Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1755 lines
51 KiB

/*++
Copyright (c) 1989 Microsoft Corporation
Module Name:
deleteva.c
Abstract:
This module contains the routines for deleting virtual address space.
Author:
Lou Perazzoli (loup) 11-May-1989
Landy Wang (landyw) 02-June-1997
--*/
#include "mi.h"
#if defined (_WIN64) && defined (DBG_VERBOSE)
typedef struct _MI_TRACK_USE {
PFN_NUMBER Pfn;
PVOID Va;
ULONG Id;
ULONG PfnUse;
ULONG PfnUseCounted;
ULONG TickCount;
PKTHREAD Thread;
PEPROCESS Process;
} MI_TRACK_USE, *PMI_TRACK_USE;
ULONG MiTrackUseSize = 8192;
PMI_TRACK_USE MiTrackUse;
LONG MiTrackUseIndex;
VOID
MiInitUseCounts (
VOID
)
{
MiTrackUse = ExAllocatePoolWithTag (NonPagedPool,
MiTrackUseSize * sizeof (MI_TRACK_USE),
'lqrI');
ASSERT (MiTrackUse != NULL);
}
VOID
MiCheckUseCounts (
PVOID TempHandle,
PVOID Va,
ULONG Id
)
/*++
Routine Description:
This routine ensures that all the counters are correct.
Arguments:
TempHandle - Supplies the handle for used page table counts.
Va - Supplies the virtual address.
Id - Supplies the ID.
Return Value:
None.
Environment:
Kernel mode, called with APCs disabled, working set mutex and PFN lock
held.
--*/
{
LOGICAL LogIt;
ULONG i;
ULONG TempHandleCount;
ULONG TempCounted;
PMMPTE TempPage;
KIRQL OldIrql;
ULONG Index;
PFN_NUMBER PageFrameIndex;
PMI_TRACK_USE Information;
LARGE_INTEGER TimeStamp;
PMMPFN Pfn1;
PEPROCESS Process;
Process = PsGetCurrentProcess ();
//
// TempHandle is really the PMMPFN containing the UsedPageTableEntries.
//
Pfn1 = (PMMPFN)TempHandle;
PageFrameIndex = MI_PFN_ELEMENT_TO_INDEX (Pfn1);
TempHandleCount = MI_GET_USED_PTES_FROM_HANDLE (TempHandle);
if (Id & 0x80000000) {
ASSERT (TempHandleCount != 0);
}
TempPage = (PMMPTE) MiMapPageInHyperSpace (Process, PageFrameIndex, &OldIrql);
TempCounted = 0;
for (i = 0; i < PTE_PER_PAGE; i += 1) {
if (TempPage->u.Long != 0) {
TempCounted += 1;
}
TempPage += 1;
}
#if 0
if (zz & 0x4) {
LogIt = FALSE;
if (Pfn1->PteFrame == PageFrameIndex) {
// TopLevel parent page, not interesting to us.
}
else {
PMMPFN Pfn2;
Pfn2 = MI_PFN_ELEMENT (Pfn1->PteFrame);
if (Pfn2->PteFrame == Pfn1->PteFrame) {
// our parent is the toplevel, so very interesting.
LogIt = TRUE;
}
}
}
else {
LogIt = TRUE;
}
#else
LogIt = TRUE;
#endif
if (LogIt == TRUE) {
//
// Capture information
//
Index = InterlockedExchangeAdd(&MiTrackUseIndex, 1);
Index &= (MiTrackUseSize - 1);
Information = &(MiTrackUse[Index]);
Information->Thread = KeGetCurrentThread();
Information->Process = (PEPROCESS)((ULONG_PTR)PsGetCurrentProcess () + KeGetCurrentProcessorNumber ());
Information->Va = Va;
Information->Id = Id;
KeQueryTickCount(&TimeStamp);
Information->TickCount = TimeStamp.LowPart;
Information->Pfn = PageFrameIndex;
Information->PfnUse = TempHandleCount;
Information->PfnUseCounted = TempCounted;
if (TempCounted != TempHandleCount) {
DbgPrint ("MiCheckUseCounts %p %x %x %x %x\n", Va, Id, PageFrameIndex, TempHandleCount, TempCounted);
DbgBreakPoint ();
}
}
MiUnmapPageInHyperSpace (Process, TempPage, OldIrql);
return;
}
#endif
VOID
MiDeleteVirtualAddresses (
IN PUCHAR Va,
IN PUCHAR EndingAddress,
IN PMMVAD Vad
)
/*++
Routine Description:
This routine deletes the specified virtual address range within
the current process.
Arguments:
Va - Supplies the first virtual address to delete.
EndingAddress - Supplies the last address to delete.
Vad - Supplies the virtual address descriptor which maps this range
or NULL if we are not concerned about views. From the Vad the
range of prototype PTEs is determined and this information is
used to uncover if the PTE refers to a prototype PTE or a fork PTE.
Return Value:
None.
Environment:
Kernel mode, APC_LEVEL, called with address space and working set mutexes
held. The working set mutex may be released and reacquired to fault
pages in.
--*/
{
PMMPFN Pfn1;
PFN_NUMBER PageFrameIndex;
WSLE_NUMBER WsPfnIndex;
WSLE_NUMBER WorkingSetIndex;
MMWSLENTRY Locked;
WSLE_NUMBER Entry;
ULONG InvalidPtes;
LOGICAL PfnHeld;
PVOID TempVa;
PMMPTE PointerPte;
PMMPTE PointerPde;
PMMPTE PointerPpe;
PMMPTE PointerPxe;
PMMPTE ProtoPte;
PMMPTE LastProtoPte;
PMMPTE LastPte;
PMMPTE LastPteThisPage;
MMPTE TempPte;
PEPROCESS CurrentProcess;
PSUBSECTION Subsection;
PVOID UsedPageTableHandle;
KIRQL OldIrql;
MMPTE_FLUSH_LIST FlushList;
ULONG Waited;
LOGICAL Skipped;
LOGICAL AddressSpaceDeletion;
#if DBG
PMMPTE ProtoPte2;
PMMPTE LastProtoPte2;
PMMCLONE_BLOCK CloneBlock;
PMMCLONE_DESCRIPTOR CloneDescriptor;
#endif
#if (_MI_PAGING_LEVELS >= 3)
PVOID UsedPageDirectoryHandle;
PVOID TempHandle;
#endif
FlushList.Count = 0;
CurrentProcess = PsGetCurrentProcess ();
PointerPpe = MiGetPpeAddress (Va);
PointerPde = MiGetPdeAddress (Va);
PointerPte = MiGetPteAddress (Va);
PointerPxe = MiGetPxeAddress (Va);
LastPte = MiGetPteAddress (EndingAddress);
PfnHeld = FALSE;
OldIrql = MM_NOIRQL;
SATISFY_OVERZEALOUS_COMPILER (Subsection = NULL);
if ((Vad == NULL) ||
(Vad->u.VadFlags.PrivateMemory) ||
(Vad->FirstPrototypePte == NULL)) {
ProtoPte = NULL;
LastProtoPte = NULL;
}
else {
ProtoPte = Vad->FirstPrototypePte;
LastProtoPte = (PMMPTE) 4;
}
if (CurrentProcess->CloneRoot == NULL) {
AddressSpaceDeletion = TRUE;
}
else {
AddressSpaceDeletion = FALSE;
}
do {
//
// Attempt to leap forward skipping over empty page directories
// and page tables where possible.
//
#if (_MI_PAGING_LEVELS >= 3)
restart:
#endif
Skipped = FALSE;
while (MiDoesPxeExistAndMakeValid (PointerPxe,
CurrentProcess,
MM_NOIRQL,
&Waited) == FALSE) {
//
// This extended page directory parent entry is empty,
// go to the next one.
//
Skipped = TRUE;
PointerPxe += 1;
PointerPpe = MiGetVirtualAddressMappedByPte (PointerPxe);
PointerPde = MiGetVirtualAddressMappedByPte (PointerPpe);
PointerPte = MiGetVirtualAddressMappedByPte (PointerPde);
Va = MiGetVirtualAddressMappedByPte (PointerPte);
if (Va > EndingAddress) {
//
// All done, return.
//
return;
}
}
while (MiDoesPpeExistAndMakeValid (PointerPpe,
CurrentProcess,
MM_NOIRQL,
&Waited) == FALSE) {
//
// This page directory parent entry is empty, go to the next one.
//
Skipped = TRUE;
PointerPpe += 1;
PointerPde = MiGetVirtualAddressMappedByPte (PointerPpe);
PointerPte = MiGetVirtualAddressMappedByPte (PointerPde);
Va = MiGetVirtualAddressMappedByPte (PointerPte);
if (Va > EndingAddress) {
//
// All done, return.
//
return;
}
#if (_MI_PAGING_LEVELS >= 4)
if (MiIsPteOnPdeBoundary (PointerPpe)) {
PointerPxe += 1;
ASSERT (PointerPxe == MiGetPteAddress (PointerPpe));
goto restart;
}
#endif
}
#if (_MI_PAGING_LEVELS >= 3) && defined (DBG)
MI_CHECK_USED_PTES_HANDLE (PointerPte);
TempHandle = MI_GET_USED_PTES_HANDLE (PointerPte);
ASSERT ((MI_GET_USED_PTES_FROM_HANDLE (TempHandle) != 0) ||
(PointerPde->u.Long == 0));
#endif
while (MiDoesPdeExistAndMakeValid (PointerPde,
CurrentProcess,
MM_NOIRQL,
&Waited) == FALSE) {
//
// This page directory entry is empty, go to the next one.
//
Skipped = TRUE;
PointerPde += 1;
PointerPte = MiGetVirtualAddressMappedByPte (PointerPde);
Va = MiGetVirtualAddressMappedByPte (PointerPte);
if (Va > EndingAddress) {
//
// All done, return.
//
return;
}
#if (_MI_PAGING_LEVELS >= 3)
if (MiIsPteOnPdeBoundary (PointerPde)) {
PointerPpe += 1;
ASSERT (PointerPpe == MiGetPteAddress (PointerPde));
PointerPxe = MiGetPteAddress (PointerPpe);
goto restart;
}
#endif
#if DBG
if ((LastProtoPte != NULL) &&
(Vad->u2.VadFlags2.ExtendableFile == 0)) {
ProtoPte2 = MiGetProtoPteAddress (Vad, MI_VA_TO_VPN (Va));
Subsection = MiLocateSubsection (Vad,MI_VA_TO_VPN (Va));
LastProtoPte2 = &Subsection->SubsectionBase[Subsection->PtesInSubsection];
if (Vad->u.VadFlags.ImageMap != 1) {
if ((ProtoPte2 < Subsection->SubsectionBase) ||
(ProtoPte2 >= LastProtoPte2)) {
DbgPrint ("bad proto PTE %p va %p Vad %p sub %p\n",
ProtoPte2,Va,Vad,Subsection);
DbgBreakPoint();
}
}
}
#endif
}
//
// The PPE and PDE are now valid, get the page table use address
// as it changes whenever the PDE does.
//
#if (_MI_PAGING_LEVELS >= 4)
ASSERT64 (PointerPxe->u.Hard.Valid == 1);
#endif
ASSERT64 (PointerPpe->u.Hard.Valid == 1);
ASSERT (PointerPde->u.Hard.Valid == 1);
ASSERT (Va <= EndingAddress);
MI_CHECK_USED_PTES_HANDLE (Va);
UsedPageTableHandle = MI_GET_USED_PTES_HANDLE (Va);
#if (_MI_PAGING_LEVELS >= 3) && defined (DBG)
ASSERT ((MI_GET_USED_PTES_FROM_HANDLE (UsedPageTableHandle) != 0) ||
(PointerPte->u.Long == 0));
#endif
//
// If we skipped chunks of address space, the prototype PTE pointer
// must be updated now so VADs that span multiple subsections
// are handled properly.
//
if ((Skipped == TRUE) && (LastProtoPte != NULL)) {
ProtoPte = MiGetProtoPteAddress (Vad, MI_VA_TO_VPN(Va));
Subsection = MiLocateSubsection (Vad, MI_VA_TO_VPN(Va));
if (Subsection != NULL) {
LastProtoPte = &Subsection->SubsectionBase[Subsection->PtesInSubsection];
#if DBG
if (Vad->u.VadFlags.ImageMap != 1) {
if ((ProtoPte < Subsection->SubsectionBase) ||
(ProtoPte >= LastProtoPte)) {
DbgPrint ("bad proto PTE %p va %p Vad %p sub %p\n",
ProtoPte,Va,Vad,Subsection);
DbgBreakPoint();
}
}
#endif
}
else {
//
// The Vad span is larger than the section being mapped.
// Null the proto PTE local as no more proto PTEs will
// need to be deleted at this point.
//
LastProtoPte = NULL;
}
}
//
// A valid address has been located, examine and delete each PTE.
//
InvalidPtes = 0;
if (AddressSpaceDeletion == TRUE) {
//
// The working set mutex is held so no valid PTEs can be trimmed.
// Take advantage of this fact and remove the WSLEs for all valid
// PTEs now since the PFN lock is not held. This is only done
// for non-forked processes as deletion of forked PTEs below may
// drop the working set mutex which would introduce races wth
// WSLE deletion being done here.
//
// The deleting of the PTEs will require the PFN lock.
//
ASSERT (CurrentProcess->CloneRoot == NULL);
LastPteThisPage = (PMMPTE)(((ULONG_PTR)PointerPte | (PAGE_SIZE - 1)) + 1) - 1;
if (LastPteThisPage > LastPte) {
LastPteThisPage = LastPte;
}
TempVa = MiGetVirtualAddressMappedByPte (LastPteThisPage);
do {
TempPte = *LastPteThisPage;
if (TempPte.u.Hard.Valid != 0) {
#ifdef _X86_
#if DBG
#if !defined(NT_UP)
if (TempPte.u.Hard.Writable == 1) {
ASSERT (TempPte.u.Hard.Dirty == 1);
}
#endif //NTUP
#endif //DBG
#endif //X86
PageFrameIndex = MI_GET_PAGE_FRAME_FROM_PTE (&TempPte);
Pfn1 = MI_PFN_ELEMENT (PageFrameIndex);
WsPfnIndex = Pfn1->u1.WsIndex;
//
// PTE is valid - find the WSLE for this page and eliminate it.
//
WorkingSetIndex = MiLocateWsle (TempVa,
MmWorkingSetList,
WsPfnIndex);
ASSERT (WorkingSetIndex != WSLE_NULL_INDEX);
//
// Check to see if this entry is locked in the working set
// or locked in memory.
//
Locked = MmWsle[WorkingSetIndex].u1.e1;
MiRemoveWsle (WorkingSetIndex, MmWorkingSetList);
//
// Add this entry to the list of free working set entries
// and adjust the working set count.
//
MiReleaseWsle (WorkingSetIndex, &CurrentProcess->Vm);
if ((Locked.LockedInWs == 1) || (Locked.LockedInMemory == 1)) {
//
// This entry is locked.
//
ASSERT (WorkingSetIndex < MmWorkingSetList->FirstDynamic);
MmWorkingSetList->FirstDynamic -= 1;
if (WorkingSetIndex != MmWorkingSetList->FirstDynamic) {
Entry = MmWorkingSetList->FirstDynamic;
ASSERT (MmWsle[Entry].u1.e1.Valid);
MiSwapWslEntries (Entry,
WorkingSetIndex,
&CurrentProcess->Vm,
FALSE);
}
}
else {
ASSERT (WorkingSetIndex >= MmWorkingSetList->FirstDynamic);
}
}
LastPteThisPage -= 1;
TempVa = (PVOID)((ULONG_PTR)TempVa - PAGE_SIZE);
} while (LastPteThisPage >= PointerPte);
}
do {
TempPte = *PointerPte;
if (TempPte.u.Long != 0) {
//
// One less used page table entry in this page table page.
//
MI_DECREMENT_USED_PTES_BY_HANDLE (UsedPageTableHandle);
if (IS_PTE_NOT_DEMAND_ZERO (TempPte)) {
if (LastProtoPte != NULL) {
if (ProtoPte >= LastProtoPte) {
ProtoPte = MiGetProtoPteAddress (Vad, MI_VA_TO_VPN(Va));
Subsection = MiLocateSubsection (Vad, MI_VA_TO_VPN(Va));
//
// Subsection may be NULL if this PTE contains the
// "search the VAD tree" encoding and the
// corresponding prototype PTE is in the unused
// PTE range of the segment - ie: a thread tried
// to reach beyond the end of his section,
// we encode the PTE this way initially during
// the fault processing and then later during
// the fault give the thread the AV - we don't
// clear the PTE encoding then, so we have to
// handle it now.
//
if (Subsection != NULL) {
LastProtoPte = &Subsection->SubsectionBase[Subsection->PtesInSubsection];
}
else {
//
// No more prototype PTEs need to be deleted
// as we've passed the end of the valid portion
// of the segment, so clear LastProtoPte.
//
LastProtoPte = NULL;
}
}
#if DBG
if ((Vad->u.VadFlags.ImageMap != 1) && (LastProtoPte != NULL)) {
if ((ProtoPte < Subsection->SubsectionBase) ||
(ProtoPte >= LastProtoPte)) {
DbgPrint ("bad proto PTE %p va %p Vad %p sub %p\n",
ProtoPte,Va,Vad,Subsection);
DbgBreakPoint();
}
}
#endif
}
if ((TempPte.u.Hard.Valid == 0) &&
(TempPte.u.Soft.Prototype == 1) &&
(AddressSpaceDeletion == TRUE)) {
//
// Pure (ie: not forked) prototype PTEs don't need PFN
// protection to be deleted.
//
ASSERT (CurrentProcess->CloneRoot == NULL);
#if DBG
if ((PointerPte <= MiHighestUserPte) &&
(TempPte.u.Soft.PageFileHigh != MI_PTE_LOOKUP_NEEDED) &&
(ProtoPte != MiPteToProto (PointerPte))) {
//
// Make sure the prototype PTE is a fork
// prototype PTE.
//
CloneBlock = (PMMCLONE_BLOCK)MiPteToProto (PointerPte);
CloneDescriptor = MiLocateCloneAddress (CurrentProcess, (PVOID)CloneBlock);
if (CloneDescriptor == NULL) {
DbgPrint("0PrototypePte %p Clone desc %p\n",
PrototypePte, CloneDescriptor);
MiFormatPte (PointerPte);
ASSERT (FALSE);
}
}
#endif
InvalidPtes += 1;
MI_WRITE_INVALID_PTE (PointerPte, ZeroPte);
}
else {
if (PfnHeld == FALSE) {
PfnHeld = TRUE;
LOCK_PFN (OldIrql);
}
Waited = MiDeletePte (PointerPte,
(PVOID)Va,
AddressSpaceDeletion,
CurrentProcess,
ProtoPte,
&FlushList,
OldIrql);
#if (_MI_PAGING_LEVELS >= 3)
//
// This must be recalculated here if MiDeletePte
// dropped the PFN lock (this can happen when
// dealing with POSIX forked pages). Since the
// used PTE count is kept in the PFN entry
// which could have been paged out and replaced
// during this window, recomputation of its
// address (not the contents) is necessary.
//
if (Waited != 0) {
MI_CHECK_USED_PTES_HANDLE (Va);
UsedPageTableHandle = MI_GET_USED_PTES_HANDLE (Va);
}
#endif
InvalidPtes = 0;
}
}
else {
InvalidPtes += 1;
MI_WRITE_INVALID_PTE (PointerPte, ZeroPte);
}
}
else {
InvalidPtes += 1;
}
if (InvalidPtes == 16) {
if (PfnHeld == TRUE) {
if (FlushList.Count != 0) {
MiFlushPteList (&FlushList, FALSE);
}
ASSERT (OldIrql != MM_NOIRQL);
UNLOCK_PFN (OldIrql);
PfnHeld = FALSE;
}
else {
ASSERT (FlushList.Count == 0);
}
InvalidPtes = 0;
}
Va += PAGE_SIZE;
PointerPte += 1;
ProtoPte += 1;
ASSERT64 (PointerPpe->u.Hard.Valid == 1);
ASSERT (PointerPde->u.Hard.Valid == 1);
//
// If not at the end of a page table and still within the specified
// range, then just march directly on to the next PTE.
//
}
while ((!MiIsVirtualAddressOnPdeBoundary(Va)) && (Va <= EndingAddress));
//
// The virtual address is on a page directory boundary:
//
// 1. Flush the PTEs for the previous page table page.
// 2. Delete the previous page directory & page table if appropriate.
// 3. Attempt to leap forward skipping over empty page directories
// and page tables where possible.
//
//
// If all the entries have been eliminated from the previous
// page table page, delete the page table page itself.
//
if (PfnHeld == TRUE) {
if (FlushList.Count != 0) {
MiFlushPteList (&FlushList, FALSE);
}
}
else {
ASSERT (FlushList.Count == 0);
}
//
// If all the entries have been eliminated from the previous
// page table page, delete the page table page itself.
//
ASSERT64 (PointerPpe->u.Hard.Valid == 1);
ASSERT (PointerPde->u.Hard.Valid == 1);
#if (_MI_PAGING_LEVELS >= 3)
MI_CHECK_USED_PTES_HANDLE (PointerPte - 1);
#endif
if ((MI_GET_USED_PTES_FROM_HANDLE (UsedPageTableHandle) == 0) &&
(PointerPde->u.Long != 0)) {
if (PfnHeld == FALSE) {
PfnHeld = TRUE;
LOCK_PFN (OldIrql);
}
#if (_MI_PAGING_LEVELS >= 3)
UsedPageDirectoryHandle = MI_GET_USED_PTES_HANDLE (PointerPte - 1);
MI_DECREMENT_USED_PTES_BY_HANDLE (UsedPageDirectoryHandle);
#endif
TempVa = MiGetVirtualAddressMappedByPte(PointerPde);
MiDeletePte (PointerPde,
TempVa,
FALSE,
CurrentProcess,
NULL,
NULL,
OldIrql);
#if (_MI_PAGING_LEVELS >= 3)
if ((MI_GET_USED_PTES_FROM_HANDLE (UsedPageDirectoryHandle) == 0) &&
(PointerPpe->u.Long != 0)) {
#if (_MI_PAGING_LEVELS >= 4)
UsedPageDirectoryHandle = MI_GET_USED_PTES_HANDLE (PointerPde);
MI_DECREMENT_USED_PTES_BY_HANDLE (UsedPageDirectoryHandle);
#endif
TempVa = MiGetVirtualAddressMappedByPte(PointerPpe);
MiDeletePte (PointerPpe,
TempVa,
FALSE,
CurrentProcess,
NULL,
NULL,
OldIrql);
#if (_MI_PAGING_LEVELS >= 4)
if ((MI_GET_USED_PTES_FROM_HANDLE (UsedPageDirectoryHandle) == 0) &&
(PointerPxe->u.Long != 0)) {
TempVa = MiGetVirtualAddressMappedByPte(PointerPxe);
MiDeletePte (PointerPxe,
TempVa,
FALSE,
CurrentProcess,
NULL,
NULL,
OldIrql);
}
#endif
}
#endif
ASSERT (OldIrql != MM_NOIRQL);
UNLOCK_PFN (OldIrql);
PfnHeld = FALSE;
}
if (PfnHeld == TRUE) {
ASSERT (OldIrql != MM_NOIRQL);
UNLOCK_PFN (OldIrql);
PfnHeld = FALSE;
}
if (Va > EndingAddress) {
//
// All done, return.
//
return;
}
PointerPde = MiGetPdeAddress (Va);
PointerPpe = MiGetPpeAddress (Va);
PointerPxe = MiGetPxeAddress (Va);
} while (TRUE);
}
ULONG
MiDeletePte (
IN PMMPTE PointerPte,
IN PVOID VirtualAddress,
IN ULONG AddressSpaceDeletion,
IN PEPROCESS CurrentProcess,
IN PMMPTE PrototypePte,
IN PMMPTE_FLUSH_LIST PteFlushList OPTIONAL,
IN KIRQL OldIrql
)
/*++
Routine Description:
This routine deletes the contents of the specified PTE. The PTE
can be in one of the following states:
- active and valid
- transition
- in paging file
- in prototype PTE format
Arguments:
PointerPte - Supplies a pointer to the PTE to delete.
VirtualAddress - Supplies the virtual address which corresponds to
the PTE. This is used to locate the working set entry
to eliminate it.
AddressSpaceDeletion - Supplies TRUE if the address space is being
deleted, FALSE otherwise. If TRUE is specified
the TB is not flushed and valid addresses are
not removed from the working set.
CurrentProcess - Supplies a pointer to the current process.
PrototypePte - Supplies a pointer to the prototype PTE which currently
or originally mapped this page. This is used to determine
if the PTE is a fork PTE and should have its reference block
decremented.
PteFlushList - Supplies a flush list to use if the TB flush can be
deferred to the caller.
OldIrql - Supplies the IRQL the caller acquired the PFN lock at.
Return Value:
Nonzero if this routine released mutexes and locks, FALSE if not.
Environment:
Kernel mode, APCs disabled, PFN lock and working set mutex held.
--*/
{
PMMPTE PointerPde;
PMMPFN Pfn1;
PMMPFN Pfn2;
MMPTE PteContents;
WSLE_NUMBER WorkingSetIndex;
WSLE_NUMBER Entry;
MMWSLENTRY Locked;
WSLE_NUMBER WsPfnIndex;
PMMCLONE_BLOCK CloneBlock;
PMMCLONE_DESCRIPTOR CloneDescriptor;
ULONG DroppedLocks;
PFN_NUMBER PageFrameIndex;
PFN_NUMBER PageTableFrameIndex;
MM_PFN_LOCK_ASSERT();
DroppedLocks = 0;
#if DBG
if (MmDebug & MM_DBG_PTE_UPDATE) {
DbgPrint("deleting PTE\n");
MiFormatPte (PointerPte);
}
#endif
PteContents = *PointerPte;
if (PteContents.u.Hard.Valid == 1) {
#ifdef _X86_
#if DBG
#if !defined(NT_UP)
if (PteContents.u.Hard.Writable == 1) {
ASSERT (PteContents.u.Hard.Dirty == 1);
}
#endif //NTUP
#endif //DBG
#endif //X86
//
// PTE is valid. Check PFN database to see if this is a prototype PTE.
//
PageFrameIndex = MI_GET_PAGE_FRAME_FROM_PTE(&PteContents);
Pfn1 = MI_PFN_ELEMENT (PageFrameIndex);
WsPfnIndex = Pfn1->u1.WsIndex;
#if DBG
if (MmDebug & MM_DBG_PTE_UPDATE) {
MiFormatPfn(Pfn1);
}
#endif
CloneDescriptor = NULL;
if (Pfn1->u3.e1.PrototypePte == 1) {
CloneBlock = (PMMCLONE_BLOCK)Pfn1->PteAddress;
//
// Capture the state of the modified bit for this PTE.
//
MI_CAPTURE_DIRTY_BIT_TO_PFN (PointerPte, Pfn1);
//
// Decrement the share and valid counts of the page table
// page which maps this PTE.
//
PointerPde = MiGetPteAddress (PointerPte);
if (PointerPde->u.Hard.Valid == 0) {
#if (_MI_PAGING_LEVELS < 3)
if (!NT_SUCCESS(MiCheckPdeForPagedPool (PointerPte))) {
#endif
KeBugCheckEx (MEMORY_MANAGEMENT,
0x61940,
(ULONG_PTR) PointerPte,
(ULONG_PTR) PointerPde->u.Long,
(ULONG_PTR) VirtualAddress);
#if (_MI_PAGING_LEVELS < 3)
}
#endif
}
PageTableFrameIndex = MI_GET_PAGE_FRAME_FROM_PTE(PointerPde);
Pfn2 = MI_PFN_ELEMENT (PageTableFrameIndex);
MiDecrementShareCountInline (Pfn2, PageTableFrameIndex);
//
// Decrement the share count for the physical page.
//
MiDecrementShareCountInline (Pfn1, PageFrameIndex);
//
// Check to see if this is a fork prototype PTE and if so
// update the clone descriptor address.
//
if (PointerPte <= MiHighestUserPte) {
if (PrototypePte != Pfn1->PteAddress) {
//
// Locate the clone descriptor within the clone tree.
//
CloneDescriptor = MiLocateCloneAddress (CurrentProcess, (PVOID)CloneBlock);
if (CloneDescriptor == NULL) {
KeBugCheckEx (MEMORY_MANAGEMENT,
0x400,
(ULONG_PTR) PointerPte,
(ULONG_PTR) PrototypePte,
(ULONG_PTR) Pfn1->PteAddress);
}
}
}
}
else {
if ((PMMPTE)((ULONG_PTR)Pfn1->PteAddress & ~0x1) != PointerPte) {
KeBugCheckEx (MEMORY_MANAGEMENT,
0x401,
(ULONG_PTR) PointerPte,
(ULONG_PTR) PointerPte->u.Long,
(ULONG_PTR) Pfn1->PteAddress);
}
//
// Initializing CloneBlock & PointerPde is not needed for
// correctness but without it the compiler cannot compile this code
// W4 to check for use of uninitialized variables.
//
CloneBlock = NULL;
PointerPde = NULL;
ASSERT (Pfn1->u2.ShareCount == 1);
//
// This PTE is NOT a prototype PTE, delete the physical page.
//
// Decrement the share and valid counts of the page table
// page which maps this PTE.
//
MiDecrementShareCountInline (MI_PFN_ELEMENT(Pfn1->u4.PteFrame),
Pfn1->u4.PteFrame);
MI_SET_PFN_DELETED (Pfn1);
//
// Decrement the share count for the physical page. As the page
// is private it will be put on the free list.
//
MiDecrementShareCount (Pfn1, PageFrameIndex);
//
// Decrement the count for the number of private pages.
//
CurrentProcess->NumberOfPrivatePages -= 1;
}
//
// Find the WSLE for this page and eliminate it.
//
// If we are deleting the system portion of the address space, do
// not remove WSLEs or flush translation buffers as there can be
// no other usage of this address space.
//
if (AddressSpaceDeletion == FALSE) {
WorkingSetIndex = MiLocateWsle (VirtualAddress,
MmWorkingSetList,
WsPfnIndex);
ASSERT (WorkingSetIndex != WSLE_NULL_INDEX);
//
// Check to see if this entry is locked in the working set
// or locked in memory.
//
Locked = MmWsle[WorkingSetIndex].u1.e1;
MiRemoveWsle (WorkingSetIndex, MmWorkingSetList);
//
// Add this entry to the list of free working set entries
// and adjust the working set count.
//
MiReleaseWsle (WorkingSetIndex, &CurrentProcess->Vm);
if ((Locked.LockedInWs == 1) || (Locked.LockedInMemory == 1)) {
//
// This entry is locked.
//
ASSERT (WorkingSetIndex < MmWorkingSetList->FirstDynamic);
MmWorkingSetList->FirstDynamic -= 1;
if (WorkingSetIndex != MmWorkingSetList->FirstDynamic) {
Entry = MmWorkingSetList->FirstDynamic;
ASSERT (MmWsle[Entry].u1.e1.Valid);
MiSwapWslEntries (Entry,
WorkingSetIndex,
&CurrentProcess->Vm,
FALSE);
}
}
else {
ASSERT (WorkingSetIndex >= MmWorkingSetList->FirstDynamic);
}
}
MI_WRITE_INVALID_PTE (PointerPte, ZeroPte);
//
// Flush the entry out of the TB.
//
if (!ARGUMENT_PRESENT (PteFlushList)) {
KeFlushSingleTb (VirtualAddress, FALSE);
}
else {
if (PteFlushList->Count != MM_MAXIMUM_FLUSH_COUNT) {
PteFlushList->FlushVa[PteFlushList->Count] = VirtualAddress;
PteFlushList->Count += 1;
}
}
if (AddressSpaceDeletion == FALSE) {
if (CloneDescriptor != NULL) {
//
// Flush TBs as this clone path could release the PFN lock.
//
if (ARGUMENT_PRESENT (PteFlushList)) {
MiFlushPteList (PteFlushList, FALSE);
}
//
// Decrement the reference count for the clone block,
// note that this could release and reacquire
// the mutexes hence cannot be done until after the
// working set entry has been removed.
//
if (MiDecrementCloneBlockReference (CloneDescriptor,
CloneBlock,
CurrentProcess,
OldIrql)) {
//
// The working set mutex was released, so the current
// current page directory & table page may have been
// paged out (note they cannot be deleted because the
// address space mutex is always held throughout).
//
DroppedLocks = 1;
//
// Ensure the PDE (and any table above it) are still
// resident.
//
MiMakePdeExistAndMakeValid (PointerPde,
CurrentProcess,
OldIrql);
}
}
}
}
else if (PteContents.u.Soft.Prototype == 1) {
//
// This is a prototype PTE, if it is a fork PTE clean up the
// fork structures.
//
if ((PteContents.u.Soft.PageFileHigh != MI_PTE_LOOKUP_NEEDED) &&
(PointerPte <= MiHighestUserPte) &&
(PrototypePte != MiPteToProto (PointerPte))) {
CloneBlock = (PMMCLONE_BLOCK) MiPteToProto (PointerPte);
CloneDescriptor = MiLocateCloneAddress (CurrentProcess,
(PVOID) CloneBlock);
if (CloneDescriptor == NULL) {
KeBugCheckEx (MEMORY_MANAGEMENT,
0x403,
(ULONG_PTR) PointerPte,
(ULONG_PTR) PrototypePte,
(ULONG_PTR) PteContents.u.Long);
}
//
// Decrement the reference count for the clone block,
// note that this could release and reacquire
// the mutexes.
//
MI_WRITE_INVALID_PTE (PointerPte, ZeroPte);
if (ARGUMENT_PRESENT (PteFlushList)) {
MiFlushPteList (PteFlushList, FALSE);
}
if (MiDecrementCloneBlockReference (CloneDescriptor,
CloneBlock,
CurrentProcess,
OldIrql)) {
//
// The working set mutex was released, so the current
// current page directory & table page may have been
// paged out (note they cannot be deleted because the
// address space mutex is always held throughout).
//
DroppedLocks = 1;
//
// Ensure the PDE (and any table above it) are still
// resident.
//
PointerPde = MiGetPteAddress (PointerPte);
MiMakePdeExistAndMakeValid (PointerPde,
CurrentProcess,
OldIrql);
}
}
}
else if (PteContents.u.Soft.Transition == 1) {
//
// This is a transition PTE. (Page is private)
//
Pfn1 = MI_PFN_ELEMENT (PteContents.u.Trans.PageFrameNumber);
if ((PMMPTE)((ULONG_PTR)Pfn1->PteAddress & ~0x1) != PointerPte) {
KeBugCheckEx (MEMORY_MANAGEMENT,
0x402,
(ULONG_PTR) PointerPte,
(ULONG_PTR) PointerPte->u.Long,
(ULONG_PTR) Pfn1->PteAddress);
}
MI_SET_PFN_DELETED (Pfn1);
PageTableFrameIndex = Pfn1->u4.PteFrame;
Pfn2 = MI_PFN_ELEMENT (PageTableFrameIndex);
MiDecrementShareCountInline (Pfn2, PageTableFrameIndex);
//
// Check the reference count for the page, if the reference
// count is zero, move the page to the free list, if the reference
// count is not zero, ignore this page. When the reference count
// goes to zero, it will be placed on the free list.
//
if (Pfn1->u3.e2.ReferenceCount == 0) {
MiUnlinkPageFromList (Pfn1);
MiReleasePageFileSpace (Pfn1->OriginalPte);
MiInsertPageInFreeList (MI_GET_PAGE_FRAME_FROM_TRANSITION_PTE(&PteContents));
}
//
// Decrement the count for the number of private pages.
//
CurrentProcess->NumberOfPrivatePages -= 1;
}
else {
//
// Must be page file space.
//
if (PteContents.u.Soft.PageFileHigh != MI_PTE_LOOKUP_NEEDED) {
if (MiReleasePageFileSpace (PteContents)) {
//
// Decrement the count for the number of private pages.
//
CurrentProcess->NumberOfPrivatePages -= 1;
}
}
}
//
// Zero the PTE contents.
//
MI_WRITE_INVALID_PTE (PointerPte, ZeroPte);
return DroppedLocks;
}
VOID
MiDeleteValidSystemPte (
IN PMMPTE PointerPte,
IN PVOID VirtualAddress,
IN PMMSUPPORT WsInfo,
IN PMMPTE_FLUSH_LIST PteFlushList OPTIONAL
)
/*++
Routine Description:
This routine deletes the contents of the specified valid system or
session PTE. The PTE *MUST* be valid and private (ie: not a prototype).
Arguments:
PointerPte - Supplies a pointer to the PTE to delete.
VirtualAddress - Supplies the virtual address which corresponds to
the PTE. This is used to locate the working set entry
to eliminate it.
WsInfo - Supplies the working set structure to update.
PteFlushList - Supplies a flush list to use if the TB flush can be
deferred to the caller.
Return Value:
None.
Environment:
Kernel mode, APCs disabled, PFN lock and working set mutex held.
--*/
{
PMMPFN Pfn1;
MMPTE PteContents;
WSLE_NUMBER WorkingSetIndex;
WSLE_NUMBER Entry;
MMWSLENTRY Locked;
WSLE_NUMBER WsPfnIndex;
PFN_NUMBER PageFrameIndex;
PMMWSL WorkingSetList;
PMMWSLE Wsle;
MM_PFN_LOCK_ASSERT();
PteContents = *PointerPte;
ASSERT (PteContents.u.Hard.Valid == 1);
#ifdef _X86_
#if DBG
#if !defined(NT_UP)
if (PteContents.u.Hard.Writable == 1) {
ASSERT (PteContents.u.Hard.Dirty == 1);
}
#endif //NTUP
#endif //DBG
#endif //X86
PageFrameIndex = MI_GET_PAGE_FRAME_FROM_PTE(&PteContents);
Pfn1 = MI_PFN_ELEMENT (PageFrameIndex);
WsPfnIndex = Pfn1->u1.WsIndex;
ASSERT (Pfn1->u3.e1.PrototypePte == 0);
if ((PMMPTE)((ULONG_PTR)Pfn1->PteAddress & ~0x1) != PointerPte) {
KeBugCheckEx (MEMORY_MANAGEMENT,
0x401,
(ULONG_PTR) PointerPte,
(ULONG_PTR) PointerPte->u.Long,
(ULONG_PTR) Pfn1->PteAddress);
}
ASSERT (Pfn1->u2.ShareCount == 1);
//
// This PTE is NOT a prototype PTE, delete the physical page.
//
// Decrement the share and valid counts of the page table
// page which maps this PTE.
//
MiDecrementShareCountInline (MI_PFN_ELEMENT(Pfn1->u4.PteFrame),
Pfn1->u4.PteFrame);
MI_SET_PFN_DELETED (Pfn1);
//
// Decrement the share count for the physical page. As the page
// is private it will be put on the free list.
//
MiDecrementShareCount (Pfn1, PageFrameIndex);
//
// Find the WSLE for this page and eliminate it.
//
// If we are deleting the system portion of the address space, do
// not remove WSLEs or flush translation buffers as there can be
// no other usage of this address space.
//
WorkingSetList = WsInfo->VmWorkingSetList;
WorkingSetIndex = MiLocateWsle (VirtualAddress,
WorkingSetList,
WsPfnIndex);
ASSERT (WorkingSetIndex != WSLE_NULL_INDEX);
//
// Check to see if this entry is locked in the working set
// or locked in memory.
//
Wsle = WorkingSetList->Wsle;
Locked = Wsle[WorkingSetIndex].u1.e1;
MiRemoveWsle (WorkingSetIndex, WorkingSetList);
//
// Add this entry to the list of free working set entries
// and adjust the working set count.
//
MiReleaseWsle (WorkingSetIndex, WsInfo);
if ((Locked.LockedInWs == 1) || (Locked.LockedInMemory == 1)) {
//
// This entry is locked.
//
ASSERT (WorkingSetIndex < WorkingSetList->FirstDynamic);
WorkingSetList->FirstDynamic -= 1;
if (WorkingSetIndex != WorkingSetList->FirstDynamic) {
Entry = WorkingSetList->FirstDynamic;
ASSERT (Wsle[Entry].u1.e1.Valid);
MiSwapWslEntries (Entry, WorkingSetIndex, WsInfo, FALSE);
}
}
else {
ASSERT (WorkingSetIndex >= WorkingSetList->FirstDynamic);
}
//
// Zero the PTE contents.
//
MI_WRITE_INVALID_PTE (PointerPte, ZeroPte);
//
// Flush the entry out of the TB.
//
if (!ARGUMENT_PRESENT (PteFlushList)) {
if (WsInfo == &MmSystemCacheWs) {
KeFlushSingleTb (VirtualAddress, TRUE);
}
else {
MI_FLUSH_SINGLE_SESSION_TB (VirtualAddress);
}
}
else {
if (PteFlushList->Count != MM_MAXIMUM_FLUSH_COUNT) {
PteFlushList->FlushVa[PteFlushList->Count] = VirtualAddress;
PteFlushList->Count += 1;
}
}
if (WsInfo->Flags.SessionSpace == 1) {
MM_BUMP_SESS_COUNTER (MM_DBG_SESSION_NP_HASH_SHRINK, 1);
InterlockedExchangeAddSizeT (&MmSessionSpace->NonPagablePages, -1);
MM_BUMP_SESS_COUNTER (MM_DBG_SESSION_WS_HASHPAGE_FREE, 1);
InterlockedExchangeAddSizeT (&MmSessionSpace->CommittedPages, -1);
}
return;
}
ULONG
FASTCALL
MiReleasePageFileSpace (
IN MMPTE PteContents
)
/*++
Routine Description:
This routine frees the paging file allocated to the specified PTE.
Arguments:
PteContents - Supplies the PTE which is in page file format.
Return Value:
Returns TRUE if any paging file space was deallocated.
Environment:
Kernel mode, APCs disabled, PFN lock held.
--*/
{
ULONG FreeBit;
ULONG PageFileNumber;
PMMPAGING_FILE PageFile;
MM_PFN_LOCK_ASSERT();
if (PteContents.u.Soft.Prototype == 1) {
//
// Not in page file format.
//
return FALSE;
}
FreeBit = GET_PAGING_FILE_OFFSET (PteContents);
if ((FreeBit == 0) || (FreeBit == MI_PTE_LOOKUP_NEEDED)) {
//
// Page is not in a paging file, just return.
//
return FALSE;
}
PageFileNumber = GET_PAGING_FILE_NUMBER (PteContents);
ASSERT (RtlCheckBit( MmPagingFile[PageFileNumber]->Bitmap, FreeBit) == 1);
#if DBG
if ((FreeBit < 8192) && (PageFileNumber == 0)) {
ASSERT ((MmPagingFileDebug[FreeBit] & 1) != 0);
MmPagingFileDebug[FreeBit] ^= 1;
}
#endif
PageFile = MmPagingFile[PageFileNumber];
MI_CLEAR_BIT (PageFile->Bitmap->Buffer, FreeBit);
PageFile->FreeSpace += 1;
PageFile->CurrentUsage -= 1;
//
// Check to see if we should move some MDL entries for the
// modified page writer now that more free space is available.
//
if ((MmNumberOfActiveMdlEntries == 0) ||
(PageFile->FreeSpace == MM_USABLE_PAGES_FREE)) {
MiUpdateModifiedWriterMdls (PageFileNumber);
}
return TRUE;
}
VOID
FASTCALL
MiUpdateModifiedWriterMdls (
IN ULONG PageFileNumber
)
/*++
Routine Description:
This routine ensures the MDLs for the specified paging file
are in the proper state such that paging i/o can continue.
Arguments:
PageFileNumber - Supplies the page file number to check the MDLs for.
Return Value:
None.
Environment:
Kernel mode, PFN lock held.
--*/
{
ULONG i;
PMMMOD_WRITER_MDL_ENTRY WriterEntry;
//
// Put the MDL entries into the active list.
//
for (i = 0; i < MM_PAGING_FILE_MDLS; i += 1) {
if (MmPagingFile[PageFileNumber]->Entry[i]->CurrentList ==
&MmFreePagingSpaceLow) {
ASSERT (MmPagingFile[PageFileNumber]->Entry[i]->Links.Flink !=
MM_IO_IN_PROGRESS);
//
// Remove this entry and put it on the active list.
//
WriterEntry = MmPagingFile[PageFileNumber]->Entry[i];
RemoveEntryList (&WriterEntry->Links);
WriterEntry->CurrentList = &MmPagingFileHeader.ListHead;
KeSetEvent (&WriterEntry->PagingListHead->Event, 0, FALSE);
InsertTailList (&WriterEntry->PagingListHead->ListHead,
&WriterEntry->Links);
MmNumberOfActiveMdlEntries += 1;
}
}
return;
}
VOID
MiFlushPteList (
IN PMMPTE_FLUSH_LIST PteFlushList,
IN ULONG AllProcessors
)
/*++
Routine Description:
This routine flushes all the PTEs in the PTE flush list.
If the list has overflowed, the entire TB is flushed.
Arguments:
PteFlushList - Supplies a pointer to the list to be flushed.
AllProcessors - Supplies TRUE if the flush occurs on all processors.
Return Value:
None.
Environment:
Kernel mode, PFN or a pre-process AWE lock may optionally be held.
--*/
{
ULONG count;
ASSERT (ARGUMENT_PRESENT (PteFlushList));
count = PteFlushList->Count;
if (count != 0) {
if (count != 1) {
if (count < MM_MAXIMUM_FLUSH_COUNT) {
KeFlushMultipleTb (count,
&PteFlushList->FlushVa[0],
(BOOLEAN)AllProcessors);
}
else {
//
// Array has overflowed, flush the entire TB.
//
if (AllProcessors != FALSE) {
KeFlushEntireTb (TRUE, TRUE);
}
else {
KeFlushProcessTb (FALSE);
}
}
}
else {
KeFlushSingleTb (PteFlushList->FlushVa[0],
(BOOLEAN)AllProcessors);
}
PteFlushList->Count = 0;
}
return;
}