!NT_SUCCESS(Status)) {
AGPLOG(AGP_WARNING,
("AgpCpqSetRate: AgpLibSetPciDeviceCapability %08lx for "
"Target failed %08lx\n",
&TargetCap,
Status));
return Status;
}
if (!ReverseInit) {
MasterCap.AGPCommand.Rate = AgpRate;
MasterCap.AGPCommand.AGPEnable = MasterEnable;
Status = AgpLibSetMasterCapability(AgpContext, &MasterCap);
if (!NT_SUCCESS(Status)) {
AGPLOG(AGP_WARNING,
("AgpCpqSetRate: AgpLibSetMasterCapability %08lx failed "
"%08lx\n",
&MasterCap,
Status));
}
}
return Status;
}