Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1415 lines
40 KiB

// TITLE("System Initialization")
//++
//
// Module Name:
//
// start.s
//
// Abstract:
//
// This module implements the code necessary to initially startup the
// NT system.
//
// Author:
//
// Bernard Lint 8-Dec-1995
//
// Environment:
//
// Kernel mode only.
//
// Revision History:
//
// Based on MIPS version (from David N. Cutler (davec) 5-Apr-1991)
//
//--
#include "ksia64.h"
PublicFunction(SwapFromIdle)
PublicFunction(KeBugCheck)
PublicFunction(KiInitializeKernel)
PublicFunction(KeLowerIrql)
PublicFunction(KiNormalSystemCall)
PublicFunction(KiRetireDpcList)
PublicFunction(KeAcquireQueuedSpinLockAtDpcLevel)
PublicFunction(KiAcquireSpinLock)
PublicFunction(KeReleaseQueuedSpinLockFromDpcLevel)
PublicFunction(KeTryToAcquireQueuedSpinLockRaiseToSynch)
PublicFunction(KiIdleSchedule)
.global __imp_HalProcessorIdle
.global KiIvtBase
.global KiIA64PtaContents
.global KiIdleSummary
#if !defined(NT_UP)
.global HalAllProcessorsStarted
.global KeNumberProcessors
.global KiBarrierWait
.global KiKernelPcrPage
#endif // !defined(NT_UP)
#include "icecap.h"
#ifdef _CAPKERN
PublicFunction(SwapContext)
#endif
#if DBG
PublicFunction(KdPollBreakIn)
PublicFunction(DbgBreakPointWithStatus)
.global KdDebuggerEnabled
#endif // DBG
SBTTL("System Initialization")
//++
// Routine:
//
// VOID
// KiSystemBegin (
// PLOADER_PARAMETER_BLOCK)
//
// Routine Description:
//
// This routine is called when the NT system begins execution.
// Its function is to initialize system hardware state, call the
// kernel initialization routine, and then fall into code that
// represents the idle thread for all processors.
//
// Arguments:
//
// a0 - Supplies a pointer to the loader parameter block.
//
// Return Value:
//
// None.
//
// Note:
//
// On entry the global pointer (gp) is initialized for this module (the
// NTOS kernel) by the loader.
//
//--
NESTED_ENTRY(KiSystemBegin)
ALTERNATE_ENTRY(_start)
NESTED_SETUP(1,2,6,0) // Also see "alloc" below
//
// Register aliases
//
rpT1 = t0
rpT2 = t1
rpT3 = t2
rT1 = t3
rT2 = t4
rT3 = t5
rT4 = t6
rpLpb = t7
rThread = t8
rPcrPfn = t9
rPrcb = t10
rPcr2Pfn = t11
rProcNum = t12
rPKR = t13
rPkrNum = t14
rRR = t15
rKstack = t16
rVa = t17
rPcrTr = t18
rpPcr = t19
FAST_DISABLE_INTERRUPTS // disable interrupts
//
// purge OS Loader 1:1 mapping
//
add rT2 = LpbDtrInfo + (TrInfoLength * DTR_LOADER_INDEX), a0
;;
add rT3 = TrInfoValid, rT2
;;
ld1 rT3 = [rT3]
;;
cmp.eq p6, p0 = rT3, r0
;;
add rT3 = TrInfoVirtualAddress, rT2
add rT2 = TrInfoPageSize, rT2
(p6) br.cond.spnt KiSystemBegin_ItrLoaderPurge
;;
ld8 rT3 = [rT3]
ld4 rT2 = [rT2]
;;
shl rT2 = rT2, PS_SHIFT
;;
ptr.d rT3, rT2
;;
srlz.d
;;
KiSystemBegin_ItrLoaderPurge:
add rT2 = LpbItrInfo + (TrInfoLength * ITR_LOADER_INDEX), a0
;;
add rT3 = TrInfoValid, rT2
;;
ld1 rT3 = [rT3]
;;
cmp.eq p6, p0 = rT3, r0
;;
add rT3 = TrInfoVirtualAddress, rT2
add rT2 = TrInfoPageSize, rT2
(p6) br.cond.spnt KiSystemBegin_SalIvtPurge
;;
ld8 rT3 = [rT3]
ld4 rT2 = [rT2]
;;
shl rT2 = rT2, PS_SHIFT
;;
ptr.i rT3, rT2
;;
srlz.i
;;
//
// purge SAL IVT
//
KiSystemBegin_SalIvtPurge:
mov rT2 = PS_1M << 2
mov rT3 = cr.iva
;;
dep rT3 = 0, rT3, 0, PS_1M
;;
ptr.i rT3, rT2
;;
ALTERNATE_ENTRY(KiInitializeSystem)
mov ar.rsc = r0 // put RSE in lazy mode
movl rT2 = KiIvtBase
;;
rsm 1 << PSR_IC // PSR.ic = 0
mov cr.iva = rT2
#if !defined(NT_UP)
add rpT1 = @gprel(KiKernelPcrPage), gp
;;
ld8 rPcrPfn = [rpT1]
#else
mov rPcrPfn = 0
#endif
;;
srlz.d
add rpT2 = LpbPcrPage, a0 // -> PCR page number
cmp.eq pt0, pt1 = 0, rPcrPfn
;;
//
// Initialize fixed TLB entries that map the PCR into system and user space.
// N.B. These pages are per *processor* so we need a fixed mapping.
//
(pt0) ld8 rPcrPfn = [rpT2] // set PCR page number
movl rVa = KiPcr // set virtual address of PCR
;;
mov cr.ifa = rVa // setup IFA for insert
mov rT1 = PAGE_SHIFT << IDTR_PS
shl rPcrPfn = rPcrPfn, PAGE_SHIFT // shift to PPN field
;;
mov cr.itir = rT1 // setup IDTR
movl rPcrTr = KIPCR_TR_INITIAL // PCR translation except for PPN
mov rT2 = DTR_KIPCR_INDEX
;;
or rPcrTr = rPcrPfn, rPcrTr // form full TR
;;
itr.d dtr[rT2] = rPcrTr // insert PCR TR to DTR
ssm 1 << PSR_IC // PSR.ic = 1
;;
srlz.i // I serialize
add rpT1 = LpbKernelStack, a0 // -> idle thread stack
mov rpLpb = a0 // save a0
;;
LDPTR (rKstack, rpT1) // rKstack = idle thread stack
// N.B. This is also the base
// of backing store
;;
mov ar.bspstore = rKstack // setup BSP
.fframe STACK_SCRATCH_AREA
add sp = -STACK_SCRATCH_AREA, rKstack // set sp
;;
loadrs // invalidate RSE
invala
;;
mov ar.rsc = RSC_KERNEL // put RSE in eager mode
;;
alloc rT4 = ar.pfs,1,2,6,0 // keep in sync with entry point alloc
mov savedbrp = zero // setup bogus brp and pfs to
mov savedpfs = zero // stop the debugger
PROLOGUE_END
//
// Get page frame numbers for the PCR and PDR pages that were allocated by
// the OS loader. Page directory is 4 physically contiguous pages.
//
add rpT1 = LpbPrcb, rpLpb // -> PRCB
dep.z rRR = UREGION_INDEX, RR_INDEX, RR_INDEX_LEN
;;
LDPTR (rPrcb, rpT1) // get processor block address
movl rT2 = (START_PROCESS_RID << RR_RID)| RR_PS_VE
;;
//
// set RR[0], Region ID (RID) = 1, Page Size (PS) = 8K, VHPT enabled (VE) = 1
//
mov rr[rRR] = rT2 // initialize rr[0]
movl rT1 = (START_SESSION_RID << RR_RID) | RR_PS_VE
;;
//
// set RR[1]
//
movl rRR = SADDRESS_BASE // initialize
;;
mov rr[rRR] = rT1 // hydra region rr[1]
;;
//
// set RR[4], Region ID (RID) = 0, Page Size (PS) = 64K, VHPT enabled (VE) = 0
//
//
// set RR[2] to RR[7], RID = KSEG3_RID, Page Size = 8K, VHPT disabled
//
movl rRR = 2 << RR_INDEX
movl rT2 = (KSEG3_RID << RR_RID) | (PAGE_SHIFT << RR_PS)
;;
mov rr[rRR] = rT2 // initialize rr[2]
movl rRR = 3 << RR_INDEX
;;
mov rr[rRR] = rT2 // initialize rr[3]
movl rRR = 4 << RR_INDEX
;;
mov rr[rRR] = rT2 // initialize rr[4]
movl rRR = 5 << RR_INDEX
;;
mov rr[rRR] = rT2 // initialize rr[5]
movl rRR = 6 << RR_INDEX
;;
mov rr[rRR] = rT2 // initialize rr[6]
//
// Protection Key Registers
//
mov rPKR = zero // pkr index = 0
mov rT1 = PKR_VALID // rr[0].v=1, pkr[0].key=0
mov rT2 = START_GLOBAL_RID
;;
mov pkr[rPKR] = rT1
add rPKR = 1, rPKR // increment PKR number
shl rT2 = rT2, RR_RID
;;
or rT2 = rT1, rT2
;;
mov pkr[rPKR] = rT2 // pkr[1].v=1, pkr[1].key=START_GLOBAL_RID
add rPKR = 1, rPKR // increment PKR number
movl rT2 = START_PROCESS_RID
;;
shl rT2 = rT2, RR_RID
;;
or rT2 = rT1, rT2
;;
mov pkr[rPKR] = rT2 // pkr[1].v=1, pkr[1].key=START_GLOBAL_RID
add rPKR = 1, rPKR // increment PKR number
mov rT2 = zero
;;
Ksb_PKRLoop:
mov pkr[rPKR] = rT2 // set PKR invalid
add rPKR = 1, rPKR // increment PKR number
;;
cmp.gtu pt0 = PKRNUM, rPKR // at end?
(pt0) br.cond.sptk.few.clr Ksb_PKRLoop
;;
//
// Initialize debug registers
//
mov rT1 = 0
;;
Ksb_DbrLoop:
mov ibr[rT1] = r0
mov dbr[rT1] = r0
;;
#ifndef NO_12241
srlz.d
#endif
cmp.ne pt0 = 7, rT1
add rT1 = 1, rT1
(pt0) br.cond.sptk.few Ksb_DbrLoop
;;
//
// Initialize control registers:
// DCR
// PSR pk, it, dt enabled
//
ssm (1 << PSR_DI) | (1 << PSR_PP) | (1 << PSR_IC) | (1 << PSR_DFH) | (1 << PSR_AC)
;;
rsm (1 << PSR_PK) | (1 << PSR_MFH) // must clear the mfh bit
;;
srlz.i
movl rT1 = DCR_INITIAL
;;
mov cr.dcr = rT1
//
// Clear TC
//
// Set up ITR entry 2 with EPC page for system call
//
movl rT4 = KiNormalSystemCall
ptc.e zero
add rpT1 = LpbKernelVirtualBase, rpLpb
add rpT2 = LpbKernelPhysicalBase, rpLpb
;;
LDPTR (rT2, rpT1) // virtual load point
LDPTR (rT3, rpT2) // physical load point
shr rT4 = rT4, PAGE_SHIFT // page number for syscall page
;;
shr rT2 = rT2, PAGE_SHIFT // page number
shr rT3 = rT3, PAGE_SHIFT // page number
;;
sub rT2 = rT4, rT2 // page offset
movl rVa = MM_EPC_VA
;;
add rT3 = rT3, rT2 // compute pfn of syscall page
movl rT2 = TR_VALUE(1,0,7,0,1,1,0,1)
;;
shl rT3 = rT3, PAGE_SHIFT // set page number in TR
;;
or rT2 = rT2, rT3
mov rT3 = ITR_EPC_INDEX
;;
//
// Clear PSR.IC bit
//
add rpT1 = LpbPcrPage2, a0
;;
ld8 rPcr2Pfn = [rpT1] // set second PCR page
mov rT1 = PAGE_SHIFT << IDTR_PS
rsm 1 << PSR_IC // PSR.ic = 0
;;
srlz.d
mov cr.ifa = rVa // virtual address of epc page
mov cr.itir = rT1
;;
itr.i itr[rT3] = rT2
movl rVa = KiPcr2 // set virtual address of PCR
;;
mov cr.ifa = rVa // setup IFA for insert
movl rPcrTr = KIPCR_TR_INITIAL // PCR translation except for PPN
mov cr.itir = rT1 // setup IDTR
mov rT2 = DTR_KIPCR2_INDEX
shl rPcr2Pfn = rPcr2Pfn, PAGE_SHIFT // shift to PPN field
;;
or rPcrTr = rPcr2Pfn, rPcrTr // form full TR
;;
itr.d dtr[rT2] = rPcrTr // insert PCR TR to DTR
ssm 1 << PSR_IC // PSR.ic = 1
;;
srlz.i // I serialize
//
// Set the cache policy for cached memory.
// **** TBD ****
//
// Set the first level data and instruction cache fill size and size.
//
// **** TBD
//
// Set the second level data and instruction cache fill size and size.
//
// ***** TBD
//
// Set the data cache fill size and alignment values.
//
// **** TBD
//
// Set the instruction cache fill size and alignment values.
//
// **** TBD
//
// Sweep the data and instruction caches.
//
// **** TBD
//
// Initialize the fixed entries that map the PDR pages.
// Setup page directory, pte's for page dir
// **** TBD ****
//
//
// Initialize the Processor Control Registers (PCR).
//
//
// Initialize the minor and major version numbers.
//
mov rT1 = PCR_MINOR_VERSION // set minor version number
movl rpPcr = KiPcr // get PCR address
;;
add rpT1 = PcMinorVersion, rpPcr
add rpT2 = PcMajorVersion, rpPcr
mov rT2 = PCR_MAJOR_VERSION // set major version number
;;
st2 [rpT1] = rT1 // store minor
st2 [rpT2] = rT2 // store major
add rpT3 = PcPrcb, rpPcr // -> PCR.Prcb
;;
//
// Set address of processor block.
//
st8 [rpT3] = rPrcb // store Prcb address
//
// Initialize the addresses of various data structures that are referenced
// from the exception and interrupt handling code.
//
// N.B. The panic stack is a separate stack that is used when the current
// kernel stack overlfows.
//
add rpT1 = PcInitialStack,rpPcr // -> initial kernel stack address in PCR
add rpT2 = LpbPanicStack, rpLpb // -> lpb panic stack address
add rpT3 = PcPanicStack, rpPcr // -> panic stack address in PCR
;;
LDPTRINC (rT2, rpT2, LpbThread-LpbPanicStack) // panic stack address
st8 [rpT1] = rKstack, PcKernelGP-PcInitialStack
;;
LDPTR (rThread, rpT2) // -> current (idle) thread
st8 [rpT3] = rT2, PcCurrentThread-PcPanicStack // set PCR panic stack address
;;
st8 [rpT3] = rThread // set PCR current thread
st8 [rpT1] = gp // save GP
mov rT1 = HIGH_LEVEL
;;
SET_IRQL(rT1) // Set to highest IRQL
//
// Clear floating status and zero the count and compare registers.
//
mov ar.ccv = zero
movl rT1 = FPSR_FOR_KERNEL
;;
mov ar.fpsr = rT1
mov ar.ec = zero
mov ar.lc = zero
//
// Set system dispatch address limits used by get and set context.
// ***** TBD ******
//
// Set the default cache error routine address.
// ****** TBD *******
//
// Sweep the data and instruction caches.
// **** TBD *******
//
// Setup arguments and call kernel initialization routine.
//
add rpT1 = LpbProcess, rpLpb // -> idle process address
add rpT2 = PbNumber, rPrcb
mov out3 = rPrcb // arg 4 is current PRCB
;;
LDPTR (out0, rpT1) // arg 1 is process
mov out1 = rThread // arg 2 is thread
mov out2 = rKstack // arg 3 is kernel stack
ld1 out4 = [rpT2] // get processor number
mov out5 = rpLpb // arg 6 is pointer to LPB
br.call.sptk.many.clr brp = KiInitializeKernel
;; // (C code)
alloc t0 = ar.pfs,0,0,0,0
mov brp = zero // setup a bogus brp to stop debugger
br KiIdleLoop // branch to KIIdleLoop()
;;
//
// Never get to this point!
//
NESTED_EXIT(KiSystemBegin)
//
//++
//
// VOID
// KiIdleLoop (
// VOID
// )
//
// Routine Description:
//
// This is the idle loop for NT. This code runs in a thread for
// each processor in the system. The idle thread runs at IRQL
// DISPATCH_LEVEL and polls for work.
//
// Arguments:
//
// None.
//
// Return Value:
//
// None. (This routine never returns).
//
// When another thread is selected to run, SwapContext is called.
// Normally, SwapContext saves and restores the non-volatile context.
// The idle loop never returns so the preserved registers of the caller
// do not need to be saved.
// In other architectures, the idle loop pre-initializes the storage area
// (switch frame) where SwapContext would normally save the preserved
// registers with values that the idle loop needs
// in those registers upon return from SwapContext and skips over the
// register save on the way into SwapContext (alternate entry point
// SwapFromIdle).
// In this design the idle loop registers are preserved in
// the register stack which is saved in the kernel backing store for the
// idle thread. This allows us to skip the restore in SwapContext (not yet
// implemented).
//
// All callers to SwapContext pass the following arguments:
//
// -- s0 = Prcb
// -- s1 = current (previous) thread
// -- s2 = new (next) thread
//
// Idle also enters SwapContext at SwapFromIdle with sp pointing to the switch
// frame for preserved state.
//
// Since all registers used by the idle are saved in the register stack,
// no registers need be recomputed on return from SwapContext.
//
//--
NESTED_ENTRY(KiIdleLoop)
NESTED_SETUP(0,6,2,0)
//
// allocate and build switch frame
//
.fframe SwitchFrameLength
add sp = -SwitchFrameLength, sp
;;
add t0 = ExFltS3+SwExFrame+STACK_SCRATCH_AREA, sp
add t1 = ExFltS2+SwExFrame+STACK_SCRATCH_AREA, sp
;;
.save.f 0xC
stf.spill [t0] = fs3, ExFltS1-ExFltS3 // save fs3
stf.spill [t1] = fs2, ExFltS0-ExFltS2 // save fs2
mov t10 = bs4
;;
.save.f 0x3
stf.spill [t0] = fs1, ExIntS3-ExFltS1 // save fs1
stf.spill [t1] = fs0, ExIntS2-ExFltS0 // save fs0
mov t11 = bs3
;;
.save.g 0xC
.mem.offset 0,0
st8.spill [t0] = s3, ExIntS1-ExIntS3 // save s3
.mem.offset 8,0
st8.spill [t1] = s2, ExIntS0-ExIntS2 // save s2
mov t12 = bs2
;;
.save.g 0x3
.mem.offset 0,0
st8.spill [t0] = s1, ExBrS4-ExIntS1 // save s1
.mem.offset 8,0
st8.spill [t1] = s0, ExBrS3-ExIntS0 // save s0
mov t13 = bs1
;;
.save.b 0x18
st8 [t0] = t10, ExBrS2-ExBrS4 // save bs4
st8 [t1] = t11, ExBrS1-ExBrS3 // save bs3
mov t4 = ar.unat // captured Nats of s0-s3
;;
.save.b 0x6
st8 [t0] = t12, ExBrS0-ExBrS2 // save bs2
st8 [t1] = t13, ExApEC-ExBrS1 // save bs1
mov t14 = bs0
;;
.save.b 0x1
st8 [t0] = t14, ExApLC-ExBrS0 // save bs0
.savepsp ar.pfs, ExceptionFrameLength-ExApEC-STACK_SCRATCH_AREA
st8 [t1] = t16, ExIntNats-ExApEC
mov t15 = ar.lc
;;
.savepsp ar.lc, ExceptionFrameLength-ExApLC-STACK_SCRATCH_AREA
st8 [t0] = t15
.savepsp @priunat, ExceptionFrameLength-ExIntNats-STACK_SCRATCH_AREA
st8 [t1] = t4 // save Nats of s0-s3
nop.i 0
;;
PROLOGUE_END
//
// Register aliases
//
rpT1 = t0
rpT2 = t1
rpT3 = t2
rT1 = t3
rT2 = t4
rT3 = t5
#if !defined(NT_UP)
rpNumProc = t7
rpBWait = t8
rpDispLock = t9
#endif // !defined(NT_UP)
rpNextTh = t10
#if DBG
rDbgCount = t11
rKdEnable = t12
#endif //DBG
pEmty = pt1
pIdle = pt2
#if !defined(NT_UP)
pLoop = pt6
#endif // !defined(NT_UP)
#if DBG
pBrk = ps2
pNotZero = ps3
#endif // DBG
rpHPI = loc2
rHalGP = loc3
rKerGP = loc4
#if !defined(NT_UP)
rProcNum = loc5
#endif // !defined(NT_UP)
//
// Initialize SwitchFPSR, SwitchPFS, SwitchRp in the switch frame
//
mov rT3 = ar.bsp
movl rT2 = KiIdleReturn
add rpT1 = SwPFS+STACK_SCRATCH_AREA, sp
mov rKerGP = gp // save the kernel's gp
mov rT1 = 0x308 // must match the values specified
// by the alloc instruction at
// the entry of the KiIdleLoop
;;
st8.nta [rpT1] = rT1, SwRp-SwPFS // set pfs in the switch frame
add rT3 = 0x30, rT3 // 6 local registers
;;
st8.nta [rpT1] = rT2, SwFPSR-SwRp // set brp in the switch frame
movl rT1 = FPSR_FOR_KERNEL
;;
extr.u rpT3 = rT3, 0, 9
st8.nta [rpT1] = rT1, SwRnat-SwFPSR
;;
cmp.gtu pt1 = 0x30, rpT3 // Is there a slot for NAT bits?
st8.nta [rpT1] = zero, SwBsp-SwRnat
;;
(pt1) add rT3 = 8, rT3 // Adjust for NAT bits.
;;
st8.nta [rpT1] = rT3
movl rpT1 = KiPcr + PcPrcb
;;
//
// In a multiprocessor system the boot processor proceeds directly into
// the idle loop. As other processors start executing, however, they do
// not directly enter the idle loop and spin until all processors have
// been started and the boot master allows them to proceed.
//
//
// Setup initial idle loop register values
//
LDPTRINC (s0, rpT1, PcCurrentThread-PcPrcb) // address of PRCB
add rpT2 = @gprel(__imp_HalProcessorIdle), gp
;;
ld8 s2 = [rpT1], PcSetMember-PcCurrentThread // idle thread
LDPTR (rpT2, rpT2) // -> function pointer
;;
ld8 rProcNum = [rpT1] // Processor mask.
ld8 rpHPI = [rpT2], PlGlobalPointer-PlEntryPoint // entry point
;;
//
// Control reaches here with IRQL at HIGH_LEVEL. Lower IRQL to
// DISPATCH_LEVEL and set wait IRQL of idle thread.
//
ld8 rHalGP = [rpT2] // Hal GP
add rpT1 = ThWaitIrql, s2 // -> thread WaitIrql
mov out0 = DISPATCH_LEVEL // get dispatch level IRQL
;;
add rProcNum = -1, rProcNum // Generate mask of lower numbered processors.
st1 [rpT1] = out0 // set wait IRQL of idle thread
br.call.sptk.few.clr brp = KeLowerIrql // call KeLowerIrql(IRQL)
;;
FAST_ENABLE_INTERRUPTS
mov gp = rKerGP
;;
//
// In a multiprocessor system the boot processor proceeds directly into
// the idle loop. As other processors start executing, however, they do
// not directly enter the idle loop and spin until all processors have
// been started and the boot master allows them to proceed.
//
#if !defined(NT_UP)
add rpBWait = @gprel(KiBarrierWait), gp
;;
Kil_WaitLoop:
YIELD
ld4 rT1 = [rpBWait] // get barrier wait value
;;
cmp.ne pLoop = zero, rT1 // loop if not zero
(pLoop) br.dpnt.few.clr Kil_WaitLoop // spin until allowed to proceed
#endif // !defined(NT_UP)
KiIdleReturn:
mov s1 = s2 // s1 <- IdleThread
#if DBG
mov rDbgCount = 20 * 1000 // set breakin loop counter
#endif // DBG
;;
KiIdleSwitchBlocked:
mov rT1 = DISPATCH_LEVEL
;;
SET_IRQL(rT1)
//
// The following loop is executed for the life of the system.
//
Kil_TopOfIdleLoop::
mov gp = rKerGP // restore gp
//
// If processor 0, check for debugger breakin, otherwise just check for
// DPCs again.
//
#if DBG
#if !defined(NT_UP)
;;
add rpT1 = @gprel(KiIdleSummary), gp
;;
ld8 rT1 = [rpT1] // Get the current idle summary.
;;
and rT1 = rT1, rProcNum // Are mask out higher number processors
;;
cmp4.ne pNotZero = zero, rT1 // pNotZero = not processor zero
(pNotZero) br.cond.dptk.few.clr Kil_CheckDpcList // br if not processor zero
#endif // !defined(NT_UP)
//
// Check if the debugger is enabled, and whether it is time to poll
// for a debugger breakin. (This check is only performed on cpu 0).
//
sub rDbgCount = rDbgCount,zero,1 // decrement poll counter
;;
add rKdEnable = @gprel(KdDebuggerEnabled), gp
cmp.eq pBrk = rDbgCount, zero // zero yet?
;;
(pBrk) ld1 rKdEnable = [rKdEnable] // check if debugger enabled
(pBrk) mov rDbgCount = 20 * 1000 // set breakin loop counter
;;
(pBrk) cmp.ne pBrk = rKdEnable, zero // pBrk = 1 if Kd enabled
(pBrk) br.call.dpnt.few.clr brp=KdPollBreakIn // check if breakin requested
;;
mov gp = rKerGP // restore gp
(pBrk) cmp.ne pBrk = v0, zero // ne => break in requested
mov out0 = DBG_STATUS_CONTROL_C
(pBrk) br.call.sptk brp = DbgBreakPointWithStatus
;;
mov gp = rKerGP // restore gp
#endif // DBG
//
// Disable interrupts and check if there is any work in the DPC list.
//
Kil_CheckDpcList:
//
// Process the deferred procedure call list for the current processor.
//
FAST_ENABLE_INTERRUPTS // give interrupts a chance
;;
srlz.d
add rpT1 = PbDpcQueueDepth, s0
add rpT2 = PbTimerHand, s0
add rpT3 = PbDeferredReadyListHead, s0
;;
FAST_DISABLE_INTERRUPTS // disable interrupts
;;
ld8.nta rT2 = [rpT2] // Load Prcb->TimerHand
ld4.nta rT1 = [rpT1] // Load Prcb->DpcQueueDepth
ld8.nta rT3 = [rpT3] // Load Prcb->DeferredReadyListHead
mov out0 = s0 // PRCB
;;
cmp4.eq pt0, pt1 = rT1, zero // if eq, queue empty
movl rpT1 = KiPcr+PcDispatchInterrupt
;;
add rpNextTh = PbNextThread, s0 // -> next thread
(pt0) cmp.eq pt0, pt1 = rT2, zero // if eq, TimerHand zero
;;
(pt0) cmp.eq pt0, pt1 = rT3, zero // if equal then no deferred ready list
;;
(pt1) st1 [rpT1] = zero // clear dispatch interrupt req
(pt0) br.cond.dpnt Kil_CheckNextThread
;;
#ifndef _CAPKERN
(pt1) br.call.sptk.few.clr brp = KiRetireDpcList
#else
;;
CAPSTART(KiIdleLoop,KiRetireDpcList)
mov out0 = s0 // restore PRCB
br.call.sptk.few.clr brp = KiRetireDpcList
#endif
;;
CAPEND(KiIdleLoop)
add rpNextTh = PbNextThread, s0 // -> next thread
mov gp = rKerGP // restore gp
#if DBG
mov rDbgCount = 20 * 1000 // set breakin loop counter
#endif // DBG
;;
//
// Check if a thread has been selected to run on this processor
//
Kil_CheckNextThread:
#if DBG // Debug code.
add rT1 = PbIdleThread, s0;;
ld8 rT1 = [rT1];;
cmp.ne pt0 = rT1, s1;;
(pt0) break.i BREAKPOINT_STOP
#endif
ld8 s2 = [rpNextTh] // next thread
mov rT1 = SYNCH_LEVEL
;;
cmp.eq pIdle = s2, zero // if no thread to run
(pIdle) br.dpnt.few.clr Kil_Idle // br to Idle
//
// A thread has been selected for execution on this processor. Acquire
// the context swap lock, get the thread address again (it may have
// changed), clear the address of the next thread in the processor block,
// and call swap context to start execution of the selected thread.
//
SET_IRQL(rT1)
FAST_ENABLE_INTERRUPTS
#if !defined(NT_UP)
;;
add out0 = ThSwapBusy, s1 // Get swap busy flag address
mov rT1 = 1
;;
#if DBG
ld1 rT2 = [out0] ;;
cmp.ne pt0 = rT2, r0 ;;
(pt0) break.i BREAKPOINT_STOP
#endif
st1.rel [out0] = rT1 // Set swap busy flag
add s2 = PbNextThread, s0 // -> next thread
add out0 = PbPrcbLock, s0 // Get address of PRCB lock
br.call.sptk brp = KiAcquireSpinLock // Acquire PRCB lock
;;
//
// Reread the next thread because it may be changed in a MP system.
//
// The selected thread may be blocked from switching at this time
// if it is being scheduled on this processor because it is being
// removed from another processor. The switch is blocked until
// the thread is completely removed from the other processor. In
// this case, drop the idle thread lock and continue execution as
// if resuming from a context switch.
//
ld8 s2 = [s2] // reread next thread
mov rT1 = 1 // Load lock acquired value
;;
add rpT1 = ThSwapBusy, s2 // &NewThread->SwapBusy
cmp.eq pt0, pt1 = s2, s1 // check for swap idle to idle
;;
(pt1) ld1.acq rT1 = [rpT1] // Fetch swap busy flag
;;
(pt1) cmp.ne pt1 = 0, rT1
(pt0) br.cond.spnt Kil_Idle2Idle // rare case, idle to idle
(pt1) br.cond.spnt kil_target_busy // undo what we have done and loop
;;
#endif // !defined(NT_UP)
add rpT2 = PbCurrentThread, s0 // -> address of current thread
;;
add rpT1 = ThState, s2
// set new thread as current
st8 [rpT2] = s2, PbNextThread-PbCurrentThread
mov rT1 = Running
add out0 = PbPrcbLock, s0 // Get address of PRCB lock
add out1 = PbIdleSchedule, s0 // get idle schedule flag
;;
#if DBG
ld8 rT2 = [out0] ;;
cmp.eq pt0 = rT2, r0 ;;
(pt0) break.i BREAKPOINT_STOP
#endif
st1.rel [rpT1] = rT1 // set new thread state to running
st8 [rpT2] = zero // clear address of next thread
st1 [out1] = zero // clear idle schedule
st8.rel [out0] = zero // release prcb lock
swap_context:
#if !defined(NT_UP)
#if DBG // Debug code.
add rT1 = PbIdleThread, s0;;
ld8 rT1 = [rT1];;
cmp.ne pt0 = rT1, s1;;
(pt0) break.i BREAKPOINT_STOP
#endif
//
// When queueing APCs to target threads we need the store to the threads
// state to be ordered first wrt the load of the KernelApcPending flag.
//
mf
#endif // !defined(NT_UP)
//
// Swap context to new thread
// (returns to KiIdleReturn above).
//
CAPSTART(KiIdleLoop,SwapContext)
br.call.sptk.few.clr brp = SwapFromIdle
;;
CAPEND(KiIdleLoop)
;;
//
// There are no entries in the DPC list and a thread has not been selected
// for execution on this processor. Call the HAL so power managment can be
// performed.
//
// N.B. The HAL is called with interrupts disabled. The HAL will return
// with interrupts enabled.
//
Kil_Idle:
//
// See if we need to schedule something
//
add out1 = PbIdleSchedule, s0 // get idle schedule flag
;;
ld1 out0 = [out1]
;;
cmp.ne pt0 = out0, zero
;;
(pt0) br.cond.spnt kil_idle_sched
mov bt0 = rpHPI // set target routine
movl rT1 = Kil_TopOfIdleLoop // set return address
;;
YIELD
mov gp = rHalGP // set Hal GP
mov brp = rT1 // return to top of idle loop
br.call.dpnt.few.clr bt1 = bt0 // call HalProcessorIdle
;; // does not return here.
kil_idle_sched:
SET_IRQL(rT1)
FAST_ENABLE_INTERRUPTS
;;
mov out0 = s0
br.call.sptk brp = KiIdleSchedule
;;
cmp.eq pt0, pt1 = v0, zero
(pt0) br.cond.spnt Kil_TopOfIdleLoop
;;
mov s2 = v0
add rpT1 = ThSwapBusy, v0 // &NewThread->SwapBusy
;;
kil_idle_swapbusy:
(pt0) YIELD
ld1.acq rT1 = [rpT1] // Fetch swap busy flag
;;
cmp.eq pt1, pt0 = 0, rT1
(pt1) br.cond.sptk swap_context
(pt0) br.cond.spnt kil_idle_swapbusy
//
// In the event that a thread was scheduled to run on this processor
// but before the idle loop picked it up, it was made inelligible for
// this processor and there is no other thread to run, the idle thread
// will have been selected as the NextThread for this processor and
// this processor will have been marked idle in KiIdleSummary.
//
// It is then possible for another thread to be selected for this processor
// between the time the idle loop picks up the NextThread field and clears
// it.
//
Kil_Idle2Idle:
;;
add out0 = PbNextThread, s0 // -> next thread
;;
st8.rel [out0] = zero // clear next thread
;;
kil_target_busy:
add out0 = ThSwapBusy, s1 // Get swap busy flag address
;;
#if DBG
ld1 rT2 = [out0] ;;
cmp.eq pt0 = rT2, r0 ;;
(pt0) break.i BREAKPOINT_STOP
#endif
st1.rel [out0] = zero // Clear swap busy flag
add out0 = PbPrcbLock, s0 // Get address of PRCB lock
;;
#if DBG
ld8 rT2 = [out0] ;;
cmp.eq pt0 = rT2, r0 ;;
(pt0) break.i BREAKPOINT_STOP
#endif
st8.rel [out0] = zero
;;
br KiIdleSwitchBlocked // loop.
NESTED_EXIT(KiIdleLoop)
#if !defined(NT_UP)
//++
// Routine:
//
// VOID
// KiOSRendezvous (
// )
//
// Routine Description:
//
// OS rendezvous entry point called from SAL for MP boot.
// Establish kernel mapping and rfi to KiInitializeSystem with
// translation turned on.
//
// Arguments:
//
// Return Value:
//
// None.
//
//--
.global MmSystemParentTablePage
.global MiNtoskrnlPhysicalBase
.global MiNtoskrnlVirtualBase
.global MiNtoskrnlPageShift
LEAF_ENTRY(KiOSRendezvous)
mov t5 = ip // get the physical addr for KiOSRendezvous
mov psr.l = zero // initialize psr.l
movl t0 = KSEG0_BASE
;;
mov ar.rsc = zero // invalidate register stack
mov t1 = (START_GLOBAL_RID << RR_RID) | (PAGE_SHIFT << RR_PS) | (1 << RR_VE)
;;
//
// Initialize Region Register for kernel
//
loadrs
mov rr[t0] = t1
//
// Setup translation for kernel/hal binary.
//
movl t0 = KSEG0_BASE;
;;
movl t2 = MiNtoskrnlPhysicalBase
movl t4 = MiNtoskrnlPageShift
movl t0 = MiNtoskrnlVirtualBase
movl t3 = KiOSRendezvous
;;
sub t6 = t2, t3
sub t7 = t4, t3
sub t0 = t0, t3
;;
add t6 = t5, t6 // get a physical addr for MiNtoskrnlPhysicalBase
add t7 = t5, t7 // get a physical addr for MiNtoskrnlPageShift
add t0 = t5, t0 // get a physical addr for MiNtoskrnlVirtualBase
;;
ld8 t6 = [t6]
ld4 t7 = [t7]
ld8 t0 = [t0]
movl t8 = VALID_KERNEL_EXECUTE_PTE
;;
mov cr.ifa = t0
or t2 = t6, t8
shl t1 = t7, PS_SHIFT
;;
mov cr.itir = t1
mov t3 = DTR_KERNEL_INDEX
;;
itr.d dtr[t3] = t2
;;
itr.i itr[t3] = t2
//
// Setup VHPT
//
movl t0 = KiIA64PtaContents
movl t3 = KiOSRendezvous
;;
sub t6 = t0, t3
;;
add t6 = t5, t6
;;
ld8 t6 = [t6]
;;
mov cr.pta = t6
//
// Turn on address translation
//
movl t1 = (1 << PSR_BN) | (1 << PSR_IT) | (1 << PSR_DA) | (1 << PSR_RT) | (1 << PSR_DT) | (1 << PSR_IC)
;;
mov cr.ipsr = t1
//
// Branch to KiInitializeSystem
//
// Need to do a "rfi" in order set "it" bits in the PSR.
// This is the only way to set them.
//
movl t0 = KiOSRendezvousStub
;;
mov cr.iip = t0
;;
rfi
;;
.global KeLoaderBlock
KiOSRendezvousStub:
alloc t0 = 0,0,1,0
movl gp = _gp
mov t9 = PAGE_SHIFT << PS_SHIFT
movl t8 = KADDRESS_BASE
;;
//
// Set up the VHPT table
//
thash t8 = t8
add t7 = @gprel(MmSystemParentTablePage), gp
;;
ld8 t7 = [t7]
rsm 1 << PSR_IC // PSR.ic = 0
;;
srlz.d
thash t8 = t8
movl t6 = PDR_TR_INITIAL
;;
//
// Install DTR for the kernel parent page table
//
thash t8 = t8
mov t10 = DTR_KTBASE_INDEX
shl t7 = t7, PAGE_SHIFT
;;
mov cr.ifa = t8
or t7 = t7, t6
mov cr.itir = t9
;;
itr.d dtr[t10] = t7
ssm 1 << PSR_IC // PSR.ic = 1
;;
srlz.i // I serialize
add out0 = @gprel(KeLoaderBlock), gp
;;
ld8 out0 = [out0] // dereference pointer
movl t0 = KiInitializeSystem
;;
mov bt0 = t0
br.call.sptk brp = bt0 // branch to entry point
LEAF_EXIT(KiOSRendezvous)
#endif // !defined(NT_UP)