Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3282 lines
73 KiB

/*++ BUILD Version: 0014 // Increment this if a change has global effects
Copyright (c) 1989 Microsoft Corporation
Module Name:
i386.h
Abstract:
This module contains the i386 hardware specific header file.
Author:
David N. Cutler (davec) 2-Aug-1989
Revision History:
25-Jan-1990 shielint
Added definitions for 8259 ports and commands and
macros for 8259 irq# and system irql conversion.
--*/
#ifndef _i386_
#define _i386_
// begin_ntddk begin_wdm begin_nthal begin_ntndis begin_ntosp
#if defined(_X86_)
//
// Types to use to contain PFNs and their counts.
//
typedef ULONG PFN_COUNT;
typedef LONG SPFN_NUMBER, *PSPFN_NUMBER;
typedef ULONG PFN_NUMBER, *PPFN_NUMBER;
//
// Define maximum size of flush multiple TB request.
//
#define FLUSH_MULTIPLE_MAXIMUM 32
//
// Indicate that the i386 compiler supports the pragma textout construct.
//
#define ALLOC_PRAGMA 1
//
// Indicate that the i386 compiler supports the DATA_SEG("INIT") and
// DATA_SEG("PAGE") pragmas
//
#define ALLOC_DATA_PRAGMA 1
// end_ntddk end_nthal end_ntndis end_wdm end_ntosp
// NOTE - KiPcr is only useful for PCR references where we know we
// won't get context switched between the call to it and the
// variable reference, OR, were we don't care, (ie TEB pointer)
// NOTE - bryanwi 11 june 90 - we must not macro out things we export
// Things like KeFlushIcache and KeFlushDcache cannot be macroed
// out because external code (like drivers) will want to import
// them by name. Therefore, the defines below that turn them into
// nothing are inappropriate. But this isn't going to hurt us right
// now.
//
// Length on interrupt object dispatch code in longwords.
// (shielint) Reserve 9*4 space for ABIOS stack mapping. If NO
// ABIOS support the size of DISPATCH_LENGTH should be 74.
//
// begin_nthal
#define NORMAL_DISPATCH_LENGTH 106 // ntddk wdm
#define DISPATCH_LENGTH NORMAL_DISPATCH_LENGTH // ntddk wdm
//
// Define constants to access the bits in CR0.
//
#define CR0_PG 0x80000000 // paging
#define CR0_ET 0x00000010 // extension type (80387)
#define CR0_TS 0x00000008 // task switched
#define CR0_EM 0x00000004 // emulate math coprocessor
#define CR0_MP 0x00000002 // math present
#define CR0_PE 0x00000001 // protection enable
//
// More CR0 bits; these only apply to the 80486.
//
#define CR0_CD 0x40000000 // cache disable
#define CR0_NW 0x20000000 // not write-through
#define CR0_AM 0x00040000 // alignment mask
#define CR0_WP 0x00010000 // write protect
#define CR0_NE 0x00000020 // numeric error
//
// CR4 bits; These only apply to Pentium
//
#define CR4_VME 0x00000001 // V86 mode extensions
#define CR4_PVI 0x00000002 // Protected mode virtual interrupts
#define CR4_TSD 0x00000004 // Time stamp disable
#define CR4_DE 0x00000008 // Debugging Extensions
#define CR4_PSE 0x00000010 // Page size extensions
#define CR4_PAE 0x00000020 // Physical address extensions
#define CR4_MCE 0x00000040 // Machine check enable
#define CR4_PGE 0x00000080 // Page global enable
#define CR4_FXSR 0x00000200 // FXSR used by OS
#define CR4_XMMEXCPT 0x00000400 // XMMI used by OS
// end_nthal
//
// Define constants to access ThNpxState
//
#define NPX_STATE_NOT_LOADED (CR0_TS | CR0_MP)
#define NPX_STATE_LOADED 0
//
// External references to the labels defined in int.asm
//
extern ULONG KiInterruptTemplate[NORMAL_DISPATCH_LENGTH];
extern PULONG KiInterruptTemplateObject;
extern PULONG KiInterruptTemplateDispatch;
extern PULONG KiInterruptTemplate2ndDispatch;
// begin_ntddk begin_wdm begin_nthal begin_ntosp
//
// Interrupt Request Level definitions
//
#define PASSIVE_LEVEL 0 // Passive release level
#define LOW_LEVEL 0 // Lowest interrupt level
#define APC_LEVEL 1 // APC interrupt level
#define DISPATCH_LEVEL 2 // Dispatcher level
#define PROFILE_LEVEL 27 // timer used for profiling.
#define CLOCK1_LEVEL 28 // Interval clock 1 level - Not used on x86
#define CLOCK2_LEVEL 28 // Interval clock 2 level
#define IPI_LEVEL 29 // Interprocessor interrupt level
#define POWER_LEVEL 30 // Power failure level
#define HIGH_LEVEL 31 // Highest interrupt level
// end_ntddk end_wdm end_ntosp
#if defined(NT_UP)
// synchronization level - UP system
#define SYNCH_LEVEL DISPATCH_LEVEL
#else
// synchronization level - MP system
#define SYNCH_LEVEL (IPI_LEVEL-2) // ntddk wdm ntosp
#endif
#define KiSynchIrql SYNCH_LEVEL // enable portable code
//
// Machine type definitions
//
#define MACHINE_TYPE_ISA 0
#define MACHINE_TYPE_EISA 1
#define MACHINE_TYPE_MCA 2
// end_nthal
//
// The previous values are or'ed into KeI386MachineType.
//
extern ULONG KeI386MachineType;
// begin_nthal
//
// Define constants used in selector tests.
//
// RPL_MASK is the real value for extracting RPL values. IT IS THE WRONG
// CONSTANT TO USE FOR MODE TESTING.
//
// MODE_MASK is the value for deciding the current mode.
// WARNING: MODE_MASK assumes that all code runs at either ring-0
// or ring-3. Ring-1 or Ring-2 support will require changing
// this value and all of the code that refers to it.
#define MODE_MASK 1 // ntosp
#define RPL_MASK 3
//
// SEGMENT_MASK is used to throw away trash part of segment. Part always
// pushes or pops 32 bits to/from stack, but if it's a segment value,
// high order 16 bits are trash.
//
#define SEGMENT_MASK 0xffff
//
// Startup count value for KeStallExecution. This value is used
// until KiInitializeStallExecution can compute the real one.
// Pick a value long enough for very fast processors.
//
#define INITIAL_STALL_COUNT 100
// end_nthal
//
// begin_nthal
//
// Macro to extract the high word of a long offset
//
#define HIGHWORD(l) \
((USHORT)(((ULONG)(l)>>16) & 0xffff))
//
// Macro to extract the low word of a long offset
//
#define LOWWORD(l) \
((USHORT)((ULONG)l & 0x0000ffff))
//
// Macro to combine two USHORT offsets into a long offset
//
#if !defined(MAKEULONG)
#define MAKEULONG(x, y) \
(((((ULONG)(x))<<16) & 0xffff0000) | \
((ULONG)(y) & 0xffff))
#endif
// end_nthal
//
// Request a software interrupt.
//
#define KiRequestSoftwareInterrupt(RequestIrql) \
HalRequestSoftwareInterrupt( RequestIrql )
// begin_ntddk begin_wdm begin_nthal begin_ntndis begin_ntosp
//
// I/O space read and write macros.
//
// These have to be actual functions on the 386, because we need
// to use assembler, but cannot return a value if we inline it.
//
// The READ/WRITE_REGISTER_* calls manipulate I/O registers in MEMORY space.
// (Use x86 move instructions, with LOCK prefix to force correct behavior
// w.r.t. caches and write buffers.)
//
// The READ/WRITE_PORT_* calls manipulate I/O registers in PORT space.
// (Use x86 in/out instructions.)
//
NTKERNELAPI
UCHAR
NTAPI
READ_REGISTER_UCHAR(
PUCHAR Register
);
NTKERNELAPI
USHORT
NTAPI
READ_REGISTER_USHORT(
PUSHORT Register
);
NTKERNELAPI
ULONG
NTAPI
READ_REGISTER_ULONG(
PULONG Register
);
NTKERNELAPI
VOID
NTAPI
READ_REGISTER_BUFFER_UCHAR(
PUCHAR Register,
PUCHAR Buffer,
ULONG Count
);
NTKERNELAPI
VOID
NTAPI
READ_REGISTER_BUFFER_USHORT(
PUSHORT Register,
PUSHORT Buffer,
ULONG Count
);
NTKERNELAPI
VOID
NTAPI
READ_REGISTER_BUFFER_ULONG(
PULONG Register,
PULONG Buffer,
ULONG Count
);
NTKERNELAPI
VOID
NTAPI
WRITE_REGISTER_UCHAR(
PUCHAR Register,
UCHAR Value
);
NTKERNELAPI
VOID
NTAPI
WRITE_REGISTER_USHORT(
PUSHORT Register,
USHORT Value
);
NTKERNELAPI
VOID
NTAPI
WRITE_REGISTER_ULONG(
PULONG Register,
ULONG Value
);
NTKERNELAPI
VOID
NTAPI
WRITE_REGISTER_BUFFER_UCHAR(
PUCHAR Register,
PUCHAR Buffer,
ULONG Count
);
NTKERNELAPI
VOID
NTAPI
WRITE_REGISTER_BUFFER_USHORT(
PUSHORT Register,
PUSHORT Buffer,
ULONG Count
);
NTKERNELAPI
VOID
NTAPI
WRITE_REGISTER_BUFFER_ULONG(
PULONG Register,
PULONG Buffer,
ULONG Count
);
NTHALAPI
UCHAR
NTAPI
READ_PORT_UCHAR(
PUCHAR Port
);
NTHALAPI
USHORT
NTAPI
READ_PORT_USHORT(
PUSHORT Port
);
NTHALAPI
ULONG
NTAPI
READ_PORT_ULONG(
PULONG Port
);
NTHALAPI
VOID
NTAPI
READ_PORT_BUFFER_UCHAR(
PUCHAR Port,
PUCHAR Buffer,
ULONG Count
);
NTHALAPI
VOID
NTAPI
READ_PORT_BUFFER_USHORT(
PUSHORT Port,
PUSHORT Buffer,
ULONG Count
);
NTHALAPI
VOID
NTAPI
READ_PORT_BUFFER_ULONG(
PULONG Port,
PULONG Buffer,
ULONG Count
);
NTHALAPI
VOID
NTAPI
WRITE_PORT_UCHAR(
PUCHAR Port,
UCHAR Value
);
NTHALAPI
VOID
NTAPI
WRITE_PORT_USHORT(
PUSHORT Port,
USHORT Value
);
NTHALAPI
VOID
NTAPI
WRITE_PORT_ULONG(
PULONG Port,
ULONG Value
);
NTHALAPI
VOID
NTAPI
WRITE_PORT_BUFFER_UCHAR(
PUCHAR Port,
PUCHAR Buffer,
ULONG Count
);
NTHALAPI
VOID
NTAPI
WRITE_PORT_BUFFER_USHORT(
PUSHORT Port,
PUSHORT Buffer,
ULONG Count
);
NTHALAPI
VOID
NTAPI
WRITE_PORT_BUFFER_ULONG(
PULONG Port,
PULONG Buffer,
ULONG Count
);
// end_ntndis
//
// Get data cache fill size.
//
#if PRAGMA_DEPRECATED_DDK
#pragma deprecated(KeGetDcacheFillSize) // Use GetDmaAlignment
#endif
#define KeGetDcacheFillSize() 1L
// end_ntddk end_wdm end_nthal end_ntosp
//
// Fill TB entry.
//
#define KeFillEntryTb(Virtual) \
KiFlushSingleTb (Virtual);
#if !defined(MIDL_PASS) && defined(_M_IX86) && !defined(_CROSS_PLATFORM_)
FORCEINLINE
VOID
KiFlushSingleTb (
IN PVOID Virtual
)
{
__asm {
mov eax, Virtual
invlpg [eax]
}
}
FORCEINLINE
VOID
KiFlushProcessTb (
VOID
)
{
__asm {
mov eax, cr3
mov cr3, eax
}
}
#endif
NTKERNELAPI // nthal
VOID // nthal
KeFlushCurrentTb ( // nthal
VOID // nthal
); // nthal
// nthal
//
// Data cache, instruction cache, I/O buffer, and write buffer flush routine
// prototypes.
//
// 386 and 486 have transparent caches, so these are noops.
#define KeSweepDcache(AllProcessors)
#define KeSweepCurrentDcache()
#define KeSweepIcache(AllProcessors)
#define KeSweepCurrentIcache()
#define KeSweepIcacheRange(AllProcessors, BaseAddress, Length)
// begin_ntddk begin_wdm begin_nthal begin_ntndis begin_ntosp
#define KeFlushIoBuffers(Mdl, ReadOperation, DmaOperation)
// end_ntddk end_wdm end_ntndis end_ntosp
#define KeYieldProcessor() __asm { rep nop }
// end_nthal
//
// Define executive macros for acquiring and releasing executive spinlocks.
// These macros can ONLY be used by executive components and NOT by drivers.
// Drivers MUST use the kernel interfaces since they must be MP enabled on
// all systems.
//
// KeRaiseIrql is one instruction longer than KeAcquireSpinLock on x86 UP.
// KeLowerIrql and KeReleaseSpinLock are the same.
//
#if defined(NT_UP) && !DBG && !defined(_NTDDK_) && !defined(_NTIFS_)
#if !defined(_NTDRIVER_)
#define ExAcquireSpinLock(Lock, OldIrql) (*OldIrql) = KeRaiseIrqlToDpcLevel();
#define ExReleaseSpinLock(Lock, OldIrql) KeLowerIrql((OldIrql))
#else
#define ExAcquireSpinLock(Lock, OldIrql) KeAcquireSpinLock((Lock), (OldIrql))
#define ExReleaseSpinLock(Lock, OldIrql) KeReleaseSpinLock((Lock), (OldIrql))
#endif
#define ExAcquireSpinLockAtDpcLevel(Lock)
#define ExReleaseSpinLockFromDpcLevel(Lock)
#else
// begin_wdm begin_ntddk begin_ntosp
#define ExAcquireSpinLock(Lock, OldIrql) KeAcquireSpinLock((Lock), (OldIrql))
#define ExReleaseSpinLock(Lock, OldIrql) KeReleaseSpinLock((Lock), (OldIrql))
#define ExAcquireSpinLockAtDpcLevel(Lock) KeAcquireSpinLockAtDpcLevel(Lock)
#define ExReleaseSpinLockFromDpcLevel(Lock) KeReleaseSpinLockFromDpcLevel(Lock)
// end_wdm end_ntddk end_ntosp
#endif
//
// The acquire and release fast lock macros disable and enable interrupts
// on UP nondebug systems. On MP or debug systems, the spinlock routines
// are used.
//
// N.B. Extreme caution should be observed when using these routines.
//
#if defined(_M_IX86) && !defined(USER_MODE_CODE)
#if _MSC_VER >= 1200
#pragma warning(push)
#endif
#pragma warning(disable:4164)
#pragma intrinsic(_disable)
#pragma intrinsic(_enable)
#if _MSC_VER >= 1200
#pragma warning(pop)
#else
#pragma warning(default:4164)
#endif
#endif
#if defined(NT_UP) && !DBG && !defined(USER_MODE_CODE)
#define ExAcquireFastLock(Lock, OldIrql) _disable()
#else
#define ExAcquireFastLock(Lock, OldIrql) \
ExAcquireSpinLock(Lock, OldIrql)
#endif
#if defined(NT_UP) && !DBG && !defined(USER_MODE_CODE)
#define ExReleaseFastLock(Lock, OldIrql) _enable()
#else
#define ExReleaseFastLock(Lock, OldIrql) \
ExReleaseSpinLock(Lock, OldIrql)
#endif
//
// The following function prototypes must be in this module so that the
// above macros can call them directly.
//
// begin_nthal
VOID
FASTCALL
KiAcquireSpinLock (
IN PKSPIN_LOCK SpinLock
);
VOID
FASTCALL
KiReleaseSpinLock (
IN PKSPIN_LOCK SpinLock
);
// end_nthal
//
// Define query tick count macro.
//
// begin_ntddk begin_nthal begin_ntosp
#if defined(_NTDRIVER_) || defined(_NTDDK_) || defined(_NTIFS_)
// begin_wdm
#define KeQueryTickCount(CurrentCount ) { \
volatile PKSYSTEM_TIME _TickCount = *((PKSYSTEM_TIME *)(&KeTickCount)); \
while (TRUE) { \
(CurrentCount)->HighPart = _TickCount->High1Time; \
(CurrentCount)->LowPart = _TickCount->LowPart; \
if ((CurrentCount)->HighPart == _TickCount->High2Time) break; \
_asm { rep nop } \
} \
}
// end_wdm
#else
// end_ntddk end_nthal end_ntosp
//
// Define query tick count macro.
//
#define KiQueryTickCount(CurrentCount) \
while (TRUE) { \
(CurrentCount)->HighPart = KeTickCount.High1Time; \
(CurrentCount)->LowPart = KeTickCount.LowPart; \
if ((CurrentCount)->HighPart == KeTickCount.High2Time) break; \
_asm { rep nop } \
}
//
// Define query interrupt time macro.
//
#define KiQueryInterruptTime(CurrentTime) \
while (TRUE) { \
(CurrentTime)->HighPart = SharedUserData->InterruptTime.High1Time; \
(CurrentTime)->LowPart = SharedUserData->InterruptTime.LowPart; \
if ((CurrentTime)->HighPart == SharedUserData->InterruptTime.High2Time) break; \
_asm { rep nop } \
}
// begin_ntddk begin_nthal begin_ntosp
VOID
NTAPI
KeQueryTickCount (
OUT PLARGE_INTEGER CurrentCount
);
#endif // defined(_NTDRIVER_) || defined(_NTDDK_) || defined(_NTIFS_)
// end_ntddk end_nthal end_ntosp
// begin_nthal begin_ntosp
//
// 386 hardware structures
//
//
// A Page Table Entry on an Intel 386/486 has the following definition.
//
// **** NOTE A PRIVATE COPY OF THIS EXISTS IN THE MM\I386 DIRECTORY! ****
// **** ANY CHANGES NEED TO BE MADE TO BOTH HEADER FILES. ****
//
typedef struct _HARDWARE_PTE_X86 {
ULONG Valid : 1;
ULONG Write : 1;
ULONG Owner : 1;
ULONG WriteThrough : 1;
ULONG CacheDisable : 1;
ULONG Accessed : 1;
ULONG Dirty : 1;
ULONG LargePage : 1;
ULONG Global : 1;
ULONG CopyOnWrite : 1; // software field
ULONG Prototype : 1; // software field
ULONG reserved : 1; // software field
ULONG PageFrameNumber : 20;
} HARDWARE_PTE_X86, *PHARDWARE_PTE_X86;
typedef struct _HARDWARE_PTE_X86PAE {
union {
struct {
ULONGLONG Valid : 1;
ULONGLONG Write : 1;
ULONGLONG Owner : 1;
ULONGLONG WriteThrough : 1;
ULONGLONG CacheDisable : 1;
ULONGLONG Accessed : 1;
ULONGLONG Dirty : 1;
ULONGLONG LargePage : 1;
ULONGLONG Global : 1;
ULONGLONG CopyOnWrite : 1; // software field
ULONGLONG Prototype : 1; // software field
ULONGLONG reserved0 : 1; // software field
ULONGLONG PageFrameNumber : 26;
ULONGLONG reserved1 : 26; // software field
};
struct {
ULONG LowPart;
ULONG HighPart;
};
};
} HARDWARE_PTE_X86PAE, *PHARDWARE_PTE_X86PAE;
//
// Special check to work around mspdb limitation
//
#if defined (_NTSYM_HARDWARE_PTE_SYMBOL_)
#if !defined (_X86PAE_)
typedef struct _HARDWARE_PTE {
ULONG Valid : 1;
ULONG Write : 1;
ULONG Owner : 1;
ULONG WriteThrough : 1;
ULONG CacheDisable : 1;
ULONG Accessed : 1;
ULONG Dirty : 1;
ULONG LargePage : 1;
ULONG Global : 1;
ULONG CopyOnWrite : 1; // software field
ULONG Prototype : 1; // software field
ULONG reserved : 1; // software field
ULONG PageFrameNumber : 20;
} HARDWARE_PTE, *PHARDWARE_PTE;
#else
typedef struct _HARDWARE_PTE {
union {
struct {
ULONGLONG Valid : 1;
ULONGLONG Write : 1;
ULONGLONG Owner : 1;
ULONGLONG WriteThrough : 1;
ULONGLONG CacheDisable : 1;
ULONGLONG Accessed : 1;
ULONGLONG Dirty : 1;
ULONGLONG LargePage : 1;
ULONGLONG Global : 1;
ULONGLONG CopyOnWrite : 1; // software field
ULONGLONG Prototype : 1; // software field
ULONGLONG reserved0 : 1; // software field
ULONGLONG PageFrameNumber : 26;
ULONGLONG reserved1 : 26; // software field
};
struct {
ULONG LowPart;
ULONG HighPart;
};
};
} HARDWARE_PTE, *PHARDWARE_PTE;
#endif
#else
#if !defined (_X86PAE_)
typedef HARDWARE_PTE_X86 HARDWARE_PTE;
typedef PHARDWARE_PTE_X86 PHARDWARE_PTE;
#else
typedef HARDWARE_PTE_X86PAE HARDWARE_PTE;
typedef PHARDWARE_PTE_X86PAE PHARDWARE_PTE;
#endif
#endif
//
// GDT Entry
//
typedef struct _KGDTENTRY {
USHORT LimitLow;
USHORT BaseLow;
union {
struct {
UCHAR BaseMid;
UCHAR Flags1; // Declare as bytes to avoid alignment
UCHAR Flags2; // Problems.
UCHAR BaseHi;
} Bytes;
struct {
ULONG BaseMid : 8;
ULONG Type : 5;
ULONG Dpl : 2;
ULONG Pres : 1;
ULONG LimitHi : 4;
ULONG Sys : 1;
ULONG Reserved_0 : 1;
ULONG Default_Big : 1;
ULONG Granularity : 1;
ULONG BaseHi : 8;
} Bits;
} HighWord;
} KGDTENTRY, *PKGDTENTRY;
#define TYPE_CODE 0x10 // 11010 = Code, Readable, NOT Conforming, Accessed
#define TYPE_DATA 0x12 // 10010 = Data, ReadWrite, NOT Expanddown, Accessed
#define TYPE_TSS 0x01 // 01001 = NonBusy TSS
#define TYPE_LDT 0x02 // 00010 = LDT
#define DPL_USER 3
#define DPL_SYSTEM 0
#define GRAN_BYTE 0
#define GRAN_PAGE 1
#define SELECTOR_TABLE_INDEX 0x04
#define IDT_NMI_VECTOR 2
#define IDT_DFH_VECTOR 8
#define NMI_TSS_DESC_OFFSET 0x58
#define DF_TSS_DESC_OFFSET 0x50
//
// Entry of Interrupt Descriptor Table (IDTENTRY)
//
typedef struct _KIDTENTRY {
USHORT Offset;
USHORT Selector;
USHORT Access;
USHORT ExtendedOffset;
} KIDTENTRY;
typedef KIDTENTRY *PKIDTENTRY;
//
// TSS (Task switch segment) NT only uses to control stack switches.
//
// The only fields we actually care about are Esp0, Ss0, the IoMapBase
// and the IoAccessMaps themselves.
//
//
// N.B. Size of TSS must be <= 0xDFFF
//
//
// The interrupt direction bitmap is used on Pentium to allow
// the processor to emulate V86 mode software interrupts for us.
// There is one for each IOPM. It is located by subtracting
// 32 from the IOPM base in the Tss.
//
#define INT_DIRECTION_MAP_SIZE 32
typedef UCHAR KINT_DIRECTION_MAP[INT_DIRECTION_MAP_SIZE];
#define IOPM_COUNT 1 // Number of i/o access maps that
// exist (in addition to
// IO_ACCESS_MAP_NONE)
#define IO_ACCESS_MAP_NONE 0
#define IOPM_SIZE 8192 // Size of map callers can set.
#define PIOPM_SIZE 8196 // Size of structure we must allocate
// to hold it.
typedef UCHAR KIO_ACCESS_MAP[IOPM_SIZE];
typedef KIO_ACCESS_MAP *PKIO_ACCESS_MAP;
typedef struct _KiIoAccessMap {
KINT_DIRECTION_MAP DirectionMap;
UCHAR IoMap[PIOPM_SIZE];
} KIIO_ACCESS_MAP;
typedef struct _KTSS {
USHORT Backlink;
USHORT Reserved0;
ULONG Esp0;
USHORT Ss0;
USHORT Reserved1;
ULONG NotUsed1[4];
ULONG CR3;
ULONG Eip;
ULONG EFlags;
ULONG Eax;
ULONG Ecx;
ULONG Edx;
ULONG Ebx;
ULONG Esp;
ULONG Ebp;
ULONG Esi;
ULONG Edi;
USHORT Es;
USHORT Reserved2;
USHORT Cs;
USHORT Reserved3;
USHORT Ss;
USHORT Reserved4;
USHORT Ds;
USHORT Reserved5;
USHORT Fs;
USHORT Reserved6;
USHORT Gs;
USHORT Reserved7;
USHORT LDT;
USHORT Reserved8;
USHORT Flags;
USHORT IoMapBase;
KIIO_ACCESS_MAP IoMaps[IOPM_COUNT];
//
// This is the Software interrupt direction bitmap associated with
// IO_ACCESS_MAP_NONE
//
KINT_DIRECTION_MAP IntDirectionMap;
} KTSS, *PKTSS;
#define KiComputeIopmOffset(MapNumber) \
(MapNumber == IO_ACCESS_MAP_NONE) ? \
(USHORT)(sizeof(KTSS)) : \
(USHORT)(FIELD_OFFSET(KTSS, IoMaps[MapNumber-1].IoMap))
// begin_windbgkd
//
// Special Registers for i386
//
#ifdef _X86_
typedef struct _DESCRIPTOR {
USHORT Pad;
USHORT Limit;
ULONG Base;
} KDESCRIPTOR, *PKDESCRIPTOR;
typedef struct _KSPECIAL_REGISTERS {
ULONG Cr0;
ULONG Cr2;
ULONG Cr3;
ULONG Cr4;
ULONG KernelDr0;
ULONG KernelDr1;
ULONG KernelDr2;
ULONG KernelDr3;
ULONG KernelDr6;
ULONG KernelDr7;
KDESCRIPTOR Gdtr;
KDESCRIPTOR Idtr;
USHORT Tr;
USHORT Ldtr;
ULONG Reserved[6];
} KSPECIAL_REGISTERS, *PKSPECIAL_REGISTERS;
//
// Processor State frame: Before a processor freezes itself, it
// dumps the processor state to the processor state frame for
// debugger to examine.
//
typedef struct _KPROCESSOR_STATE {
struct _CONTEXT ContextFrame;
struct _KSPECIAL_REGISTERS SpecialRegisters;
} KPROCESSOR_STATE, *PKPROCESSOR_STATE;
#endif // _X86_
// end_windbgkd
//
// DPC data structure definition.
//
typedef struct _KDPC_DATA {
LIST_ENTRY DpcListHead;
KSPIN_LOCK DpcLock;
volatile ULONG DpcQueueDepth;
ULONG DpcCount;
} KDPC_DATA, *PKDPC_DATA;
//
// Processor Control Block (PRCB)
//
#define PRCB_MAJOR_VERSION 1
#define PRCB_MINOR_VERSION 1
#define PRCB_BUILD_DEBUG 0x0001
#define PRCB_BUILD_UNIPROCESSOR 0x0002
typedef struct _KPRCB {
//
// Start of the architecturally defined section of the PRCB. This section
// may be directly addressed by vendor/platform specific HAL code and will
// not change from version to version of NT.
//
USHORT MinorVersion;
USHORT MajorVersion;
struct _KTHREAD *CurrentThread;
struct _KTHREAD *NextThread;
struct _KTHREAD *IdleThread;
CCHAR Number;
CCHAR Reserved;
USHORT BuildType;
KAFFINITY SetMember;
CCHAR CpuType;
CCHAR CpuID;
USHORT CpuStep;
struct _KPROCESSOR_STATE ProcessorState;
ULONG KernelReserved[16]; // For use by the kernel
ULONG HalReserved[16]; // For use by Hal
//
// Per processor lock queue entries.
//
// N.B. The following padding is such that the first lock entry falls in the
// last eight bytes of a cache line. This makes the dispatcher lock and
// the context swap lock lie in separate cache lines.
//
UCHAR PrcbPad0[28 + 64];
KSPIN_LOCK_QUEUE LockQueue[16];
UCHAR PrcbPad1[8];
// End of the architecturally defined section of the PRCB.
// end_nthal end_ntosp
//
// Micellaneous counters - 64-byte aligned.
//
struct _KTHREAD *NpxThread;
ULONG InterruptCount;
ULONG KernelTime;
ULONG UserTime;
ULONG DpcTime;
ULONG DebugDpcTime;
ULONG InterruptTime;
ULONG AdjustDpcThreshold;
ULONG PageColor;
BOOLEAN SkipTick;
KIRQL DebuggerSavedIRQL;
UCHAR Spare1[6];
struct _KNODE *ParentNode;
KAFFINITY MultiThreadProcessorSet;
struct _KPRCB * MultiThreadSetMaster;
ULONG ThreadStartCount[2];
//
// Performance counters - 64-byte aligned.
//
// Cache manager performance counters.
//
ULONG CcFastReadNoWait;
ULONG CcFastReadWait;
ULONG CcFastReadNotPossible;
ULONG CcCopyReadNoWait;
ULONG CcCopyReadWait;
ULONG CcCopyReadNoWaitMiss;
//
// Kernel performance counters.
//
ULONG KeAlignmentFixupCount;
ULONG SpareCounter0;
ULONG KeDcacheFlushCount;
ULONG KeExceptionDispatchCount;
ULONG KeFirstLevelTbFills;
ULONG KeFloatingEmulationCount;
ULONG KeIcacheFlushCount;
ULONG KeSecondLevelTbFills;
ULONG KeSystemCalls;
ULONG SpareCounter1;
//
// Nonpaged per processor lookaside lists - 64-byte aligned.
//
PP_LOOKASIDE_LIST PPLookasideList[16];
//
// Nonpaged per processor small pool lookaside lists - 64-byte aligned.
//
PP_LOOKASIDE_LIST PPNPagedLookasideList[POOL_SMALL_LISTS];
//
// Paged per processor small pool lookaside lists - 64-byte aligned.
//
PP_LOOKASIDE_LIST PPPagedLookasideList[POOL_SMALL_LISTS];
//
// MP interprocessor request packet barrier - 64-byte aligned.
//
volatile KAFFINITY PacketBarrier;
volatile ULONG ReverseStall;
PVOID IpiFrame;
UCHAR PrcbPad2[52];
//
// MP interprocessor request packet and summary - 64-byte aligned.
//
volatile PVOID CurrentPacket[3];
volatile KAFFINITY TargetSet;
volatile PKIPI_WORKER WorkerRoutine;
volatile ULONG IpiFrozen;
UCHAR PrcbPad3[40];
//
// MP interprocessor request summary and packet address - 64-byte aligned.
//
volatile ULONG RequestSummary;
volatile struct _KPRCB *SignalDone;
UCHAR PrcbPad4[56];
//
// DPC listhead, counts, and batching parameters - 64-byte aligned.
//
KDPC_DATA DpcData[2];
PVOID DpcStack;
ULONG MaximumDpcQueueDepth;
ULONG DpcRequestRate;
ULONG MinimumDpcRate;
volatile BOOLEAN DpcInterruptRequested;
volatile BOOLEAN DpcThreadRequested;
//
// N.B. the following two fields must be on a word boundary.
//
volatile BOOLEAN DpcRoutineActive;
volatile BOOLEAN DpcThreadActive;
KSPIN_LOCK PrcbLock;
ULONG DpcLastCount;
volatile ULONG TimerHand;
volatile ULONG TimerRequest;
PVOID DpcThread;
KEVENT DpcEvent;
BOOLEAN ThreadDpcEnable;
volatile BOOLEAN QuantumEnd;
UCHAR PrcbPad50;
volatile BOOLEAN IdleSchedule;
LONG DpcSetEventRequest;
UCHAR PrcbPad5[22];
//
// Generic call DPC - 64-byte aligned.
//
KDPC CallDpc;
ULONG PrcbPad7[8];
//
// Per-processor ready summary and ready queues - 64-byte aligned.
//
// N.B. Ready summary is in the first cache line as the queue for priority
// zero is never used.
//
LIST_ENTRY WaitListHead;
ULONG ReadySummary;
ULONG SelectNextLast;
LIST_ENTRY DispatcherReadyListHead[MAXIMUM_PRIORITY];
SINGLE_LIST_ENTRY DeferredReadyListHead;
ULONG PrcbPad72[11];
//
// Per processor chained interrupt list - 64-byte aligned.
//
PVOID ChainedInterruptList;
//
// I/O IRP float.
//
LONG LookasideIrpFloat;
//
// Spare fields.
//
ULONG SpareFields0[4];
//
// Processor information.
//
UCHAR VendorString[13];
UCHAR InitialApicId;
UCHAR LogicalProcessorsPerPhysicalProcessor;
ULONG MHz;
ULONG FeatureBits;
LARGE_INTEGER UpdateSignature;
//
// ISR timing data.
//
volatile ULONGLONG IsrTime;
//
// Npx save area - 16-byte aligned.
//
FX_SAVE_AREA NpxSaveArea;
//
// Processors power state
//
PROCESSOR_POWER_STATE PowerState;
// begin_nthal begin_ntosp
} KPRCB, *PKPRCB, *RESTRICTED_POINTER PRKPRCB;
// end_nthal end_ntosp
//
// The offset of the PRCB in the PCR is 32 mod 64.
//
// The offset of the following structure must be 0 mod 64 except for the
// lock queue array which straddles two cache lines.
//
C_ASSERT(((FIELD_OFFSET(KPRCB, LockQueue) + sizeof(KSPIN_LOCK_QUEUE) + 32) & (64 - 1)) == 0);
C_ASSERT(((FIELD_OFFSET(KPRCB, NpxThread) + 32) & (64 - 1)) == 0);
C_ASSERT(((FIELD_OFFSET(KPRCB, CcFastReadNoWait) + 32) & (64 - 1)) == 0);
C_ASSERT(((FIELD_OFFSET(KPRCB, PPLookasideList) + 32) & (64 - 1)) == 0);
C_ASSERT(((FIELD_OFFSET(KPRCB, PPNPagedLookasideList) + 32) & (64 - 1)) == 0);
C_ASSERT(((FIELD_OFFSET(KPRCB, PPPagedLookasideList) + 32) & (64 - 1)) == 0);
C_ASSERT(((FIELD_OFFSET(KPRCB, PacketBarrier) + 32) & (64 - 1)) == 0);
C_ASSERT(((FIELD_OFFSET(KPRCB, CurrentPacket) + 32) & (64 - 1)) == 0);
C_ASSERT(((FIELD_OFFSET(KPRCB, DpcData) + 32) & (64 - 1)) == 0);
C_ASSERT(((FIELD_OFFSET(KPRCB, DpcRoutineActive)) & (1)) == 0);
C_ASSERT(((FIELD_OFFSET(KPRCB, CallDpc) + 32) & (64 - 1)) == 0);
C_ASSERT(((FIELD_OFFSET(KPRCB, WaitListHead) + 32) & (64 - 1)) == 0);
C_ASSERT(((FIELD_OFFSET(KPRCB, ChainedInterruptList) + 32) & (64 - 1)) == 0);
C_ASSERT(((FIELD_OFFSET(KPRCB, NpxSaveArea) + 32) & (16 - 1)) == 0);
// begin_nthal begin_ntddk begin_ntosp
//
// Processor Control Region Structure Definition
//
#define PCR_MINOR_VERSION 1
#define PCR_MAJOR_VERSION 1
typedef struct _KPCR {
//
// Start of the architecturally defined section of the PCR. This section
// may be directly addressed by vendor/platform specific HAL code and will
// not change from version to version of NT.
//
// Certain fields in the TIB are not used in kernel mode. These include the
// stack limit, subsystem TIB, fiber data, arbitrary user pointer, and the
// self address of then PCR itself (another field has been added for that
// purpose). Therefore, these fields are overlaid with other data to get
// better cache locality.
//
union {
NT_TIB NtTib;
struct {
struct _EXCEPTION_REGISTRATION_RECORD *Used_ExceptionList;
PVOID Used_StackBase;
PVOID PerfGlobalGroupMask;
PVOID TssCopy;
ULONG ContextSwitches;
KAFFINITY SetMemberCopy;
PVOID Used_Self;
};
};
struct _KPCR *SelfPcr; // flat address of this PCR
struct _KPRCB *Prcb; // pointer to Prcb
KIRQL Irql; // do not use 3 bytes after this as
// HALs assume they are zero.
ULONG IRR;
ULONG IrrActive;
ULONG IDR;
PVOID KdVersionBlock;
struct _KIDTENTRY *IDT;
struct _KGDTENTRY *GDT;
struct _KTSS *TSS;
USHORT MajorVersion;
USHORT MinorVersion;
KAFFINITY SetMember;
ULONG StallScaleFactor;
UCHAR SpareUnused;
UCHAR Number;
// end_ntddk end_ntosp
UCHAR Spare0;
UCHAR SecondLevelCacheAssociativity;
ULONG VdmAlert;
ULONG KernelReserved[14]; // For use by the kernel
ULONG SecondLevelCacheSize;
ULONG HalReserved[16]; // For use by Hal
// End of the architecturally defined section of the PCR.
// end_nthal
ULONG InterruptMode;
UCHAR Spare1;
ULONG KernelReserved2[17];
struct _KPRCB PrcbData;
// begin_nthal begin_ntddk begin_ntosp
} KPCR, *PKPCR;
// end_nthal end_ntddk end_ntosp
C_ASSERT(FIELD_OFFSET(KPCR, NtTib.ExceptionList) == FIELD_OFFSET(KPCR, Used_ExceptionList));
C_ASSERT(FIELD_OFFSET(KPCR, NtTib.StackBase) == FIELD_OFFSET(KPCR, Used_StackBase));
C_ASSERT(FIELD_OFFSET(KPCR, NtTib.StackLimit) == FIELD_OFFSET(KPCR, PerfGlobalGroupMask));
C_ASSERT(FIELD_OFFSET(KPCR, NtTib.SubSystemTib) == FIELD_OFFSET(KPCR, TssCopy));
C_ASSERT(FIELD_OFFSET(KPCR, NtTib.FiberData) == FIELD_OFFSET(KPCR, ContextSwitches));
C_ASSERT(FIELD_OFFSET(KPCR, NtTib.ArbitraryUserPointer) == FIELD_OFFSET(KPCR, SetMemberCopy));
C_ASSERT(FIELD_OFFSET(KPCR, NtTib.Self) == FIELD_OFFSET(KPCR, Used_Self));
C_ASSERT((FIELD_OFFSET(KPCR, PrcbData) & (64 - 1)) == 32);
FORCEINLINE
ULONG
KeGetContextSwitches (
PKPRCB Prcb
)
{
PKPCR Pcr;
Pcr = CONTAINING_RECORD(Prcb, KPCR, PrcbData);
return Pcr->ContextSwitches;
}
// begin_nthal begin_ntosp
//
// bits defined in Eflags
//
#define EFLAGS_CF_MASK 0x00000001L
#define EFLAGS_PF_MASK 0x00000004L
#define EFLAGS_AF_MASK 0x00000010L
#define EFLAGS_ZF_MASK 0x00000040L
#define EFLAGS_SF_MASK 0x00000080L
#define EFLAGS_TF 0x00000100L
#define EFLAGS_INTERRUPT_MASK 0x00000200L
#define EFLAGS_DF_MASK 0x00000400L
#define EFLAGS_OF_MASK 0x00000800L
#define EFLAGS_IOPL_MASK 0x00003000L
#define EFLAGS_NT 0x00004000L
#define EFLAGS_RF 0x00010000L
#define EFLAGS_V86_MASK 0x00020000L
#define EFLAGS_ALIGN_CHECK 0x00040000L
#define EFLAGS_VIF 0x00080000L
#define EFLAGS_VIP 0x00100000L
#define EFLAGS_ID_MASK 0x00200000L
#define EFLAGS_USER_SANITIZE 0x003f4dd7L
// end_nthal
//
// Sanitize segCS and eFlags based on a processor mode.
//
// If kernel mode,
// force CPL == 0
//
// If user mode,
// force CPL == 3
//
#define SANITIZE_SEG(segCS, mode) (\
((mode) == KernelMode ? \
((0x00000000L) | ((segCS) & 0xfffc)) : \
((0x00000003L) | ((segCS) & 0xffff))))
//
// If kernel mode, then
// let caller specify Carry, Parity, AuxCarry, Zero, Sign, Trap,
// Direction, Overflow, Interrupt, AlignCheck.
//
// If user mode, then
// let caller specify Carry, Parity, AuxCarry, Zero, Sign, Trap,
// Direction, Overflow, AlignCheck.
// force Interrupts on.
//
#define SANITIZE_FLAGS(eFlags, mode) (\
((mode) == KernelMode ? \
((0x00000000L) | ((eFlags) & 0x003f0fd7)) : \
((EFLAGS_INTERRUPT_MASK) | ((eFlags) & EFLAGS_USER_SANITIZE))))
//
// Masks for Dr7 and sanitize macros for various Dr registers.
//
#define DR6_LEGAL 0x0000e00f
#define DR7_LEGAL 0xffff0155 // R/W, LEN for Dr0-Dr4,
// Local enable for Dr0-Dr4,
// Le for "perfect" trapping
#define DR7_ACTIVE 0x00000055 // If any of these bits are set, a Dr is active
#define SANITIZE_DR6(Dr6, mode) ((Dr6 & DR6_LEGAL));
#define SANITIZE_DR7(Dr7, mode) ((Dr7 & DR7_LEGAL));
#define SANITIZE_DRADDR(DrReg, mode) ( \
(mode) == KernelMode ? \
(DrReg) : \
(((PVOID)DrReg <= MM_HIGHEST_USER_ADDRESS) ? \
(DrReg) : \
(0) \
) \
)
//
// Define macro to clear reserved bits from MXCSR so that we don't
// GP fault when doing an FRSTOR
//
extern ULONG KiMXCsrMask;
#define SANITIZE_MXCSR(_mxcsr_) ((_mxcsr_) & KiMXCsrMask)
//
// Nonvolatile context pointers
//
// bryanwi 21 feb 90 - This is bogus. The 386 doesn't have
// enough nonvolatile context to make this
// structure worthwhile. Can't declare a
// field to be void, so declare a Junk structure
// instead.
typedef struct _KNONVOLATILE_CONTEXT_POINTERS {
ULONG Junk;
} KNONVOLATILE_CONTEXT_POINTERS, *PKNONVOLATILE_CONTEXT_POINTERS;
// begin_nthal
//
// Trap frame
//
// NOTE - We deal only with 32bit registers, so the assembler equivalents
// are always the extended forms.
//
// NOTE - Unless you want to run like slow molasses everywhere in the
// the system, this structure must be of DWORD length, DWORD
// aligned, and its elements must all be DWORD aligned.
//
// NOTE WELL -
//
// The i386 does not build stack frames in a consistent format, the
// frames vary depending on whether or not a privilege transition
// was involved.
//
// In order to make NtContinue work for both user mode and kernel
// mode callers, we must force a canonical stack.
//
// If we're called from kernel mode, this structure is 8 bytes longer
// than the actual frame!
//
// WARNING:
//
// KTRAP_FRAME_LENGTH needs to be 16byte integral (at present.)
//
typedef struct _KTRAP_FRAME {
//
// Following 4 values are only used and defined for DBG systems,
// but are always allocated to make switching from DBG to non-DBG
// and back quicker. They are not DEVL because they have a non-0
// performance impact.
//
ULONG DbgEbp; // Copy of User EBP set up so KB will work.
ULONG DbgEip; // EIP of caller to system call, again, for KB.
ULONG DbgArgMark; // Marker to show no args here.
ULONG DbgArgPointer; // Pointer to the actual args
//
// Temporary values used when frames are edited.
//
//
// NOTE: Any code that want's ESP must materialize it, since it
// is not stored in the frame for kernel mode callers.
//
// And code that sets ESP in a KERNEL mode frame, must put
// the new value in TempEsp, make sure that TempSegCs holds
// the real SegCs value, and put a special marker value into SegCs.
//
ULONG TempSegCs;
ULONG TempEsp;
//
// Debug registers.
//
ULONG Dr0;
ULONG Dr1;
ULONG Dr2;
ULONG Dr3;
ULONG Dr6;
ULONG Dr7;
//
// Segment registers
//
ULONG SegGs;
ULONG SegEs;
ULONG SegDs;
//
// Volatile registers
//
ULONG Edx;
ULONG Ecx;
ULONG Eax;
//
// Nesting state, not part of context record
//
ULONG PreviousPreviousMode;
PEXCEPTION_REGISTRATION_RECORD ExceptionList;
// Trash if caller was user mode.
// Saved exception list if caller
// was kernel mode or we're in
// an interrupt.
//
// FS is TIB/PCR pointer, is here to make save sequence easy
//
ULONG SegFs;
//
// Non-volatile registers
//
ULONG Edi;
ULONG Esi;
ULONG Ebx;
ULONG Ebp;
//
// Control registers
//
ULONG ErrCode;
ULONG Eip;
ULONG SegCs;
ULONG EFlags;
ULONG HardwareEsp; // WARNING - segSS:esp are only here for stacks
ULONG HardwareSegSs; // that involve a ring transition.
ULONG V86Es; // these will be present for all transitions from
ULONG V86Ds; // V86 mode
ULONG V86Fs;
ULONG V86Gs;
} KTRAP_FRAME;
typedef KTRAP_FRAME *PKTRAP_FRAME;
typedef KTRAP_FRAME *PKEXCEPTION_FRAME;
#define KTRAP_FRAME_LENGTH (sizeof(KTRAP_FRAME))
#define KTRAP_FRAME_ALIGN (sizeof(ULONG))
#define KTRAP_FRAME_ROUND (KTRAP_FRAME_ALIGN-1)
//
// Bits forced to 0 in SegCs if Esp has been edited.
//
#define FRAME_EDITED 0xfff8
// end_nthal
//
// The frame saved by KiCallUserMode is defined here to allow
// the kernel debugger to trace the entire kernel stack
// when usermode callouts are pending.
//
typedef struct _KCALLOUT_FRAME {
ULONG InStk; // saved initial stack address
ULONG TrFr; // saved callback trap frame
ULONG CbStk; // saved callback stack address
ULONG Edi; // saved nonvolatile registers
ULONG Esi; //
ULONG Ebx; //
ULONG Ebp; //
ULONG Ret; // saved return address
ULONG OutBf; // address to store output buffer
ULONG OutLn; // address to store output length
} KCALLOUT_FRAME;
typedef KCALLOUT_FRAME *PKCALLOUT_FRAME;
//
// Switch Frame
//
// 386 doesn't have an "exception frame", and doesn't normally make
// any use of nonvolatile context register structures.
//
// However, swapcontext in ctxswap.c and KeInitializeThread in
// thredini.c need to share common stack structure used at thread
// startup and switch time.
//
// This is that structure.
//
typedef struct _KSWITCHFRAME {
ULONG ExceptionList;
ULONG ApcBypassDisable;
ULONG RetAddr;
} KSWITCHFRAME, *PKSWITCHFRAME;
//
// Various 387 defines
//
#define I386_80387_NP_VECTOR 0x07 // trap 7 when hardware not present
// begin_ntddk begin_wdm
//
// The non-volatile 387 state
//
typedef struct _KFLOATING_SAVE {
ULONG ControlWord;
ULONG StatusWord;
ULONG ErrorOffset;
ULONG ErrorSelector;
ULONG DataOffset; // Not used in wdm
ULONG DataSelector;
ULONG Cr0NpxState;
ULONG Spare1; // Not used in wdm
} KFLOATING_SAVE, *PKFLOATING_SAVE;
// end_ntddk end_wdm end_ntosp
//
// i386 Profile values
//
#define DEFAULT_PROFILE_INTERVAL 39063
//
// The minimum acceptable profiling interval is set to 1221 which is the
// fast RTC clock rate we can get. If this
// value is too small, the system will run very slowly.
//
#define MINIMUM_PROFILE_INTERVAL 1221
// begin_ntddk begin_wdm begin_nthal begin_ntndis begin_ntosp
//
// i386 Specific portions of mm component
//
//
// Define the page size for the Intel 386 as 4096 (0x1000).
//
#define PAGE_SIZE 0x1000
//
// Define the number of trailing zeroes in a page aligned virtual address.
// This is used as the shift count when shifting virtual addresses to
// virtual page numbers.
//
#define PAGE_SHIFT 12L
// end_ntndis end_wdm
//
// Define the number of bits to shift to right justify the Page Directory Index
// field of a PTE.
//
#define PDI_SHIFT_X86 22
#define PDI_SHIFT_X86PAE 21
#if !defined (_X86PAE_)
#define PDI_SHIFT PDI_SHIFT_X86
#else
#define PDI_SHIFT PDI_SHIFT_X86PAE
#define PPI_SHIFT 30
#endif
//
// Define the number of bits to shift to right justify the Page Table Index
// field of a PTE.
//
#define PTI_SHIFT 12
//
// Define the highest user address and user probe address.
//
// end_ntddk end_nthal end_ntosp
#if defined(_NTDRIVER_) || defined(_NTDDK_) || defined(_NTIFS_) || defined(_NTHAL_)
// begin_ntddk begin_nthal begin_ntosp
extern PVOID *MmHighestUserAddress;
extern PVOID *MmSystemRangeStart;
extern ULONG *MmUserProbeAddress;
#define MM_HIGHEST_USER_ADDRESS *MmHighestUserAddress
#define MM_SYSTEM_RANGE_START *MmSystemRangeStart
#define MM_USER_PROBE_ADDRESS *MmUserProbeAddress
// end_ntddk end_nthal end_ntosp
#else
extern PVOID MmHighestUserAddress;
extern PVOID MmSystemRangeStart;
extern ULONG MmUserProbeAddress;
#define MM_HIGHEST_USER_ADDRESS MmHighestUserAddress
#define MM_SYSTEM_RANGE_START MmSystemRangeStart
#define MM_USER_PROBE_ADDRESS MmUserProbeAddress
#endif
// begin_ntddk begin_nthal begin_ntosp
//
// The lowest user address reserves the low 64k.
//
#define MM_LOWEST_USER_ADDRESS (PVOID)0x10000
//
// The lowest address for system space.
//
#if !defined (_X86PAE_)
#define MM_LOWEST_SYSTEM_ADDRESS (PVOID)0xC0800000
#else
#define MM_LOWEST_SYSTEM_ADDRESS (PVOID)0xC0C00000
#endif
// begin_wdm
#define MmGetProcedureAddress(Address) (Address)
#define MmLockPagableCodeSection(Address) MmLockPagableDataSection(Address)
// end_ntddk end_wdm
//
// Define the number of bits to shift to right justify the Page Directory Index
// field of a PTE.
//
#define PDI_SHIFT_X86 22
#define PDI_SHIFT_X86PAE 21
#if !defined (_X86PAE_)
#define PDI_SHIFT PDI_SHIFT_X86
#else
#define PDI_SHIFT PDI_SHIFT_X86PAE
#define PPI_SHIFT 30
#endif
//
// Define the number of bits to shift to right justify the Page Table Index
// field of a PTE.
//
#define PTI_SHIFT 12
//
// Define page directory and page base addresses.
//
#define PDE_BASE_X86 0xc0300000
#define PDE_BASE_X86PAE 0xc0600000
#define PTE_TOP_X86 0xC03FFFFF
#define PDE_TOP_X86 0xC0300FFF
#define PTE_TOP_X86PAE 0xC07FFFFF
#define PDE_TOP_X86PAE 0xC0603FFF
#if !defined (_X86PAE_)
#define PDE_BASE PDE_BASE_X86
#define PTE_TOP PTE_TOP_X86
#define PDE_TOP PDE_TOP_X86
#else
#define PDE_BASE PDE_BASE_X86PAE
#define PTE_TOP PTE_TOP_X86PAE
#define PDE_TOP PDE_TOP_X86PAE
#endif
#define PTE_BASE 0xc0000000
// end_nthal end_ntosp
//
// Define virtual base and alternate virtual base of kernel.
//
#define KSEG0_BASE 0x80000000
#define ALTERNATE_BASE (0xe1000000 - 16 * 1024 * 1024)
//
// Define macro to initialize directory table base.
//
#define INITIALIZE_DIRECTORY_TABLE_BASE(dirbase,pfn) \
*((PULONG)(dirbase)) = ((pfn) << PAGE_SHIFT)
// begin_nthal
//
// Location of primary PCR (used only for UP kernel & hal code)
//
// addressed from 0xffdf0000 - 0xffdfffff are reserved for the system
// (ie, not for use by the hal)
#define KI_BEGIN_KERNEL_RESERVED 0xffdf0000
#define KIP0PCRADDRESS 0xffdff000 // ntddk wdm ntosp
// begin_ntddk begin_ntosp
#define KI_USER_SHARED_DATA 0xffdf0000
#define SharedUserData ((KUSER_SHARED_DATA * const) KI_USER_SHARED_DATA)
//
// Result type definition for i386. (Machine specific enumerate type
// which is return type for portable exinterlockedincrement/decrement
// procedures.) In general, you should use the enumerated type defined
// in ex.h instead of directly referencing these constants.
//
// Flags loaded into AH by LAHF instruction
#define EFLAG_SIGN 0x8000
#define EFLAG_ZERO 0x4000
#define EFLAG_SELECT (EFLAG_SIGN | EFLAG_ZERO)
#define RESULT_NEGATIVE ((EFLAG_SIGN & ~EFLAG_ZERO) & EFLAG_SELECT)
#define RESULT_ZERO ((~EFLAG_SIGN & EFLAG_ZERO) & EFLAG_SELECT)
#define RESULT_POSITIVE ((~EFLAG_SIGN & ~EFLAG_ZERO) & EFLAG_SELECT)
//
// Convert various portable ExInterlock APIs into their architectural
// equivalents.
//
#if PRAGMA_DEPRECATED_DDK
#pragma deprecated(ExInterlockedIncrementLong) // Use InterlockedIncrement
#pragma deprecated(ExInterlockedDecrementLong) // Use InterlockedDecrement
#pragma deprecated(ExInterlockedExchangeUlong) // Use InterlockedExchange
#endif
#define ExInterlockedIncrementLong(Addend,Lock) \
Exfi386InterlockedIncrementLong(Addend)
#define ExInterlockedDecrementLong(Addend,Lock) \
Exfi386InterlockedDecrementLong(Addend)
#define ExInterlockedExchangeUlong(Target,Value,Lock) \
Exfi386InterlockedExchangeUlong(Target,Value)
// begin_wdm
#define ExInterlockedAddUlong ExfInterlockedAddUlong
#define ExInterlockedInsertHeadList ExfInterlockedInsertHeadList
#define ExInterlockedInsertTailList ExfInterlockedInsertTailList
#define ExInterlockedRemoveHeadList ExfInterlockedRemoveHeadList
#define ExInterlockedPopEntryList ExfInterlockedPopEntryList
#define ExInterlockedPushEntryList ExfInterlockedPushEntryList
// end_wdm
//
// Prototypes for architectural specific versions of Exi386 Api
//
//
// Interlocked result type is portable, but its values are machine specific.
// Constants for value are in i386.h, mips.h, etc.
//
typedef enum _INTERLOCKED_RESULT {
ResultNegative = RESULT_NEGATIVE,
ResultZero = RESULT_ZERO,
ResultPositive = RESULT_POSITIVE
} INTERLOCKED_RESULT;
NTKERNELAPI
INTERLOCKED_RESULT
FASTCALL
Exfi386InterlockedIncrementLong (
IN PLONG Addend
);
NTKERNELAPI
INTERLOCKED_RESULT
FASTCALL
Exfi386InterlockedDecrementLong (
IN PLONG Addend
);
NTKERNELAPI
ULONG
FASTCALL
Exfi386InterlockedExchangeUlong (
IN PULONG Target,
IN ULONG Value
);
// end_ntddk end_nthal end_ntosp
//
// UP/MP versions of interlocked intrinsics
//
// N.B. FASTCALL does NOT work with inline functions.
//
#if !defined(_WINBASE_) && !defined(NONTOSPINTERLOCK) // ntosp ntddk nthal
#if defined(_M_IX86)
#if _MSC_VER >= 1200
#pragma warning(push)
#endif
#pragma warning(disable:4035) // re-enable below
// begin_ntddk begin_nthal begin_ntosp
#if !defined(MIDL_PASS) // wdm
#if defined(NO_INTERLOCKED_INTRINSICS) || defined(_CROSS_PLATFORM_)
// begin_wdm
NTKERNELAPI
LONG
FASTCALL
InterlockedIncrement(
IN LONG volatile *Addend
);
NTKERNELAPI
LONG
FASTCALL
InterlockedDecrement(
IN LONG volatile *Addend
);
NTKERNELAPI
LONG
FASTCALL
InterlockedExchange(
IN OUT LONG volatile *Target,
IN LONG Value
);
#define InterlockedExchangePointer(Target, Value) \
(PVOID)InterlockedExchange((PLONG)(Target), (LONG)(Value))
LONG
FASTCALL
InterlockedExchangeAdd(
IN OUT LONG volatile *Addend,
IN LONG Increment
);
NTKERNELAPI
LONG
FASTCALL
InterlockedCompareExchange(
IN OUT LONG volatile *Destination,
IN LONG ExChange,
IN LONG Comperand
);
#define InterlockedCompareExchangePointer(Destination, ExChange, Comperand) \
(PVOID)InterlockedCompareExchange((PLONG)Destination, (LONG)ExChange, (LONG)Comperand)
#define InterlockedCompareExchange64(Destination, ExChange, Comperand) \
ExfInterlockedCompareExchange64(Destination, &(ExChange), &(Comperand))
NTKERNELAPI
LONGLONG
FASTCALL
ExfInterlockedCompareExchange64(
IN OUT LONGLONG volatile *Destination,
IN PLONGLONG ExChange,
IN PLONGLONG Comperand
);
// end_wdm
#else // NO_INTERLOCKED_INTRINSICS || _CROSS_PLATFORM_
#define InterlockedExchangePointer(Target, Value) \
(PVOID)InterlockedExchange((PLONG)Target, (LONG)Value)
// end_ntddk end_nthal end_ntosp
#if defined(NT_UP) && !defined (_NTDDK_) && !defined(_NTIFS_)
#if (_MSC_FULL_VER > 13009037)
LONG
__cdecl
_InterlockedIncrement(
IN LONG volatile *Addend
);
#pragma intrinsic (_InterlockedIncrement)
#define InterlockedIncrement _InterlockedIncrement
#else
#define InterlockedIncrement(Addend) (InterlockedExchangeAdd (Addend, 1)+1)
#endif
#if (_MSC_FULL_VER > 13009037)
LONG
__cdecl
_InterlockedDecrement(
IN LONG volatile *Addend
);
#pragma intrinsic (_InterlockedDecrement)
#define InterlockedDecrement _InterlockedDecrement
#else
#define InterlockedDecrement(Addend) (InterlockedExchangeAdd (Addend, -1)-1)
#endif
//FORCEINLINE
//LONG
//FASTCALL
//InterlockedIncrement(
// IN PLONG Addend
// )
//{
// __asm {
// mov eax, 1
// mov ecx, Addend
// xadd [ecx], eax
// inc eax
// }
//}
//FORCEINLINE
//LONG
//FASTCALL
//InterlockedDecrement(
// IN PLONG Addend
// )
//{
// __asm {
// mov eax, -1
// mov ecx, Addend
// xadd [ecx], eax
// dec eax
// }
//}
#if (_MSC_FULL_VER > 13009037)
LONG
__cdecl
_InterlockedExchange(
IN OUT LONG volatile *Target,
IN LONG Value
);
#pragma intrinsic (_InterlockedExchange)
#define InterlockedExchange _InterlockedExchange
#else
FORCEINLINE
LONG
FASTCALL
InterlockedExchange(
IN OUT LONG volatile *Target,
IN LONG Value
)
{
__asm {
mov eax, Value
mov ecx, Target
xchg [ecx], eax
}
}
#endif
#if (_MSC_FULL_VER > 13009037)
LONG
__cdecl
_InterlockedExchangeAdd(
IN OUT LONG volatile *Addend,
IN LONG Increment
);
#pragma intrinsic (_InterlockedExchangeAdd)
#define InterlockedExchangeAdd _InterlockedExchangeAdd
#else
FORCEINLINE
LONG
FASTCALL
InterlockedExchangeAdd(
IN OUT LONG volatile *Addend,
IN LONG Increment
)
{
__asm {
mov eax, Increment
mov ecx, Addend
xadd [ecx], eax
}
}
#endif
#if (_MSC_FULL_VER > 13009037)
LONG
__cdecl
_InterlockedCompareExchange (
IN OUT LONG volatile *Destination,
IN LONG ExChange,
IN LONG Comperand
);
#pragma intrinsic (_InterlockedCompareExchange)
#define InterlockedCompareExchange (LONG)_InterlockedCompareExchange
#else
FORCEINLINE
LONG
FASTCALL
InterlockedCompareExchange(
IN OUT LONG volatile *Destination,
IN LONG Exchange,
IN LONG Comperand
)
{
__asm {
mov eax, Comperand
mov ecx, Destination
mov edx, Exchange
cmpxchg [ecx], edx
}
}
#endif
#define InterlockedCompareExchangePointer(Destination, ExChange, Comperand) \
(PVOID)InterlockedCompareExchange((PLONG)Destination, (LONG)ExChange, (LONG)Comperand)
#define InterlockedCompareExchange64(Destination, ExChange, Comperand) \
ExfInterlockedCompareExchange64(Destination, &(ExChange), &(Comperand))
LONGLONG
FASTCALL
ExfInterlockedCompareExchange64(
IN OUT LONGLONG volatile *Destination,
IN PLONGLONG ExChange,
IN PLONGLONG Comperand
);
#else // NT_UP
// begin_ntosp begin_ntddk begin_nthal
#if (_MSC_FULL_VER > 13009037)
LONG
__cdecl
_InterlockedExchange(
IN OUT LONG volatile *Target,
IN LONG Value
);
#pragma intrinsic (_InterlockedExchange)
#define InterlockedExchange _InterlockedExchange
#else
FORCEINLINE
LONG
FASTCALL
InterlockedExchange(
IN OUT LONG volatile *Target,
IN LONG Value
)
{
__asm {
mov eax, Value
mov ecx, Target
xchg [ecx], eax
}
}
#endif
#if (_MSC_FULL_VER > 13009037)
LONG
__cdecl
_InterlockedIncrement(
IN LONG volatile *Addend
);
#pragma intrinsic (_InterlockedIncrement)
#define InterlockedIncrement _InterlockedIncrement
#else
#define InterlockedIncrement(Addend) (InterlockedExchangeAdd (Addend, 1)+1)
#endif
#if (_MSC_FULL_VER > 13009037)
LONG
__cdecl
_InterlockedDecrement(
IN LONG volatile *Addend
);
#pragma intrinsic (_InterlockedDecrement)
#define InterlockedDecrement _InterlockedDecrement
#else
#define InterlockedDecrement(Addend) (InterlockedExchangeAdd (Addend, -1)-1)
#endif
#if (_MSC_FULL_VER > 13009037)
LONG
__cdecl
_InterlockedExchangeAdd(
IN OUT LONG volatile *Addend,
IN LONG Increment
);
#pragma intrinsic (_InterlockedExchangeAdd)
#define InterlockedExchangeAdd _InterlockedExchangeAdd
#else
// begin_wdm
FORCEINLINE
LONG
FASTCALL
InterlockedExchangeAdd(
IN OUT LONG volatile *Addend,
IN LONG Increment
)
{
__asm {
mov eax, Increment
mov ecx, Addend
lock xadd [ecx], eax
}
}
// end_wdm
#endif
#if (_MSC_FULL_VER > 13009037)
LONG
__cdecl
_InterlockedCompareExchange (
IN OUT LONG volatile *Destination,
IN LONG ExChange,
IN LONG Comperand
);
#pragma intrinsic (_InterlockedCompareExchange)
#define InterlockedCompareExchange (LONG)_InterlockedCompareExchange
#else
FORCEINLINE
LONG
FASTCALL
InterlockedCompareExchange(
IN OUT LONG volatile *Destination,
IN LONG Exchange,
IN LONG Comperand
)
{
__asm {
mov eax, Comperand
mov ecx, Destination
mov edx, Exchange
lock cmpxchg [ecx], edx
}
}
#endif
#define InterlockedCompareExchangePointer(Destination, ExChange, Comperand) \
(PVOID)InterlockedCompareExchange((PLONG)Destination, (LONG)ExChange, (LONG)Comperand)
#define InterlockedCompareExchange64(Destination, ExChange, Comperand) \
ExfInterlockedCompareExchange64(Destination, &(ExChange), &(Comperand))
NTKERNELAPI
LONGLONG
FASTCALL
ExfInterlockedCompareExchange64(
IN OUT LONGLONG volatile *Destination,
IN PLONGLONG ExChange,
IN PLONGLONG Comperand
);
// end_ntosp end_ntddk end_nthal
#endif // NT_UP
// begin_ntddk begin_nthal begin_ntosp
#endif // INTERLOCKED_INTRINSICS || _CROSS_PLATFORM_
// begin_wdm
#endif // MIDL_PASS
#define InterlockedIncrementAcquire InterlockedIncrement
#define InterlockedIncrementRelease InterlockedIncrement
#define InterlockedDecrementAcquire InterlockedDecrement
#define InterlockedDecrementRelease InterlockedDecrement
#define InterlockedExchangeAcquire64 InterlockedExchange64
#define InterlockedCompareExchangeAcquire InterlockedCompareExchange
#define InterlockedCompareExchangeRelease InterlockedCompareExchange
#define InterlockedCompareExchangeAcquire64 InterlockedCompareExchange64
#define InterlockedCompareExchangeRelease64 InterlockedCompareExchange64
// end_ntosp end_ntddk end_nthal end_wdm
#if _MSC_VER >= 1200
#pragma warning(pop)
#else
#pragma warning(default:4035)
#endif
#endif // _M_IX86 && !CROSS_PLATFORM
// begin_ntddk begin_nthal begin_ntosp
#endif // __WINBASE__ && !NONTOSPINTERLOCK
// end_ntosp end_ntddk end_nthal
// begin_nthal begin_ntddk
//
// Turn these instrinsics off until the compiler can handle them
//
#if (_MSC_FULL_VER > 13009037)
LONG
_InterlockedOr (
IN OUT LONG volatile *Target,
IN LONG Set
);
#pragma intrinsic (_InterlockedOr)
#define InterlockedOr _InterlockedOr
LONG
_InterlockedAnd (
IN OUT LONG volatile *Target,
IN LONG Set
);
#pragma intrinsic (_InterlockedAnd)
#define InterlockedAnd _InterlockedAnd
LONG
_InterlockedXor (
IN OUT LONG volatile *Target,
IN LONG Set
);
#pragma intrinsic (_InterlockedXor)
#define InterlockedXor _InterlockedXor
#else // compiler version
FORCEINLINE
LONG
InterlockedAnd (
IN OUT LONG volatile *Target,
LONG Set
)
{
LONG i;
LONG j;
j = *Target;
do {
i = j;
j = InterlockedCompareExchange(Target,
i & Set,
i);
} while (i != j);
return j;
}
FORCEINLINE
LONG
InterlockedOr (
IN OUT LONG volatile *Target,
IN LONG Set
)
{
LONG i;
LONG j;
j = *Target;
do {
i = j;
j = InterlockedCompareExchange(Target,
i | Set,
i);
} while (i != j);
return j;
}
#endif // compiler version
// end_nthal end_ntddk
//
// Structure for Ldt information in x86 processes
//
typedef struct _LDTINFORMATION {
ULONG Size;
ULONG AllocatedSize;
PLDT_ENTRY Ldt;
} LDTINFORMATION, *PLDTINFORMATION;
//
// SetProcessInformation Structure for ProcessSetIoHandlers info class
//
// begin_ntosp
typedef struct _PROCESS_IO_PORT_HANDLER_INFORMATION {
BOOLEAN Install; // true if handlers to be installed
ULONG NumEntries;
ULONG Context;
PEMULATOR_ACCESS_ENTRY EmulatorAccessEntries;
} PROCESS_IO_PORT_HANDLER_INFORMATION, *PPROCESS_IO_PORT_HANDLER_INFORMATION;
//
// Vdm Objects and Io handling structure
//
typedef struct _VDM_IO_HANDLER_FUNCTIONS {
PDRIVER_IO_PORT_ULONG UlongIo;
PDRIVER_IO_PORT_ULONG_STRING UlongStringIo;
PDRIVER_IO_PORT_USHORT UshortIo[2];
PDRIVER_IO_PORT_USHORT_STRING UshortStringIo[2];
PDRIVER_IO_PORT_UCHAR UcharIo[4];
PDRIVER_IO_PORT_UCHAR_STRING UcharStringIo[4];
} VDM_IO_HANDLER_FUNCTIONS, *PVDM_IO_HANDLER_FUNCTIONS;
typedef struct _VDM_IO_HANDLER {
struct _VDM_IO_HANDLER *Next;
ULONG PortNumber;
VDM_IO_HANDLER_FUNCTIONS IoFunctions[2];
} VDM_IO_HANDLER, *PVDM_IO_HANDLER;
// begin_nthal begin_ntddk begin_wdm
#if !defined(MIDL_PASS) && defined(_M_IX86)
//
// i386 function definitions
//
// end_wdm
#if _MSC_VER >= 1200
#pragma warning(push)
#endif
#pragma warning(disable:4035) // re-enable below
// end_ntddk end_ntosp
#if NT_UP
#define _PCR ds:[KIP0PCRADDRESS]
#else
#define _PCR fs:[0] // ntddk ntosp
#endif
//
// Get address of current processor block.
//
// WARNING: This inline macro can only be used by the kernel or hal
//
#define KiPcr() KeGetPcr()
FORCEINLINE
PKPCR
NTAPI
KeGetPcr(VOID)
{
#if NT_UP
return (PKPCR)KIP0PCRADDRESS;
#else
#if (_MSC_FULL_VER >= 13012035)
return (PKPCR) (ULONG_PTR) __readfsdword (FIELD_OFFSET (KPCR, SelfPcr));
#else
__asm { mov eax, _PCR KPCR.SelfPcr }
#endif
#endif
}
// begin_ntosp
//
// Get address of current processor block.
//
// WARNING: This inline macro can only be used by the kernel or hal
//
FORCEINLINE
PKPRCB
NTAPI
KeGetCurrentPrcb (VOID)
{
#if (_MSC_FULL_VER >= 13012035)
return (PKPRCB) (ULONG_PTR) __readfsdword (FIELD_OFFSET (KPCR, Prcb));
#else
__asm { mov eax, _PCR KPCR.Prcb }
#endif
}
// begin_ntddk begin_wdm
//
// Get current IRQL.
//
// On x86 this function resides in the HAL
//
// end_ntddk end_wdm
#if defined(_NTDRIVER_) || defined(_NTDDK_) || defined(_NTIFS_) || defined(_NTHAL_) || !defined(_APIC_TPR_)
// begin_ntddk begin_wdm
NTHALAPI
KIRQL
NTAPI
KeGetCurrentIrql();
// end_ntddk end_wdm
#endif
// begin_ntddk begin_wdm
// end_wdm
//
// Get the current processor number
//
FORCEINLINE
ULONG
NTAPI
KeGetCurrentProcessorNumber(VOID)
{
#if (_MSC_FULL_VER >= 13012035)
return (ULONG) __readfsbyte (FIELD_OFFSET (KPCR, Number));
#else
__asm { movzx eax, _PCR KPCR.Number }
#endif
}
// end_nthal end_ntddk end_ntosp
//
// Get address of current kernel thread object.
//
// WARNING: This inline macro can not be used for device drivers or HALs
// they must call the kernel function KeGetCurrentThread.
// WARNING: This inline macro is always MP enabled because filesystems
// utilize it
//
//
FORCEINLINE
struct _KTHREAD *
NTAPI KeGetCurrentThread (VOID)
{
#if (_MSC_FULL_VER >= 13012035)
return (struct _KTHREAD *) (ULONG_PTR) __readfsdword (FIELD_OFFSET (KPCR, PrcbData.CurrentThread));
#else
__asm { mov eax, fs:[0] KPCR.PrcbData.CurrentThread }
#endif
}
//
// If processor executing DPC?
// WARNING: This inline macro is always MP enabled because filesystems
// utilize it
//
FORCEINLINE
ULONG
NTAPI
KeIsExecutingDpc(VOID)
{
#if (_MSC_FULL_VER >= 13012035)
return (ULONG) __readfsbyte (FIELD_OFFSET (KPCR, PrcbData.DpcRoutineActive));
#else
__asm { movzx eax, word ptr fs:[0] KPCR.PrcbData.DpcRoutineActive }
#endif
}
// begin_nthal begin_ntddk begin_ntosp
#if _MSC_VER >= 1200
#pragma warning(pop)
#else
#pragma warning(default:4035)
#endif
// begin_wdm
#endif // !defined(MIDL_PASS) && defined(_M_IX86)
// end_nthal end_ntddk end_wdm end_ntosp
// begin_ntddk begin_nthal begin_ntndis begin_wdm begin_ntosp
//++
//
// VOID
// KeMemoryBarrier (
// VOID
// )
//
// VOID
// KeMemoryBarrierWithoutFence (
// VOID
// )
//
//
// Routine Description:
//
// These functions order memory accesses as seen by other processors.
//
// Arguments:
//
// None.
//
// Return Value:
//
// None.
//
//--
#ifdef __cplusplus
extern "C" {
#endif
VOID
_ReadWriteBarrier(
VOID
);
#ifdef __cplusplus
}
#endif
#pragma intrinsic (_ReadWriteBarrier)
FORCEINLINE
VOID
KeMemoryBarrier (
VOID
)
{
LONG Barrier;
__asm {
xchg Barrier, eax
}
}
#define KeMemoryBarrierWithoutFence() _ReadWriteBarrier()
// end_ntddk end_nthal end_ntndis end_wdm end_ntosp
//
// For the UP kernel don't generate the locked reference
//
#if defined (NT_UP)
#define KeMemoryBarrier() _ReadWriteBarrier()
#endif
// begin_nthal
//
// Macro to set address of a trap/interrupt handler to IDT
//
#define KiSetHandlerAddressToIDT(Vector, HandlerAddress) {\
UCHAR IDTEntry = HalVectorToIDTEntry(Vector); \
ULONG Ha = (ULONG)HandlerAddress; \
KeGetPcr()->IDT[IDTEntry].ExtendedOffset = HIGHWORD(Ha); \
KeGetPcr()->IDT[IDTEntry].Offset = LOWWORD(Ha); \
}
//
// Macro to return address of a trap/interrupt handler in IDT
//
#define KiReturnHandlerAddressFromIDT(Vector) \
MAKEULONG(KiPcr()->IDT[HalVectorToIDTEntry(Vector)].ExtendedOffset, KiPcr()->IDT[HalVectorToIDTEntry(Vector)].Offset)
// end_nthal
//++
//
// BOOLEAN
// KiIsThreadNumericStateSaved(
// IN PKTHREAD Address
// )
//
//--
#define KiIsThreadNumericStateSaved(a) \
(a->NpxState != NPX_STATE_LOADED)
//++
//
// VOID
// KiRundownThread(
// IN PKTHREAD Address
// )
//
//--
#if defined(NT_UP)
//
// On UP x86 systems, FP state is lazy saved and loaded. If this
// thread owns the current FP context, clear the ownership field
// so we will not try to save to this thread after it has been
// terminated.
//
#define KiRundownThread(a) \
if (KeGetCurrentPrcb()->NpxThread == (a)) { \
KeGetCurrentPrcb()->NpxThread = NULL; \
__asm { fninit } \
}
#else
#define KiRundownThread(a)
#endif
//
// functions specific to 386 structure
//
VOID
NTAPI
KiSetIRR (
IN ULONG SWInterruptMask
);
//
// Procedures to support frame manipulation
//
ULONG
NTAPI
KiEspFromTrapFrame(
IN PKTRAP_FRAME TrapFrame
);
VOID
NTAPI
KiEspToTrapFrame(
IN PKTRAP_FRAME TrapFrame,
IN ULONG Esp
);
ULONG
NTAPI
KiSegSsFromTrapFrame(
IN PKTRAP_FRAME TrapFrame
);
VOID
NTAPI
KiSegSsToTrapFrame(
IN PKTRAP_FRAME TrapFrame,
IN ULONG SegSs
);
//
// Define prototypes for i386 specific clock and profile interrupt routines.
//
VOID
NTAPI
KiUpdateRunTime (
VOID
);
VOID
NTAPI
KiUpdateSystemTime (
VOID
);
// begin_ntddk begin_wdm begin_ntosp
NTKERNELAPI
NTSTATUS
NTAPI
KeSaveFloatingPointState (
OUT PKFLOATING_SAVE FloatSave
);
NTKERNELAPI
NTSTATUS
NTAPI
KeRestoreFloatingPointState (
IN PKFLOATING_SAVE FloatSave
);
// end_ntddk end_wdm
// begin_nthal
NTKERNELAPI
VOID
NTAPI
KeProfileInterruptWithSource (
IN struct _KTRAP_FRAME *TrapFrame,
IN KPROFILE_SOURCE ProfileSource
);
// end_ntosp
VOID
NTAPI
KeProfileInterrupt (
IN KIRQL OldIrql,
IN KTRAP_FRAME TrapFrame
);
VOID
NTAPI
KeUpdateRuntime (
IN KIRQL OldIrql,
IN KTRAP_FRAME TrapFrame
);
VOID
NTAPI
KeUpdateSystemTime (
IN KIRQL OldIrql,
IN KTRAP_FRAME TrapFrame
);
// begin_ntddk begin_wdm begin_ntndis begin_ntosp
#endif // defined(_X86_)
// end_nthal end_ntddk end_wdm end_ntndis end_ntosp
// begin_nthal begin_ntddk
// Use the following for kernel mode runtime checks of X86 system architecture
#ifdef _X86_
#ifdef IsNEC_98
#undef IsNEC_98
#endif
#ifdef IsNotNEC_98
#undef IsNotNEC_98
#endif
#ifdef SetNEC_98
#undef SetNEC_98
#endif
#ifdef SetNotNEC_98
#undef SetNotNEC_98
#endif
#define IsNEC_98 (SharedUserData->AlternativeArchitecture == NEC98x86)
#define IsNotNEC_98 (SharedUserData->AlternativeArchitecture != NEC98x86)
#define SetNEC_98 SharedUserData->AlternativeArchitecture = NEC98x86
#define SetNotNEC_98 SharedUserData->AlternativeArchitecture = StandardDesign
#endif
// end_nthal end_ntddk
//
// i386 arch. specific kernel functions.
//
// begin_ntosp
#ifdef _X86_
VOID
NTAPI
Ke386SetLdtProcess (
struct _KPROCESS *Process,
PLDT_ENTRY Ldt,
ULONG Limit
);
VOID
NTAPI
Ke386SetDescriptorProcess (
struct _KPROCESS *Process,
ULONG Offset,
LDT_ENTRY LdtEntry
);
VOID
NTAPI
Ke386GetGdtEntryThread (
struct _KTHREAD *Thread,
ULONG Offset,
PKGDTENTRY Descriptor
);
BOOLEAN
NTAPI
Ke386SetIoAccessMap (
ULONG MapNumber,
PKIO_ACCESS_MAP IoAccessMap
);
BOOLEAN
NTAPI
Ke386QueryIoAccessMap (
ULONG MapNumber,
PKIO_ACCESS_MAP IoAccessMap
);
BOOLEAN
NTAPI
Ke386IoSetAccessProcess (
struct _KPROCESS *Process,
ULONG MapNumber
);
VOID
NTAPI
Ke386SetIOPL(
VOID
);
NTSTATUS
NTAPI
Ke386CallBios (
IN ULONG BiosCommand,
IN OUT PCONTEXT BiosArguments
);
VOID
NTAPI
KiEditIopmDpc (
IN struct _KDPC *Dpc,
IN PVOID DeferredContext,
IN PVOID SystemArgument1,
IN PVOID SystemArgument2
);
BOOLEAN
NTAPI
Ki386GetSelectorParameters(
IN USHORT Selector,
OUT PULONG Flags,
OUT PULONG Base,
OUT PULONG Limit
);
ULONG
Ki386DispatchOpcodeV86 (
IN PKTRAP_FRAME TrapFrame
);
ULONG
Ki386DispatchOpcode (
IN PKTRAP_FRAME TrapFrame
);
NTSTATUS
NTAPI
Ke386SetVdmInterruptHandler (
IN struct _KPROCESS *Process,
IN ULONG Interrupt,
IN USHORT Selector,
IN ULONG Offset,
IN BOOLEAN Gate32
);
#endif //_X86_
// end_ntosp
//
// i386 ABIOS specific routines.
//
NTSTATUS
NTAPI
KeI386GetLid(
IN USHORT DeviceId,
IN USHORT RelativeLid,
IN BOOLEAN SharedLid,
IN struct _DRIVER_OBJECT *DeviceObject,
OUT PUSHORT LogicalId
);
NTSTATUS
NTAPI
KeI386ReleaseLid(
IN USHORT LogicalId,
IN struct _DRIVER_OBJECT *DeviceObject
);
NTSTATUS
NTAPI
KeI386AbiosCall(
IN USHORT LogicalId,
IN struct _DRIVER_OBJECT *DriverObject,
IN PUCHAR RequestBlock,
IN USHORT EntryPoint
);
//
// i386 misc routines
//
NTSTATUS
NTAPI
KeI386AllocateGdtSelectors(
OUT PUSHORT SelectorArray,
IN USHORT NumberOfSelectors
);
VOID
NTAPI
KeI386Call16BitFunction (
IN OUT PCONTEXT Regs
);
USHORT
NTAPI
KeI386Call16BitCStyleFunction (
IN ULONG EntryOffset,
IN ULONG EntrySelector,
IN PUCHAR Parameters,
IN ULONG Size
);
NTSTATUS
NTAPI
KeI386FlatToGdtSelector(
IN ULONG SelectorBase,
IN USHORT Length,
IN USHORT Selector
);
NTSTATUS
NTAPI
KeI386ReleaseGdtSelectors(
OUT PUSHORT SelectorArray,
IN USHORT NumberOfSelectors
);
NTSTATUS
NTAPI
KeI386SetGdtSelector (
ULONG Selector,
PKGDTENTRY GdtValue
);
VOID
NTAPI
KeOptimizeProcessorControlState (
VOID
);
//
// Vdm specific functions.
//
BOOLEAN
NTAPI
KeVdmInsertQueueApc (
IN PKAPC Apc,
IN struct _KTHREAD *Thread,
IN KPROCESSOR_MODE ApcMode,
IN PKKERNEL_ROUTINE KernelRoutine,
IN PKRUNDOWN_ROUTINE RundownRoutine OPTIONAL,
IN PKNORMAL_ROUTINE NormalRoutine OPTIONAL,
IN PVOID NormalContext OPTIONAL,
IN KPRIORITY Increment
);
FORCEINLINE
VOID
NTAPI
KeVdmClearApcThreadAddress (
IN PKAPC Apc
)
{
if (Apc->Inserted == FALSE) {
Apc->Thread = NULL;
}
}
VOID
NTAPI
KeI386VdmInitialize (
VOID
);
//
// x86 functions for special instructions
//
VOID
NTAPI
CPUID (
ULONG InEax,
PULONG OutEax,
PULONG OutEbx,
PULONG OutEcx,
PULONG OutEdx
);
LONGLONG
NTAPI
RDTSC (
VOID
);
ULONGLONG
FASTCALL
RDMSR (
IN ULONG MsrRegister
);
VOID
NTAPI
WRMSR (
IN ULONG MsrRegister,
IN ULONGLONG MsrValue
);
//
// i386 Vdm specific data
//
extern ULONG KeI386EFlagsAndMaskV86;
extern ULONG KeI386EFlagsOrMaskV86;
extern ULONG KeI386VirtualIntExtensions;
extern ULONG KeI386CpuType;
extern ULONG KeI386CpuStep;
extern BOOLEAN KeI386NpxPresent;
extern BOOLEAN KeI386FxsrPresent;
//
// i386 Feature bit definitions
//
#define KF_V86_VIS 0x00000001
#define KF_RDTSC 0x00000002
#define KF_CR4 0x00000004
#define KF_CMOV 0x00000008
#define KF_GLOBAL_PAGE 0x00000010
#define KF_LARGE_PAGE 0x00000020
#define KF_MTRR 0x00000040
#define KF_CMPXCHG8B 0x00000080
#define KF_MMX 0x00000100
#define KF_WORKING_PTE 0x00000200
#define KF_PAT 0x00000400
#define KF_FXSR 0x00000800
#define KF_FAST_SYSCALL 0x00001000
#define KF_XMMI 0x00002000
#define KF_3DNOW 0x00004000
#define KF_AMDK6MTRR 0x00008000
#define KF_XMMI64 0x00010000
#define KF_DTS 0x00020000
//
// Define macro to test if x86 feature is present.
//
extern ULONG KiBootFeatureBits;
#define Isx86FeaturePresent(_f_) ((KiBootFeatureBits & (_f_)) != 0)
#endif // _i386_