Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

738 lines
18 KiB

/*++
Copyright (c) 1989 Microsoft Corporation
Module Name:
kernldat.c
Abstract:
This module contains the declaration and allocation of kernel data
structures.
Author:
David N. Cutler (davec) 12-Mar-1989
--*/
#include "ki.h"
//
// KiTimerTableListHead - This is a array of list heads that anchor the
// individual timer lists.
//
DECLSPEC_CACHEALIGN LIST_ENTRY KiTimerTableListHead[TIMER_TABLE_SIZE];
#if defined(_IA64_)
//
// On IA64 the HAL indicates how many ticks have elapsed. Unfortunately timers
// could expire out of order if we advance time more than the number of
// TimerTable entries in one operation.
//
ULONG KiMaxIntervalPerTimerInterrupt;
#endif
//
//
// Public kernel data declaration and allocation.
//
// KeActiveProcessors - This is the set of processors that active in the
// system.
//
KAFFINITY KeActiveProcessors = 0;
//
// KeBootTime - This is the absolute time when the system was booted.
//
LARGE_INTEGER KeBootTime;
//
// KeBootTimeBias - The time for which KeBootTime has ever been biased
//
ULONGLONG KeBootTimeBias;
//
// KeInterruptTimeBias - The time for which InterrupTime has ever been biased
//
ULONGLONG KeInterruptTimeBias;
//
// KeBugCheckCallbackListHead - This is the list head for registered
// bug check callback routines.
//
LIST_ENTRY KeBugCheckCallbackListHead;
LIST_ENTRY KeBugCheckReasonCallbackListHead;
//
// KeBugCheckCallbackLock - This is the spin lock that guards the bug
// check callback list.
//
KSPIN_LOCK KeBugCheckCallbackLock;
//
// KeGdiFlushUserBatch - This is the address of the GDI user batch flush
// routine which is initialized when the win32k subsystem is loaded.
//
PGDI_BATCHFLUSH_ROUTINE KeGdiFlushUserBatch;
//
// KeLoaderBlock - This is a pointer to the loader parameter block which is
// constructed by the OS Loader.
//
PLOADER_PARAMETER_BLOCK KeLoaderBlock = NULL;
//
// KeMinimumIncrement - This is the minimum time between clock interrupts
// in 100ns units that is supported by the host HAL.
//
ULONG KeMinimumIncrement;
//
// KeThreadDpcEnable - This is the system wide enable for threaded DPCs that
// is read from the registry.
//
ULONG KeThreadDpcEnable = FALSE; // TRUE;
//
// KeNumberProcessors - This is the number of processors in the configuration.
// If is used by the ready thread and spin lock code to determine if a
// faster algorithm can be used for the case of a single processor system.
// The value of this variable is set when processors are initialized.
//
CCHAR KeNumberProcessors = 0;
//
// KeRegisteredProcessors - This is the maximum number of processors which
// can utilized by the system.
//
#if !defined(NT_UP)
#if DBG
ULONG KeRegisteredProcessors = 4;
ULONG KeLicensedProcessors;
#else
ULONG KeRegisteredProcessors = 2;
ULONG KeLicensedProcessors;
#endif
#endif
//
// KeProcessorArchitecture - Architecture of all processors present in system.
// See PROCESSOR_ARCHITECTURE_ defines in ntexapi.h
//
USHORT KeProcessorArchitecture = PROCESSOR_ARCHITECTURE_UNKNOWN;
//
// KeProcessorLevel - Architectural specific processor level of all processors
// present in system.
//
USHORT KeProcessorLevel = 0;
//
// KeProcessorRevision - Architectural specific processor revision number that is
// the least common denominator of all processors present in system.
//
USHORT KeProcessorRevision = 0;
//
// KeFeatureBits - Architectural specific processor features present
// on all processors.
//
ULONG KeFeatureBits = 0;
//
// KeServiceDescriptorTable - This is a table of descriptors for system
// service providers. Each entry in the table describes the base
// address of the dispatch table and the number of services provided.
//
KSERVICE_TABLE_DESCRIPTOR KeServiceDescriptorTable[NUMBER_SERVICE_TABLES];
KSERVICE_TABLE_DESCRIPTOR KeServiceDescriptorTableShadow[NUMBER_SERVICE_TABLES];
//
// KeThreadSwitchCounters - These counters record the number of times a
// thread can be scheduled on the current processor, any processor,
// or the last processor it ran on.
//
KTHREAD_SWITCH_COUNTERS KeThreadSwitchCounters;
//
// KeTimeIncrement - This is the nominal number of 100ns units that are to
// be added to the system time at each interval timer interupt. This
// value is set by the HAL and is used to compute the due time for
// timer table entries.
//
ULONG KeTimeIncrement;
//
// KeTimeSynchronization - This variable controls whether time synchronization
// is performed using the realtime clock (TRUE) or whether it is under the
// control of a service (FALSE).
//
BOOLEAN KeTimeSynchronization = TRUE;
//
// KeUserApcDispatcher - This is the address of the user mode APC dispatch
// code. This address is looked up in NTDLL.DLL during initialization
// of the system.
//
PVOID KeUserApcDispatcher;
//
// KeUserCallbackDispatcher - This is the address of the user mode callback
// dispatch code. This address is looked up in NTDLL.DLL during
// initialization of the system.
//
PVOID KeUserCallbackDispatcher;
//
// KeUserExceptionDispatcher - This is the address of the user mode exception
// dispatch code. This address is looked up in NTDLL.DLL during system
// initialization.
//
PVOID KeUserExceptionDispatcher;
//
// KeRaiseUserExceptionDispatcher - This is the address of the raise user
// mode exception dispatch code. This address is looked up in NTDLL.DLL
// during system initialization.
//
PVOID KeRaiseUserExceptionDispatcher;
//
// KeLargestCacheLine - This variable contains the size in bytes of
// the largest cache line discovered during system initialization.
// It is used to provide the recommend alignment (and padding)
// for data that may be used heavily by more than one processor.
// The initial value was chosen as a reasonable value to use on
// systems where the discovery process doesn't find a value.
//
ULONG KeLargestCacheLine = 64;
//
// Private kernel data declaration and allocation.
//
// KiBugCodeMessages - Address of where the BugCode messages can be found.
//
PMESSAGE_RESOURCE_DATA KiBugCodeMessages = NULL;
//
// KiDmaIoCoherency - This determines whether the host platform supports
// coherent DMA I/O.
//
ULONG KiDmaIoCoherency;
//
// KiDPCTimeout - This is the DPC time out time in ticks on checked builds.
//
ULONG KiDPCTimeout = 110;
//
// KiMaximumSearchCount - this is the maximum number of timers entries that
// have had to be examined to insert in the timer tree.
//
ULONG KiMaximumSearchCount = 0;
//
// KiDebugSwitchRoutine - This is the address of the kernel debuggers
// processor switch routine. This is used on an MP system to
// switch host processors while debugging.
//
PKDEBUG_SWITCH_ROUTINE KiDebugSwitchRoutine;
//
// KiGenericCallDpcMutex - This is the fast mutex that guards generic DPC calls.
//
FAST_MUTEX KiGenericCallDpcMutex;
//
// KiFreezeExecutionLock - This is the spin lock that guards the freezing
// of execution.
//
extern KSPIN_LOCK KiFreezeExecutionLock;
//
// KiFreezeLockBackup - For debug builds only. Allows kernel debugger to
// be entered even FreezeExecutionLock is jammed.
//
extern KSPIN_LOCK KiFreezeLockBackup;
//
// KiFreezeFlag - For debug builds only. Flags to track and signal non-
// normal freezelock conditions.
//
ULONG KiFreezeFlag;
//
// KiSpinlockTimeout - This is the spin lock time out time in ticks on checked
// builds.
//
ULONG KiSpinlockTimeout = 55;
//
// KiSuspenState - Flag to track suspend/resume state of processors.
//
volatile ULONG KiSuspendState;
//
// KiProcessorBlock - This is an array of pointers to processor control blocks.
// The elements of the array are indexed by processor number. Each element
// is a pointer to the processor control block for one of the processors
// in the configuration. This array is used by various sections of code
// that need to effect the execution of another processor.
//
PKPRCB KiProcessorBlock[MAXIMUM_PROCESSORS];
//
// KeNumberNodes - This is the number of ccNUMA nodes in the system. Logically
// an SMP system is the same as a single node ccNUMA system.
//
UCHAR KeNumberNodes = 1;
//
// KeNodeBlock - This is an array of pointers to KNODE structures. A KNODE
// structure describes the resources of a NODE in a ccNUMA system.
//
KNODE KiNode0;
UCHAR KeProcessNodeSeed;
#if defined(KE_MULTINODE)
PKNODE KeNodeBlock[MAXIMUM_CCNUMA_NODES];
#else
PKNODE KeNodeBlock[1] = {&KiNode0};
#endif
//
// KiSwapEvent - This is the event that is used to wake up the balance set
// thread to inswap processes, outswap processes, and to inswap kernel
// stacks.
//
KEVENT KiSwapEvent;
//
// KiSwappingThread - This is a pointer to the swap thread object.
//
PKTHREAD KiSwappingThread;
//
// KiProcessInSwapListHead - This is the list of processes that are waiting
// to be inswapped.
//
SINGLE_LIST_ENTRY KiProcessInSwapListHead;
//
// KiProcessOutSwapListHead - This is the list of processes that are waiting
// to be outswapped.
//
SINGLE_LIST_ENTRY KiProcessOutSwapListHead;
//
// KiStackInSwapListHead - This is the list of threads that are waiting
// to get their stack inswapped before they can run. Threads are
// inserted in this list in ready thread and removed by the balance
// set thread.
//
SINGLE_LIST_ENTRY KiStackInSwapListHead;
//
// KiProfileSourceListHead - The list of profile sources that are currently
// active.
//
LIST_ENTRY KiProfileSourceListHead;
//
// KiProfileAlignmentFixup - Indicates whether alignment fixup profiling
// is active.
//
BOOLEAN KiProfileAlignmentFixup;
//
// KiProfileAlignmentFixupInterval - Indicates the current alignment fixup
// profiling interval.
//
ULONG KiProfileAlignmentFixupInterval;
//
// KiProfileAlignmentFixupCount - Indicates the current alignment fixup
// count.
//
ULONG KiProfileAlignmentFixupCount;
//
// KiProfileInterval - The profile interval in 100ns units.
//
#if !defined(_IA64_)
ULONG KiProfileInterval = DEFAULT_PROFILE_INTERVAL;
#endif // !_IA64_
//
// KiProfileListHead - This is the list head for the profile list.
//
LIST_ENTRY KiProfileListHead;
//
// KiProfileLock - This is the spin lock that guards the profile list.
//
extern KSPIN_LOCK KiProfileLock;
//
// KiTimerExpireDpc - This is the Deferred Procedure Call (DPC) object that
// is used to process the timer queue when a timer has expired.
//
KDPC KiTimerExpireDpc;
//
// KiIpiCounts - This is the instrumentation counters for IPI requests. Each
// processor has its own set. Intstrumentation build only.
//
#if NT_INST
KIPI_COUNTS KiIpiCounts[MAXIMUM_PROCESSORS];
#endif // NT_INST
//
// KxUnexpectedInterrupt - This is the interrupt object that is used to
// populate the interrupt vector table for interrupt that are not
// connected to any interrupt.
//
#if defined(_IA64_)
KINTERRUPT KxUnexpectedInterrupt;
#endif
//
// Performance data declaration and allocation.
//
// KiFlushSingleCallData - This is the call performance data for the kernel
// flush single TB function.
//
#if defined(_COLLECT_FLUSH_SINGLE_CALLDATA_)
CALL_PERFORMANCE_DATA KiFlushSingleCallData;
#endif
//
// KiSetEventCallData - This is the call performance data for the kernel
// set event function.
//
#if defined(_COLLECT_SET_EVENT_CALLDATA_)
CALL_PERFORMANCE_DATA KiSetEventCallData;
#endif
//
// KiWaitSingleCallData - This is the call performance data for the kernel
// wait for single object function.
//
#if defined(_COLLECT_WAIT_SINGLE_CALLDATA_)
CALL_PERFORMANCE_DATA KiWaitSingleCallData;
#endif
//
// KiEnableTimerWatchdog - Flag to enable/disable timer latency watchdog.
//
#if (DBG)
ULONG KiEnableTimerWatchdog = 1;
#else
ULONG KiEnableTimerWatchdog = 0;
#endif
#if defined(_APIC_TPR_)
PUCHAR HalpIRQLToTPR;
PUCHAR HalpVectorToIRQL;
#endif
//
// Lock to prevent deadlocks if multiple processors use the IPI mechanism
// with reverse stalls.
//
KSPIN_LOCK KiReverseStallIpiLock;
//
// The following data is read only data that is grouped together for
// performance. The layout of this data is important and must not be
// changed.
//
// KiFindFirstSetRight - This is an array that this used to lookup the right
// most bit in a byte.
//
DECLSPEC_CACHEALIGN const CCHAR KiFindFirstSetRight[256] = {
0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0};
//
// KiFindFirstSetLeft - This is an array tha this used to lookup the left
// most bit in a byte.
//
DECLSPEC_CACHEALIGN const CCHAR KiFindFirstSetLeft[256] = {
0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7};
//
// KiMask32Array - This is an array of 32-bit masks that have one bit set
// in each mask.
//
DECLSPEC_CACHEALIGN const ULONG KiMask32Array[32] = {
0x00000001,
0x00000002,
0x00000004,
0x00000008,
0x00000010,
0x00000020,
0x00000040,
0x00000080,
0x00000100,
0x00000200,
0x00000400,
0x00000800,
0x00001000,
0x00002000,
0x00004000,
0x00008000,
0x00010000,
0x00020000,
0x00040000,
0x00080000,
0x00100000,
0x00200000,
0x00400000,
0x00800000,
0x01000000,
0x02000000,
0x04000000,
0x08000000,
0x10000000,
0x20000000,
0x40000000,
0x80000000};
//
// KiAffinityArray - This is an array of AFFINITY masks that have one bit
// set in each mask.
//
#if defined(_WIN64)
DECLSPEC_CACHEALIGN const ULONG64 KiAffinityArray[64] = {
0x0000000000000001UI64,
0x0000000000000002UI64,
0x0000000000000004UI64,
0x0000000000000008UI64,
0x0000000000000010UI64,
0x0000000000000020UI64,
0x0000000000000040UI64,
0x0000000000000080UI64,
0x0000000000000100UI64,
0x0000000000000200UI64,
0x0000000000000400UI64,
0x0000000000000800UI64,
0x0000000000001000UI64,
0x0000000000002000UI64,
0x0000000000004000UI64,
0x0000000000008000UI64,
0x0000000000010000UI64,
0x0000000000020000UI64,
0x0000000000040000UI64,
0x0000000000080000UI64,
0x0000000000100000UI64,
0x0000000000200000UI64,
0x0000000000400000UI64,
0x0000000000800000UI64,
0x0000000001000000UI64,
0x0000000002000000UI64,
0x0000000004000000UI64,
0x0000000008000000UI64,
0x0000000010000000UI64,
0x0000000020000000UI64,
0x0000000040000000UI64,
0x0000000080000000UI64,
0x0000000100000000UI64,
0x0000000200000000UI64,
0x0000000400000000UI64,
0x0000000800000000UI64,
0x0000001000000000UI64,
0x0000002000000000UI64,
0x0000004000000000UI64,
0x0000008000000000UI64,
0x0000010000000000UI64,
0x0000020000000000UI64,
0x0000040000000000UI64,
0x0000080000000000UI64,
0x0000100000000000UI64,
0x0000200000000000UI64,
0x0000400000000000UI64,
0x0000800000000000UI64,
0x0001000000000000UI64,
0x0002000000000000UI64,
0x0004000000000000UI64,
0x0008000000000000UI64,
0x0010000000000000UI64,
0x0020000000000000UI64,
0x0040000000000000UI64,
0x0080000000000000UI64,
0x0100000000000000UI64,
0x0200000000000000UI64,
0x0400000000000000UI64,
0x0800000000000000UI64,
0x1000000000000000UI64,
0x2000000000000000UI64,
0x4000000000000000UI64,
0x8000000000000000UI64};
#endif
//
// KiPriorityMask - This is an array of masks that have the bit number of the
// index and all higher bits set.
//
DECLSPEC_CACHEALIGN const ULONG KiPriorityMask[] = {
0xffffffff,
0xfffffffe,
0xfffffffc,
0xfffffff8,
0xfffffff0,
0xffffffe0,
0xffffffc0,
0xffffff80,
0xffffff00,
0xfffffe00,
0xfffffc00,
0xfffff800,
0xfffff000,
0xffffe000,
0xffffc000,
0xffff8000,
0xffff0000,
0xfffe0000,
0xfffc0000,
0xfff80000,
0xfff00000,
0xffe00000,
0xffc00000,
0xff800000,
0xff000000,
0xfe000000,
0xfc000000,
0xf8000000,
0xf0000000,
0xe0000000,
0xc0000000,
0x80000000};