Leaked source code of windows server 2003
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1627 lines
45 KiB

/*++
Copyright (c) 1990 Microsoft Corporation
Module Name:
ntapi.c
Abstract:
NT api level routines for the po component reside in this file
Author:
Bryan Willman (bryanwi) 14-Nov-1996
Revision History:
--*/
#include "pop.h"
#ifdef ALLOC_PRAGMA
#pragma alloc_text(PAGE, NtSetThreadExecutionState)
#pragma alloc_text(PAGE, NtRequestWakeupLatency)
#pragma alloc_text(PAGE, NtInitiatePowerAction)
#pragma alloc_text(PAGE, NtGetDevicePowerState)
#pragma alloc_text(PAGE, NtCancelDeviceWakeupRequest)
#pragma alloc_text(PAGE, NtIsSystemResumeAutomatic)
#pragma alloc_text(PAGE, NtRequestDeviceWakeup)
#pragma alloc_text(PAGELK, NtSetSystemPowerState)
#endif
extern POBJECT_TYPE IoFileObjectType;
WORK_QUEUE_ITEM PopShutdownWorkItem;
WORK_QUEUE_ITEM PopUnlockAfterSleepWorkItem;
KEVENT PopUnlockComplete;
extern ERESOURCE ExpTimeRefreshLock;
extern ULONG MmZeroPageFile;
extern
VOID
PopZeroHiberFile(
IN HANDLE FileHandle,
IN PFILE_OBJECT FileObject
);
NTSYSAPI
NTSTATUS
NTAPI
NtSetThreadExecutionState(
IN EXECUTION_STATE NewFlags, // ES_xxx flags
OUT EXECUTION_STATE *PreviousFlags
)
/*++
Routine Description:
Implements Win32 API functionality. Tracks thread execution state
attributes. Keeps global count of all such attributes set.
Arguments:
NewFlags - Attributes to set or pulse
PreviousFlags - Threads 'set' attributes before applying NewFlags
Return Value:
Status
--*/
{
ULONG OldFlags;
PKTHREAD Thread;
KPROCESSOR_MODE PreviousMode;
NTSTATUS Status;
PAGED_CODE();
Thread = KeGetCurrentThread();
Status = STATUS_SUCCESS;
//
// Verify no reserved bits set
//
if (NewFlags & ~(ES_SYSTEM_REQUIRED | ES_DISPLAY_REQUIRED | ES_CONTINUOUS)) {
return STATUS_INVALID_PARAMETER;
}
try {
//
// Verify callers params
//
PreviousMode = KeGetPreviousMode();
if (PreviousMode != KernelMode) {
ProbeForWriteUlong (PreviousFlags);
}
} except (EXCEPTION_EXECUTE_HANDLER) {
Status = GetExceptionCode();
}
//
// Get current flags
//
OldFlags = Thread->PowerState | ES_CONTINUOUS;
if (NT_SUCCESS(Status)) {
PopAcquirePolicyLock ();
//
// If the continous bit is set, modify current thread flags
//
if (NewFlags & ES_CONTINUOUS) {
Thread->PowerState = (UCHAR) NewFlags;
PopApplyAttributeState (NewFlags, OldFlags);
} else {
PopApplyAttributeState (NewFlags, 0);
}
//
// Release the lock here, but don't steal the poor caller's thread to
// do the work. Otherwise we can get in weird message loop deadlocks as
// this thread is waiting for the USER32 thread, which is broadcasting a
// system message to this thread's window.
//
PopReleasePolicyLock (FALSE);
PopCheckForWork(TRUE);
//
// Return the results
//
try {
*PreviousFlags = OldFlags;
} except(EXCEPTION_EXECUTE_HANDLER) {
Status = GetExceptionCode();
}
}
return Status;
}
NTSYSAPI
NTSTATUS
NTAPI
NtRequestWakeupLatency(
IN LATENCY_TIME latency // LT_xxx flags
)
/*++
Routine Description:
Tracks process wakeup latecy attribute. Keeps global count
of all such attribute settings.
Arguments:
latency - Current latency setting for process
Return Value:
Status
--*/
{
PEPROCESS Process;
ULONG OldFlags, NewFlags;
PAGED_CODE();
//
// Verify latency is known
//
switch (latency) {
case LT_DONT_CARE:
NewFlags = ES_CONTINUOUS;
break;
case LT_LOWEST_LATENCY:
NewFlags = ES_CONTINUOUS | POP_LOW_LATENCY;
break;
default:
return STATUS_INVALID_PARAMETER;
}
Process = PsGetCurrentProcess();
PopAcquirePolicyLock ();
//
// Get changes
//
OldFlags = Process->Pcb.PowerState | ES_CONTINUOUS;
//
// Udpate latency flag in process field
//
Process->Pcb.PowerState = (UCHAR) NewFlags;
//
// Handle flags
//
PopApplyAttributeState (NewFlags, OldFlags);
//
// Done
//
PopReleasePolicyLock (TRUE);
return STATUS_SUCCESS;
}
NTSYSAPI
NTSTATUS
NTAPI
NtInitiatePowerAction(
IN POWER_ACTION SystemAction,
IN SYSTEM_POWER_STATE LightestSystemState,
IN ULONG Flags, // POWER_ACTION_xxx flags
IN BOOLEAN Asynchronous
)
/*++
Routine Description:
Implements functionality for Win32 APIs to initiate a power
action. Causes s/w initiated trigger of requested action.
Arguments:
SystemAction - The action to initiate
LightestSystemState - If a sleep action, the minimum state which must be
entered
Flags - Attributes of action
Asynchronous - Function should initiate action and return, or should wait
for the action to complete before returning
Return Value:
Status
--*/
{
KPROCESSOR_MODE PreviousMode;
POWER_ACTION_POLICY Policy;
POP_ACTION_TRIGGER Trigger;
PPOP_TRIGGER_WAIT Wait = NULL;
NTSTATUS Status = STATUS_SUCCESS;
PAGED_CODE();
//
// If caller is user mode make some verifications
//
PreviousMode = KeGetPreviousMode();
if (PreviousMode != KernelMode) {
if( SystemAction == PowerActionWarmEject ) {
// This makes no sense coming from usermode.
return STATUS_INVALID_PARAMETER;
}
if (!SeSinglePrivilegeCheck( SeShutdownPrivilege, PreviousMode )) {
return STATUS_PRIVILEGE_NOT_HELD;
}
}
if( (LightestSystemState > PowerSystemMaximum) ||
(SystemAction > PowerActionWarmEject) ||
(Flags & POWER_ACTION_LIGHTEST_FIRST) ||
ARE_POWER_ACTION_POLICY_FLAGS_BOGUS(Flags) ) {
return STATUS_INVALID_PARAMETER;
}
//
// Build a policy & trigger to cause the action
//
RtlZeroMemory (&Policy, sizeof(Policy));
Policy.Action = SystemAction;
Policy.Flags = Flags;
RtlZeroMemory (&Trigger, sizeof(Trigger));
Trigger.Type = PolicyInitiatePowerActionAPI;
Trigger.Flags = PO_TRG_SET;
//
// If the caller requested a synchronous operation, create
// an event here that we can attach to the action being
// applied.
//
if (!Asynchronous) {
Wait = ExAllocatePoolWithTag (
NonPagedPool,
sizeof (POP_TRIGGER_WAIT),
POP_PACW_TAG
);
if (!Wait) {
return STATUS_INSUFFICIENT_RESOURCES;
}
RtlZeroMemory (Wait, sizeof(POP_TRIGGER_WAIT));
Wait->Status = STATUS_SUCCESS;
Wait->Trigger = &Trigger;
KeInitializeEvent (&Wait->Event, NotificationEvent, FALSE);
Trigger.Flags |= PO_TRG_SYNC;
Trigger.Wait = Wait;
}
//
// Acquire lock, fire it, and release the lock.
//
PopAcquirePolicyLock ();
try {
PopSetPowerAction(
&Trigger,
0,
&Policy,
LightestSystemState,
SubstituteLightestOverallDownwardBounded
);
} except (PopExceptionFilter(GetExceptionInformation(), TRUE)) {
Status = GetExceptionCode();
}
PopReleasePolicyLock (TRUE);
//
// If we're doing a synchronous operation, wait for it.
//
if( Wait ) {
if (Wait->Link.Flink) {
//
// The wait block was queued. We need to wait here for him
// to finish. Otherwise, we can assume he either failed
// or succeeded immediately.
//
ASSERT(NT_SUCCESS(Status));
Status = KeWaitForSingleObject (&Wait->Event, Suspended, KernelMode, TRUE, NULL);
//
// Remove wait block from the queue
//
PopAcquirePolicyLock ();
RemoveEntryList (&Wait->Link);
PopReleasePolicyLock (FALSE);
}
//
// If everything's okay, remember the wait status.
//
if (NT_SUCCESS(Status)) {
Status = Wait->Status;
}
ExFreePool (Wait);
}
return Status;
}
NTSYSAPI
NTSTATUS
NTAPI
NtSetSystemPowerState (
IN POWER_ACTION SystemAction,
IN SYSTEM_POWER_STATE LightestSystemState,
IN ULONG Flags // POWER_ACTION_xxx flags
)
/*++
Routine Description:
N.B. This function is only called by Winlogon.
Winlogon calls this function in response to the policy manager calling
PopStateCallout once user mode operations have completed.
Arguments:
SystemAction - The current system action being processed.
LightestSystemState - The min system state for the action.
Flags - The attribute flags for the action.
Return Value:
Status
--*/
{
KPROCESSOR_MODE PreviousMode;
NTSTATUS Status, Status2;
POWER_ACTION_POLICY Action;
BOOLEAN QueryDevices;
BOOLEAN TimerRefreshLockOwned;
BOOLEAN BootStatusUpdated;
BOOLEAN VolumesFlushed;
BOOLEAN PolicyLockOwned;
PVOID WakeTimerObject;
PVOID S4DozeObject;
HANDLE S4DozeTimer;
OBJECT_ATTRIBUTES ObjectAttributes;
TIMER_BASIC_INFORMATION TimerInformation;
POP_ACTION_TRIGGER Trigger;
SYSTEM_POWER_STATE DeepestSystemState;
ULONGLONG WakeTime;
ULONGLONG SleepTime = 0;
TIME_FIELDS WakeTimeFields;
LARGE_INTEGER DueTime;
POP_SUBSTITUTION_POLICY SubstitutionPolicy;
NT_PRODUCT_TYPE NtProductType;
PIO_ERROR_LOG_PACKET ErrLog;
BOOLEAN WroteErrLog=FALSE;
//
// Check parameters
//
if( (LightestSystemState >= PowerSystemMaximum) ||
(LightestSystemState <= PowerSystemUnspecified) ||
(SystemAction > PowerActionWarmEject) ||
(SystemAction < PowerActionReserved) ||
ARE_POWER_ACTION_POLICY_FLAGS_BOGUS(Flags) ) {
PoPrint( PO_ERROR, ("NtSetSystemPowerState: Bad parameters!\n") );
PoPrint( PO_ERROR, (" SystemAction: 0x%x\n", (ULONG)SystemAction) );
PoPrint( PO_ERROR, (" LightestSystemState: 0x%x\n", (ULONG)LightestSystemState) );
PoPrint( PO_ERROR, (" Flags: 0x%x\n", (ULONG)Flags) );
return STATUS_INVALID_PARAMETER;
}
//
// Verify callers access
//
PreviousMode = KeGetPreviousMode();
if (PreviousMode != KernelMode) {
if (!SeSinglePrivilegeCheck( SeShutdownPrivilege, PreviousMode )) {
return STATUS_PRIVILEGE_NOT_HELD;
}
//
// Turn into kernel mode operation. This essentially calls back into
// ourselves, but it means that handles that may be opened from here on
// will stay around if our caller goes away.
//
return ZwSetSystemPowerState (SystemAction, LightestSystemState, Flags);
}
//
// disable registry's lazzy flusher
//
CmSetLazyFlushState(FALSE);
//
// Setup
//
Status = STATUS_SUCCESS;
TimerRefreshLockOwned = FALSE;
BootStatusUpdated = FALSE;
VolumesFlushed = FALSE;
S4DozeObject = NULL;
WakeTimerObject = NULL;
WakeTime = 0;
RtlZeroMemory (&Action, sizeof(Action));
Action.Action = SystemAction;
Action.Flags = Flags;
RtlZeroMemory (&Trigger, sizeof(Trigger));
Trigger.Type = PolicySetPowerStateAPI;
Trigger.Flags = PO_TRG_SET;
//
// Lock any code dealing with shutdown or sleep
//
// PopUnlockComplete event is used to make sure that any previous unlock
// has completed before we try and lock everything again.
//
ASSERT(ExPageLockHandle);
KeWaitForSingleObject(&PopUnlockComplete, WrExecutive, KernelMode, FALSE, NULL);
MmLockPagableSectionByHandle(ExPageLockHandle);
ExNotifyCallback (ExCbPowerState, (PVOID) PO_CB_SYSTEM_STATE_LOCK, (PVOID) 0);
ExSwapinWorkerThreads(FALSE);
//
// Acquire policy manager lock
//
PopAcquirePolicyLock ();
PolicyLockOwned = TRUE;
//
// If we're not in the callout state, don't re-enter.
// The caller (paction.c) will handle the collision.
//
if (PopAction.State != PO_ACT_IDLE && PopAction.State != PO_ACT_CALLOUT) {
PoPrint (PO_PACT, ("NtSetSystemPowerState: already committed\n"));
PopReleasePolicyLock (FALSE);
MmUnlockPagableImageSection (ExPageLockHandle);
ExSwapinWorkerThreads(TRUE);
KeSetEvent(&PopUnlockComplete, 0, FALSE);
//
// try to catch weird case where we exit this routine with the
// time refresh lock held.
//
ASSERT(!ExIsResourceAcquiredExclusive(&ExpTimeRefreshLock));
return STATUS_ALREADY_COMMITTED;
}
if (PopAction.State == PO_ACT_IDLE) {
//
// If there is no other request, we want to clean up PopAction before we start,
// PopSetPowerAction() will not do this after we set State=PO_ACT_SET_SYSTEM_STATE.
//
PopResetActionDefaults();
}
//
// Update to action state to setting the system state
//
PopAction.State = PO_ACT_SET_SYSTEM_STATE;
//
// Set status to cancelled to start off as if this is a new request
//
Status = STATUS_CANCELLED;
try {
//
// Verify params and promote the current action.
//
PopSetPowerAction(
&Trigger,
0,
&Action,
LightestSystemState,
SubstituteLightestOverallDownwardBounded
);
} except (EXCEPTION_EXECUTE_HANDLER) {
Status = GetExceptionCode();
ASSERT (!NT_SUCCESS(Status));
}
//
// Lagecy hal support. If the original action was PowerDown
// change the action to be power down (as presumbly even if
// there's no handler HalReturnToFirmware will know what to do)
//
if (SystemAction == PowerActionShutdownOff) {
PopAction.Action = PowerActionShutdownOff;
}
if( (SystemAction == PowerActionShutdown) ||
(SystemAction == PowerActionShutdownReset) ||
(SystemAction == PowerActionShutdownOff) ) {
//
// If we're going down and there's a hiberfile allocated, and
// the user wants things secure, then go zero the hiberfile.
//
if( (PopHiberFile.FileHandle) && // do we have a hiberfile?
(PopHiberFile.FileObject) && // make double sure.
(MmZeroPageFile) ) { // policy is set to zero the pagefile.
PopZeroHiberFile(PopHiberFile.FileHandle, PopHiberFile.FileObject);
}
}
//
// Allocate the DevState here. From this point out we must be careful
// that we never release the policy lock with State == PO_ACT_SET_SYSTEM_STATE
// and PopAction.DevState not valid. Otherwise there is a race condition
// with PopRestartSetSystemState.
//
PopAllocateDevState();
if (PopAction.DevState == NULL) {
PopAction.State = PO_ACT_IDLE;
PopReleasePolicyLock(FALSE);
MmUnlockPagableImageSection( ExPageLockHandle );
ExSwapinWorkerThreads(TRUE);
KeSetEvent(&PopUnlockComplete, 0, FALSE);
//
// try to catch weird case where we exit this routine with the
// time refresh lock held.
//
ASSERT(!ExIsResourceAcquiredExclusive(&ExpTimeRefreshLock));
return STATUS_INSUFFICIENT_RESOURCES;
}
//
// At this point in the cycle, its not possible to abort the operation
// so this is a good time to ensure that the CPU is back running as close
// to 100% as we can make it.
//
PopSetPerfFlag( PSTATE_DISABLE_THROTTLE_NTAPI, FALSE );
PopUpdateAllThrottles();
S4DozeTimer = (HANDLE)-1;
QueryDevices = FALSE; // Only needed to keep the compiler happy
DeepestSystemState = PowerSystemUnspecified; // Only needed to keep the compiler happy
//
// While there's some action pending handle it.
//
// N.B. We will never get here if no sleep states are supported, as
// NtInitiatePowerAction will fail (PopVerifyPowerActionPolicy will return
// Disabled == TRUE). Therefore we won't accidentally querying for S0. Note
// that all the policy limitations were also verified at some point too.
//
for (; ;) {
//
// N.B. The system must be in the working state to be here
//
if (!PolicyLockOwned) {
PopAcquirePolicyLock ();
PolicyLockOwned = TRUE;
}
//
// If there's nothing to do, stop
//
if (PopAction.Action == PowerActionNone) {
break;
}
//
// Hibernate actions are converted to sleep actions before here.
//
ASSERT (PopAction.Action != PowerActionHibernate);
//
// We're handling it - clear update flags
//
PopAction.Updates &= ~(PO_PM_USER | PO_PM_REISSUE | PO_PM_SETSTATE);
//
// If the last operation was cancelled, update state for the
// new operation
//
if (Status == STATUS_CANCELLED) {
//
// If Re-issue is set we may need to abort back to PopSetPowerAction
// to let apps know of the promotion
//
if (PopAction.Updates & PO_PM_REISSUE) {
//
// Only abort if apps notificiation is allowed
//
if (!(PopAction.Flags & (POWER_ACTION_CRITICAL)) &&
(PopAction.Flags & (POWER_ACTION_QUERY_ALLOWED |
POWER_ACTION_UI_ALLOWED))
) {
// abort with STATUS_CANCELLED to PopSetPowerAction
PopGetPolicyWorker (PO_WORKER_ACTION_NORMAL);
break;
}
}
//
// Get limits and start (over) with the first sleep state to try.
//
PopActionRetrieveInitialState(
&PopAction.LightestState,
&DeepestSystemState,
&PopAction.SystemState,
&QueryDevices
);
ASSERT (PopAction.SystemState != PowerActionNone);
if ((PopAction.Action == PowerActionShutdown) ||
(PopAction.Action == PowerActionShutdownReset) ||
(PopAction.Action == PowerActionShutdownOff)) {
//
// This is a shutdown.
//
PopAction.Shutdown = TRUE;
}
Status = STATUS_SUCCESS;
}
//
// Quick debug check. Our first sleep state must always be valid, ie
// validation doesn't change it.
//
#if DBG
if (QueryDevices && (PopAction.SystemState < PowerSystemShutdown)) {
SYSTEM_POWER_STATE TempSystemState;
TempSystemState = PopAction.SystemState;
PopVerifySystemPowerState(&TempSystemState, SubstituteLightestOverallDownwardBounded);
if ((TempSystemState != PopAction.SystemState) ||
(TempSystemState == PowerSystemWorking)) {
PopInternalError (POP_INFO);
}
}
#endif
//
// If not success, abort SetSystemPowerState operation
//
if (!NT_SUCCESS(Status)) {
break;
}
//
// Only need the lock while updating PopAction.Action + Updates, and
// can not hold the lock while sending irps to device drivers
//
PopReleasePolicyLock(FALSE);
PolicyLockOwned = FALSE;
//
// Fish PopSimulate out of the registry so that it can
// modify some of our sleep/hiber behavior.
//
PopInitializePowerPolicySimulate();
//
// Dump any previous device state error
//
PopReportDevState (FALSE);
//
// What would be our next state to try?
//
PopAction.NextSystemState = PopAction.SystemState;
if (PopAction.Flags & POWER_ACTION_LIGHTEST_FIRST) {
//
// We started light, now we deepen our sleep state.
//
SubstitutionPolicy = SubstituteDeepenSleep;
} else {
//
// We started deep, now we're lightening up.
//
SubstitutionPolicy = SubstituteLightenSleep;
}
PopAdvanceSystemPowerState(&PopAction.NextSystemState,
SubstitutionPolicy,
PopAction.LightestState,
DeepestSystemState);
//
// If allowed, query devices
//
PopAction.IrpMinor = IRP_MN_QUERY_POWER;
if (QueryDevices) {
//
// Issue query to devices
//
Status = PopSetDevicesSystemState (FALSE);
//
// If the last operation was a failure, but wasn't a total abort
// continue with next best state
//
if (!NT_SUCCESS(Status) && Status != STATUS_CANCELLED) {
//
// Try next sleep state
//
PopAction.SystemState = PopAction.NextSystemState;
//
// If we're already exhausted all possible states, check
// if we need to continue regardless of the device failures.
//
if (PopAction.SystemState == PowerSystemWorking) {
if (PopAction.Flags & POWER_ACTION_CRITICAL) {
//
// It's critical. Stop querying and since the devices
// aren't particularly happy with any of the possible
// states, might as well use the max state
//
ASSERT( PopAction.Action != PowerActionWarmEject );
ASSERT( !(PopAction.Flags & POWER_ACTION_LIGHTEST_FIRST) );
QueryDevices = FALSE;
PopAction.SystemState = DeepestSystemState;
PopAction.Flags &= ~POWER_ACTION_LIGHTEST_FIRST;
} else {
//
// The query failure is final. Don't retry
//
break;
}
}
//
// Try new settings
//
Status = STATUS_SUCCESS;
continue;
}
}
//
// If some error, start over
//
if (!NT_SUCCESS(Status)) {
continue;
}
//
// Flush out any D irps on the queue. There shouldn't be any, but by
// setting LastCall == TRUE this also resets PopCallSystemState so that
// any D irps which occur as a side-effect of flushing the volumes get
// processed correctly.
//
PopSystemIrpDispatchWorker(TRUE);
//
// If this is a server and we are going into hibernation, write an entry
// into the eventlog. This allows for easy tracking of system downtime
// by searching the eventlog for hibernate/resume events.
//
if (RtlGetNtProductType(&NtProductType) &&
(NtProductType != NtProductWinNt) &&
(PopAction.SystemState == PowerSystemHibernate)) {
ErrLog = IoAllocateGenericErrorLogEntry(sizeof(IO_ERROR_LOG_PACKET));
if (ErrLog) {
//
// Fill it in and write it out
//
ErrLog->FinalStatus = STATUS_HIBERNATED;
ErrLog->ErrorCode = STATUS_HIBERNATED;
IoWriteErrorLogEntry(ErrLog);
WroteErrLog = TRUE;
}
}
//
// Get hibernation context
//
Status = PopAllocateHiberContext ();
if (!NT_SUCCESS(Status) || (PopAction.Updates & (PO_PM_REISSUE | PO_PM_SETSTATE))) {
continue;
}
//
// If boot status hasn't already been updated then do so now.
//
if(!BootStatusUpdated) {
if(PopAction.Shutdown) {
NTSTATUS bsdStatus;
HANDLE bsdHandle;
bsdStatus = RtlLockBootStatusData(&bsdHandle);
if(NT_SUCCESS(bsdStatus)) {
BOOLEAN t = TRUE;
RtlGetSetBootStatusData(bsdHandle,
FALSE,
RtlBsdItemBootShutdown,
&t,
sizeof(t),
NULL);
RtlUnlockBootStatusData(bsdHandle);
}
}
BootStatusUpdated = TRUE;
}
//
// If not already flushed, flush the volumes
//
if (!VolumesFlushed) {
VolumesFlushed = TRUE;
PopFlushVolumes ();
}
//
// Enter the SystemState
//
PopAction.IrpMinor = IRP_MN_SET_POWER;
if (PopAction.Shutdown) {
//
// Force reacquisition of the dev list. We will be telling Pnp
// to unload all possible devices, and therefore Pnp needs us to
// release the Pnp Engine Lock.
//
IoFreePoDeviceNotifyList(&PopAction.DevState->Order);
PopAction.DevState->GetNewDeviceList = TRUE;
//
// We shut down via a system worker thread so that the
// current active process will exit cleanly.
//
if (PsGetCurrentProcess() != PsInitialSystemProcess) {
ExInitializeWorkItem(&PopShutdownWorkItem,
&PopGracefulShutdown,
NULL);
ExQueueWorkItem(&PopShutdownWorkItem,
PO_SHUTDOWN_QUEUE);
// Clean up in prep for wait...
ASSERT(!PolicyLockOwned);
//
// If we acquired the timer refresh lock (can happen if we promoted to shutdown)
// then we need to release it so that suspend actually suspends.
//
if (TimerRefreshLockOwned) {
ExReleaseTimeRefreshLock();
}
// And sleep until we're terminated.
// Note that we do NOT clean up the dev state -- it's now
// owned by the shutdown worker thread.
// Note that we also do not unlock the pagable image
// section referred to by ExPageLockHandle -- this keeps
// all of our shutdown code in memory.
KeSuspendThread(KeGetCurrentThread());
return STATUS_SYSTEM_SHUTDOWN;
} else {
PopGracefulShutdown (NULL);
}
}
//
// Get the timer refresh lock to hold off automated time of day
// adjustments. On wake the time will be explicitly reset from Cmos
//
if (!TimerRefreshLockOwned) {
TimerRefreshLockOwned = TRUE;
ExAcquireTimeRefreshLock(TRUE);
}
// This is where PopAllocateHiberContext used to be before bug #212420
//
// If there's a Doze to S4 timeout set, and this wasn't an S4 action
// and the system can support and S4 state, set a timer for the doze time
//
// N.B. this must be set before the paging devices are turned off
//
if (S4DozeObject) {
S4DozeObject = NULL;
NtClose (S4DozeTimer);
}
if (PopPolicy->DozeS4Timeout &&
!S4DozeObject &&
PopAction.SystemState != PowerSystemHibernate &&
SystemAction != PowerActionHibernate &&
PopCapabilities.SystemS4 &&
PopCapabilities.SystemS5 &&
PopCapabilities.HiberFilePresent) {
//
// Create a timer to wake the machine up when we need to hibernate
//
InitializeObjectAttributes (&ObjectAttributes, NULL, 0, NULL, NULL);
Status2 = NtCreateTimer (
&S4DozeTimer,
TIMER_ALL_ACCESS,
&ObjectAttributes,
NotificationTimer
);
if (NT_SUCCESS(Status2)) {
//
// Get the timer object for this timer
//
Status2 = ObReferenceObjectByHandle (
S4DozeTimer,
TIMER_ALL_ACCESS,
NULL,
KernelMode,
&S4DozeObject,
NULL
);
ASSERT(NT_SUCCESS(Status2));
ObDereferenceObject(S4DozeObject);
}
}
//
// Inform drivers of the system sleeping state
//
Status = PopSetDevicesSystemState (FALSE);
if (!NT_SUCCESS(Status)) {
continue;
}
//
// Drivers have been informed, this operation is now committed,
// get the next wakeup time
//
RtlZeroMemory (&WakeTimeFields, sizeof (WakeTimeFields));
if (!(PopAction.Flags & POWER_ACTION_DISABLE_WAKES)) {
//
// Set S4Doze wakeup timer
//
if (S4DozeObject) {
DueTime.QuadPart = -(LONGLONG) (US2SEC*US2TIME) * PopPolicy->DozeS4Timeout;
NtSetTimer(S4DozeTimer, &DueTime, NULL, NULL, TRUE, 0, NULL);
}
ExGetNextWakeTime(&WakeTime, &WakeTimeFields, &WakeTimerObject);
}
//
// Only enable RTC wake if the system is going to an S-state that
// supports the RTC wake.
//
if (PopCapabilities.RtcWake != PowerSystemUnspecified &&
PopCapabilities.RtcWake >= PopAction.SystemState &&
WakeTime) {
#if DBG
ULONGLONG InterruptTime;
InterruptTime = KeQueryInterruptTime();
PoPrint (PO_PACT, ("Wake alarm set%s: %d:%02d:%02d %d (%d seconds from now)\n",
WakeTimerObject == S4DozeObject ? " for s4doze" : "",
WakeTimeFields.Hour,
WakeTimeFields.Minute,
WakeTimeFields.Second,
WakeTimeFields.Year,
(WakeTime - InterruptTime) / (US2TIME * US2SEC)
));
#endif
HalSetWakeEnable(TRUE);
HalSetWakeAlarm(WakeTime, &WakeTimeFields);
} else {
HalSetWakeEnable(TRUE);
HalSetWakeAlarm( 0, NULL );
}
//
// Capture the last sleep time.
//
SleepTime = KeQueryInterruptTime();
//
// Implement system handler for sleep operation
//
Status = PopSleepSystem (PopAction.SystemState,
PopAction.HiberContext);
//
// A sleep or shutdown operation attempt was performed, clean up
//
break;
}
//
// If the system slept successfully, update the system time to
// match the CMOS clock.
//
if (NT_SUCCESS(Status)) {
PopAction.SleepTime = SleepTime;
ASSERT(TimerRefreshLockOwned);
ExUpdateSystemTimeFromCmos (TRUE, 1);
PERFINFO_HIBER_START_LOGGING();
}
//
// If DevState was allocated, notify drivers the system is awake
//
if (PopAction.DevState) {
//
// Log any failures
//
PopReportDevState (TRUE);
//
// Notify drivers that the system is now running
//
PopSetDevicesSystemState (TRUE);
}
//
// Free the device notify list. This must be done before acquiring
// the policy lock, otherwise we can deadlock with the PNP device
// tree lock.
//
ASSERT(PopAction.DevState != NULL);
IoFreePoDeviceNotifyList(&PopAction.DevState->Order);
//
// Get the policy lock for the rest of the cleanup
//
if (!PolicyLockOwned) {
PopAcquirePolicyLock ();
PolicyLockOwned = TRUE;
}
//
// Cleanup DevState
//
PopCleanupDevState ();
if (NT_SUCCESS(Status)) {
//
// Now that the time has been fixed, record the last state
// the system has awoken from and the current time
//
PopAction.LastWakeState = PopAction.SystemState;
PopAction.WakeTime = KeQueryInterruptTime();
//
// See if we woke up because of the RTC...
//
if (S4DozeObject) {
NtQueryTimer (S4DozeTimer,
TimerBasicInformation,
&TimerInformation,
sizeof (TimerInformation),
NULL);
if (TimerInformation.TimerState) {
//
// Yes, we woke up because the RTC fired.
//
PoPrint (PO_PACT, ("Wake with S4 timer expired\n"));
PoPrint (PO_PACT, ("Pop: Elapsed time since RTC fired: %d\r\n", (PopAction.WakeTime - WakeTime)) );
if( WakeTimerObject == S4DozeObject ) {
//
// We woke up from the RTC, but we need to deal
// with a couple of whacky BIOS issues here.
// 1. Some BIOS's say they do, but don't really
// support waking from the RTC. For these, we
// need to make sure the RTC didn't expire a really
// long time ago and that we're just waking up because
// someone hit the wakeup button.
// 2. Some BIOS's say that a user is present (signal
// a button event) when we wake up because they want
// the screen to come on and show their branding.
// So we need to see if the RTC expired a *really*
// short time ago and if so, assume there really isn't
// a user present.
//
BOOLEAN MoveToS4 = FALSE;
if( !AnyBitsSet (PopFullWake, PO_FULL_WAKE_STATUS | PO_FULL_WAKE_PENDING) ) {
//
// We don't think any user is around, so see how long ago
// the RTC expired.
//
if( (PopAction.WakeTime - WakeTime) <
(SYS_IDLE_REENTER_TIMEOUT * US2TIME * US2SEC) ) {
//
// It fired semi-recently. so we should probably
// move aggressively into S4
//
MoveToS4 = TRUE;
}
} else {
//
// We think a user is present. But some BIOS's tell us
// a user is present when we wake up when there really isn't.
//
if( (PopAction.WakeTime - WakeTime) <
(SYS_IGNORE_USERPRESENT_AND_BELIEVE_RTC * US2TIME * US2SEC) ) {
//
// The RTC fired *very* recently, so ignore the fact that
// we've been told a user is around and move aggressively
// into S4.
//
MoveToS4 = TRUE;
//
// Let's also hide the fact that the BIOS lied to us about
// a user being present. This will help smooth things over
// if something bad happens on the hibernate path and we have
// to come up unexpectedly.
//
InterlockedAnd( &PopFullWake, ~(PO_FULL_WAKE_STATUS|PO_FULL_WAKE_PENDING) );
}
}
if( MoveToS4 ) {
PopAction.Action = PowerActionSleep;
PopAction.LightestState = PowerSystemHibernate;
PopAction.Updates |= PO_PM_REISSUE;
PopInitSIdle();
}
}
}
}
}
//
// Free anything that's left of the hiber context
//
PopFreeHiberContext (TRUE);
//
// Clear out PopAction unless we have promoted directly to hibernate
//
if ((PopAction.Updates & PO_PM_REISSUE) == 0) {
PopResetActionDefaults();
}
//
// We are no longer active
// We don't check for work here as this may be "the thread" from winlogon.
// So we explicitly queue pending policy work off to a worker thread below
// after setting the win32k wake notifications.
//
PopAction.State = PO_ACT_CALLOUT;
PopReleasePolicyLock (FALSE);
//
// If there's been some sort of error, make sure gdi is enabled
//
if (!NT_SUCCESS(Status)) {
PopDisplayRequired (0);
}
//
// If some win32k wake event is pending, tell win32k
//
if (PopFullWake & PO_FULL_WAKE_PENDING) {
PopSetNotificationWork (PO_NOTIFY_FULL_WAKE);
} else if (PopFullWake & PO_GDI_ON_PENDING) {
PopSetNotificationWork (PO_NOTIFY_DISPLAY_REQUIRED);
}
//
// If the timer refresh lock was acquired, release it
//
if (TimerRefreshLockOwned) {
ExReleaseTimeRefreshLock();
} else {
//
// try to catch weird case where we exit this routine with the
// time refresh lock held.
//
ASSERT(!ExIsResourceAcquiredExclusive(&ExpTimeRefreshLock));
}
//
// Unlock pageable code. The unlock is queued off to a delayed worker queue
// since it is likely to block on pagable code, registry, etc. The PopUnlockComplete
// event is used to prevent the unlock from racing with a subsequent lock.
//
ExQueueWorkItem(&PopUnlockAfterSleepWorkItem, DelayedWorkQueue);
//
// If a timer for s4 dozing was allocated, close it
//
if (S4DozeObject) {
NtClose (S4DozeTimer);
}
//
// If we wrote an errlog message indicating that we were hibernating, write a corresponding
// one to indicate we have woken.
//
if (WroteErrLog) {
ErrLog = IoAllocateGenericErrorLogEntry(sizeof(IO_ERROR_LOG_PACKET));
if (ErrLog) {
//
// Fill it in and write it out
//
ErrLog->FinalStatus = STATUS_RESUME_HIBERNATION;
ErrLog->ErrorCode = STATUS_RESUME_HIBERNATION;
IoWriteErrorLogEntry(ErrLog);
}
}
//
// Finally, we can revert the throttle back to a normal value
//
PopSetPerfFlag( PSTATE_DISABLE_THROTTLE_NTAPI, TRUE );
PopUpdateAllThrottles();
//
// Done - kick off the policy worker thread to process any outstanding work in
// a worker thread.
//
PopCheckForWork(TRUE);
//
// enable registry's lazzy flusher
//
CmSetLazyFlushState(TRUE);
//
// try to catch weird case where we exit this routine with the
// time refresh lock held.
//
ASSERT(!ExIsResourceAcquiredExclusive(&ExpTimeRefreshLock));
return Status;
}
NTSYSAPI
NTSTATUS
NTAPI
NtRequestDeviceWakeup(
IN HANDLE Device
)
/*++
Routine Description:
This routine requests a WAIT_WAKE Irp on the specified handle.
If the handle is to a device object, the WAIT_WAKE irp is sent
to the top of that device's stack.
If a WAIT_WAKE is already outstanding on the device, this routine
increments the WAIT_WAKE reference count and return success.
Arguments:
Device - Supplies the device which should wake the system
Return Value:
NTSTATUS
--*/
{
UNREFERENCED_PARAMETER (Device);
return(STATUS_NOT_IMPLEMENTED);
}
NTSYSAPI
NTSTATUS
NTAPI
NtCancelDeviceWakeupRequest(
IN HANDLE Device
)
/*++
Routine Description:
This routine cancels a WAIT_WAKE irp sent to a device previously
with NtRequestDeviceWakeup.
The WAIT_WAKE reference count on the device is decremented. If this
count goes to zero, the WAIT_WAKE irp is cancelled.
Arguments:
Device - Supplies the device which should wake the system
Return Value:
NTSTATUS
--*/
{
UNREFERENCED_PARAMETER (Device);
return(STATUS_NOT_IMPLEMENTED);
}
NTSYSAPI
BOOLEAN
NTAPI
NtIsSystemResumeAutomatic(
VOID
)
/*++
Routine Description:
Returns whether or not the most recent wake was automatic
or due to a user action.
Arguments:
None
Return Value:
TRUE - The system was awakened due to a timer or device wake
FALSE - The system was awakened due to a user action
--*/
{
if (AnyBitsSet(PopFullWake, PO_FULL_WAKE_STATUS | PO_FULL_WAKE_PENDING)) {
return(FALSE);
} else {
return(TRUE);
}
}
NTSYSAPI
NTSTATUS
NTAPI
NtGetDevicePowerState(
IN HANDLE Device,
OUT DEVICE_POWER_STATE *State
)
/*++
Routine Description:
Queries the current power state of a device.
Arguments:
Device - Supplies the handle to a device.
State - Returns the current power state of the device.
Return Value:
NTSTATUS
--*/
{
PFILE_OBJECT fileObject;
PDEVICE_OBJECT deviceObject;
NTSTATUS status;
PDEVOBJ_EXTENSION doe;
KPROCESSOR_MODE PreviousMode;
DEVICE_POWER_STATE dev_state;
PAGED_CODE();
//
// Verify caller's parameter
//
ASSERT(Device);
ASSERT(State);
PreviousMode = KeGetPreviousMode();
if (PreviousMode != KernelMode) {
try {
ProbeForWriteUlong((PULONG)State);
} except (EXCEPTION_EXECUTE_HANDLER) {
status = GetExceptionCode();
return(status);
}
}
//
// Reference the file object in order to get to the device object
// in question.
//
status = ObReferenceObjectByHandle(Device,
0L,
IoFileObjectType,
KeGetPreviousMode(),
(PVOID *)&fileObject,
NULL);
if (!NT_SUCCESS(status)) {
return(status);
}
//
// Get the address of the target device object.
//
status = IoGetRelatedTargetDevice(fileObject, &deviceObject);
//
// Now that we have the device object, we are done with the file object
//
ObDereferenceObject(fileObject);
if (!NT_SUCCESS(status)) {
return(status);
}
doe = deviceObject->DeviceObjectExtension;
dev_state = PopLockGetDoDevicePowerState(doe);
try {
*State = dev_state;
} except (EXCEPTION_EXECUTE_HANDLER) {
status = GetExceptionCode();
}
ObDereferenceObject(deviceObject);
return (status);
}